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Multikernel Regression with Sparsity Constraint∗
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Abstract. In this paper, we provide a Banach-space formulation of supervised learning with generalized total-
variation (gTV) regularization. We identify the class of kernel functions that are admissible in this
framework. Then, we propose a variation of supervised learning in a continuous-domain hybrid
search space with gTV regularization. We show that the solution admits a multikernel expansion
with adaptive positions. In this representation, the number of active kernels is upper-bounded by the
number of data points while the gTV regularization imposes an `1 penalty on the kernel coefficients.
Finally, we illustrate numerically the outcome of our theory.
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1. Introduction. The determination of an unknown function from a series of samples is
a classical problem in machine learning. It falls under the category of “supervised learning,”
for which there exists a rich literature (see [9, 35, 68] for classical textbooks, as well as
[13, 20, 34, 59] for more recent ones). The goal of supervised learning is to recover a target
function f : Rd → R from its M noisy samples ym = f(xm) + εm, m = 1, 2, . . . ,M . The
disturbance terms εm are typically assumed to be independent and identically distributed
(i.i.d.) samples of a zero-mean probability law (e.g., additive Gaussian noise) while the input
vectors xm are assumed to be in either the random or fixed design [34, section 1.9].

A general way to formulate supervised learning is through the minimization problem

min
f

( M∑
m=1

E(f(xm), ym)︸ ︷︷ ︸
I

+λR(f)︸ ︷︷ ︸
II

)
,(1.1)

where the cost function is made of two terms. The first one (data fidelity) measures how
well f fits the given training dataset while the second one (regularization) imposes the prior
knowledge about the function model. The parameter λ ∈ R+ balances the terms.

1.1. RKHS in machine learning. The simplest form of (1.1) is the least-squares problem
with Tikhonov regularization
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202 SHAYAN AZIZNEJAD AND MICHAEL UNSER

min
f∈HL(Rd)

(
M∑
m=1

|f(xm)− ym|2 + λ‖L{f}‖2L2

)
,(1.2)

where L is the regularization operator and HL(Rd), known as the native space of L, is the
space of functions f : Rd → R such that L{f} ∈ L2(Rd) (see (2.1) for the definition of the Lp
spaces). It is a classical quadratic minimization problem that has a closed-form solution [63].
An important assumption in this formulation is the continuity of the sampling functionals
δxm = δ(· − xm) : f 7→ f(xm) for m = 1, 2, . . . ,M . This is equivalent to HL(Rd) being a
reproducing-kernel Hilbert space (RKHS) [1, 15, 68], which is a key concept in supervised
learning [8, 59].

The Hilbert space H(Rd) consisting of functions from Rd to R is called an RKHS if there
exists a bivariate symmetric and positive-definite function k : Rd × Rd → R such that, for all
x ∈ Rd, k(x, ·) ∈ H(Rd) and f(x) = 〈k(x, ·), f(·)〉H [1]. The function k(·, ·) is unique and is
called the reproducing kernel of H(Rd).

The supervised learning over the RKHS H(Rd) can be formulated through the minimiza-
tion

min
f∈H(Rd)

(
M∑
m=1

E(f(xm), ym) + λ‖f‖2H

)
.(1.3)

The kernel representer theorem states that the solution of (1.3) admits the form

f(·) =
M∑
m=1

amk(·,xm)(1.4)

for some appropriate weights am ∈ R, where m = 1, 2, . . . ,M [36, 49]. The expansion (1.4)
is the key element of kernel-based schemes in machine learning [50, 52, 67] and, in particular,
support-vector machines (SVMs) [24, 59]. Moreover, optimal rates have been derived for learn-
ing using the expansion (1.4) in several setups [12, 42, 62], particularly for Gaussian kernels
[23]. Computing the RKHS norm of a function f of the form (1.4) results in ‖f‖2H = aTGa,
where G ∈ RM×M is a symmetric and positive-definite matrix with [G]m,n = k(xm,xn). It is
called the Gram matrix of the kernel k(·, ·). The practical outcome of this observation is that
the infinite-dimensional problem (1.3) over the space of functions H(Rd) becomes equivalent
to the finite-dimensional problem [49]

min
a∈RM

(
M∑
m=1

E([Ga]m, ym) + λaTGa

)
,(1.5)

which is of size M and can be computed numerically.

1.2. Toward sparse kernel expansions. In the solution form (1.4), the kernels are shifted
to the location of the data samples. This is elegant but can become cumbersome when the
number of samples M grows large. Several schemes have been developed to reduce the number
of active kernels. One proposed approach is to use a sparsity-enforcing loss such as the ε-
insensitive norm of SVM regression [57, 58, 60]. Another approach is to replace the quadraticD
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MULTIKERNEL REGRESSION WITH SPARSITY CONSTRAINT 203

regularization aTGa in the reduced finite-dimensional problem (1.5) by a sparsity-promoting
penalty such as ‖a‖`1 =

∑M
m=1 |am|. This results in (1.5) becoming

min
a∈RM

(
M∑
m=1

E([Ga]m, ym) + λ‖a‖`1

)
,(1.6)

which is called the generalized least absolute shrinkage and selection operator (LASSO)
[45]. The properties of this estimator have been studied from both a statistical [53] and
approximation-theoretical point of view [69].

In this paper, we consider a Banach-space formulation of supervised learning. We choose
the generalized total-variation (gTV) norm as the regularization term in order to promote
sparsity in the continuous domain. The effect of gTV regularization has been extensively
studied in the context of linear inverse problems [28, 41, 64]. For an invertible operator L (see
Definition 3.1), the gTV norm is defined as

gTV(f) = ‖L{f}‖M,(1.7)

whereM(Rd) is the space of bounded Radon measures (see (2.2) for a precise definition) and
‖ · ‖M is the total-variation norm in the sense of measures [47].

One can formulate supervised learning with gTV regularization through the minimization

min
f∈ML(Rd)

(
M∑
m=1

E(f(xm), ym) + λ‖L{f}‖M

)
,(1.8)

where ML(Rd) is the native Banach space of the operator L : ML(Rd) → M(Rd) equipped
with the gTV norm (see Definition 3.2). The fact that ML(Rd) is a Banach space (i.e., a
complete normed space) follows from the invertibility of L (see Theorem 3.3). A consequence
of the general representer theorem of [64] is that there is always a solution of (1.8) that admits
a linear kernel expansion of the form

f(·) =

M0∑
l=1

alk(·, zl)(1.9)

for some unknown integer M0 ≤M , nonzero kernel weights al ∈ R, and some distinct adaptive
kernel positions zl ∈ Rd [33]. There, the function k(·, ·) : Rd × Rd → R is the shift-invariant
kernel associated to the Green’s function of the operator L. In other words, we have that
k(x,y) = ρL(x− y), where ρL = L−1{δ}.

