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1. ABSTRACT

We present a new computational method for reconstructing a
vector field from scattered, pulsed-wave ultrasound Doppler
data. The main difficulty is that the Doppler measurements
are incomplete, for they do only capture the velocity compo-
nent along the beam direction. We thus propose to combine
measurements from different beam directions. However, this
is not yet sufficient to make the problem well posed because
(1) the angle between the directions is typically small; and
(ii) the data is noisy and nonuniformly sampled. We there-
fore introduce a vector-spline regularization that forces the
solution to be well behaved while inducing some helpful cou-
pling between the = and y components of the vector field. We
discretize our vector-spline reconstruction problem in a uni-
form B-spline basis, obtaining a sparse system of equations
that can be solved efficiently. We validate our method using
real tissue Doppler data for which the ground truth is known.
Finally, we present some patient results obtained with color
Doppler imaging; in particular, we are able to observe blood-
flow variations in the bifurcation of the carotid artery.

2. INTRODUCTION

Pulsed-wave ultrasound Doppler (PWD) imaging is an effec-
tive tool for the monitoring of vascular and cardiac function
[1, 2, 3]. The imaging system sends a periodic pulse train
along a set of scan lines and measures the backscattered sig-
nal. By analyzing the Doppler frequency shift in the received
signal, the system retrieves a set of axial velocity estimates;
these are the projected components of the true 3-D velocity
along the direction of the ultrasound beam. These axial com-
ponents are resampled on a regular grid and presented in a
color-coded form that is known as the color Doppler image.
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The color flow image sequence contains the instantaneous
velocity information, but it is incomplete; in particular, the
system is blind to the motion that is orthogonal to the beam.
Nevertheless, such a partial velocity field has been used for
the determination of quantitative parameters such as flow vol-
ume. Further, the qualitative, and, to some extent, the quan-
titative motion analysis obtained from this kind of data was
found to be clinically useful in several instances [2, 3]. How-
ever, the availability of a full vector field is desirable since it
will lead to a more flexible quantitative analysis.

In this paper, we propose a method to reconstruct the true
velocity field from the PWD data. We formulate the task as
the problem of finding a continuous vector function that is
the minimizer of a suitable criterion. Specifically, we con-
sider a quadratic-cost functional that is a weighted sum of a
data term, along with a physically inspired smoothness func-
tional (regularizer). The regularizer enforces some coupling
between the x and y velocity components. We demonstrate
that the partial nature of the data makes this coupling cru-
cial. We search for the continuous solution in a shift-invariant
space. By choosing the step size, we can control the tradeoff
between computational complexity and reconstruction accu-
racy.

We validate our method using a real phantom experiment.
Finally, we provide some reconstruction results on blood-pool
data; specifically, we reconstruct the blood flow field in the
carotid bifurcation.

3. PROPOSED RECONSTRUCTION METHOD

3.1. Form of the Data

A Doppler imaging system measures axial velocities at some
selected locations in the cross-sectional plane under consider-
ation. The selected locations {x;} are typically located on a
noncartesian grid. These nonuniform measurements are scan-
converted (resampled in a regular grid) and then displayed in
a color-coded form.

A typical 2-D data set will contain the set of sampling
locations {x;}, the corresponding beam directions {d;}, and
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the Doppler measurements {m;} satisfying m; = d} v(x;),
where v(x) is the true velocity field. Note that the sam-
pling locations {x;} are nonuniform, especially when there
are multiple views.

