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An Inner-Product Calculus for Periodic
Functions and Curves

Anaïs Badoual, Daniel Schmitter, and Michael Unser

Abstract—Our motivation is the design of efficient algorithms to
process closed curves represented by basis functions or wavelets.
To that end, we introduce an inner-product calculus to evaluate
correlations and L2 distances between such curves. In particular,
we present formulas for the direct and exact evaluation of correla-
tion matrices in the case of closed (i.e., periodic) parametric curves
and periodic signals. We give simplifications for practical cases
that involve B-splines. To illustrate this approach, we also pro-
pose a least-squares approximation scheme that is able to resample
curves while minimizing aliasing artifacts. Another application is
the exact calculation of the enclosed area.

Index Terms—Area, basis functions, compact support,
correlation, inner product, splines.

I. INTRODUCTION

I T IS common in signal processing to represent continuous-
domain signals using basis functions. This approach is

prevalent in classical (Shannon-) sampling theory [1]–[3],
approximation theory [4], [5], and wavelet theory [6]–[9]. It is
also at the heart of (generalized) interpolation [10]. It is char-
acterized by a signal f being represented by a weighted sum of
integer-shifted basis functions as

f(t) =
∑
k∈Z

c[k]ϕ

(
t

T
− k

)
(1)

where T is the sampling step and {c[k]}k∈Z a sequence of
weights that depend on, but are not necessarily equal to, the
samples of f . Here, ϕ is a (real-valued) generator such as the
sinc function or a B-spline [11]. For practical reasons, ϕ is often
chosen to be of compact support. In classical signal process-
ing, f is required to be square integrable in Lebesgue’s sense,
which implies that f lives in the Hilbert space L2(R). The basis
{ϕ( ·

T − k)}k∈Z generated by the integer shifts of the genera-
tor is L2 stable if it defines a Riesz basis: there must exist two
positive constants 0 < A,B < ∞ such that, for all c ∈ �2,

A‖c‖2�2 ≤ 1

T

∥∥∥∥∥∑
k∈Z

c[k]ϕ
( ·
T

− k
)∥∥∥∥∥

2

L2

≤ B‖c‖2�2 .

The second fundamental requirement when using the type of
expansion given by (1) is that a rescaled version of the model
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ought to be able to approximate any function as closely as
desired as the sampling step T tends to zero. This is equivalent
to the partition-of-unity condition [11]∑

k∈Z

ϕ

(
t

T
− k

)
= 1, ∀t ∈ R. (2)

A. Periodic Signals and Closed Parametric Curves

For periodic signals, computations can usually be simplified
by focusing on a single period [12]–[14]. Without loss of gener-
ality, the period can always be normalized to one, and hence, we
only consider t ∈ [0, 1]. The representation of f by (1) implies
that, if the signal is one-periodic, the sequence c is of period M
such as T = 1

M , where M is a positive integer. In this case, (1)
is expressed in terms of the normalized and M -periodized basis
functions ϕper as

f(t) =

M−1∑
k=0

+∞∑
n=−∞

c[k +Mn]ϕ(Mt−Mn− k)

=
M−1∑
k=0

c[k]
+∞∑

n=−∞
ϕ(Mt−Mn− k)

︸ ︷︷ ︸
ϕper(Mt−k)

(3)

where t ∈ [0, 1]. Equation (3) can also be used to represent one-
periodic (i.e., closed) parametric curves in 2-D as

r(t) =

(
fx(t)
fy(t)

)
=

M−1∑
k=0

c[k]ϕper(Mt− k) (4)

where the {c[k] = (cx[k], cy[k])}k∈Z are now called the control
points of the curve. An important consideration for selecting the
basis functions in (4) is that the parametric form of the model
must be preserved through rigid-body transformations. This is
guaranteed if the model (4) is affine invariant, which means that

T r(t) + b =

M−1∑
k=0

(T c[k] + b)ϕper(Mt− k) (5)

where T is a (2× 2) matrix and b is a 2-D vector. The
constraint (5) is equivalent to the partition-of-unity condition
(2) in [15].