There exist works on supervised learning over Banach spaces, especially via the concept of
reproducing-kernel Banach spaces (RKBS) [25, 71, 72]. However, there are several differences
between RKBS and our proposed scheme of learning with gTV regularization. Firstly, as
highlighted in [72], the RKBS representer theorem yields a nonlinear kernel expansion for
the optimal solution. Secondly, its kernel positions necessarily coincide with the data points.
Last but not least, the Banach spaces in the RKBS theory are restricted to reflexive ones (see
section 2.1 for the definition of reflexive Banach spaces), which excludes the case of learning
with gTV regularization that is known to enforce sparsity in the continuous domain.D

ow
nl

oa
de

d 
02

/1
5/

21
 to

 1
28

.1
79

.2
55

.1
09

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

204 SHAYAN AZIZNEJAD AND MICHAEL UNSER

Let us also mention that a formulation with strong link to (1.8) has been presented in [3]
for learning a function f : Rd → R from a continuously indexed family of atoms {kz}z∈V ,
where V is a compact topological space. Putting it in a similar form as (1.8), the proposed
formulation in [3] for supervised learning is equivalent to the minimization

min
µ∈M(V)

(
M∑
m=1

E

(∫
V

kz(xm)dµ(z), ym

)
+ λ‖µ‖M

)
,(1.10)

where M(V) is the space of Radon measures over V. The relevant property there is that the
minimization of (1.10) introduces an atomic measure µ =

∑M0
l=1 alδ(· − zl). It hence suggests

the parametric form (1.9) with k(·, zl) = kzl(·) for the learned function.
The minimization problem (1.10) is a synthesis-based formulation for supervised learning

where the basis functions are known a priori, contrary to (1.8) which is an analysis-based
formalism that relies on regularization theory in Banach spaces. Interestingly, the two formu-
lations are equivalent when the family of atoms in (1.10) coincides with the class of shifted
Green’s function of the regularization operator L; that is, kz(·) = ρL(· − z).

To conclude this section, we discuss the connection between (1.8) and generalized LASSO.
One readily verifies that the gTV norm enforces an `1 penalty on the kernel coefficients al.
More precisely, the expansion (1.9) translates the original problem (1.8) into the discrete
minimization

min
a∈RM ,Z∈Rd×M0

(
M∑
m=1

E([GZa]m, ym) + λ‖a‖`1

)
,(1.11)

where Z =
(
z1, z2, . . . ,zM0

)
is the kernel-position matrix and GZ ∈ RM×M0 is a matrix with

[GZ]m,l = k(xm, zl). The reduced problem (1.11) can be seen as an extended version of the
generalized LASSO in (1.6). The fundamental difference is that the minimization is through
the positions as well.

1.3. Multikernel schemes. The solution forms (1.4) and (1.9) heavily depend on the
kernel function k(·, ·). Hence, choosing the proper kernel is a challenging task that requires
careful consideration. One can use a cross-validation scheme in order to compare the per-
formance of several kernel estimators and select the best one for the desired application [32].
Another approach is to learn a new kernel function kµ =

∑N
n=1 µnkn from a family of given

kernels k1, k2, . . . , kN [5, 40, 44, 43]. This transforms the original problem (1.5) into the joint
optimization

min
µ∈RN ,a∈RM

(
M∑
m=1

E([Gµa]m, ym) + λaTGµa+ R(µ)

)
,(1.12)

where Gµ is the Gram matrix of the learned kernel kµ and R(·) regularizes the coefficient

vector µ, for example, like in R(µ) = ‖µ‖`p = (
∑N

n=1 |µn|p)
1
p for 1 ≤ p ≤ 2 [4, 6, 29, 37, 38].

The learned function will then take the generic formD
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f(·) =
N∑
n=1

M∑
m=1

µnamk(·,xm).(1.13)

1.4. Our contribution. In this paper, we provide a Banach-space framework for super-
vised learning with gTV regularization. We study the topological structures of the search
space of this problem, and we characterize the class of admissible regularization operators
together with their associated kernel functions.

We also propose a multikernel extension of supervised learning with gTV regularization.
To that end, we consider the minimization

min
fn∈MLn

(Rd),

f=
∑N
n=1 fn

(
M∑
m=1

E(f(xm), ym) + λ

N∑
n=1

‖Ln{fn}‖M

)
.(1.14)

In this formulation, the target function f is decomposed into N additive components, where
the smoothness of each component has been expressed by its corresponding regularization
operator. Our main result, which follows from Theorem 4.1, is the existence of a solution of
(1.14) that yields a multikernel expansion of the target function and that takes the form

f(·) =
N∑
n=1

Mn∑
l=1

an,lkn(·, zn,l), ‖a‖`0 ≤M,(1.15)

where ‖a‖`0 is called the `0 norm of a and is equal to the number of nonzero elements of a,
and kn is the shift-invariant kernel associated to the operator Ln. Moreover, the total number
of nonzero coefficients is upper-bounded by the number M of data points and, hence, is not
growing with the number N of components. We also illustrate numerically the effect of using
multiple kernels.

1.5. Roadmap. The paper is organized as follows: We present some mathematical pre-
liminaries in section 2. In section 3, we study the Banach-space structure of the native spaces,
and we characterize the class of admissible kernels. We propose and prove our main result in
section 4. Finally, we provide further discussions and illustrations in section 5.

2. Preliminaries. In this section, we recall relevant mathematical concepts such as the
function spaces that we use throughout the paper along with properties of linear operators
that are defined over those spaces.

2.1. Function spaces. All the derivatives of a rapidly decaying function decay faster than
the inverse of any polynomial at infinity. Then, a smooth and slowly growing function is an
element of C∞(Rd) such that all of its derivatives have asymptotic growth controlled by a
polynomial. Finally, a heavy-tailed function f : Rd → R satisfies f(x) ≥ C(1 + ‖x‖)α for
some finite constants C,α > 0.

For p ∈ [1,∞), we denote by Lp(Rd) the Banach space of measurable functions f : Rd → R
with finite Lp norm, i.e.,

Lp(Rd) =

{
f : Rd → R measurable : ‖f‖Lp

M
=

(∫
Rd
|f(x)|pdx

) 1
p

< +∞

}
.(2.1)
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206 SHAYAN AZIZNEJAD AND MICHAEL UNSER

The Schwartz space of smooth and rapidly decaying functions ϕ : Rd → R is denoted by
S(Rd). Its topological dual is S ′(Rd), the space of tempered distributions [30]. We remark
that any smooth and slowly growing function f : Rd → R specifies the continuous linear
functional ϕ 7→

∫
Rd f(x)ϕ(x)dx over S(Rd) and, hence, is an element of S ′(Rd).

The space of continuous functions over Rd that vanish at infinity is C0(Rd). It is a Banach
space equipped with the supremum norm ‖ · ‖∞. The space of Schwartz functions S(Rd) is
densely embedded in C0(Rd). Hence, the topological dual of C0(Rd) can be defined as

M(Rd) =

w ∈ S ′(Rd) : ‖w‖M
M
= sup

ϕ∈S(Rd)
‖ϕ‖∞=1

|〈w,ϕ〉| < +∞

 .(2.2)

In fact, M(Rd) is the Banach space of bounded Radon measures over Rd equipped with
the total-variation norm ‖ · ‖M [47]. It includes the shifted Dirac impulses δ(· − x0) with
‖δ(· − x0)‖M = 1. Moreover, L1(Rd) ⊆ M(Rd) with the relation ‖f‖L1 = ‖f‖M for all
f ∈ L1(Rd). This allows one to interpret (M(Rd), ‖·‖M) as a generalization of (L1(Rd), ‖·‖L1).

