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The Wavelet Compressibility of Compound
Poisson Processes
Shayan Aziznejad and Julien Fageot

Abstract— In this paper, we precisely quantify the wavelet
compressibility of compound Poisson processes. To that end,
we expand the given random process over the Haar wavelet
basis and we analyse its asymptotic approximation properties.
By only considering the nonzero wavelet coefficients up to a
given scale, what we call the greedy approximation, we exploit
the extreme sparsity of the wavelet expansion that derives from
the piecewise-constant nature of compound Poisson processes.
More precisely, we provide lower and upper bounds for the
mean squared error of greedy approximation of compound
Poisson processes. We are then able to deduce that the greedy
approximation error has a sub-exponential and super-polynomial
asymptotic behavior. Finally, we provide numerical experiments
to highlight the remarkable ability of wavelet-based dictionaries
in achieving highly compressible approximations of compound
Poisson processes.

Index Terms— Compound Poisson processes, Haar wavelets,
wavelet approximation, M -term approximation, sparse
representation.

I. INTRODUCTION

A. Sparsity and the Limits of Gaussian Models

THE statistical modelling of data plays a central role in
numerous research domains, such as signal processing [1]

and pattern recognition [2]. In that regard, Gaussian models
have been the first and by far the most considered ones,
thanks to their desirable mathematical properties and relatively
simple characterization. For instance, the Karhunen-Loève
transform (KLT) identifies the optimal basis for representing
data with Gaussian priors [3] and Kalman filters are optimal
denoisers of Gaussian signals [4], both in the mean-square
sense. These facts, among others, have made Gaussian sta-
tistical priors very convenient in practice. They also reveal
the fundamental relationship between Fourier-based signal
representations and Gaussian models.

However, it has been a long standing observation that
Gaussian models fail to capture several key statistical prop-
erties of most naturally-occurring signals [5], [6]. Indeed, the
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latter frequently have heavy-tailed marginals [7]–[10] or richer
structure of dependencies than Gaussian ones [11], [12]. Real-
world signals are highly structured and often admit concise
representations, typically on wavelet bases that appear to be
genuinely versatile [13], [14]. This has led to the current
paradigm in modern data science where sparsity plays one
of the central roles in statistical learning [15], [16] and
signal modelling [8], [17], [18]. Classical Gaussian priors
cannot model sparsity as they tend to produce poorly com-
pressible signals [19], [20]. Many recent efforts in signal
processing have been directed towards the development of
deterministic frameworks that are better tailored to the recon-
struction or synthesis of sparse signals, such as traditional
compressed sensing [21]–[23] and its infinite-dimensional
extensions [24]–[27].

B. Wavelets and Signal Representations

The development of wavelet methods, based on the pio-
neering works of I. Daubechies, Y. Meyer, and S. Mallat
in the late 80’s [28]–[30], has shed new lights on sig-
nal representation. Repeated numerical observations con-
firmed that wavelet-based compression techniques such as
JPEG-2000 [31] outperform classical Fourier-based standards
(e.g., JPEG) for natural images. This is despite the fact
that the discrete Fourier transform (DFT) and its real-valued
counterpart, the discrete cosine transform (DCT) [32], are
asymptotically equivalent to KLT and, hence, are optimal for
representing signals with Gaussian prior [33].

Wavelets are celebrated for their excellent approximation
properties for large classes of signals and functions [34]. They
revived the field of functional analysis [30], [35], culminating
with the Abel prize of Yves Meyer in 2017 and feeding
remarkable applications to various scientific and engineering
fields [36]. One of the remarkable aspects of wavelets is
that they are unconditional bases for many function spaces,
including Hölder, Sobolev, and Besov spaces [30], [35] which
is a key property for studying the best M -term approximation
in a given basis [34], [37].

C. Probabilistic Models for Sparse and Analog Signals
As we have seen, probabilistic models beyond the Gaussian

paradigm are of special interest for the modelling of sparse sig-
nals. A systematic attempt in this direction has been developed
in the monograph [8]. In this work, analog signals are mod-
elled as solutions of stochastic differential equations driven
by non-Gaussian Lévy white noises. The so-called sparse sto-
chastic processes have been used to develop novel techniques
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for essential signal processing tasks, such as denoising [38]
and estimation [39] for signals with non-Gaussian priors.
These methods have also been used in biomedical image
reconstruction [40], highlighting the practical aspects of this
new statistical framework.

The simplest class of non-Gaussian model is the one of
compound Poisson processes. The latter are random piecewise
constant functions with independent and stationary increments.
As such, they are part of the family of Lévy processes [41],
which also includes the Brownian motion. Compound Poisson
processes are fully determined by the heights and locations
of their countably many jumps. Contrary to Brownian motion,
they are part of the class of signals with finite rate of innova-
tions [42]–[44], meaning that their realizations on compact
intervals can be fully encoded by finitely many numbers.
This makes them particularly appealing for the modelling of
highly-compressible piecewise constant signals. It has also
been shown recently that any Lévy process is the limit in
law of compound Poisson processes whose rate of innovation
tends to infinity [45]. This theoretical observation permits the
development of methods for generating trajectories of Lévy
processes from compound Poisson processes, as exploited
in [46].

D. Gaussian Versus Poisson: Two Extreme Compressibility
Behaviors

The aforementioned class of Lévy processes (see
Section II-A for a formal definition) allows for various
compressibility behaviors: the Brownian motion is the less
compressible, while the compound Poisson ones are at
the other extreme. This compressibility hierarchy has been
recently revealed in two different theoretical frameworks.

In the first one, the compressibility is measured via
the speed of convergence of the best M -term approxima-
tion in wavelet bases. The decay rate of the best M -term
error is known to be directly linked to the Besov regu-
larity [34], [47], which has been quantified for a broad
class of Lévy processes [48]–[53]. Hence, the compressibil-
ity of Lévy processes has already been characterized using
this approach [54], [55] and synthesized in [56, Chapter 6].
In a nutshell, state-of-the-art results show that the best
M -term quadratic approximation error of the Brownian motion
behaves asymptotically like 1/M ,1 while the same quantity
decays faster than any polynomial for compound Poisson
processes [55, Theorems 4 and 5].

In the second framework, the compressibility of a Lévy
process is quantified in the information theoretic sense
through the entropy of the underlying Lévy white noise, as
in [57], [58]. These two frameworks are complementary and
based on totally different tools, but they are consistent and
lead to the same compressibility hierarchy.

E. Contributions and Outline

This paper contributes to the analysis of the compressibility
of Lévy processes, focusing on the compound Poisson and

1More precisely, one can deduced from [55] that the wavelet approximation
error of the Brownian motion decays almost surely faster that 1/M1−ε and
slower than 1/M1+ε for any ε > 0 when M → ∞.

Gaussian cases. We consider the Haar wavelet approximations
of these random processes and quantify the decay rate of their
approximation error in the mean squared sense.

More precisely, we focus on quantities such as

E
[‖s− PM{s}‖2

2

]
(1)

where s is a compound Poisson process or the Brownian
motion and PM : L2([0, 1]) → L2([0, 1]) is a possibly
nonlinear approximation operator based on M ≥ 1 Haar
wavelet coefficients of the input function. We compare var-
ious approximation schemes, depending on which wavelet
coefficients are chosen. The two best-known schemes are the
linear and the best M -term approximation, albeit both suffer
from practical limitations. On one hand, the linear scheme
does not capture the sparsity that might be inherent in the
signal of interest (see Proposition 2). On the other hand,
in order to exactly implement a compression scheme based
on the best M -term approximation of the random process,
one needs to have access to the full infinite set of wavelet
coefficients. Without additional knowledge on the wavelet
expansion, the implementation may become cumbersome and
not memory efficient, if not impossible. This is why alternative
approximation schemes have been proposed, most notably the
“tree approximation” scheme which has brought significant
attention in the literature [59]–[62].

In the same spirit, we consider a very simple greedy
approximation scheme, in which only the first M nonzero
wavelet coefficients are preserved. This scheme is well-suited
to compound Poisson processes, for which most of the wavelet
coefficients are zero due to their piecewise constancy.