Parametric curves that are represented by compactly sup-
ported basis functions are often used to construct active-contour
models [16], [17] and to segment bioimages [18]–[20]. More
generally, the control-point-based nature of (4) makes this
model particularly convenient in applications where user
interaction is required [21], [22]. The reason is that the simple
adjustment of one control point is enough to adjust the curve
locally.
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Definition: To each curve ri is assigned the couple (ϕi,Mi),
where ϕi is the basis function and Mi is the associated number
of control points. We express the corresponding Mi-periodized
basis function by ϕi,per(t) =

∑
n∈Z

ϕi(t− nMi). We define
the vector ϕi, of size Mi, that contains the basis {ϕi,per(Mi ·
−k)}k∈Z, as

ϕi(t) =

⎛
⎜⎝ ϕi,per(Mit)

...
ϕi,per(Mit−Mi + 1)

⎞
⎟⎠ .

The condensed notation

ri(t) = CT
i ϕi(t) (6)

is equivalent to (4). There, Ci is the (Mi × 2) matrix defined as

Ci =

⎛
⎜⎝ cxi

[0] cyi
[0]

...
...

cxi
[Mi − 1] cyi

[Mi − 1]

⎞
⎟⎠ . (7)

In the case of 1-D signals, the matrix Ci collapses to a vector.

B. Inner Products

The exact computation of inner products is a frequent oper-
ation in signal and image processing such as for the evaluation
of L2 distances, orthogonal projections, or similarity measure-
ments. Thus, our interest here is in the efficient calculation of
the L2 distance between two curves that may be parameter-
ized with a different number of control points [23], [24]. We
express the L2 inner product between the two closed curves
r1, r2 ∈ L2([0, 1]) as

〈r1, r2〉L2([0,1]) =

∫ 1

0

rT1 (t)r2(t)dt

= tr

⎛
⎜⎜⎜⎝CT

1

( ∫ 1

0

ϕ1(t)⊗ϕ2(t)dt︸ ︷︷ ︸
A12

)
C2

⎞
⎟⎟⎟⎠

(8)

where A12 is the correlation matrix of size (M1 ×M2) spec-
ified as [A12]k,l = 〈[ϕ1]k , [ϕ2]l〉L2([0,1]) and ⊗ denotes the
tensor product. To evaluate (8), the entries of the correlation
matrix require the evaluation of some integrals. We present in
Section II a calculus that facilitates these computations in the
continuous domain.

II. INNER-PRODUCT CALCULUS

A. General Calculation

We start by providing a general formula for precomputing the
matrix A12 and then discuss a number of situations that can be
resolved analytically.

Proposition 1: Let ϕ1 and ϕ2 be two compactly sup-
ported generators with supp{ϕ1} = [a1, b1], supp{ϕ2} =
[a2, b2], M1 ≥ supp{ϕ1}, and M2 ≥ supp{ϕ2}. The entries
of the (M1 ×M2) cross-correlation matrix A12 =

∫ 1

0
ϕ1(t)⊗

ϕ2(t)dt are given by

[A12]k,l =
1

M1

m2∑
m=m1

a12(−τk,l,m)

where

a12(t) =

∫
R

ϕ1(u)ϕ2

(
M2

M1
(u− t)

)
du

=

(
ϕ1 ∗ ϕ2

(
−M2

M1
·
))

(t),

τk,l,m = M1(m+ k
M1

− l
M2

), m1 = �min(p1, p2))
, m2 =

�max(1 + p1, 1 + p2)�, p1 = ( 1
M2

(a2 + l)− 1
M1

(a1 + k)),
and p2 = ( 1

M2
(a2 + l)− 1

M1
(b1 + k)). There, �·� and �·


denote the floor and the ceil function, respectively.

The proof of Proposition 1 is given in Appendix A. In the case
where the generators are even or odd functions with respect
to the same axis, Proposition 1 is simplified as specified by
Corollary 1.

Corollary 1: Let ϕ1 and ϕ2 be two even or odd functions
with respect to the same axis of symmetry.

a) The correlation between the one-periodic functions [ϕ1]k
and [ϕ2]l is

[A12]k,l =
1

M1
(a12(−τk,l)

+a12(M1 − τk,l) + a12(−M1 − τk,l))

where τk,l = M1(
k

M1
− l

M2
).

b) If ϕ1 and ϕ2 have the same parity, then the correlation is
expressed as

[A12]k,l =
1

M1
(a12(|τk,l|) + a12(|τk,l| −M1))

with τk,l = M1(
k

M1
− l

M2
).