For a Banach space X , we consider two topologies for its continuous dual space X ′. The
first one is the strong topology. It is induced from the dual norm in the sense that a sequence
{wn}∞n=0 ∈ X ′ is said to converge in the strong topology to w∗ ∈ X ′ if limn→∞ ‖wn−w∗‖X ′ = 0.
The second one is the weak*-topology that comes from the predual space X in the sense that
a sequence {wn}∞n=0 is said to converge in the weak*-topology to w∗ if, for any element ϕ ∈ X ,
{〈wn, ϕ〉}∞n=0 converges to 〈w∗, ϕ〉.

Finally, let us mention that any Banach space X is isometrically isomorphic to a closed
subspace of its second dual X ′′ = (X ′)′ (see, for example, [46, page 95]). For the sake of
simplicity, we make the possible embedding mappings implicit in our framework. This leads
to writing the latter proposition simply, via the inclusion X ⊆ X ′′. In this regard, a Banach
space is reflexive if we have that X = X ′′. Typical examples of reflexive Banach spaces are
Lp(Rd) spaces for p ∈ (1,∞). By contrast, the space C0(Rd) and, consequently, its dualM(Rd)
are not reflexive.

2.2. Linear operators. The linear operator L : S(Rd) → S ′(Rd) is called shift-invariant
if, for any function ϕ ∈ S(Rd) and any shift value x0 ∈ Rd, we have that

L{ϕ(· − x0)} = L{ϕ}(· − x0).(2.3)

We recall a variant of the celebrated Schwartz kernel theorem for linear and shift-invariant
(LSI) operators (see [54] for a “simple” proof of the general case).

Theorem 2.1 (Schwartz kernel theorem). For any LSI operator L : S(Rd) → S ′(Rd), there
exists a unique distribution h ∈ S ′(Rd), known as the impulse response of L, such that

∀ϕ ∈ S(Rd) : L{ϕ}(·) =

∫
Rd
h(· − y)ϕ(y)dy.(2.4)

In this paper, we restrict ourselves to the class of continuous LSI operators that have an
extended domain and are defined over the space of tempered distributions S ′(Rd). One canD
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fully characterize this class in the Fourier domain. The Fourier transform is a well-defined
and continuous operator over S ′(Rd) and is denoted by F : S ′(Rd) → S ′(Rd). Consequently,
the frequency response of the LSI operator L : S ′(Rd) → S ′(Rd) is defined as the Fourier
transform of its impulse response

L̂(ω)
M
= F{L{δ}}(ω).(2.5)

It is known that the frequency response of any continuous LSI operator over S ′(Rd) is a smooth
and slowly growing function [51]. Additionally, any smooth and slowly growing function L̂(·)
defines an LSI and continuous operator L : S ′(Rd)→ S ′(Rd) via

L{f} = F−1{L̂f̂}.(2.6)

Typical examples of such operators are polynomials of derivative in dimension d = 1 and
polynomials of the Laplacian operator for d > 1 [21].

3. Banach-space kernels. In this section, we introduce our Banach-space framework of
learning with gTV regularization. We start by defining the class of kernel-admissible operators.

Definition 3.1. The linear operator L : S ′(Rd) → S ′(Rd) is called kernel-admissible (or
simply admissible) if

(i) it is shift-invariant;1

(ii) it is an isomorphism over S ′(Rd), meaning that it is continuous and invertible, its
inverse being the continuous operator L−1 : S ′(Rd)→ S ′(Rd);

(iii) the sampling functional δx0 : f 7→ f(x0) is weak*-continuous in the topology of its
native space (see Definition 3.2 and Theorem 3.3).

The restriction to LSI operators is not crucial to our framework. However, it lends itself
to the convenience of an analysis in the Fourier domain. It also allows us to provide necessary
and sufficient conditions to characterize the class of admissible operators (see Theorem 3.5).
The invertibility assumption, on the other hand, is essential to have decaying kernels, that is,
to have k(x− y)→ 0 whenever ‖x− y‖ → ∞. In fact, it is known that the Green’s function
of any LSI operator with a nontrivial null space necessarily has a singularity in the Fourier
domain at the origin [65]. Finally, the assumption of the (weak*) continuity of the sampling
functional is a natural choice in learning theory. The main motivation here is to guarantee
the (weak*) lower semicontinuity of the global cost functional in (1.14). This can be used,
together with the generalized Weierstrass theorem, to prove the existence of solutions (see
Theorem 4.1). Let us note that the definition of weak*-continuity depends on the Banach
structure of the native space. In what follows, we first properly define native spaces and then
specify their underlying Banach structures.

Definition 3.2. The native space of the LSI isomorphism L : S ′(Rd)→ S ′(Rd) is the preim-
age of L over the space of bounded Radon measures, that is, the spaceML(Rd) = L−1{M(Rd)}.

1Although the notion of shift-invariant operators in (2.3) is defined for operators acting on Schwartz func-
tions, one can extend it by duality to those whose domain is S ′(Rd). For more details on extension by duality,
we refer to [65, section 3.3.2].D
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Theorem 3.3 summarizes the important properties of the native spaces. Its proof is avail-
able in Appendix A.

Theorem 3.3. Let L : S ′(Rd) → S ′(Rd) be an LSI isomorphism over S ′(Rd). Then, its
native space is a topological vector space with the following properties:

(i) It is a Banach space equipped with the gTV norm

gTV(f) = ‖f‖ML

M
= ‖L{f}‖M.(3.1)

(ii) The restriction of L to its native space results in the isomorphism L : ML(Rd) →
M(Rd).

(iii) The adjoint operator L∗ is well-defined over C0(Rd), and its image is the Banach space

CL(Rd) with the norm ‖f‖CL
M
= ‖L−1∗{f}‖∞.

(iv) The space CL(Rd) is the predual of ML(Rd), meaning that (CL(Rd))′ =ML(Rd).
(v) The space of Schwartz functions is embedded in the native space. Moreover, the native

space itself is densely embedded in the space of tempered distributions. The embedding
hierarchy is indicated as

S(Rd)↪→ML(Rd) d.
↪→ S ′(Rd).(3.2)

We have summarized the Banach spaces and the mappings between them in Figure 1. Due
to Theorem 3.3, the weak*-continuity of the sampling functional (condition (iii) in Definition
3.1) is equivalent to the inclusion of the shifted Dirac impulses in the predual of the native
space. In other words, for all x0 ∈ Rd, one should have that δ(· − x0) ∈ CL(Rd).

We now define the shift-invariant kernel associated to an admissible operator.

Figure 1. A schematic diagram that illustrates the Banach spaces of interest.D
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Definition 3.4. The shift-invariant kernel associated to the admissible operator L : S ′(Rd)→
S ′(Rd) is the bivariate function k : Rd×Rd → R with k(x,y) = ρL(x−y), where ρL = L−1{δ}
is the Green’s function of L.