Our main result is to provide lower and upper-bounds for
the greedy approximation error in the mean-squared sense
(Theorem 1). It essentially states that the mean-square error
of the Haar greedy approximation of the compound Poisson
process s behaves roughly as

E

[
‖s− Pgreedy

M {s}‖2
2

]
≈ E

[
2−

M
N

]
(2)

where N is the (random) number of jumps of s (see (24) for
the precise meaning of (2)). This allows us to deduce that
the mean-square error decays faster than any polynomial, and
slower than any exponential (Theorem 2). We also perform
a similar analysis for the linear approximation of the com-
pound Poisson process, as well as for the linear and greedy
approximations of the Brownian motion. This highlights the
specificity of the compound Poisson processes: the greedy
approximation dramatically outperforms the linear scheme
for compound Poisson processes, contrary to the Gaussian
case. We summarize this situation in Table I, where the main
contribution is highlighted in bold.

Finally, we illustrate our theoretical findings with numerical
examples in various cases. Specifically, we highlight that the
approximation error obtained within our method is close to
the best M -term approximation. Moreover, we highlight the
role of the wavelet dictionary by comparing the linear and
best M -term schemes for compound Poisson processes and
the Brownian motion in a Fourier-type dictionary correspond-
ing to the discrete cosine transform (DCT). These empirical
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TABLE I

THE DECAY RATE OF THE MSE (1) OF LINEAR, GREEDY, AND
BEST M -TERM APPROXIMATION SCHEMES FOR COMPOUND

POISSON PROCESSES AND THE BROWNIAN MOTION

observations raise interesting theoretical questions which we
briefly expose and can be exploited in future works.

F. Outline

The paper is organized as follows: in Section II, we present
the relevant mathematical concepts. We then discuss our
approximation scheme and compare it with the linear and
best M -term methods in Section III. We present our main
theoretical results in Section IV and finally, we demon-
strate our theoretical results within numerical examples in
Section V.

II. MATHEMATICAL PRELIMINARIES

In this section, we recall the relevant mathematical concepts
and state preparatory results that we will use throughout the
paper.

A. Lévy Processes and Lévy White Noises

Brownian motions and compound Poisson processes are
members of the general family of Lévy processes, which
are continuous-domain random processes characterized by
their independent and stationary increments [41], [63]. Lévy
processes are defined,2 is not the most common one. However,
it is proven to be equivalent to more classical ones in [64].
Consequently, we shall view the wavelet coefficients as linear
functionals acting on the Lévy white noises which in effect
allows us to simply characterize their probability laws. as the
solutions of the stochastic differential equation

Ds = w, (3)

with the boundary condition s(0) = 0. In (3), D denotes
the (weak) derivative operator and w is a Lévy white noise.
We choose to only consider zero-mean white noises. However,
this comes with no loss of generality as the results are readily
extendable to the general case.

The formal construction of the family of Lévy white
noises as generalized random processes have been exposed in
[65, Chapter 3]. In this framework, the Lévy white
noises are defined based on their observation through
smooth test functions. For each adequate test function ϕ,
〈w,ϕ〉 is then a zero-mean random variable. The collec-
tion of random variables (〈w,ϕ〉)ϕ satisfy two important
properties:

2This definition, based on the theory of distributions.

Fig. 1. Trajectories of compound Poisson processes with Gaussian jumps
(different values of λ) and a Brownian motion. All processes are normalized
to have unit variance.

• (Stationarity) For any test function ϕ and any shift value
t0 ∈ R, the random variables 〈w,ϕ〉 and 〈w,ϕ(· − t0)〉
have the same law.

• (Whiteness) For any pair of test functions (ϕ1, ϕ2)
with disjoint support, the random variables 〈w,ϕ1〉 and
〈w,ϕ2〉 are independent.

The class of valid test functions for a Lévy white noise have
been characterized in [66], [67]. It is sufficient for us to know
that 〈w,ϕ〉 is well defined for any Lévy white noise w and
any square-integrable and compactly supported test function
ϕ [67, Proposition 5.10].

The most studied example of Lévy processes is the Brown-
ian motion, for which w is a Gaussian white noise. In this case,
for any ϕ ∈ L2(R), the random variable 〈w,ϕ〉 has a normal
distribution with zero mean and variance σ2‖ϕ‖2

2, where σ2 is
the variance of the noise [65, Section 2.5].

Another prominent subfamily of Lévy processes are the
compound Poisson processes. They are piecewise constant
processes and their statistics is characterized by their proba-
bility law of jumps P and their Poisson parameter λ > 0 that
controls the sparsity of the random process (see Figure 1).
More precisely, the compound Poisson white noise w with
law of jumps P and Poisson parameter λ > 0 can be written
as a sum of non-uniform Dirac impulses, as

w =
∑
k∈Z

akδ(· − τk), (4)

where the sequence {ak}k∈Z of height of Diracs is i.i.d. with
law P and the sequence {τk}k∈Z of locations of Diracs is
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a stationary Poisson point-process with parameter λ > 0
(see [68] for a formal definition of point processes), the ak and
the τk being independent. The key property regarding the Dirac
locations is that the number N of τk in any interval [a, b] with
a < b is a Poisson random variable with parameter λ(b − a).
Furthermore, condition to the event N = n, the locations of
jumps that are in [a, b] are drawn independently from a uniform
law over [a, b] [68, Section 2.1]. This implies that, if we denote
by x = (x1, . . . , xN ), the ordered set of Dirac locations that
are in [a, b], then condition to the event {N = n} for any
n ≥ 1, the probability density function (PDF) of x is

px(u|N = n) =
n!

(b − a)n
�a≤u1≤...≤un≤b (5)

for any vector u = (u1, . . . , un) ∈ R
n. It is worth noting

that the probability density of x, once condition to N =
n ≥ 1, does not depend on λ anymore. Throughout the
paper, we shall write the ordered jump positions of compound
Poisson processes with the letter x, and the unordered ones
with the letter τ .

In Lemma 1, we characterize the law of the minimal
distance Δ between two consecutive jumps of a compound
Poisson process. The proof of Lemma 1 can be found in
Appendix A.

Lemma 1: Consider a compound Poisson process s with
parameters (P , λ) and a fixed interval [a, b]. Denote by N , the
number of points in [a, b] and x = (x1, . . . , xN ), the ordered
set of jumps of s that are in [a, b]. With the convention x0 = a,
we define the random variable Δ as

Δ =

{
(b− a), N = 0
min

1≤i≤N
(xi − xi−1), N ≥ 1. (6)

Then, almost surely, Δ ≤ (b − a)/N , and for any n ≥ 1 and
δ ∈ [0, (b− a)/n], we have

P(Δ ≥ δ|N = n) =
(

1 − n
δ

b− a

)n

. (7)

In this paper, we shall consider compound Poisson processes
and white noises that are zero-mean, finite variance (which is
equivalent to say that the jumps themselves are zero-mean with
finite variance), and whose probability law of jumps P has a
PDF (in particular, it has no atoms, what will be used in our
analysis). The prototypical example is a compound Poisson
process with Gaussian jump heights.

Despite the fact that their sample paths have very distinct
behaviors (see Figure 1), finite-variance compound Poisson
processes have the same second-order statistics as the Brown-
ian motion. Indeed, for any test function ϕ, the random
variable 〈w,ϕ〉 has zero-mean and variance σ2‖ϕ‖2

2 for
any Lévy white noise with variance σ2 and zero mean
[8, Proposition 4.15].

