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ABSTRACT

Shape segmentation is an active field of research in biomed-
ical imaging. In this context, we present a new parameteri-
zation of a snake that is locally refinable. We introduce the
possibility of locally increasing the approximation power of
the parametric model by inserting basis functions at a specific
location. This is controlled by a user-interface that permits
the refinement of an initial segmentation around an anchor
position selected by a user. Our approach relies on scaling
functions that satisfy the refinement relation and are related
to wavelets. We also derive explicit formulas for the energy
functions associated to our new parameterization. We demon-
strate the accuracy of our snake and its robustness under noisy
conditions on phantom data. We also present segmentation
results on real cell images, which are our main target. The
algorithm is made freely available as a plugin for the open
source platform Icy.

Index Terms— parametric snake, active contour, splines,
segmentation, refinable, local refinement, scaling function.

1. INTRODUCTION

Parametric snakes [1] are widely used for user-interactive
bioimage segmentation [2, 3, 4]. The shapes of biological
structures often exhibit different levels of detail [5, 6]. For
conventional snakes, this is [7] dealt with in a global fashion
by simply increasing the number of control points resulting in
an increase of the degrees of freedom of the model. While this
improves the approximation power [8] of the snake model,
it renders the optimization more challenging and increases
the computation substantially. Moreover, introducing more
degrees of freedom in the part of the curve where they are
not required does not necessarily improve the segmentation
outcome. On the other hand, few parameters allow for faster
optimization [9, 10, 11] but with less accurate approximation.

We propose a new parametric snake that has the ability
to locally increase its approximation power. This allows for
a more efficient allocation of the degrees of freedom of the
snake by concentrating them on segments of higher complex-
ity. For this purpose we exploit the refinability property of
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scaling functions [12]. The primary contributions of this work
are:

1. anovel parameterization of closed curves that are refin-
able locally;

2. a generic formulation of locally refinable snakes within
that framework with the derivation of corresponding
contour and region energies to speed up computations;

3. the demonstration of the benefits of refinability in the
context of semi-interactive segmentation.

2. LOCALLY REFINABLE PARAMETRIC CLOSED
CURVES

In this section we present our parameterization of locally re-
finable curves using refinable basis functions. For the re-
minder of the article, we focus on closed curves because such
models have a wide range of applications in bioimaging, such
as the segmentation of blobish, elliptical, or any other kind
of closed structure [5, 13]. However, the extension to open
curves is straightforward. We first introduce the generic rep-
resentation of closed curves and the refinement relation.

2.1. Generic representation

A 2D planar curve r can be described by a pair of one di-
mensional coordinate functions (z(t),y(t)) where ¢t € R is
a continuous parameter. Each of these functions is parame-
terized by a suitable linear combination of shifted basis func-
tions {¢(- — k) }rez specified by a sequence of control points
{c[k]}kez, such that

r(t) = Y clklp(t — k), te R. (1)

keZ

We focus on closed (i.e. periodic) curves that are character-
ized by an M -periodic sequence of control points. We re-
express (1) as

M-1

r(t) = 2 c[klom(t — k), t e [0, M], 2
k=0

where @) is the M -periodization of the basis function ¢ de-
fined by

pu(t) = Y p(t —kM). )
keZ



2.2. Scaling functions
A valid scaling function ¢ verifies the refinement relation

given by
p(t) = Y hlklp(mt — k)

keZ

“

where m is called the refinement factor and {h[k]}rez are
the coefficients of the filter associated to the refinement re-
lation [14, 15]. Thus, if ¢ is a valid scaling function it can
be expressed as a linear combination of its contracted version
shifted by integers.

2.3. Representation with local refinement

We use basis functions that are valid scaling functions as
given by (4) to parameterize closed curves. The refinement
relation (4) is applied locally, i.e. only w.r.t. one particular
control point ¢[p] associated to the shifted basis function

o(t —p).

Proposition 1. A parametric curve that has been locally re-
fined w.rt. c[p] can be expressed as

r(t) = 2

#

1 lo+N—1

clklom(t=k)+ Y. Elllemar(mt—mp—1),
l=ly

ok
® O

&)
where N is the size of the discrete filter h, whose support is
[lo,lo + N| and c,[k] = hlk]c[p].