In Theorem 3.5, we provide the necessary and sufficient conditions that characterize the
class of admissible LSI operators. The proof can be found in Appendix B.

Theorem 3.5. Let L be an admissible operator. Then, its associated Green’s function ρL =
L−1{δ} : Rd → R satisfies the following properties:

(i) It is a continuous function that vanishes at infinity. In other words, ρL ∈ C0(Rd).
(ii) Its Fourier transform ρ̂L(ω) is a smooth, nonvanishing, slowly growing, and heavy-

tailed function of ω.
Additionally, any function ρ : Rd → R that satisfies these properties can be appointed to an
admissible operator L : S ′(Rd)→ S ′(Rd) defined as

L{f} = F−1
{
f̂(ω)

ρ̂(ω)

}
.(3.3)

Remark 1. We have stated in section 2.2 a well-known result by Schwartz that determines
the general family of LSI operators (not necessarily invertible) over S ′(Rd). In Theorem 3.5,
particularly via condition (ii), we are excluding the noninvertible members of this family.
Hence, condition (ii) fully characterizes the class of linear isomorphisms over S ′(Rd).

Using Theorem 3.5, we now draw a connection to the well-known class of reproducing
kernels, which are constrained to be symmetric (because of their positive-definiteness).

Corollary 3.6. Any symmetric admissible kernel (in the sense of Theorem 3.5) is a shift-
invariant reproducing kernel up to multiplication by a sign factor.

Proof. Let k(·, ·) be a symmetric and shift-invariant admissible kernel. Then, the corre-
sponding Green’s function ρL is also a symmetric function, and, hence, its Fourier transform
ρ̂L(ω) is a real function that is also smooth and nonvanishing. Hence, the sign of ρ̂L(ω) is
constant everywhere. By multiplying with a sign factor, we can then assume that ρ̂L(ω) is
positive everywhere. Now by invoking Bochner’s theorem (see, for example, [65, Appendix
B]), we deduce that ρL is a positive-definite function which, together with the symmetric
assumption, implies that k(·, ·) is indeed a reproducing kernel.

The practical implication of Theorem 3.5 is that it yields Fourier-domain criteria to de-
termine the admissibility of an operator L. In particular, and due to the Riemann–Lebesgue
lemma, if ρ̂L is an absolutely integrable function, then condition (i) holds.

As the last part of this section, we use this characterization to introduce some families of
admissible kernels. Our first example is made of superexponential kernels defined as

kα(x,y) = exp(−‖x− y‖αα), α ∈ (0, 2),(3.4)

where ‖x‖α = (
∑d

i=1 |xi|α)
1
α for any x = (xi) ∈ Rd. These functions are known to be

positive-definite [65, Appendix B]. Their inverse Fourier transforms (the so-called α-stable
distributions) are heavy-tailed and infinitely smooth, with algebraically decaying derivativesD
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of any order [48, Chapter 5]. Hence, they satisfy the conditions of Theorem 3.5. Note that the
classical Gaussian kernels are excluded because their frequency responses are not heavy-tailed.
However, one can get arbitrarily close by letting α tend to its critical value 2. Moreover,
there are arguments in regularized RKHS that support the use of Gaussian kernels. For
example, in [31, 55, 70], the Gaussian RKHS has been implicitly characterized by using the
Taylor expansion of the corresponding regularization operator. Further, [61] uses the notion
of holomorphic functions to explicitly characterize Gaussian RKHS. We conjecture that the
present Banach-space formulation can be extended to cover Gaussian kernels as well. However,
this requires one to consider a space larger than S ′(R).

Our second example is made of Bessel potentials used in kernel estimation [2]. For a
positive real number s > d, we consider the operator (I − ∆)

s
2 : S ′(Rd) → S ′(Rd), where ∆

is the Laplacian operator. The Bessel potentials are the Green’s function of such operators.
They correspond to the shift-invariant kernels

Gs(x,y) = F−1
{

1

(1 + ‖ω‖22)
s
2

}
(x− y).(3.5)

Clearly, the function 1

(1+‖ω‖22)
s
2

is in L1(Rd) for s > d. By invoking the Riemann–Lebesgue

lemma, we deduce that its inverse Fourier transform is a continuous function that vanishes at
infinity. Hence, the kernel function Gs(·, ·) satisfies property (i) of Theorem 3.5. Moreover,
from the Fourier-domain definition (3.5) of Gs(·, ·), it can be seen that property (ii) also holds.
Together, we deduce the admissibility of these kernels. We remark that the Bessel potential
kernels are rotation-invariant as well.

Our final example is a general class of separable shift-invariant kernels of the form

k(x,y) =
d∏
i=1

ρL(xi − yi),(3.6)

where L : S ′(R)→ S ′(R) is a stable rational operator whose frequency response is of the form

L̂(ω) = P (ω)
Q(ω) , where P andQ are polynomials with no real roots such that deg(P ) ≥ deg(Q)+2.

Since L̂(ω) is real, we conclude that that the tail of L̂(ω)−1 = Q(ω)
P (ω) behaves like ω−2 and

is absolutely integrable which, together with the Riemann–Lebesgue lemma, implies that
ρL ∈ C0(R). The other conditions of Theorem 3.5 can be readily shown to be true so that any
separable kernel of the form (3.6) is admissible to our theory.

It is worth mentioning that one can rotate and dilate any admissible kernel by considering
an invertible mixture matrix A and by defining the transformed kernel as k(Ax,Ay). One
readily verifies that the transformed kernel also satisfies the conditions of Theorem 3.5 and,
hence, is also admissible. In Figure 2, we have plotted the superexponential and Bessel-
potential kernels in dimension d = 1 for different sets of parameters. It can be seen that the
width and regularity of these kernels can be adjusted through their parameters. This can be
exploited in our framework of learning with multiple kernels to benefit from this diversity. We
shall illustrate this numerically in section 5.D
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Figure 2. Superexponential kernels kα(r) = exp(−γ‖r‖αα) (left) and Bessel-potential kernels Gs(γr) (right),
where r = (x− y). The plots are in the special case d = 1. The parameters (α ∈ (0, 2) and s > 2) and γ > 0
adjust smoothness and width of the kernel, respectively.

4. Multiple-kernel regression. In this section, we prove our main result: the representer
theorem of multiple-kernel regression with gTV regularization. In effect, the gTV norm will
force the learned function to use the fewest active kernels.

Theorem 4.1 (multiple-kernel regression with gTV). Given a training dataset that consists
of M distinct pairs (xm, ym) for m = 1, 2, . . . ,M , we consider the minimization problem

min
fn∈MLn

(Rd),

f=
∑N
n=1 fn

(
M∑
m=1

E(f(xm), ym) + λ
N∑
n=1

‖Ln{fn}‖M

)
,(4.1)

where E(·, y) is a strictly convex nonnegative function and Ln is a kernel-admissible operator
in the sense of Definition 3.1 for n = 1, 2, . . . , N . Then, the solution set of this problem is
nonempty, convex, and weak*-compact. For any of its extreme points (f1, f2, . . . , fN ), we have
the kernel expansions

fn =

Mn∑
l=1

an,lkn(·, zn,l), n = 1, 2, . . . , N(4.2)

for its components, where an,l ∈ R are kernel weights, zn,l ∈ Rd are adaptive kernel positions,
and kn : Rd×Rd → R is the shift-invariant kernel associated to the regularization operator Ln
for n = 1, 2, . . . , N . Moreover, the number of active kernels is upper-bounded by the number
of data points, so that

∑N
n=1Mn ≤M .