Observe that, if M1 = M2, further simplifications of
Proposition 1 are obtained. For instance, the case when
ϕ1 = ϕ2 or ϕ2 = ϕ̇1 = dϕ1

dt implies that a12 = ȧ11. Also note
that, due to the periodicity of the generators and to M1 = M2,
the matrix A12 is circulant and thus entirely specified by
its M1 entries {[A12]0,l}l∈[0...M1−1] [25]. This matrix is
diagonalizable, and hence, an explicit expression for its inverse
is easy to obtain.

B. Specific Cases of a12 in Practice

B-splines are basis functions that are widely used in signal
processing and have interesting mathematical properties that
can be exploited to simplify the proposed inner-product calcu-
lus. In this section, we illustrate how the expression of a12 is
simplified for specific cases that frequently appear in practice
and that involve B-splines.

1) B-Splines Revisited: (Exponential) B-splines are popu-
lar not only in sampling and approximation theory but also to
represent parametric curves and surfaces. They are compactly
supported and have optimal approximation and reproduction
properties [26]. An exponential B-spline of order n is fully
characterized by its unordered list of (complex valued) poles
α = (α1, α2, . . . , αn). It is supported in [0, n] and its causal
form is characterized in the frequency domain as β̂α(ω) =∏n

p=1
1−eαp−jω

jω−αp
. If all the poles are equal to zero (i.e., α = 0n),

we obtain the classical polynomial B-splines of degree (n− 1).
A function ϕ ∝ βα that satisfies the partition-of-unity condi-
tion can only be constructed if the exponential B-spline βα

contains at least one vanishing pole (i.e., if 0 is an element
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of α). The notation α1 ∪α2 describes the union of two lists of
poles α1 and α2. The notation α \ {αp} describes a list from
which the element αp has been excluded.

2) Correlation Between Polynomial B-Splines: The
function a12 for the case of polynomial B-splines of different
orders is determined according to Proposition 2.

Proposition 2: Let ϕ1 = β0n
and ϕ2 = β0m

. Then

a12(t) =

(
M2

M1

)m−1 n∑
l=0

m∑
k=0

(
n

l

)(
m

k

)
(−1)l+k+m

× ςn+m−1

(
t+

kM1

M2
− l

)
where ςn is the polynomial simple element of degree n defined
as ςn(t) = tnsgn(t)

2(n!) for n ∈ N.
The proof is given in Appendix B.

3) Correlation Between Exponential B-Splines: In the
case where ϕ1 = βα1

and ϕ2 = βα2
are two exponential

B-splines of order n1 and n2, respectively, and M1 = M2, we
obtain

a12(t) =

(
n2∏
n=1

eα
∗
2,n

)
βα1∪(−α∗

2)
(t+ n2) (9)

where α∗ is the complex conjugate of α [26]. Equation (9) cor-
responds to the cross-correlation of two exponential B-splines
which yields an exponential B-spline of augmented order.
Proposition 3 provides a simplified expression of (9) in the case
where ϕ1 = βα and ϕ2 = ϕ̇1.

Proposition 3: Let ϕ1 = βα be an exponential B-spline of
order n that contains at least one vanishing pole (we suppose
αn = 0), and ϕ2 = β̇α. Then

a12(t) = −
(

n−1∏
l=1

eα
∗
l

)
Δβα∪(−(α∗\{0}))(t+ n− 1)

where Δf(t) = (f(t)− f(t− 1)) denotes the finite difference
of f .
The proof is given in Appendix C. Note that, the same kind of
formula also applies for fractional B-splines [27].

III. APPLICATIONS

A. Resampling of a Spline Curve

The general scheme to reduce the size of a polygonal or
spline curve r1 is to decrease its number M1 of control points
[28]. The standard method is to simply resample the curve
[11]. However, this does not take into account details local-
ized between two samples, which alters the accuracy of the
approximation while eventually introducing aliasing artifacts
[29]. We propose a new method which consists in computing
the L2 approximation r2 of the curve r1, with M1 > M2. This
is equivalent to compute argmin

C2

‖r1 − r2‖2L2
. It is not diffi-

cult to show that the general solution, in the context of our
framework, is given by

C2 = A−1
22 A21C1 (10)

where C1 and C2 are the coefficient matrices of size (M1 × 2)
and (M2 × 2), respectively. The entries of the matrices A21 and
A22, of size (M2 ×M1) and (M2 ×M2), respectively, can be
evaluated using Proposition 1 and Proposition 2.