Figure 1 gives the schematic of two commonly used sam-
pling geometries. The solid lines with arrows represent the
scan lines (ultrasound beam), whereas the dotted lines repre-
sent the sampling grid along the scan lines. In the cone-beam
or sector-beam scheme, the beams are launched from a sin-
gle point along a series of regularly spaced angles. In the
parallel-beam acquisition, beams are launched with a fixed
angle from a set of points spaced regularly along a line. A
typical parallel-beam probe has the capability of steering the
beam angle, which means that different Doppler images can
be acquired without moving the probe (multiple acquisitions).
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(a) Cone-beam or sector-beam
acquisition

(b) Parallel-beam acquisition

Fig. 1. Scan-line schemes for 2-D acquisition

In this paper, we consider two types of data sets: (i) sam-
ples of multiple acquisitions of the same cross-sectional plane
obtained from a cone-beam probe placed at different locations
(sample locations and beam directions are transformed into a
common reference plane); (ii) multiple acquisitions from a
parallel-beam probe obtained by beam steering.

3.2. Proposed Formulation

Let v(x) = [u(z,y) v(z,y)] be the velocity field. Our aim
is to recover v(x) from the given Doppler measurement set
{xi,d;, m;}. We search for the solution in the space of uni-
form B-splines; in other words, we restrict the velocity field
to be of the following form:
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Here, 8" is the B-sphne of degree n and a is a step size that
controls the accuracy. N, is the grid size. The idea is to
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formulate the reconstruction as the minimizer of a quadratic-
cost functional.

The cost to minimize is
N 2
JvrLs(v Z (dfv(xi) —=m;)” + ARp(v), ()
i=1

where R (v) is our specific choice of smoothness functional
which involves the divergence and the curl of the velocity
field, and which is computed as follows:

Rp(V) = A, / (div v(x))? dx 4 A, / (curl v(x))* dx

+)\d1/||V(divv(x))||2dx+)\cl/||V(curlv(x))||2dx.
)

Since the divergence gives the density change, the first term in
(4) quantifies the overall compression rate, whereas the sec-
ond term gives its spatial roughness. Both terms are related to
the deformation of the medium. The third term sums up the
squared angular velocity. It does not directly quantify the de-
formation, but will tend to penalize rotations—including rigid
ones. The last term, on the other hand, is indeed a measure of
deformation, as it captures the spatial variation of the angular
velocity.

The idea behind using this regularizer is that it includes
every derivative-based quantity that has a direct physical in-
terpretation. This allows one to incorporate some a priori
knowledge on the type of velocity field, and also to specify
physically plausible solutions. Interestingly, we have verified
that any rotationally-invariant functional of order less or equal
to two takes the form (4). The proof will be published else-
where.

An important point is that the regularizer has cross terms
that induce a coupling between the vector-field components.
Yet, the present functional also includes standard, uncoupled
regularizers as special cases. Specifically, when Ag, = A, >
0 and A4, = A¢, = 0, (4) becomes equivalent to an indepen-
dent gradient regularizer (membrane spline) on each compo-
nent separately. Likewise, when A\q, = A;;, > O and Ay, =
Aco = 0, (4) becomes equivalent to an independent Laplacian
regularizer (thin-plate spline [4]) on each component sepa-
rately. Moreover, choosing A\g, = A, > 0 and Ag, = A, >
0 yields the so-called splines under tension, which involve a
weighted sum of Duchon’s seminorms [5]. The interesting as-
pect of these (uncoupled) functionals is that the corresponding
nonparametric regularized least-squares approximation prob-
lem can be solved analytically and its solution expressed as a
sum of radial-basis functions [6].

In contrast with the works cited above, we argue here that
the presence of coupling is crucial for our application; this is
also supported by our experimental results.



3.3. Solution
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The required coefficient vector that minimizes (3) is the solu-
tion of the following equation:
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The matrices R, R,, and R,,,,, are the circulant matrices
corresponding to the filters R, (21, 22), Ry (21, 22), and
Ry (z1, 22), respectively. These are given by
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Fig. 2. Reconstructed motion field for the rotating real phan-
tom.

with B™(z) being the discrete B-spline of degree n and with
L(z) = z + 2+ 2~ L. The subvectors b,, and b,, are given by

{butnykis = Y duif(wi/a— §)B" (yi/a — k), (16)

{bu}nykss = O dyiB (wi/a— 5)B"(yi/a— k).  (17)

The linear system above is sparse, well conditioned, and
diagonally dominant. Thanks to these properties, we obtain
an efficient numerical implementation using standard sparse-
matrix routines. This is the primary advantage of the pro-
posed method over a direct analytical solution (generalized
thin-plate splines) which should also be feasible, in the spirit
of the work of Suter al. [6].