Proof. Our proof is divided in three parts. First, we show the existence of a solution.
Then, we show that (4.1) is equivalent to a constrained interpolation problem with fixedD
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function values, and, from this equivalent form, we deduce the topological properties of the
solution set. Finally, we derive the form (4.2) for the extreme points of the solution set.

Let us denote the data-fidelity and regularization terms of the cost functional by H(·) and
R(·), respectively, so that we have that

H(f1, . . . , fN ) =
M∑
m=1

E(f(xm), ym), f =
N∑
n=1

fn,(4.3)

R(f1, . . . , fN ) =
N∑
n=1

‖Ln{fn}‖M.(4.4)

Part 1: Existence. We apply a standard technique in convex analysis. We show that
the cost functional is coercive and weakly lower semicontinuous [39]. This also works when
the latter property is replaced by weak* lower semicontinuity (see Proposition 8 in [33]).

The cost functional is a weighted sum of the nonnegative data-fidelity term H(f1, . . . , fN )
and the coercive regularization functional R(f1, . . . , fN ). This ensures its overall coercivity.

The sampling operator is weak*-continuous by assumption. Its composition with a con-
tinuous functional E(·,y) (that follows from its strict convexity) and summation over m yields
a cost functional H(f) that is weak* lower semicontinuous as well.

The gTV norms ‖Ln · ‖M are weak* lower semicontinuous onMLn(Rd). This implies that
the regularization functional is weak* lower semicontinuous in the product space. Therefore,
the overall cost functional H(f1, f2, . . . , fN ) + λR(f1, . . . , fN ) is weak* lower semicontinuous.
Together with the coercivity of the cost functional, this proves the existence of a solution.

Part 2: Equivalence to the constrained problem. Considering two solutions (f1,1,
. . . , fN,1) and (f1,2, . . . , fN,2) of the problem, we denote their reconstructing functions by

fi =
∑N

n=1 fn,i for i = 1, 2. By contradiction assume that f1(xm) 6= f2(xm) for some m. Since
E(·, y) is a strictly convex function for any y ∈ R, we have that

H

(
f1,1 + f1,2

2
, . . . ,

fN,1 + fN,2
2

)
<
H(f1,1, . . . , fN,1) +H(f1,2, . . . , fN,2)

2
.(4.5)

Similarly, the convexity of R(·) implies the inequality

R

(
f1,1 + f1,2

2
, . . . ,

fN,1 + fN,2
2

)
≤
R(f1,1, . . . , fN,1) +R(f1,2, . . . , fN,2)

2
.(4.6)

Together, the inequalities (4.5) and (4.6) imply that (
f1,1+f1,2

2 , . . . ,
fN,1+fN,2

2 ) has a smaller
cost than (f1,i, . . . , fN,i) for i = 1, 2, which contradicts their optimality. Hence, f1(xm) =
f2(xm) = zm for m = 1, 2, . . . ,M , and one can rewrite the problem as

min
fn∈MLn

(Rd),

f=
∑N
n=1 fn

N∑
n=1

‖Ln{fn}‖M s.t. f(xm) = zm, m = 1, 2, . . . ,M.(4.7)

Part 3: Identifying the solution set. Let us define wn = Ln{fn} for n = 1, . . . , N and
νm(w1, . . . , wN ) =

∑N
n=1〈δ(· − xm),L−1n {wn}〉 =

∑N
n=1 fn(xm) for m = 1, . . . ,M . We then

reformulate (4.7) asD
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min
w1,...,wN∈M

N∑
n=1

‖wn‖M s.t. νm(w1, . . . , wN ) = zm, m = 1, 2, . . . ,M.(4.8)

Now, using the vector-valued Fisher–Jerome theorem (Appendix C), we deduce that the
solution set of (4.8) is convex and weak*-compact with the extreme points of the form
w = (w1, . . . , wN ), where wn takes the form

wn =

Mn∑
l=1

an,lδ(· − zn,l)(4.9)

for some an,l ∈ R and zn,l ∈ Rd. Moreover, the total number of Diracs in w is upper-bounded
by M . This implies that the solution set of (4.7) (and, consequently, the one of (4.1)) is a
convex and weak*-compact set due to the linearity and isomorphism of Ln. Correspondingly,
the extreme points of the original problem (4.1) take the form of (f1, f2, . . . , fN ), where fn =
L−1n {wn} has a kernel expansion withMn kernels at adaptive positions subject to the constraint∑N

n=1Mn ≤M .

The practical outcome of Theorem 4.1 is that any extreme point of (4.1) maps into a
solution of the form

f(·) =

N∑
n=1

Mn∑
l=1

an,lkn(·, zn,l)(4.10)

for the learned function. The solution form (4.10) has the following important properties:
• The number of active kernels is upper-bounded by the number of samples M . This

justifies the use of multiple kernels since the flexibility of the model will be increased
while the problem remains well-posed.
• The gTV norm enforces an `1 penalty on the kernel coefficients. Practically, this will

result in an `1-minimization problem that is reminiscent of the generalized LASSO.
• The kernel positions are adaptive and will be chosen such that the solution becomes

sparse. In other words, the adaptiveness of the kernel positions, together with the
`1 regularization on the kernel coefficients, favors solutions with a small number of
nonzero terms in the expansion (4.1).

To conclude this section, let us mention that the existence of the kernel locations zn,l in
(4.10) is guaranteed by our representer theorem. However, unlike in RKHS methods, these
locations do not necessarily coincide with the data points. The adaptiveness comes from
the fact that the kernel positions become part of the reduced finite-dimensional optimization
problem (see (1.11) for the single-kernel scenario). Hence, an optimization scheme is required
in order to “learn” these unknown parameters along with the kernel weights.

5. Discussion and illustration. In this section, we provide some further discussions to-
gether with a numerical example that illustrates important aspects of our framework.

5.1. Optimization scheme. Finding the kernel positions in general can be very challeng-
ing. Once the positions are fixed, one can find the kernel weights efficiently using classicalD
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`1-minimization techniques [7, 14, 27]. In low dimensions, one can use grid-based algorithms
and reach a solution where the positions of the kernels are quantified [17, 33]. It is also possible
to adapt the algorithms developed for finding Dirac locations in super resolution in order to
find the kernel positions [10, 11, 19, 26]. However, for high-dimensional problems, this is an
open numerical challenge and requires further considerations. A possible avenue of research
would be to use first-order primal-dual splitting methods for convex-nonconvex problems [66]
and take advantage of the convexity of the problem with respect to the kernel weights.

5.2. Numerical example. In this section, we provide a numerical example in the case
d = 1. We would like to emphasize that the computational aspects of our framework (e.g., the
derivation of efficient algorithms in high dimensions) is left to future works. The sole purpose
of our example is to illustrate the use of Theorem 4.1 and highlight two important features,
namely, adaptivity and sparsity.