B. Haar Wavelets

For a pair of functions ψ, φ ∈ L2(R), that are referred to
as the mother and father wavelets, respectively, the wavelet
family Ψ contains all (normalized) dyadic scales and integer

shifts of ψ plus the integer shifts of φ. In other words, we have
that Ψ = {ψj,k}j≥0,k∈Z ∪ {φk}k∈Z, where

ψj,k = 2
j
2ψ(2j · −k), φk = φ(· − k), (8)

for all scaling factor j ≥ 0 and all shifting parameter k ∈ Z.
We consider the family of Haar wavelets whose mother and

father wavelets are respectively

ψ = �[0, 1
2 ] − �[ 12 ,1] and φ = �[0,1]. (9)

Haar wavelets are known to form an orthonormal basis for
L2(R) [28]. This means that any function f ∈ L2(R) admits
the unique expansion

f(·) =
∑
j≥0

∑
k∈Z

〈f, ψj,k〉ψj,k(·) +
∑
k∈Z

〈f, φk〉φk(·), (10)

where 〈·, ·〉 denotes the standard inner product in L2(R),
defined as 〈ϕ1, ϕ2〉 =

∫
R
ϕ1(x)ϕ2(x)dx.

The simple characteristics and implementation of Haar
wavelets make them favorable in practice [69], [70]. They are
also compactly supported, which is of great importance in our
analysis, due to the whiteness property of Lévy white noises
(see above). Last but not least, the family consists of piecewise
constant functions. Hence, it is natural to represent compound
Poisson processes (that are themselves almost surely piecewise
constant) in this basis.

C. Haar Decomposition of Lévy Processes

In the sequel, we restrict both the random processes and the
wavelet transforms to [0, 1] and study the local compressibility
of compound Poisson processes over this compact interval.

Due to the support localization of the Haar wavelets,
we readily see that the family Ψ = {ψj,k}j≥0,0≤k≤2j−1∪{φ}
forms an orthonormal basis of L2([0, 1]), hence the Lévy
process s can be almost surely written as

s = 〈s, φ〉φ +
∑
j≥0

2j−1∑
k=0

〈s, ψj,k〉ψj,k. (11)

The probability law of the Haar wavelet coefficients of s has
been characterized in [9], where their characteristic functions
have been explicitly computed. Here, we study the law of
wavelet coefficients using the properties of the underlying
Lévy white noise. In order to achieve this goal, we introduce
the auxiliary functions defined for t ∈ [0, 1] as

φ̃(t) = (1 − t)�[0,1](t), and (12)

ψ̃j,k(t) =

⎧⎪⎨
⎪⎩

2j/2(k/2j − t), t ∈ [ k
2j ,

k+1/2
2j )

2j/2(t− (k + 1)/2j), t ∈ [k+1/2
2j , k+1

2j )
0, otherwise,

(13)

for any j ≥ 0 and k = 0, . . . , 2j − 1. We conclude this part
with Proposition 1, that expresses the Haar wavelet coefficients
of s using the underlying Lévy white noise and the auxiliary
functions (12) and (13). The proof is available in Appendix B.

Proposition 1: Let s be a Lévy process. Then, for any
j ≥ 0 and 0 ≤ k ≤ 2j − 1, we have

〈s, ψj,k〉 = 〈w, ψ̃j,k〉, 〈s, φ〉 = 〈w, φ̃〉, (14)

where w is the Lévy white noise such that Ds = w.
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III. WAVELET-BASED APPROXIMATION SCHEMES

In this section, we consider three different approximation
schemes for square-integrable functions over [0, 1]: the linear,
best M -term, and greedy approximations. Our main goal and
contribution is to precisely quantify the approximation power
of the greedy scheme.

A. Wavelet-Based Approximation Schemes

In what follows, we consider the natural indexing of
wavelets by defining the indexing function Ind : Ψ → N

as
Ind(φ) = 0, Ind(ψj,k) = 2j + k, (15)

for all j ≥ 0 and k = 0, . . . , 2j − 1.
Definition 1: Let f ∈ L2([0, 1]). We denote by

• Plin
M (f), the linear approximation of f , that is obtained

by keeping the first M wavelet coefficients (with respect
to the indexing function Ind) of f in the expansion (11).

• Pbest
M (f), the best M -term approximation of f , that is

obtained by keeping the M largest wavelet coefficients
of f .

The first scheme in Definition 1 is called linear due to
the fact that Plin

M (f) depends linearly on f . However, the
best M -term approximation is adaptive to the signal and is
therefore nonlinear. One can hope that the adaptiveness of the
best M -term approximation significantly improve the quality
of the approximation when compared with the linear one, what
appears to be the case for some classes of functions [34].

As an alternative approach, we consider a compression
scheme for compound Poisson processes that can be performed
in an online fashion with respect to the stream of the wavelet
coefficients. The main idea is to exploit the tremendous spar-
sity of the expansion of compound Poisson processes over the
Haar wavelet basis, that is done by retaining only the nonzero
wavelet coefficients and is called the greedy approximation.

Definition 2: Let f ∈ L2([0, 1]). We denote by Pgreedy
M (f),

the greedy approximation of f , where only the M first
nonzero wavelet coefficients are preserved (the ordering being
understood with respect to the indexing function Ind in (15)).

As for the best M -term approximation, the greedy approx-
imation of f is nonlinear with respect to f . However, it is
greedy in the sense that it can be computed by simply
looking at the ordered wavelets coefficients. Hence, it does not
necessitate to observe the complete set of wavelet coefficients,
contrary to the best M -term approximation. It therefore shares
the simplicity of the linear scheme and the adaptiveness of the
optimal scheme (the best M -term).

The three approximation schemes introduced in this section
clearly satisfy the relations

‖f−Pbest
M (f)‖2 ≤ ‖f−Pgreedy

M (f)‖2 ≤ ‖f−Plin
M (f)‖2 (16)

for any function f ∈ L2([0, 1]) and any M ≥ 0.

B. Mean-Squared Error of the Wavelet Approximations

Let s be a Lévy process. To quantify the performance
of an approximation scheme, we consider the mean-squared

error (MSE), which we denote by MSEmethod
M for the approx-

imation scheme method ∈ {lin, greedy, best} and is defined
as

MSEmethod
M = E

[‖s− Pmethod
M (s)‖2

L2

]
. (17)

It is clear from (16) that

MSEbest
M ≤ MSEgreedy

M ≤ MSElin
M . (18)

C. The Linear Scheme

In Proposition 2, we determine the MSElin
M of any Lévy

process that has finite variance. Its proof is available in
Appendix C.

Proposition 2: Let s be a Lévy process with finite variance
σ2

0 . Then, for every M ≥ 1, we have

MSElin
M =

σ2
0

12
1
2J

(
2 − m

2J

)
, (19)

where J = �log2M� and m = M − 2J ∈ {0, . . . , 2J − 1}.
In particular, for every M ∈ 2N, we have that

MSElin
M =

σ2
0

6M
. (20)

Proposition 2 shows that the linear approximations of Lévy
processes with finite variance share the same mean-square
error. Let us also remark that if s is a Brownian motion, then
the random variables Xj,k = 〈s, ψj,k〉 = 〈w, ψ̃j,k〉 are all
Gaussian. Hence,

P(∃j, k : Xj,k = 0) ≤
∑
j≥0

2j−1∑
k=0

P(Xj,k = 0) = 0,

and all the countably many wavelet coefficients are almost
surely nonzero and hence, the linear and greedy schemes
coincide, as stated in Corollary 1.

Corollary 1: Let s be a Brownian motion. Then, for any
M ≥ 0, we have the almost sure relation

MSEgreedy
M = MSElin

M . (21)

D. The Greedy Approximation of Compound Poisson
Processes

When the wavelet coefficients are sparse (i.e. when at
each scale, only a few of them are nonzero), the linear and
greedy approximation schemes are no longer identical. In
Proposition 3, we study the sparsity of the wavelet coefficients
of compound Poisson processes. Precisely, we first character-
ize when a specific wavelet coefficient vanishes, depending on
the presence of jumps. Using this primary result, we provide
upper and lower bounds for the minimal (random) scale at
which at least M wavelet coefficients are nonzero. The proof
of Proposition 3 is provided in Appendix D.

Proposition 3: Let s be a compound Poisson process whose
law of jumps admits a PDF with zero-mean and finite variance.

