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Abstract—We consider the problem of learning a function from a
sequence of its noisy samples in a continuous-domain hybrid search space.
We adopt the generalized total-variation norm as a sparsity-promoting
regularization term to make the problem well-posed. We prove that the
solution of this problem admits a sparse kernel expansion with adaptive
positions. We also show that the sparsity of the solution is upper-bounded
by the number of data points. This allows for an enlargement of the search
space and ensures the well-posedness of the problem.

I. INTRODUCTION

The goal of supervised learning is to learn an unknown function
f:R? = R from a set of its noisy measurements (&, i), where
Ym = f(@m) for m =1,2,..., M. In a reproducing-kernel Hilbert
space #(R?), this problem is commonly formulated through the
minimization
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It is known that the solution of (1) lies in the linear span of
{k(-, &m)}2_,, where k(-,-) is the unique reproducing kernel of
H(R?) [1]. The form of the solution is then useful to reduce the
continuous-domain minimization problem (1) to a discrete finite-
dimensional problem that has a closed-form solution [2].

The multiple-kernel learning framework was proposed as a gen-
eralization of the classical method with the aim of increasing the
model flexibility [3] [4]. In this approach, the kernel function itself
is learned as a linear combination of some basis kernels.

II. PROPOSED FRAMEWORK

The Schwartz space of smooth and rapidly decaying functions
is denoted by S(R%). Its topological dual S’(R?) is the space of
tempered distributions. An invertible linear shift-invariant operator L
with the frequency responseAi(w) is called admissible if, for any
¢ € 8'(RY), L{p} = F ' {Ly} and L™ {p} = F~'{£} are both
elements of S’(R?). The underlying kernel of L is then defined as
k= }'_1{%} € S'(RY).

We follow the Banach-space framework of Unser et al. in [5]
by imposing a sparsity-promoting regularization term called the
generalized total variation (gTV). Given an admissible operator
L:S'(RY) — S'(R?), the gTV norm is defined as

gTV(w) = [[L{w}m = sup [(L{w},¢)|. @

peS(RY)
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The native space for the operator L is the Banach space of elements
of &’(R?) with finite gTV norm, defined by
MLRY) = {w € 8'(RY) : [|[L{w}||m < +o0}. A3)

We propose a new multicomponent model for the target function f.
We assume that f = Zf:’:l fn, with f, € My, (R?), where each
component f, has a certain degree of smoothness in accordance with
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its corresponding regularization operator L,,. We impose our model
priors through the minimization
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Theorem 1 describes the solution form of (4).

Theorem 1. There exists a solution (f1, f2, ..., fn) of (4) such that
the reconstructed function f = 27]:7:1 fn takes the form

N M,
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for some sparse coefficients an,; € R and adaptive positions
zn; € R Moreover, Zﬁ;l M, < M and 25:1 ILn{frn}llm =
27]:7:1 Z?iﬂi |an,;j
Theorem 1 has been proven in the extended version of this work
[6]. It proposes an adaptive kernel expansion for the multiple-kernel
regression model. The total number of active kernels (with nonzero
coefficients) is upper-bounded by M and does not depend on the
number of search spaces. This allows one to enlarge the search space
while keeping the problem well-posed and nonreduntant. The gTV
regularization also enforces an ¢1-penalty on the kernel coefficients,

which results in a sparse kernel expansion.

III. ADMISSIBLE KERNELS

An important aspect of our theory is to identify the class of
adr/l\lissible kernels. We show that, for any function k : RY - R,
if k(w) and ﬁ are smooth and slowly growing functions, then

k(-) is an admissible kernel. An example is the sub-Gaussian kernels
defined as

ko (z,y) = exp(—|lz — y||a)- (6)

The tuning parameter o € (0, 2) is related to the asymptotic decay of
the kernel function in the Fourier domain. The case o = 2 (Gaussian
kernels) is excluded from our theory since the frequency response
of the corresponding operator has exponential growth and, hence,
is not in S’(R%). However, we can get arbitrarily close by letting
o = (2 — ¢€) for a small value of € > 0.
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