In our example, we compare the performance of five kernel estimators:
1. RKHS L2: RKHS regularization (1.5).
2. RKHS L1: Generalized LASSO (1.6).
3. SimpleMKL: Multiple-kernel learning (MKL) using the SimpleMKL algorithm [44].
4. Single gTV: Single-kernel gTV regularized learning (1.11).
5. Multi gTV: Learning with multiple kernels and gTV regularization (4.1).

To avoid the difficulty of optimizing over the data centers in the gTV-based methods,
which would result in a nonconvex problem, we use a convex proxy in which a redundant
set of centers is placed on a grid and the excess ones are suppressed with the help of `1-
minimization. With this grid-based approach, the search for the kernel positions is reduced
to a large-scale `1-minimization problem for which robust algorithms are known to exist—
specifically, we have used a fast iterative shrinkage-thresholding algorithm (FISTA) [7] in our
example. This scheme will obviously only work when the input dimension is very low, such
as d = 1 in the present example.

We consider the reconstruction of a function from its noisy samples in two scenarios: full
data versus missing data. The results are depicted in Figure 3, while we refer to Appendix
D for the full implementation details. As we can see in Figure 3(a), due to the presence of a
nonsmooth region in the target function, the single-kernel methods are forced to use narrow
kernels with a small width which creates undesirable oscillations in the smoother regions.
By contrast, our multikernel scheme uses both narrow and wide kernels, hence providing the
reconstruction with the least fluctuation. In the presence of missing data, we observe in
Figure 3(b) that the reconstructed function of RKHS-based methods exhibits an undesirable
dip. This is due to the fact that, in the RKHS-based methods, the kernel functions are
located on the data points and their width is too short to fill the gap in the data. By contrast,
the kernel locations are adaptive in our scheme, which yields a decent reconstruction in this
case as well. Finally, we have plotted the 100 largest kernel coefficients of each expansion in
the full-data experiment in Figure 4. This plot highlights that the gTV-based methods are
providing the sparsest representation for the target function, as expected.

The above visual observations are also supported quantitatively in Table 1, where we report
the mean-squared error (MSE) error and sparsity (number of coefficients that are larger than
one tenth of the maximum coefficient) of each method in the two scenarios.D
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Figure 3. Performance of the kernel estimators in two scenarios: full data (left) or missing data (right).
Solid line: ground-truth (GT) function. Dash-dotted line: reconstructed functions. Dots: noisy data points.

5.3. Uniqueness of the solution. An interesting question is to explore the cases where
perfect recovery is theoretically guaranteed. This is an open research topic on its own for
which a rich literature exists [22, 18, 16]. Nevertheless, we analyze in Proposition 5.1 a very
simple scenario for which we can prove uniqueness.

Proposition 5.1. Let k1, . . . , kN be a collection of N symmetric admissible kernels that are
normalized so that kn(x,x) = 1 for n = 1, . . . , N and x ∈ Rd. Consider the minimization

min
fn∈MLn

(Rd),

f=
∑N
n=1 fn

N∑
n=1

‖Ln{fn}‖M s.t. f(xm) = f0(xm), m = 1, . . . ,M,(5.1)

where f0(·) = a0kn0(·, z0) for some n0 ∈ {1, . . . , N}, a0 ∈ R, and z0 ∈ Rd. Assume that the set
of data points {x1, . . . ,xM} contains z0 and is such that the M by N matrix K = [kn(xm, z0)]
has full column rank. Then, f0 is the unique solution of (5.1).

Proof. From the proof of Theorem 4.1, we know that the solution set of (5.1) is the convex
hull of functions of the form (4.10). We now show that the solution set has only one extreme
point (that is, f0), which is equivalent to the solution being unique.

Let f be an extreme point of the solution set of (5.1) whose form is given in (4.10). Since
z0 is among the data points, we deduce that

a0 = a0kn0(z0, z0) = f0(z0) = f(z0) =
N∑
n=1

Mn∑
l=1

an,lkn(z0, zn,l).
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Figure 4. 100 largest coefficients of each expansion in the full-data case.

Table 1
MSE and sparsity of the kernel estimators. The results are averaged over 10 runs.

Quantity Dataset L2-RKHS L1-RKHS SimpleMKL Single gTV Multi gTV

Sparsity
Full data 64.7 44.1 54.4 32.5 20.0

Missing data 66.1 39.3 56.0 32.9 31.1

MSE (dB)
Full data -17.2 -16.1 -15.2 -16.7 -18.1

Missing data -2.6 -2.7 -10.9 -3.9 -17.3

Hence, by using the triangle inequality, we obtain that

|a0| =

∣∣∣∣∣
N∑
n=1

Mn∑
l=1

an,lkn(z0, zn,l)

∣∣∣∣∣ ≤
N∑
n=1

Mn∑
l=1

|an,l||kn(z0, zn,l)| ≤
N∑
n=1

Mn∑
l=1

|an,l|,

where the last inequality comes from the fact that, for any positive-definite kernel k, we have
that k(x,y)2 ≤ k(x,x)k(y,y) = 1. Note that the positive-definiteness here is guaranteed
by Corollary 3.6. This Cauchy–Schwarz-type inequality is saturated if and only if x = y.
Together with the optimality of f , we deduce that z0 = zn,l for all n = 1, . . . , N and l =
1, . . . ,Mn. Hence, we can rewrite the constraints asD
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N∑
n=1

ãnkn(xm, z0) = a0kn0(xm, z0), m = 1, . . . ,M,

where ãn =
∑Mn

l=1 an,l. In matrix form, this becomes Kã = Ka0en0 , where en0 ∈ RN is the
n0th element of the canonical basis of RN . Finally, by using the full column rank assumption,
we deduce that ã = a0en0 , which completes the proof.

6. Conclusion. In this paper, we have provided a theoretical foundation for multiple-
kernel regression with gTV regularization. We have studied the Banach structure of our
search space and identified the class of kernel functions that are admissible. Then, we have
derived a representer theorem that shows that the learned function can be written as a linear
combination of kernels with adaptive centers. Our representer theorem also provides an upper
bound to the number of active elements, which allows us to use as many kernels as convenient.
We have illustrated numerically the effect of using multiple kernels with a sparsity constraint.
Further research directions could be the development of efficient methods in high dimensions
to approximate the kernel positions and an extension of the current theory to make Gaussian
kernels admissible.

Appendix A. Proof of Theorem 3.3.

Proof. (i) The linearity and invertibility of L implies that the native space together with
the gTV norm is a bona fide Banach space.

(ii) The restriction of L over its native space is injective (inherited from L) and is continu-
ous due to the definition of the gTV norm. For all w ∈M(Rd), the relation L{L−1{w}} = w
implies that it is surjective as well and that its inverse is the restriction of L−1 over M(Rd)
which continuously maps M(Rd)→ML(Rd). This ensures that L :ML(Rd)→M(Rd) is an
isomorphism.