1) For all j ≥ 0 and k = 0, . . . , 2j − 1, denote Kj,k as the
random number of jumps of s in the support of ψj,k.
Then, we almost surely have

〈s, ψj,k〉 = 0 ⇔ Kj,k = 0. (22)
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In other words, the symmetric difference between the
events 〈s, ψj,k〉 = 0 and Kj,k = 0 has probability zero.

2) Consider the wavelet expansion (11) of s and denote by
NJ , the random number of nonzero wavelet coefficients
with scale no larger than J . Furthermore, condition to
{N ≥ 1}, let JM be the smallest random value of J
such that NJ ≥ M ; that is, JM is characterized by
NJM−1 < M ≤ NJM . Then, we have⌈

M − 2
N

⌉
≤ JM ≤

⌊
M − 1
N

+ log Δ−1

⌋
, (23)

where the random variable Δ is defined in (6).

IV. COMPRESSIBILITY OF COMPOUND POISSON

PROCESSES

In this section, we present our main result on characteriz-
ing the asymptotic behavior of the greedy approximation of
compound Poisson processes.

Theorem 1: Let s be a compound Poisson process with
Poisson parameter λ > 0 whose law of jumps admits a PDF
with zero-mean and finite variance. Then for every M ∈ N,
we have that

C1M
−1

E[2−
M
N ] ≤ MSEgreedy

M ≤ C2ME[2−
M
N ], (24)

where N is a Poisson random variable with parameter λ, and
C1, C2 > 0 are some constants.

The proof can be found in Appendix E. Here, we give a
sketch of the proof. For an arbitrary fixed integer n ≥ 1,
we work conditionally to N = n. From the definition of JM

(see Proposition 3), one has that NJM−1 ≤M − 1. Hence the
M th nonzero wavelet coefficient is reached at scale JM , and
therefore

‖s− Plin
2JM+1(s)‖2 ≤ ‖s− Pgreedy

M (s)‖2 ≤ ‖s− Plin
2JM

(s)‖2,

(25)

almost surely. From Proposition 2, we know the exact
behavior of the linear approximation error. On the other
hand, we have lower and upper-bounds for the quantity JM ,
thanks to Proposition 3. The rest of the proof leverages these
two preliminary results in order to derive the announced
bounds.

Theorem 1 provides lower and upper bounds for the
greedy approximation error of any finite-variance com-
pound Poisson process. In Theorem 2, we use these
bounds to deduce sub-exponential super-polynomial behaviors
for the greedy approximation error of compound-Poisson
processes.

Theorem 2: Let s be a compound Poisson process whose
law of jumps admits a PDF with zero-mean and finite variance.
Then the greedy approximation error MSEgreedy

M of s follows
a sub-exponential and super-polynomial asymptotic behavior.
Precisely, for any k ∈ N, we have that

lim
M→+∞

MkMSEgreedy
M = 0, (26)

and for any α > 0,

lim
M→+∞

eαMMSEgreedy
M = +∞. (27)

The proof of Theorem 2 can be found in Appendix F.
An enlightening consequence of the super-polynomial behav-
ior of the greedy approximation error is that it demonstrates
that our provided lower- and upper-bounds are asymptotically
comparable. Specifically from the upper-bound provided in
Theorem 1, we deduce that

MSEgreedy
M

E[2−
M
N ](1−ε)

≤ C2ME[2−
M
N ]ε

for any 
 > 0. Moreover, Theorem 2 implies that the quantity
ME[2−

M
N ]ε tends to 0 as M → +∞ and is therefore bounded

from above. Using a similar argumentation for the lower-
bound of Theorem 1, we obtain the following corollary.

Corollary 2: For any 
 > 0, there are positive constants
C1,ε, C2,ε > 0 such that

C1,εE[2−
M
N ](1+ε) ≤ MSEgreedy

M ≤ C2,εE[2−
M
N ](1−ε), (28)

for all values of M ≥ 1.
Our theoretical analysis validates the two following obser-

vations in a rigorous manner:
• A piecewise constant function with a fixed number of

jumps n ≥ 1 is such that its greedy approximation in
the Haar basis roughly behaves like O(2−M/n), which
is exponential and therefore decays to 0 faster than any
polynomial. Note that the exponential decay is faster for
smaller values of n.

• The number of jumps N of a compound Poisson is
random. It is almost surely finite but can be arbitrar-
ily large. The concrete effect is that the mean-square
error of the greedy approximation roughly behaves like
O(E[2−M/N ]). The subexponential behavior of the MSE
is then a consequence, as we have shown.

It is worth noting that the characterization provided by
Theorem 2 is not deducible from earlier works that was based
on the machinery of Besov regularity, such as [55]. Previous
works focus on the almost sure behavior of the approximation
error, while we focus on the mean-square approximation on
this paper. These are two different regimes and to the best of
our knowledge, the possible link between the two has not been
investigated.

By contrast, we obtain some information regarding the
asymptotic behavior of best M-term approximation error
of compound Poisson processes from Theorem 2. Indeed,
by combining (18) and (26), one observes that

lim supM→+∞M
kMSEbest

M ≤ lim
M→+∞

MkMSEgreedy
M = 0,

for any k ∈ N. Using the fact that MSE is non-negative simply
implies that

lim
M→+∞

MkMSEbest
M = 0. (29)

The super-polynomial decay of the greedy approximation error
shows that this method, despite being very simple and easily
implemented, reaches excellent approximation performances.
In the next section, we will empirically show that the greedy
scheme performs similarly to the practically uncomputable
best M -term approximation scheme.
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V. NUMERICAL ILLUSTRATIONS

In this section, we provide a numerical demonstration of
the main results of this paper. First, it is illustrative and
reflects the potential practical impact of our theoretical claims
in a complementary and empirical manner. Second, it shows
that the results obtained for the greedy approximation method
are similar to what would be obtained for the best M -term
approximation (Section V-B). Finally, it emphasizes that
wavelets are able to exploit the inherent sparsity of non-
Gaussian signals, which is not the case of traditional Fourier-
based approximation schemes (Section V-C). These empirical
observations then give rise to open theoretical questions that
might be of interest to the community.

To simulate each approximation scheme, we first generate
a signal that consists of 210 = 1024 equispaced samples
of a given random process over [0, 1]. We then compute its
(discrete) Haar wavelet coefficients of scale up to Jmax = 10.
Finally, we create the approximated signal according to the
given approximation scheme.3 We repeat each experiment
1000 times and we report the average to reduce the effect
of the underlying randomness (Monte Carlo method). The
averaged values are then good approximations of the quantities
of interest, that is, the MSEs given by (17) for different
approximation schemes.

A. Greedy Approximation Error

In the first experiment, we compute the MSE of greedy
approximation for Brownian motions and compound Poisson
processes with different values of λ = 10, 50, 100, 500 and
with Gaussian jumps, as a function of the number M of
coefficients that are preserved. We recall that, N being the
random number of jumps of the compound Poisson process
s over [0, 1], λ = E[N ] is the averaged number of jumps.
To have a fair comparison, we unify the variance of the random
processes in all cases to be σ2

0 = 1 (which corresponds to a law
of jumps with variance σ2

0/λ = 1/λ for compound Poisson
processes).

The results are depicted in Figure 2, where in each case we
plot the MSE in log scale, that is log2(M) �→ 10 log10(MSE).
From Proposition 2 and Corollary 1, we expect that the MSE
of Brownian motion follows a global linear decay in the log
scale, while decaying sub-linearly locally. Indeed, for M =
2J , J ∈ N, we deduce from (20) that

10 log10(MSEgreedy
M ) = α− βJ,

where α = 10 log10(σ2
0/6) and β = 10 log10(2) which shows

a linear decay with respect to J = log2(M). However, in the
regime when J = �log2(M)� is fixed, that is when 2J ≤M <
2J+1, we obtain from (19) that

10 log10(MSEgreedy
M ) = α− β(J + 1) + β log2

(
3 − M

2J

)
,

3For the best M -term approximation, we do not have access to the infinitely
many wavelet coefficients but only to the ones up to a given scale (Jmax =
10 in this case). This means that we only have an approximation of the best
M -term for our simulations. However, the variance of the wavelet coefficients
decay with the scale j like 2−2j and the coefficients at larger scales are
therefore very small with high probability. Our approximation of the best M
terms is therefore excellent.