4. EXPERIMENTS

4.1. Real Phantom Experiment

The real phantom that we constructed for this experiment is
a cylindrical tissue-mimicking object (sponge) immersed in a
water container. The object rotates with a constant angular
velocity. Doppler data were acquired, and reconstruction was
performed from two views differing by 10 degrees. Figure 2
shows one frame of the B-mode intensity image with the su-
perimposed reconstructed motion field. The input SNR (on
the projected velocities) is 13 dB. The reconstruction SNR
(full vector field) is 13.67 dB. The preferred settings for the
regularization parameters is {\g, — 00, Ag;, = 0,A,, =
0,\., = ko?}, where o2 is the noise variance and k is a
proportionality constant. ~We also observed that enforcing
Ady = A¢, and A\g;, = A (uncoupled regularization) de-
grades the performance by 5 dB or more.

4.2. Blood Flow in the Carotid Bifurcation

Blood-flow patterns in the carotid bifurcation have been re-
ported to have a significant influence on the development of
atherosclerosis [7] which is a leading cause of heart attack
and stroke. In this experiment, we attempted to reconstruct



the complete blood-flow distribution in the carotid bifurcation
from multiple-view Doppler data acquired using a parallel-
beam probe setup with steering capability. We performed
three acquisitions with beam angles o« = 707,907, 110°. We
extracted the frames that correspond to R-peak over two cy-
cles. The noise variance of the Doppler data was estimated by
comparing frames corresponding to different cycles. It was
estimated to be 9% of the signal energy.

We used 75% (randomly selected) of the total measure-
ments (Data Set A) for reconstruction, and the remaining sam-
ples (Data Set B) for validation. In order to fine-tune the algo-
rithm, we performed multiple reconstructions, adjusting the
regularization parameters iteratively such that the data term
of the cost functional matches the noise variance. At the end
of the iterative procedure, the resulting data error was exactly
9% of the signal energy. Figure 3 presents the reconstruction
results obtained from data set A. Figure 3(a) gives a visual-
ization of the reconstructed flow field, whereas Figure 3(b)
gives the flow profiles across the vessels before and after the
bifurcation. We observe that, in the flow profiles after bifur-
cation, the maximum velocity is shifted towards the interior
of the bifurcation, whereas in the flow profile before bifurca-
tion, the maximum velocity stays approximately in the center
of the vessel. This agrees with model-based predictions [8],
and constitutes a significant clinical finding.

(a) Reconstructed flow field

(b) Velocity profile across dif-
ferent parts of the vessels

Fig. 3. Reconstructed results for the carotid bifurcation

Next, we cross-validated the reconstructed flow field us-
ing Data Set B. Specifically, we synthesized the Doppler pro-
jections from the reconstructed flow field at the locations cor-
responding to Data Set B, and compared them with the avail-
able data. The mismatch was found to be exactly 9% of the
total energy. This indicates that the chosen values for the reg-
ularization parameters are matched to the data, and that the
reconstructed velocity must be close to the underlying true
flow field.

5. CONCLUSION

We demonstrated the feasibility of recovering true velocity
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fields from pulsed-wave Doppler data. We adopted a reg-
ularized least-squares approach, where the cost to be mini-
mized is a weighted sum of the error in the data and a suit-
able smoothness functional. We proposed a derivative-based
smoothness functional that allows one to incorporate a priori
knowledge about the type of motion and to penalize undesir-
able solutions. We proposed a continuous B-spline solution
for this minimization problem, and showed how it could be
determined by solving a system of linear equations. We val-
idated the proposed method with real experimental data and
demonstrated its potential for clinical investigation.
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