Fig. 1. Resampling of the outline (black curve) of the map of Switzerland.
Solid blue curve and dashed red curve: resampled versions obtained by the L2

approximation and sampling methods, respectively, with M2 = 40 samples.
Green curve: reduced version of the map obtain with the L2 approximation.

Fig. 2. Comparison of the approximation error for the L2 approximation
method (blue diamonds) and the sampling method (red squares).

To experimentally compare resampling and approximation,
we propose to reduce the outline r1 of the map of Switzerland
defined by M1 = 930 control points interpolated with the linear
spline ϕ1 = β(0,0) (Fig. 1, black curve). We resample r1 with
both the sampling and the L2 approximation methods for dif-
ferent values of M2 < M1 control points and in the basis of the
quadratic spline ϕ2 = β(0,0,0). We illustrate the case M2 = 40
in Fig. 1. We observe that the resampled curves act as smoothed
versions of r1 with less details and increased regularity. We
compute their approximation error for each value of M2. In
Fig. 2, it is seen that the best approximation of the reduced ver-
sion of the map, without aliasing artifacts, is obtained with our
proposed method (Fig. 1, green curve).

B. Area Enclosed by a Parametric Curve

In this section, we consider a non-intersecting curve r1 and
its derivative ṙ1 = M1C

T
1 ϕ̇1. The factor M1 is due to the nor-

malization in (4). The computation of the area enclosed by a
parametric curve usually involves the evaluation of a surface
integral. We propose instead to use Green’s theorem [15] to
express this surface integral as a contour integral, which results
in a signed area expressed as

I =

∮
r1

fy1
dfx1

= 〈fy1
, ḟx1

〉L2([0,1]) = M1c
T
y1
A12cx1

(11)

where ϕ2 = ϕ̇1, M2 = M1, and cx1
and cy1

are the first and
second columns of the matrix (7), respectively. The sign of I
depends on the direction in which the curve is traversed.

In the case of centered (exponential) B-splines, (11) is easily
computed. For ϕ1 = βα, we evaluate the entries of the matrix
A12 using Corollary 1a) and Proposition 3. We obtain

[A12]k,l =
1

M1

1∑
n=−1

Δcβα∪(α\{0})(k − l + nM1)
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Fig. 3. Blue dots: centered linear B-spline; red dashes: centered quadratic B-
spline; green line: Δcβ(0,0,0); pink circles: Δcβ(0,0,0)(k) for k = −1, 0, 1.

where Δcf(t) = (f(t+ 1
2 )− f(t− 1

2 )) denotes the centered
finite difference of f . As the matrix is circulant, we only
compute these values for k = 0 and l ∈ [0 . . .M1 − 1]. For
instance, if the parametric curve (6) is constructed with the cen-
tered linear B-spline ϕ1 = β(0,0) (Fig. 3, dotted blue curve), we
have Δcβα∪(α\{0}) = Δcβ(0,0,0) (Fig. 3, green curve), where
β(0,0,0) is the centered quadratic B-spline (Fig. 3, dashed red
curve). Then, each row of the correlation matrix is expressed as
a periodic shift of the centered finite difference

[
1
2 0 − 1

2

]
.

IV. CONCLUSION

The computation of inner products between periodized basis
functions requires the evaluation of a correlation matrix A12.
This matrix frequently appears in periodic settings in classical
L2-based signal processing as well as in image processing when
dealing with closed parametric curves. We have presented exact
formulas to evaluate its entries and gave simplified expressions
for particular cases. As the correlation matrix itself does not
depend on the weights (or control points) that specify the sig-
nal (or parametric curve), its values can be precomputed and
stored in lookup tables for a fast evaluation of L2 distances.
We also proposed an L2 approximation method to resample
a curve, which consists in describing the curve in a different
basis using less control points. These new points are found
by a least-squares minimization: the general solution requires
the evaluation of two correlation matrices that can be precom-
puted using our proposed formulas. We compared our approach
to the classical uniform resampling method and showed that
the best approximation was obtained with our method. We
also illustrated the use of the proposed formulas to evaluate
the area enclosed by a parametric curve. Our inner-product
calculus allows for a fast and exact evaluation of correlation
integrals which frequently appear in practice and are often only
approximately computed up to date.