Fig. 2. Greedy approximations of Brownian motions and compound Poisson
processes with different values of λ and Gaussian jumps. We fix the variance
to one in all cases.

which shows that the error decays sub-linearly in this regime.
These theoretical claims can be observed in Figure 2, as well.

In addition, from Theorem 2, we know that the MSE of
compound Poisson processes in the log scale should asymp-
totically decay faster than any straight line. This is also
observable in Figure 2, indicating the dramatic difference
between the compressiblity of compound Poisson processes
and Brownian motions, as expected.

We moreover remark in Figure 2 that the small-scale
behavior (log2(M) = J ≤ 3) does not distinguish between
different values of λ, but also between compound Poisson
processes and the Brownian motion. Again, this empirical fact
has a theoretical counterpart: it is linked with the fact that
the statistics of finite variance compound Poisson processes
are barely distinguishable from the ones of the Brownian
motion at coarse scales. This has been formalized in [71]
which states, when particularized to our case, that compound
Poisson processes with finite variance converge to the Brown-
ian motion when zoomed out and correctly renormalized. Our
numerical experiments are illustrative to this point, and will
be confirmed in Sections V-B and V-C.

Finally, we observe in Figure 2 that as λ → +∞,
the greedy approximation of compound Poisson processes
converges pointwise to the one of Brownian motion. This
empirical observation poses an interesting theoretical ques-
tion which is also consistent with [45, Theorem 5], which
states—when specialized to our problem—that the compound
Poisson process with constant variance σ2

0 and Gaussian jumps
converges in law to the Brownian motion when λ→ ∞.

B. Greedy Vs. Best M -Term Approximation

As we have seen in the introduction, it is particu-
larly satisfactory to characterize the compressibility of Lévy
processes via their best M -term approximation error in a
given basis. Although our greedy approximation error only
provides an upper-bound for the best M -term approximation
error, we demonstrate numerically in Figure 3 that the two
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Fig. 3. Greedy and Best M -term approximation of a compound Poisson
process (top) with λ = 10 and Gaussian jumps with a Brownian motion
(bottom). We normalize both processes to have unit variance.

approximation schemes are comparable in the sense of MSE.
This is also an important observation, as it reveals that the
extremely simple greedy approximation performs almost as
good as the best M -term approximation, the latter being a
theoretical bound for M-term approximation schemes.

C. Haar vs. Fourier

We now investigate the effect of the dictionary in which
we perform the approximation scheme. We consider the Haar
transform and discrete cosine transform (DCT) for approxi-
mating the Brownian motion and compound Poisson processes
with Gaussian jumps. The results are depicted in Figure 4,
where we plot the best M -term approximation error of each
setup in the log scale.

We observe that the DCT works slightly better than Haar
for the Brownian motion. This is not surprising: The DCT is
known to be asymptotically equivalent to the Karhunen-Loève
transform (KLT), which is optimal for Gaussian stationary
processes [33]. It is worth noting that this is also valid for
the Brownian motion, which is not stationary but still admits
stationary increments.

However, there is a dramatic difference between Haar and
DCT for compound Poisson processes. We see in Figure 4
that, contrary to the Haar dictionary, the DCT is unable to
take advantage of the effective sparsity of compound Poisson
processes. This is of course not a surprise and is folklore

Fig. 4. Comparison of DCT versus Haar wavelets to optimally represent (best
M -term) a compound Poisson process (top) with λ = 10 and Gaussian jumps
with a Brownian motion (bottom). We normalize both random processes to
have unit variance.

knowledge, but it has not yet been justified theoretically for
the best of our knowledge. This is nevertheless consistent
with recent theoretical and empirical results demonstrating that
wavelet methods outperform classical Fourier-based methods
for the analysis of sparse stochastic processes [8], [55].

VI. CONCLUSION

The theoretical and empirical findings of this paper are
reminiscent to the so-called “Mallat’s heuristic” [37], which
states that

“Wavelets are the best bases for representing objects com-
posed of singularities, when there may be an arbitrary number
of singularities, which may be located in all possible spatial
position.”
and which remarkably describes the compound Poisson model.

To do so, we provided a theoretical analysis to charac-
terize the compressibility of compound Poisson processes.
To that end, we introduced a simple approximation greedy
scheme performed over the Haar wavelet basis. We then
provided comparable lower and upper-bounds for the mean-
squared approximation error. This enabled us to deduce the
sub-exponential super-polynomial asymptotic behavior for the
error. Future research direction is to investigate the compress-
ibility of compound Poisson processes in other dictionaries
(e.g. DCT or other wavelet families), to investigate the effect
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of the Poisson parameter λ in this analysis, specifically when
λ → +∞, and finally, to theoretically compare the best and
greedy approximation schemes.

APPENDIX A
PROOF OF LEMMA 1

Proof: We first remark that the inequality Δ ≤ (b−a)/N
is obviously true when N = 0, since Δ = (b − a) in this
case. As for N ≥ 1, we have by definition of Δ that Δ ≤
xi − xi−1, for all i = 1, . . . , N , with the convention that
x0 = a. By summing up these equality for all values of i,
we obtain that

NΔ ≤ xN − x0 ≤ b− a. (30)

This yields that Δ ≤ (b− a)/N .
For the second part, we define the random vector d =

(d1, . . . , dn) ∈ [0, 1]n as

di =
xi − xi−1

b− a
, i = 1, 2, . . . , n, (31)

By rewriting (31) in the vectorial form, we obtain that

d = Hx − a

b− a
e1, (32)

where e1 = (1, 0, . . . , 0) ∈ R
n, x = (x1, . . . , xn) and H ∈

R
n×n is the lower-bidiagonal matrix

H =
1

b− a

⎛
⎜⎜⎜⎜⎜⎝

1
−1 1

−1 1
. . .

. . .
−1 1

⎞
⎟⎟⎟⎟⎟⎠ . (33)

Now, due to (5) and the change of variables (32), the PDF of
d is

pd(v|N = n) = n!�v∈[0,1]n,‖v‖1≤1, (34)

where ‖v‖1 = |v1| + · · · + |vn| = v1 + · · · + vn for v ∈
[0, 1]n. In addition, from the definition of Δ, the probability of
{Δ ≥ x} for any x ∈ [0, (b− a)/n] can be computed as

P(Δ ≥ x|N = n) = P (∩n
i=1{di ≥ x/(b − a)}|N = n)

=
∫

[ x
b−a ,1]n

n!�‖v‖1≤1dv

= n!
∫

[0,1− x
b−a ]n

�‖u‖1≤1−n x
b−a

du, (35)

where the latter is obtained via the change of variable ui =
vi − x

b−a for i = 1, . . . , n. We remark that if ui ≥ 0 for
i = 1, . . . , n and ‖u‖1 ≤ 1−nx/(b−a), then we would have
ui ≤ 1 − nx/(b − a) ≤ 1 − x/(b − a) for any i = 1, . . . , n.
In other words, the upper-limit of the integral in (35) is
redundant and can be replaced with +∞. Doing so, we obtain
that

P(Δ ≥ x|N = n) = n!
∫

[0,+∞)n

�‖u‖1≤1−n x
b−a

du

(i)
=

n!
2n

∫
Rn

�‖u‖1≤1−n x
b−a

du

=
n!
2n

Leb
({

‖u‖1 ≤
(

1 − n
x

b− a

)})

=
n!
2n

(
1 − n

x

b− a

)n

Leb ({‖u‖1 ≤ 1}) ,

where (i) is due to the symmetry of the integrand with respect
to the sign of u and where Leb denotes the Lebesgue measure.
Finally, we use a known result stating that the volume of the
�1 unit ball in R

n is 2n/n! [72]. This yields to

P(Δ ≥ x|N = n) =
n!
2n

(
1 − n

x

b− a

)n 2n

n!