Proof: Using (2) we write

M—1
r(t) = > c[klem(t—k) +clplom(t —p). ()
=
By (3) and (4), ¢ (t — p) can be expressed as
pu(t—p) = > ot —p—kM)
keZ
= Z Z h[l]o(mt — mp — mkM —1)
keZ leZ
= > Alllma (mt —mp —1). @)
leZ
Therefore,
clplen(t —p) = c[p] > Al mnr (mt — mp — 1)
leZ
- Z c[plh[l] pmar(mt —mp —1). ®)

I em
By taking into account the size of the filter h, which is equal
to IV, as well as its localization on [lg, o+ N ] we can simplify
the infinite sum in (8) to obtain

lo+N—1

> Glllemn(mt —mp—1). (9)
l=lp

clplem(t —p) =

By combining (9) and (6) we obtain (5). |

The local refinement described by Proposition 1 allows the
part of the curve initially controlled by c[p] to be described
by N new control points {Cp[l]}ie[1,,10+n—1]- We thus in-
crease the approximation power of the curve at this specific
location. This local refinability can be efficiently exploited
for the construction of snakes as described in the next sec-
tion. The local refinement of a parametric curve is illustrated
in Fig. 1, where we have chosen ¢ to be equal to the quadratic
B-spline.
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Fig. 1. Locally refinable curve. A parametric curve repre-
sented with the quadratic B-spline and M = 5 (a) and its
coordinate functions (b). The black dashed lines are the basis
functions, the blue ones correspond to the refinement of the
green one.

3. LOCALLY REFINABLE SNAKE

A snake is a deformable curve that is attracted towards the
boundary of an object of interest [16]. It is guided by defining
and minimizing a corresponding image-energy functional. It
is generally composed by an edge-based energy computed
from gradient information and a region-based energy that is
capable of separating different homogeneous regions [17].
These two energies are combined as

Eimage = OéE’eclge + (1 - a)Eregioru (10)
where « € [0,1] is a trade-off parameter that balances the
contribution of the two energies according to the application.

3.1. Contour energy

We consider a contour energy similar to the one proposed in
[18] since it is independent of the parameterization. The edge-



based energy is given by

Eedge = — %kT(Vf(r) x dr),

r

an

where k = (0,0, 1) is the outward vector orthonormal to the
image plane, V f(x, y) is the within-plane gradient of the im-
age f at location (z,y) on the curve, dr denotes the tangent
vector of the curve in the 3D space formed by the image plane
and its orthogonal dimension and X is the 3D cross product.

Proposition 2. Let r be a locally refinable curve as described
in Proposition 1. Then the edge-based energy term (11) can
be expressed as

M-—1 M
Buge = 3, clb] [ Gr)arte - bt
_ 0
s
lo+N-1 M

12)
where H(t) = d“ggt), G is given by
G(z,y) = J g(7,y)dr, (13)
—

g = —Af, and Af is the Laplacian of the image f.

Proof: Using Green’s theorem, (11) is expressed as the sur-
face integral

Eedge = - J J;Z Af(r)dxdy
M
= fﬁG(r)dy = G(r(t))di—it)dt. (14)
0

Taking the derivative of (5) and combining it with (14), we
obtain (12). |
Equation (13) allows a faster implementation of the edge-
energy (c.f. Section 4).

3.2. Region energy

The region-based energy discriminates an object from its
background by building a shell r) around the snake obtained
by dilating r by a factor /2 with respect to its center of
gravity. The contrast between the average intensity of the
data enclosed by r and the data enclosed by the shell r} is
minimized. This region energy is expressed as

Eregion = ﬁ ( | L F(x)dady - ”Q\Q f<r>dwdy>,

s)
where || is the signed area enclosed by the contour.