(iii) The isomorphism of part (ii) implies the existence of the adjoint operator over(
M(Rd)

)′
. By restricting the adjoint operator to C0(Rd), we obtain the operator L∗ : C0(Rd)→

CL(Rd), where the space CL(Rd) is the image of L∗ over C0(Rd). This space, equipped with the

norm ‖f‖CL
M
= ‖L−1∗{f}‖∞, is a Banach space due to the linearity and invertibility of L−1∗.

(iv) Similarly to part (ii), we readily verify that the adjoint operator L∗ : C0(Rd)→ CL(Rd)
is indeed an isomorphism. Therefore, the double-adjoint operator is the isomorphism L∗∗ :
(CL(Rd))′ → M(Rd). Consequently, the domains of L and L∗∗ must be equal, which implies
that CL(Rd) is the predual of the native space.

(v) First, we show that the operator L is closed over the space of Schwartz functions. It
is known that the impulse response of L∗ : S → S is the flipped version of the one of L [65].
In other words, the application of L∗ on a Schwartz function can be expressed by

∀ϕ ∈ S(Rd) : L∗{ϕ}(·) =

∫
Rd
h(x− ·)ϕ(x)dx,(A.1)

where h ∈ S ′(Rd) is the impulse response of L, described in (2.4). By the change of variable
y = (−x), one verifies that, for any ϕ ∈ S(Rd), we have that

L{ϕ} = L∗{ϕ∨}∨,(A.2)D
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where ϕ∨ is the flipped version of ϕ ∈ S(Rd) with ϕ∨(x) = ϕ(−x) for all x ∈ Rd. In effect,
(A.2) shows that L{ϕ} ∈ S(Rd) for any ϕ ∈ S(Rd).

Now, from the inclusions L{S(Rd)} ⊆ S(Rd) and S(Rd) ⊆ M(Rd), we deduce that
S(Rd) ⊆ ML(Rd). Moreover, ML(Rd) ⊆ S ′(Rd) by Definition 3.2. This verifies the in-
clusion S(Rd) ⊆M(Rd) ⊆ S ′(Rd). To complete the proof, we need to show that the identity
operators id1 : S(Rd)→M(Rd) and id2 :M(Rd)→ S ′(Rd) are continuous.

For a converging sequence of Schwartz functions ϕn
S→ ϕ, the continuity of L implies that

L{ϕn}
S→ L{ϕ}. Since S(Rd) is continuously embedded in M(Rd), we have that L{ϕn}

M→
L{ϕ} and, consequently, that ϕn

ML→ ϕ. This proves that the embedding is continuous, which
is denoted by S(Rd)↪→ML(Rd). Moreover, since the space M(Rd) is continuously embedded

in S ′(Rd), the convergence L{ϕn}
M→ L{ϕ} implies that L{ϕn}

S′→ L{ϕ}. This proves that

ML(Rd) d.
↪→ S ′(Rd). The latter continuous embedding is also dense due to the denseness of

S(Rd) in S ′(Rd) and the inclusion S(Rd) ⊆ML(Rd).

Appendix B. Proof of Theorem 3.5.

Proof. Assume that L is a kernel-admissible operator. The weak*-continuity of the sam-
pling functional implies that the shifted Dirac impulses δ(·−x0) should be included in the pre-
dual space CL(Rd). Therefore, L−1∗{δ(·−x0)} should be in C0(Rd). Since the Green’s functions
of L and L∗ are flipped versions of each other, we deduce that ρL = L−1{δ(· − x0)} ∈ C0(Rd).
For the second property, we recall that the continuity of L−1 : S ′(Rd) → S ′(Rd) implies the
smoothness and slow growth of the Fourier transform of its frequency response. Hence, ρ̂L(ω)
is smooth and slowly growing. Similarly, the continuity of L implies that 1

ρ̂L(ω)
is a smooth

and slowly growing function as well. Thus, ρ̂L(ω) is nonvanishing and heavy-tailed.
For the converse, assume that the function ρ satisfies properties (i) and (ii) in Theorem

3.5. First, note that, if f, g : Rd → R are smooth and slowly growing functions and, moreover,
g is nonzero and heavy-tailed, then

∂

∂xi

(
f

g

)
=

∂f
∂xi
g − ∂g

∂xi
f

g2
(B.1)

is a quotient whose numerator is a smooth and slowly growing function and whose denominator
g2 is a nonzero, heavy-tailed, smooth, and slowly growing function. Hence, the quotient itself
is a smooth function whose growth is bounded by a polynomial. Based on this observation, one
can deduce from induction that all the arbitrary-order derivatives of 1

ρ̂(ω) can be expressed by
a quotient with a slowly growing nominator and a heavy-tailed denominator. This shows that
1

ρ̂(ω) is a smooth and slowly growing function as well. These properties ensure the existence of

continuous LSI operators L, L̃ : S ′(Rd)→ S ′(Rd) with the frequency responses 1
ρ̂(ω) and ρ̂(ω),

respectively. The one-to-one correspondence between an operator and its frequency response
then yields that L̃ = L−1, from which we conclude that L is an isomorphism over S ′(Rd).
Moreover, due to property (i), we know that the Green’s function of L is in C0(Rd). Hence,
the Green’s function of L∗ is also in C0(Rd) so that, for any x0 ∈ Rd, we have that

L−1∗{δ(· − x0)} = L−1∗{δ}(· − x0) ∈ C0(Rd).(B.2)D
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In other words, δ(· − x0) ∈ L∗(C0(Rd)) = CL(Rd), which shows that the sampling functionals
are weak*-continuous.

Appendix C. Vector-valued Fisher–Jerome theorem. Here, we propose and prove a
generalization of the Fisher–Jerome theorem [28] for a vector of bounded Radon measures. The
result is not deducible from the original theorem, but its proof is an adaptation of the scalar
case (Theorem 7 in [64]). We denote the space of bounded Radon vector measures (w1, . . . , wN )
by M(Rd;RN ), where each component wn ∈ M(Rd) is a bounded Radon measure. The
total-variation norm of the vector w = (w1, . . . , wN ) ∈ M(Rd;RN ) is defined by ‖w‖M =∑N

n=1 ‖wn‖M.

Theorem C.1 (vector-valued Fisher–Jerome). Let B = M(Rd;RN )
⊕
N , where N is an

N0-dimensional normed space, and assume that F : B → RM is a linear and weak*-continuous
functional (M ≥ N0) such that

∃B > 0 : ∀p ∈ N\{0}, B ≤ ‖F(0,p)‖2
‖p‖N

(C.1)

and that the minimization problem

V = arg min
(w,p)∈B

‖w‖M s.t. F(w,p) ∈ C(C.2)

is feasible for a convex and compact set C ⊆ RM . Then, V is a nonempty, convex, weak*-
compact subset of B while the components of its extreme points (w1, w2, . . . , wN ,p) are all of
the form

wn =

Mn∑
l=1

an,lδ(· − zn,l), n = 1, 2, . . . , N,(C.3)

where an,l ∈ R and zn,l ∈ Rd. Moreover,
∑N

n=1Mn ≤M , and the minimumM-norm obtained

for the problem is equal to
∑N

n=1

∑Mn
l=1 |an,l|.