=
(

1 − n
x

b− a

)n

.

APPENDIX B
PROOF OF PROPOSITION 1

Proof: A simple computation reveals that −Dψ̃j,k = ψj,k.
Hence, using the known identity D∗ = −D and (3), we have
that

〈s, ψj,k〉 = 〈s,−Dψ̃j,k〉 = 〈Ds, ψ̃j,k〉 = 〈w, ψ̃j,k〉. (36)

With a similar idea, we remark that Dφ̃ = δ − φ. Combining
with 〈s, δ〉 = s(0) = 0, we have that

〈s, φ〉 = 〈s, δ − Dφ̃〉 = s(0) + 〈Ds, φ̃〉 = 〈w, φ̃〉. (37)

APPENDIX C
PROOF OF PROPOSITION 2

Proof: One observes from Definition 1 that

Plin
M (s) = 〈s, φ〉φ+

J−1∑
j=0

2j−1∑
k=0

〈s, ψj,k〉ψj,k +
m−1∑
k=0

〈s, ψJ,k〉ψJ,k.

This together with (11) yields that

s− Plin
M (s) =

∑
j≥J+1

2j−1∑
k=0

〈s, ψj,k〉ψj,k +
2J−1∑
k=m

〈s, ψJ,k〉ψJ,k.

Haar wavelets that are supported in [0, 1], form an orthonormal
basis for L2([0, 1]). Using this, we express the approximation
error based on the wavelet coefficients, as

‖s− Plin
M (s)‖2

L2
=

∑
j≥J+1

2j−1∑
k=0

|〈s, ψj,k〉|2 +
2J−1∑
k=m

|〈s, ψJ,k〉|2.

By taking expectation over both sides and by using Proposi-
tion 1, we have that

E[‖s− Plin
M (s)‖2

L2
] =

∑
j≥J+1

2j−1∑
k=0

E[|〈s, ψj,k〉|2]

+
2J−1∑
k=m

E[|〈s, ψJ,k〉|2]

=
∑

j≥J+1

2j−1∑
k=0

E[|〈w, ψ̃j,k〉|2]
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Fig. 5. Auxiliary functions φ̃ and ψ̃j,k for j = 0, 1, 2 and k = 0, . . . , 2j−1.

+
2J−1∑
k=m

E[|〈w, ψ̃J,k〉|2]

=
∑

j≥J+1

2j−1∑
k=0

σ2
0‖ψ̃j,k‖2

L2

+
2J−1∑
k=m

σ2
0‖ψ̃J,k‖2

L2
.

Finally, we replace ‖ψ̃j,k‖2
L2

= 2−2j

12 (obtained via a direct
computation; see Figure 5 for visualisation) for all j ≥ 0 and
k = 0, . . . , 2j − 1 in the summation above to deduce that

E
[‖s− Plin

M (s)‖2
L2

]
=
σ2

0

12

⎛
⎝ ∑

j≥J+1

2j−1∑
k=0

2−2j +
2J−1∑
k=m

2−2J

⎞
⎠

=
σ2

0

12M

(
1
2J

+
2J −m

22J

)

=
σ2

0

12M
1
2J

(
2 − m

2J

)
.

APPENDIX D
PROOF OF PROPOSITION 3

Proof: Item 1) Assume that Kj,k = 0. This means that s
is constant over the support of ψj,k, taking the fixed (random)
value s0. By recalling that∫

R

ψj,k(x)dx = 0, (38)

for all j ≥ 0 and k = 0, . . . , 2j − 1, we deduce
that the corresponding wavelet coefficient is
〈s, ψj,k〉 = s0

∫
R
ψj,k(x)dx = 0.

For the converse, we show that, condition to the event
{Kj,k = K} for an arbitrary (but fixed) integer K ≥ 1,
we have that

P (〈s, ψj,k〉 = 0|Kj,k = K) = 0.

Consider the jumps that are inside the support of ψj,k and
denote their (unordered) locations and heights by {τ̃1, . . . , τ̃K}
and {ã1, . . . , ãK}, respectively. Due to (14), we have that

〈s, ψj,k〉 = 〈w, ψ̃j,k〉 =
K∑

i=1

ãiψ̃j,k(τ̃i). (39)

We recall that the jump locations τ̃i are i.i.d. with a uniform
law. Moreover, the jump heights ãi are independent of τ̃is and
are themselves i.i.d. copies of a random variable that admits
PDF. This implies that the random variables Zi = ãiψ̃j,k(τ̃i)
for i = 1, . . . ,K are also i.i.d. and their law has a PDF too,
which we denote by pZ . Finally, the random variable 〈s, ψj,k〉
also has PDF (that is the K times convolution of pZ with
itself) and thus, is nonzero with probability one (no atoms).

Item 2) Recall that N is the total number of jumps of s
over [0, 1]. Due to (22) and the fact that the wavelets ψj,k for
k = 0, . . . , 2j − 1 have disjoint support, at each scale j ≥ 1,
at most N wavelet coefficients are nonzero. On the other hand,
the support of any wavelet function of scale j is of size 2−j .
Hence, due to the definition of Δ, the number of jumps in the
support of ψj,k is either one or is upper-bounded by the length
of the interval divided by the minimum distance (= 2−jΔ−1).
In other words, the support of each wavelet of scale j contains
at most max(1, 2−jΔ−1) jumps.

Denote by nj , the number of nonzero wavelet coefficients
in the jth scale. Using the previous observation, we deduce
for all j ≥ 1 that

N

max(1, 2−jΔ−1)
= N min(1, 2jΔ) ≤ nj ≤ N. (40)

As for j = 0 (mother and father wavelets), we deduce similar
to Item 1) that condition to N ≥ 1, we have n0 = 2.

By defining Jlim = �log2(Δ
−1)�, one readily verifies

that for j ≤ Jlim, we have min(1, 2jΔ) = 2jΔ. By con-
trast, min(1, 2jΔ) = 1 for j ≥ Jlim. Using these simple
observations and by summing up lower-bounds of (40) for
j = 1, . . . , J (together with n0 = 2), we obtain, since∑J

j=0 nj = NJ , that

2 +NΔ(2J+1 − 2) ≤ NJ , ∀J ≤ Jlim,

2 +NΔ(2Jlim+1 − 2) + (J − Jlim)N ≤ NJ , ∀J ≥ Jlim.

To simplify the first lower-bound, we use the inequality 2x ≥ x
for x = J + 1 + log2 Δ, which results to

2 − 2NΔ +N(J + 1 + log2 Δ) ≤ NJ , ∀J ≤ Jlim. (41)

As for the second lower-bound, we use

Jlim ≤ log2(Δ
−1) ≤ Jlim + 1

to obtain that

2+NΔ(Δ−1−2)+(J+log2 Δ)N ≤ NJ , ∀J ≥ Jlim. (42)

It is now readily to verify that the two lower-bounds in (41)
and (42) are indeed equal and hence, we have that

2 +N(J + 1 − 2Δ + log2 Δ) ≤ NJ , ∀J ≥ 0. (43)

Finally, using ΔN ≤ 1, we conclude that

N(J + 1 + log2 Δ) ≤ NJ , ∀J ≥ 0. (44)

We follow the same principle to obtain an upper-bound for
NJ as well. By summing up upper-bounds of (40) for j =
1, . . . , J , together with n0 = 2, we obtain that

NJ ≤ 2 +NJ, ∀J ≥ 0. (45)
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Now, by the definition of JM , we know that NJM ≥ M .
Combining it with (45) applied to J = JM yields that

M ≤ NJM ≤ NJM + 2,

which implies the lower-bound

JM ≥ M − 2
N

. (46)

Similarly, from the definition of JM , we have NJM−1 ≤
M − 1. This together with (44) applied to J = JM − 1 gives

N(JM + log2 Δ) ≤ NJM−1 ≤M − 1,

from which we deduce the upper-bound

JM ≤ M − 1
N

+ log2 Δ−1. (47)

We complete the proof of (23) by combining (46) and (47),
knowing that JM ∈ N.

