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Abstract—We consider the problem of learning a function from a
sequence of its noisy samples in a continuous-domain hybrid search space.
We adopt the generalized total-variation norm as a sparsity-promoting
regularization term to make the problem well-posed. We prove that the
solution of this problem admits a sparse kernel expansion with adaptive
positions. We also show that the sparsity of the solution is upper-bounded
by the number of data points. This allows for an enlargement of the search
space and ensures the well-posedness of the problem.

I. INTRODUCTION

The goal of supervised learning is to learn an unknown function
f : Rd → R from a set of its noisy measurements (xm, ym), where
ym ≈ f(xm) for m = 1, 2, . . . ,M . In a reproducing-kernel Hilbert
space H(Rd), this problem is commonly formulated through the
minimization

min
f∈H(Rd)

M∑
m=1

(f(xm)− ym)2 + λ‖f‖2H. (1)

It is known that the solution of (1) lies in the linear span of
{k(·,xm)}Mm=1, where k(·, ·) is the unique reproducing kernel of
H(Rd) [1]. The form of the solution is then useful to reduce the
continuous-domain minimization problem (1) to a discrete finite-
dimensional problem that has a closed-form solution [2].

The multiple-kernel learning framework was proposed as a gen-
eralization of the classical method with the aim of increasing the
model flexibility [3] [4]. In this approach, the kernel function itself
is learned as a linear combination of some basis kernels.

II. PROPOSED FRAMEWORK

The Schwartz space of smooth and rapidly decaying functions
is denoted by S(Rd). Its topological dual S ′(Rd) is the space of
tempered distributions. An invertible linear shift-invariant operator L
with the frequency response L̂(ω) is called admissible if, for any
ϕ ∈ S ′(Rd), L{ϕ} = F−1{L̂ϕ̂} and L−1{ϕ} = F−1{ ϕ̂

L̂
} are both

elements of S ′(Rd). The underlying kernel of L is then defined as
k = F−1{ 1

L̂
} ∈ S ′(Rd).

We follow the Banach-space framework of Unser et al. in [5]
by imposing a sparsity-promoting regularization term called the
generalized total variation (gTV). Given an admissible operator
L : S ′(Rd)→ S ′(Rd), the gTV norm is defined as

gTV(w) = ‖L{w}‖M
M
= sup
ϕ∈S(Rd)
‖ϕ‖∞≤1

|〈L{w}, ϕ〉|. (2)

The native space for the operator L is the Banach space of elements
of S ′(Rd) with finite gTV norm, defined by

ML(Rd) = {w ∈ S ′(Rd) : ‖L{w}‖M < +∞}. (3)

We propose a new multicomponent model for the target function f .
We assume that f =

∑N
n=1 fn, with fn ∈ MLn(Rd), where each

component fn has a certain degree of smoothness in accordance with
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its corresponding regularization operator Ln. We impose our model
priors through the minimization

min
fn∈MLn (Rd)

f=
∑N

n=1 fn

M∑
m=1

(f(xm)− ym)2 + λ

N∑
n=1

‖Ln{fn}‖M. (4)

Theorem 1 describes the solution form of (4).

Theorem 1. There exists a solution (f1, f2, . . . , fN ) of (4) such that
the reconstructed function f =

∑N
n=1 fn takes the form

f(·) =
N∑
n=1

Mn∑
j=1

an,jkn(· − zn,j) (5)

for some sparse coefficients an,j ∈ R and adaptive positions
zn,j ∈ Rd. Moreover,

∑N
n=1Mn ≤ M and

∑N
n=1 ‖Ln{fn}‖M =∑N

n=1

∑Mn
j=1 |an,j |.

Theorem 1 has been proven in the extended version of this work
[6]. It proposes an adaptive kernel expansion for the multiple-kernel
regression model. The total number of active kernels (with nonzero
coefficients) is upper-bounded by M and does not depend on the
number of search spaces. This allows one to enlarge the search space
while keeping the problem well-posed and nonreduntant. The gTV
regularization also enforces an `1-penalty on the kernel coefficients,
which results in a sparse kernel expansion.

III. ADMISSIBLE KERNELS

An important aspect of our theory is to identify the class of
admissible kernels. We show that, for any function k : Rd → R,
if k̂(ω) and 1

k̂(ω)
are smooth and slowly growing functions, then

k(·) is an admissible kernel. An example is the sub-Gaussian kernels
defined as

kα(x,y) = exp(−‖x− y‖αα). (6)

The tuning parameter α ∈ (0, 2) is related to the asymptotic decay of
the kernel function in the Fourier domain. The case α = 2 (Gaussian
kernels) is excluded from our theory since the frequency response
of the corresponding operator has exponential growth and, hence,
is not in S ′(Rd). However, we can get arbitrarily close by letting
α = (2− ε) for a small value of ε > 0.
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