APPENDIX

A. Proof of Proposition 1∫ 1

0

ϕ1,per(M1t− k)ϕ2,per(M2t− l)dt

=

∫ 1− l
M2

− l
M2

ϕ1,per

(
M1

(
t′ +

l

M2

)
− k

)
ϕ2,per(M2t

′)dt′

=

∫ 1+
a2
M2

a2
M2

ϕ1,per

(
M1

(
t+

l

M2

)
− k

)
ϕ2(M2t)dt

=

∫ 1+
a2
M2

a2
M2

+∞∑
m=−∞

ϕ1

⎛
⎜⎜⎜⎝M1t− M1

(
m+

k

M1
− l

M2

)
︸ ︷︷ ︸

τk,l,m

⎞
⎟⎟⎟⎠ϕ2(M2t)dt.

(12)

We set m1 = �min(p1, p2)
, m2 = 1 + �max(p1, p2)�,
p1 = ( 1

M2
(a2 + l)− 1

M1
(a1 + k)), and p2 = ( 1

M2
(a2 + l)−

1
M1

(b1 + k)). Now, (12) is simplified as
m2∑

m=m1

∫ 1+
a2
M2

a2
M2

ϕ1(M1t− τk,l,m)ϕ2(M2t)dt

=
1

M1

m2∑
m=m1

∫
R

ϕ1(t− τk,l,m)ϕ2

(
M2

M1
t

)
dt

=
1

M1

m2∑
m=m1

∫
R

ϕ1(t)ϕ2

(
M2

M1
(t+ τk,l,m)

)
dt

=
1

M1

m2∑
m=m1

a12(−τk,l,m)

where a12(t) = (ϕ1 ∗ ϕ2(−M2

M1
·))(t) and we have used the

fact that ϕ2(±M2

2 −M2n) = 0 if |n| ≥ supp{ϕ2}+M2

2M2
and that

ϕ1(±M1

2 −M1p) = 0 if |p| ≥ supp{ϕ1}+M1

2M1
. �

B. Proof of Proposition 2

We define by Δn
b the nth-order causal finite-difference opera-

tor with b �= 0, defined as Δn
b f(t) =

∑n
k=0

(
n
k

)
(−1)kf(t− k

b ).
The Fourier transform F of the causal polynomial B-spline β0n

is given by

F{β0n
(t)}(ω) = β̂0n

(ω) =

(
1− e−jω

jω

)n

= Δ̂n
1 (ω)F{ςn−1(t)}(ω)

where F{ςn(t)}(ω) = 1
(jω)n+1 . Let ϕ1 = β0n

and ϕ2 = β0m
.

We compute

a12(t) =

(
β0n ∗ β0m

(
−M2

M1
·
))

(t)

= F−1

{
β̂0n(ω)

M1

M2
β̂0m

(
−M1

M2
ω

)}
(t)

= F−1

⎧⎨
⎩
(
1− e−jω

jω

)n
M1

M2

⎛
⎝1− e

j
M1
M2

ω

−jM1
M2

ω

⎞
⎠m⎫⎬

⎭ (t)

= F−1

⎧⎨
⎩(−1)m

(
M2

M1

)m−1
(1− e−jω)n(1− e

j
M1
M2

ω
)m

(jω)n+m

⎫⎬
⎭ (t)

= (−1)m
(
M2

M1

)m−1

F−1

{
Δ̂n

1 (ω)Δ̂
m

−M2
M1

(ω)ς̂n+m−1(ω)

}
(t)

=

(
M2

M1

)m−1 n∑
l=0

m∑
k=0

(
n

l

)(
m

k

)
(−1)l+k+m

× ςn+m−1

(
t+

kM1

M2
− l

)
. �

C. Proof of Proposition 3

The derivative of an exponential B-spline that contains a
vanishing pole is given by β̇α∪{0} = Δβα. Let ϕ1 = βα and
ϕ2 = ϕ̇1. Using (9), we compute

a12(t) = (βα ∗ β̇α(−·))(t)
= −(βα ∗Δβα\{0}(−·))(t)

= −
(

n−1∏
l=1

eα
∗
l

)
Δβα∪(−(α∗\{0}))(t+ n− 1). �
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