APPENDIX E
PROOF OF THEOREM 1

Proof of Theorem 1: Let σ2
0 < +∞ be the variance of

the process s. We divide the proof and show each side of the
inequality (24) separately.

Upper-Bound: First, we show that for any n ≥ 1, we have

E

[
‖s− Pgreedy

M (s)‖2
2|N = n

]
≤ σ2

0n

6λ
2−

M−2
n .

Let us then work conditionally to N = n. From
Proposition 3, we have (condition to N = n) that JM ≥
�M−2

n �. Thus, by combining with (25), we obtain that

‖s− Pgreedy
M (s)‖2 ≤ ‖s− Plin

2� M−2
n

�(s)‖2.

Taking expectation from both sides yields

E

[
‖s− Pgreedy

M (s)‖2
2|N = n

]
(48)

≤ E

[
‖s− Plin

2� M−2
n

�(s)‖2
2|N = n

]

=
∑

j≥	M−2
n 


2j−1∑
k=0

E[|〈s, ψj,k〉|2|N = n], (49)

On the other hand, condition to N = n, we have the equality
in law

w = Ds =
n∑

i=1

aiδ(· − τi),

where {τi}n
i=1 is the sequence of unordered jumps of s in

[0, 1] and {ai}n
i=1 is the sequence of corresponding heights.

Therefore, we have that

〈s, ψj,k〉 = 〈w, ψ̃j,k〉 =
n∑

i=1

Zi,

where the random variables Zi = aiψ̃j,k(τi) are i.i.d. copies of
a zero-mean random variable. We recall that the law of jumps
ai has zero-mean and variance σ2

0/λ. Hence, the second-order
moment of Zi can be computed as

E[Z2
i |N = n] = E[a2

i ψ̃j,k(τi)2|N = n]
(i)
= E[a2

i |N = n]E[ψ̃j,k(τi)2|N = n]

=
σ2

0

λ

∫
R

ψ̃j,k(x)2pτi|N=n(x)dx

(ii)
=

σ2
0

λ

∫ 1

0

ψ̃j,k(x)2dx

=
σ2

0

λ
‖ψ̃j,k‖2

2

=
σ2

0 × 2−2j

12λ
,

where we used the independence of ai and τi in (i) and the
uniform law of τi in (ii) and finally, we replaced ‖ψ̃j,k‖2

L2
=

2−2j

12 in the last equality. Now, due to the independence of the

Zi, we deduce that

E[〈s, ψj,k〉2|N = n] =
n∑

i=1

E[Z2
i |N = n] = n

σ2
0 × 2−2j

12λ
.

(50)

By substituting (50) in (49), we obtain that

E

[
‖s− Pgreedy

M (s)‖2
2|N = n

]
≤

∑
j≥	M−2

n 


2j−1∑
k=0

n
σ2

02
−2j

12λ

=
σ2

0n

12λ

∑
j≥	 M−2

n 

2−j

=
σ2

0n

6λ
2−	M−2

n 


≤ σ2
0n

6λ
2−

M−2
n ,

By taking the expectation, we obtain that

E

[
‖s− Pgreedy

M (s)‖2
2

]
≤

∞∑
n=1

σ2
0n

6λ
2−

M−2
n P(N = n)

=
M∑

n=1

σ2
0n

6λ
2−

M−2
n P(N = n)

+
∞∑

n=M+1

σ2
0n

6λ
2−

M−2
n P(N = n)

≤ 2σ2
0

3λ
ME[2−

M
N ]

+
2σ2

0

3λ

∞∑
n=M+1

nP(N = n), (51)

where in the last inequality, we have used 2−
M
n ≤ 1 and

2
2
n ≤ 4 for all values of M,n ≥ 1. Now, by invoking the

relation nP(N = n) = ne−λλn/n! = λP(N = n− 1) for any
n ≥ 1, we deduce that

∞∑
n=M+1

nP(N = n) =
∞∑

n=M+1

P(N = n− 1) = λP(N ≥M).

On one hand, from the Chernov bound we have

P(N ≥M) ≤ E[etN ]e−tM = eλ(et−1)e−tM , ∀t > 0, (52)

where we used

E[etN ] =
∞∑

n=0

e−λ etnλn

n!
=

∞∑
n=0

e−λ (λet)n

n!
= eλ(et−1).
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Using (52) with t = ln2 (such that et = 2) yields

∞∑
n=M+1

nP(N = n) ≤ E[etN ]e−tM ≤ λeλ2−M .

Hence,

E

[
‖s− Pgreedy

M (s)‖2
2

]
≤ 2σ2

0

3λ
ME[2−

M
N ] +

2σ2
0

3
eλ2−M

= ME[2−
M
N ]

2σ2
0

3λ

(
1 +

λeλ2−M

ME[2−
M
N ]

)

≤ME[2−
M
N ]

2σ2
0

3λ

(
1+

λeλ2−M

2−MP(N = 1)

)

= ME[2−
M
N ]

2σ2
0

3λ
(1 + e2λ),

which is the announced upper-bound with the constant C2 =
2σ2

0
3λ (1 + e2λ).

Lower-Bound: Similar to the upper-bound, we show that for
any n ≥ 1, we have the inequality

E[‖s− Pgreedy
M (s)‖2

2|N = n] ≥ σ2
0

48eλ
n−12−

M−1
n , (53)

which immediately implies the announced lower-bound.
We treat the case N = 1 separately. Condition to N = 1,

both wavelet coefficients of order zero (associated to mother
and father wavelets) are nonzero. Moreover, for any j ≥ 1,
there is exactly one wavelet coefficient of scale j that is
nonzero. This implies that JM = M − 2 and in addition,
we have that

E[‖s− Pgreedy
M (s)‖2

2|N = 1] = E[‖s− Plin
2M−1(s)‖2

2|N = 1].
(54)

Similar to the proof of Proposition 2 and together with (50),
we deduce that

E[‖s− Plin
2M−1(s)‖2

2|N = 1]

=
∑

j≥(M−1)

2J−1∑
k=0

E[〈s, ψj,k〉2|N = 1]

=
∑

j≥(M−1)

2j σ
2
0 × 2−2j

12λ

=
σ2

0

6λ
2−(M−1)

≥ σ2
0

48λe
2−(M−1),

which together with (54) proves (53) in this case.
Consider an arbitrary integer n ≥ 2 and let us work

conditionally to N = n. From the definition of JM , we almost
surely have that

‖s− Pgreedy
M (s)‖2 ≥ ‖s− Plin

2JM +1(s)‖2.

This together with the right inequality of (23) implies almost
surely that

‖s− Pgreedy
M (s)‖2 ≥ ‖s− Plin

2� M−1
n

+log2 Δ−1�+1
(s)‖2.

By defining δ = (2n2 − 2n+ 2)−1 > 0 (the precise value
will be used later) and J = �M−1

n +log2(δ−1)�+1, we observe
that

E

[
‖s− Pgreedy

M (s)‖2
2|N = n

]
≥ E

[
‖s− Plin

2� M−1
n

+log2 Δ−1�+1
(s)‖2

2|N = n
]

≥ E

[
�Δ≥δ‖s− Plin

2� M−1
n

+log2 Δ−1�+1
(s)‖2

2|N = n
]

≥ E
[
�Δ≥δ‖s− Plin

2J (s)‖2
2|N = n

]
= E[�Δ≥δ

∑
j≥J

2j−1∑
k=0

〈s, ψj,k〉2|N = n]

=
∑
j≥J

2j−1∑
k=0

E[�Δ≥δ〈s, ψj,k〉2|N = n]. (55)

Similar to the upper-bound, we consider the jumps of s in
[0, 1] and we denote their (unordered) locations and heights
by τ1, . . . , τn and a1, . . . , an, respectively. With regard to the
convention τ0 = 0, we consider the random variable Δ̃ =
min0≤i<j<n−1 |τi − τj | and consequently, the event

E = {Δ̃ ≥ δ} ∩ {0 ≤ τ1, . . . , τn−1 ≤ 1/2 − δ}.
We observe that condition to E ∩ {N = n}, we have that

Δ = min
(

Δ̃, min
1≤i≤n−1

(τn − τi)
)

≥ min(Δ̃, δ) ≥ δ.