G(x(t))Pmar(mt —mp — [)dt

Proposition 3. Ifr is locally refinable in the sense of Propo-
sition 1, then the region-based energy (15) is given by

M-1 M
Bregon =55 (2 33 o] [ Fx0)paste - by

k#p
lo+N—-1 M
+2m 2 c;y [k] F(r(t»(;bmlw (mt —mp — k)dt
k=lo
M-1 M
- 2 S [k]f F(ra(t) g (t — k)dt
k=0 0
k#p
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—m Z pr)\ f F(rx(t)@mm(mt —mp — k)dt)
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(16)
where .
F(z,y) = f f(r,y)dr (17)

The signed area enclosed by r is given by

M
o (t —k)op(t —1)dt

k=0 I=lg
k#p
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(18)
Proof: We rewrite (15) as

Eregion = ﬁ <2Jf f(r)dady — J o f(r;)dxdy)

|Q|< 3€F ) g, %F(m( ))dygt( )dt>

ry
The area can be expressed as Q = { {, dzdy, while Green’s
theorem yields the signed area

| = — %ydx.

r

19)

(20)

Using equation (5) and its derivative and combining with (19)
and (20), we obtain (16) and (18). |

¢y [K]e;. [1] f it — K)Gmng (it — mp — 1)t



4. IMPLEMENTATION

We implemented the proposed framework as a user-friendly
open source plugin available for the bioimaging platform Icy
[19]. The o parameter in (10) and the refinement factor m can
be adjusted by the user. We minimize E;;, 4 using a Powell-
like line search method where we explicitly use equations (12)
and (16) to analytically compute the gradient of the energy
w.r.t. the control points in order to accelerate the optimiza-
tion process. To further speed up the computations, the im-
ages described by (13) and (17) are precomputed and stored
in look-up tables. The plugin is freely available for Windows
/Linux / Mac at http://bigwww.epfl.ch/algorithms.html (after
acceptance of the publication).

5. EXPERIMENTS AND VALIDATION

(a1) (a2) (as) (b)

(a) (c)

Fig. 2. Robustness w.r.t. noise of the locally refinable snake.
(a) Comparison for different SNR between two quadratic B-
spline snakes with M = 4; locally refinable (top row) and
traditional snake (bottom row). (a;) SNR= —13.40dB. (a2)
SNR= —16.16dB. (a3g) SNR= —17.35dB. (b) Initialization
for both snakes. (c) Close-up of a boundary region between
the test cell and its background, SNR= —17.35dB.

To show the accuracy and the rosbustness of our proposed
method, we performed experiments on both phantom and real
data. For this purpose, we used quadratic B-splines as scaling
functions whose corresponding refinement filter is defined by
its z-transform as H(z) = +(1+27")3. The refinement factor
corresponds to m = 2.

5.1. Phantom data

A test image simulating fluorescence microscopy showing a
cell was created. The image was then corrupted by different
levels of additive Gaussian white noise. For each image, we
segmented the structure of interest using both our locally re-
finable and a traditional non-refinable parametric snake [17]
using the same initialization and M = 4 control points. A

first optimization of the snake is performed without local re-
finement. Then, the user clicks on a desired control point and
the corresponding basis function is refined. The optimization
is launched again. SNRs corresponding to the noise level and
Jaccard indices at both optimization steps are shown in Table
1 and illustrated in Fig. 2. Both Table 1 and Fig. 2 show the
improved accuracy induced by the local refinement. It also
illustrates that the scheme is robust to noise.

Table 1. Jaccard indices for segmentation of (noisy) data.

SNR [dB]  with local refinement  without local refinement
744 0.95 0.79 (fail)
—10.95 0.95 0.73 (fail)
—13.40 0.95 0.79 (fail)
—15.07 0.94 0.81 (fail)
—16.16 0.94 0.83 (fail)
—16.88 0.92 0.84 (fail)
—17.35 0.91 0.78 (fail)

5.2. Real data

We have applied our snake to real fluorescence microscopy
images and obtained promising results. Fig. 3 shows the seg-
mentation of a sickle cell obtained with a locally refinable
parametric snake on such an image.

Fig. 3. Segmentation of a sickle cell on a fluorescence mi-
croscopy image using the locally refinable parametric snake.

6. CONCLUSIONS

We have presented a new and complete formulation of a lo-
cally refinable parametric snake for image segmentation. We
provide explicit expressions for the refined parametric curve
as well as the corresponding energy function. Our method is
generic and can be used with any valid scaling function. We
have demonstrated its ability of improving segmentation re-
sults as well as its robustness under noisy conditions. The
corresponding software is available as an open source and
user-interactive plugin.
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