Proof. The proof is in two parts. First, we show that the solution set is nonempty,
weak*-compact, and convex. Then, we explore the form of its extreme points to complete the
theorem.

Structure of the solution set. Consider a point in the feasible set, and denote it by
(w0,p0). Then, (C.2) is equivalent to the minimization

V = arg min
(w,p)∈B

‖w‖M s.t. F(w,p) ∈ C, ‖w‖M < ‖w0‖M.(C.4)

Since C is compact, A = maxx∈C ‖x‖2 will be a finite constant. Due to the linearity of F (·, ·)
and due to the triangle inequality, for all (w,p) in the feasible set we have that

‖p‖N ≤
1

B
‖F (0,p)‖2 =

1

B
‖F (w,p)− F (w, 0)‖2 ≤

1

B
(A+ ‖w0‖M).(C.5)D
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The conclusion is that the feasible set of (C.4) is bounded. It is also weak*-closed due to the
weak*-continuity of F (·, ·) and the closedness of C. Hence, it is weak*-compact due to the
Banach–Alaoglu theorem [46, Theorem 3.15]. The conclusion is that (C.2) is equivalent to
the minimization of a weak*-continuous functional over a weak*-compact domain. Moreover,
due to the generalized Weierstrass theorem [39, Theorem 7.3.1], its solution set is nonempty.
Denote the optimal cost of (C.2) by β. Now, note that the feasible set of (C.2) is the preimage
of the linear continuous functional F over the convex set C. So, one can rewrite the solution
set V as

V = F−1(C) ∩ {w ∈M(Rd;RN ) : ‖w‖M = β}.(C.6)

This implies that V is bounded (due to (C.5)), weak*-closed, and convex (the intersection of
two weak*-closed and convex set). Hence, it is also weak*-compact. Using the Krein–Milman
theorem [46, Theorem 3.23], we deduce that V is the convex hull of its extreme points.

Form of the extreme points. Consider an arbitrary extreme point of V such as
(w,p), where w = (w1, w2, . . . , wN ). We show that it is not possible to have disjoint Bore-
lian sets En,l ⊆ Rd such that 〈wn,1En,l〉 6= 0, where n = 1, 2, . . . , N and l = 1, 2, . . . ,Mn

with
∑N

n=1Mn ≥ M + 1. We prove the result by contradiction. Assume such disjoint

sets exist. Define vn,l = wn1En,l , vn,l = envn,l, En = (
⋃Mn
l=1En,l)

c, vn = wn1En , and let

w = (v1, v2, . . . , vN ). It can be seen that w = w +
∑N

n=1

∑Mn
l=1 vn,l. Define yn,l = F (vn,l,p).

Since the yn,l are at least M + 1 vectors in RM , they are linearly dependent. Consequently,
there exist constants αn,l ∈ R, with at least one of them being nonzero, such that

N∑
n=1

Mn∑
l=1

αn,lyn,l = 0.(C.7)

For n = 1, 2, . . . , N , define µn =
∑Mn

l=1 αn,lvn,l and µ = (µ1, µ2, . . . , µN ). Also, denote εmax =
1

maxn,l |αn,l| > 0. For any ε ∈ (−εmax, εmax), we have that 1 + εαn,l > 0 for all n = 1, 2, . . . , N

and l = 1, 2, . . . ,Mn. We also see that

F (µ,p) =

N∑
n=1

Mn∑
l=1

αn,lyn,l = 0.(C.8)

Now, for any ε ∈ (−εmax, εmax), we have that F (w + εµ,p) = F (w,p) ∈ C and, therefore,
(w + εµ,p) ∈ U . Moreover,

w + εµ = w +
N∑
n=1

Mn∑
l=1

(1 + εαn,l)vn,l.(C.9)

Note that the nth element of wc has support En,c. Moreover, the nth element of vn′,l has
support En,l for n′ = n and has empty support otherwise. Therefore, the nth entries have
disjoint supports, which allows us to write thatD
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‖w + εµ‖M =
N∑
n=1

∥∥∥∥∥vn +

Mn∑
l=1

(1 + εαn,l)vn,l

∥∥∥∥∥
M

=
N∑
n=1

‖vn‖M +
N∑
n=1

Mn∑
l=1

(1 + εαn,l)‖vn,l‖M

= β + ε
N∑
n=1

Mn∑
l=1

αn,l‖vn,l‖M.(C.10)

For sufficiently small values of ε, this gives either ‖w + εµ‖M < β or ‖w − εµ‖M < β.
Therefore,

∑N
n=1

∑Mn
l=1 αn,l‖vn,l‖M = 0, which yields that ‖w + εµ‖M = ‖w − εµ‖M = β.

This shows that (w+εµ,p), (w−εµ,p) ∈ V, which contradicts that (w,p) is an extreme point.
Therefore w, is nonzero at most in M points, which yields the form of (C.3). Computing the
norm of such an extreme point results in

‖w‖M =
N∑
n=1

Mn∑
l=1

|an,l|‖δ(· − xn,l)‖M =
N∑
n=1

Mn∑
l=1

|an,l|,(C.11)

which completes the proof.

Appendix D. Implementation details of the numerical example. The ground-truth
signal for our experiment is a piecewise linear function with four segments that connects five
points, located at {(0, 0), (0.45, 0), ( 7

15 ,−2), ( 8
15 , 2), (1, 2)}. We then sample data from the

model ym = f(xm) + εm,m = 1, . . . ,M , where εm ∼ N (0, σ2) is i.i.d. Gaussian with σ = 0.1.
We formed two training datasets of size M = 100. In the first one, xm are i.i.d. samples of a
uniform distribution over [0, 1]. In the second case, we put a gap in the training dataset by
sampling xm uniformly over [0, 1]\[0.6, 0.8].

We use Gaussian kernels in the RKHS-based methods and superexponential kernels with
α = 1.99 in the gTV-based methods. We have set α = 1.99 to have similar (near-Gaussian)
kernel shapes in all cases. All methods have access to ten different width parameters from 10
to 105 in log scale.

We set the data fidelity to be the quadratic term E(x, y) = (x− y)2 in all cases except for
MKL, since the SimpleMKL toolbox [44] uses the ε-insensitive SVM loss. The other methods
are implemented using the GlobalBioIm library [56], and the codes are all available online.2

In the gTV-based methods, we have used the multiresolution strategy of [17] to control the
accuracy. More precisely, we start by considering 16 equispaced kernels, and we then use
FISTA to solve the convex problem of finding the corresponding kernel coefficients. The
solution is propagated as initialization of a finer grid (with 32 kernels), and we continue until
we reach to the finest scale with 1,024 kernels.

Finally, to have a fair comparison, we optimize the hyperparameters of each method by
following a standard K-fold cross-validation scheme, setting K = 5 in our example. This
includes a tuning of the regularization parameter λ for all methods. In addition, we tune the
width of the kernel function in single-kernel schemes so that all methods have access to the

2https://github.com/Biomedical-Imaging-Group/Multi-Kernel-Regression-gTV-.D
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same family of kernel functions. For computing the test error, we consider a very fine grid
with stepsize 10−4 over [0, 1], and we compute the MSE between the learned function and the
ground-truth signal.
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