This implies that condition to N = n, we have

�E�[1/2,1](τn) ≤ �Δ≥δ. (56)

On the other hand,

E
[
�Δ≥δ〈s, ψj,k〉2|N = n

]
= E

⎡
⎣�Δ≥δ

(
n∑

i=1

aiψ̃j,k(τi)

)2

|N = n

⎤
⎦

= E

⎡
⎣( n∑

i=1

ai�Δ≥δψ̃j,k(τi)

)2

|N = n

⎤
⎦

(i)
=

n∑
i=1

E

[(
ai�Δ≥δψ̃j,k(τi)

)2

|N = n

]

(ii)
=

n∑
i=1

E[a2
i ]E
[
�Δ≥δψ̃

2
j,k(τi)|N = n

]
,

where we used the independence (condition to N = n)
of jumps τi and heights ai of s in (i) and we used the
independence of ai from N and Δ as well the fact that the
law of ai has zero mean in (ii). By substituting E[a2

i ] = σ2
0

λ
and invoking (56), we obtain

E
[
�Δ≥δ|〈s, ψj,k〉|2|N = n

]
= n

σ2
0

λ
E[�Δ≥δψ̃

2
j,k(τn)|N = n]

≥ n
σ2

0

λ
E[�E�τn∈[1/2,1]ψ̃

2
j,k(τn)|N = n]

= n
σ2

0

λ
P[E|N = n]E[�xn∈[1/2,1]ψ̃

2
j,k(xn)|N = n],

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 11,2022 at 15:19:12 UTC from IEEE Xplore.  Restrictions apply. 



2764 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 4, APRIL 2022

where the latter is deduced from the independence of E and
{1/2 ≤ τn ≤ 1} (condition to N = n). By using Lemma 1
with a = 0 and b = 1/2 − δ (we remind that δ = (2n2 −
2n+2)−1), we can compute the conditional probability of the
event E as

P(E|N = n) =
(

1 − (n− 1)
δ

1/2− δ

)(n−1)

=
(

1 − (n− 1)
(2n2−2n+2)−1

1/2−(2n2−2n+2)−1

)(n−1)

=
(
1 − n−1

)(n−1)
.

Now, using Lemma 1 and the above computation, we have
that

E
[
�Δ≥δ|〈s, ψj,k〉|2|N = n

]
≥ n

σ2
0

λ
P(E|N = n)

∫ 1

1
2

ψ̃2
j,k(x)dx

=
σ2

0n

λ
(1 − n−1)(n−1)‖ψ̃j,k�[1/2,1]‖2

2

(i)
=
σ2

0n

λ
(1 − n−1)(n−1)

�k≥2j−1‖ψ̃j,k‖2
2

(ii)

≥ σ2
0n

λ
e−1

�k≥2j−1‖ψ̃j,k‖2
2,

where (i) simply exploits that ψ̃j,k�[1/2,1] = 0 for
k ≤ 2j−1 − 1 together with ψ̃j,k�[1/2,1] = ψ̃j,k for k ≥ 2j−1

and (ii) uses (1 − n−1)(n−1) ≥ e−1. Going back to (55),
we obtain for any n ≥ 2 that

E[‖s− Pgreedy
M (s)‖2

2|N = n]

≥
∑
j≥J

2j−1∑
k=0

σ2
0n

λ
e−1‖ψ̃j,k‖2

2�k≥2j−1

=
∑
j≥J

σ2
0n

λ
e−1‖ψ̃j,k‖2

22
j−1

(i)
=

σ2
0n

12eλ
2−J

=
σ2

0

12eλ
n2−�M−1

n +log2 δ−1�−1

(ii)

≥ σ2
0

24eλ
n2−

M−1
n δ

(iii)
=

σ2
0

48eλ
n

n2 − n+ 1
2−

M−1
n

(iv)

≥ σ2
0

48eλ
n−12−

M−1
n ,

where (i) uses ‖ψ̃j,k‖2
L2

= 2−2j/12, (ii) simply follows from
�M−1

n + log2 δ
−1� ≤ M−1

n + log2 δ
−1, (iii) uses the value of

δ = (2n2 + 2n − 2)−1, and (iv) that n
n2−n+1 ≥ 1

n , due to
n2 − n+ 1 ≤ n2 for any n ≥ 1. Finally, we take the overall
expectation to deduce that

E[‖s− Pgreedy
M (s)‖2

2] ≥
∞∑

n=1

σ2
0

48eλ
n−12−

M−1
n P(N = n)

≥ σ2
0

48eλ

M∑
n=1

n−12−
M
n P(N = n)

≥ σ2
0

48eλ
M−1

M∑
n=1

2−
M
n P(N = n).

(57)

We note that
M∑

n=1

2−
M
n P(N = n) ≥ 2−M

P(N = 1) = λe−λ2−M . (58)

Moreover, we use (52) to deduce that
∞∑

n=M+1

2−
M
n P(N = n) ≤ P(N ≥M + 1) ≤ λeλ2−M . (59)

Combining the two inequalities with (57) yields

E[‖s− Pgreedy
M (s)‖2

2]

≥ σ2
0

48eλ
M−1

E[2−
M
N ]
∑M

n=1 2−
M
n P(N = n)

E[2−
M
N ]

≥ σ2
0

48eλ
M−1

E[2−
M
N ]

λe−λ2−M

λe−λ2−M + λeλ2−M

= M−1
E[2−

M
N ]

σ2
0

48eλ(1 + e2λ)
,

which yields the desired lower-bound with the constant C1 =
σ2
0

48eλ(1+e2λ) .

APPENDIX F
PROOF OF THEOREM 2

Proof: It is sufficient to prove that the quantity
E[2−

M
N ] has sub-exponential and super-polynomial asymptotic

behavior.
Super-Polynomiality: First note that there exists an integer

number N0 ∈ N such that for every n ≥ N0, we have
P(N = n) ≤ 2−n. We then consider the following decom-
position for any M ≥ N0 + 1

E[2−
M
N ] =

N0−1∑
n=1

P(N = n)2−
M
n

+
M−1∑
n=N0

P(N = n)2−
M
n

+
∞∑

n=M

P(N = n)2−
M
n .

We separately show that each term of the previous decom-
position decays faster than the inverse of any polynomial as
M → ∞.

For the first term, simply due to P(N = n) ≤ 1, we have
that

Mk
N0−1∑
n=1

P(N = n)2−
M
n ≤ (N0 − 1)Mk2−

M
N0 −→ 0,

as M → ∞. Regarding the second term, we use the bound
P(N = n) ≤ 2−n for n ≥ N0 to deduce that

∀n ≥ N0 : P(N = n)2−
M
n ≤ 2−n−M

n ≤ 2−2
√

M ,
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where in the last inequality, we have used x+y ≥ 2
√
xy with

x = n and y = M/n. Hence,

Mk
M−1∑
n=N0

P(N = n)2−
M
n ≤Mk+12−2

√
M → 0,

as M → ∞. Finally for the last term, we use (52) with t = 1 to
obtain that

Mk
∞∑

n=M

P(N = n)2−
M
n ≤Mk

∞∑
n=M−1

P(N = n)

= Mk
P(N ≥M)

≤Mkeλ(e−1)e−M → 0,

as M → ∞.
Sub-Exponentiality: To show the sub-exponential behavior,

we fix α > 0 and for all n0 ≥ 2, we note that

eαM
E[2−

M
N ] ≥ 2log2(e)αM

P(N = n0)2
− M

n0

= P(N = n0)2
(α log2(e)− 1

n0
)M .

Now by fixing n0 to be a sufficiently large integer so that
log2 eα − 1

n0
> 0, we deduce that the right hand side

explodes.
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