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Multiresolution Subdivision Snakes
Anaïs Badoual, Daniel Schmitter, Virginie Uhlmann, and Michael Unser

Abstract— We present a new family of snakes that satisfy the
property of multiresolution by exploiting subdivision schemes. We
show in a generic way how to construct such snakes based on
an admissible subdivision mask. We derive the necessary energy
formulations and provide the formulas for their efficient compu-
tation. Depending on the choice of the mask, such models have
the ability to reproduce trigonometric or polynomial curves. They
can also be designed to be interpolating, a property that is useful
in user-interactive applications. We provide explicit examples of
subdivision snakes and illustrate their use for the segmentation of
bioimages. We show that they are robust in the presence of noise
and provide a multiresolution algorithm to enlarge their basin
of attraction, which decreases their dependence on initialization
compared to singleresolution snakes. We show the advantages of
the proposed model in terms of computation and segmentation
of structures with different sizes.

Index Terms— Multiresolution, subdivision, snake, minimum-
support, Deslauriers-Dubuc, segmentation, interpolation.

I. INTRODUCTION

ACTIVE contours, also called “snakes”, are popular mod-
els for the segmentation of biomedical images [1]–[6].

They consist in an initial shape that evolves towards the
boundary of the object of interest. The evolution is guided
by the choice of an appropriate energy term to be minimized.
Different snake models have been proposed [7], [8]. They can
be categorized by the way their shape is described: either
discretely or in the continuous domain. In particular, there
are point-snakes and parametric snakes. Point-snakes have
a simple discrete representation. The shape is described by
a set of ordered points [9]. However, they rely on a large
number of parameters (i.e., the snake points), which requires
an internal regularization to enforce smooth boundaries and
makes the optimization more challenging. Parametric snakes
have a continuous representation by using basis functions.
They require fewer parameters (i.e., control points), which
results in a faster optimization and better robustness. They are
usually built in a way that ensures continuity and smoothness.
However, the shape that the snake can reproduce is limited by
its parametrization. We propose in this paper a geometric rep-
resentation that combines the advantages of point-snakes and
parametric snakes. In our representation, the curve is driven by
a discrete set of a few master points, called control points, that
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are the parameters of the model. Then, slave points describing
the curve are generated by specific iterative procedures. The
property that makes it possible is called subdivision [10]–[13].
It is tightly linked to the theory of wavelets [14] and allows
one to describe a contour or a surface by an initial discrete
and finite set of control points which, by the iterative appli-
cation of refinement rules, becomes continuous in the limit.
The discrete nature of the representation is convenient in
practical applications. At the same time, it implicitly yields a
continuously defined model whose smoothness depends on the
particular choice of the subdivision mask. The main benefits
of subdivision schemes are their simplicity of implementation,
the possibility to control their order of approximation, and
their multiresolution property, which allows for the contour of
a shape to be represented at varying resolutions.

The use of subdivisions for the construction of segmentation
models was pioneered by [15] and [16] for Doo-Sabin
surfaces [17] and the DLG-scheme [18], respectively. In the
first case, left ventricles are modeled whereas, in the second
case, they improved editing semantics of traditional snakes.
In this paper, we propose a general approach that remains valid
for any subdivision scheme as we derive the construction of
a 2D subdivision snake in a generic way. The primary contri-
butions of this work are: 1) a new geometrical representation
based on subdivision. A crucial aspect is the choice of the
subdivision mask that determines important properties of the
model such as its approximation properties, the capability of
reproducing circular, elliptical, or polynomial shapes [19], as
well as the possibility of being interpolatory [20], [21] or not;
2) the derivation of associated energy functions such as region-
and edge-based terms; 3) the presentation of an integrated
strategy where the snake is optimized in a coarse-to-fine
fashion. This multiscale approach is algorithmic and inherently
recursive: We increase the number of points describing the
curve as the algorithm progresses to the solution; at each step,
the scale of the image feature (on which the optimization is
performed) is matched to the density of the point cloud. This
speeds up the computation and increases the robustness.

We give several examples of explicit constructions of
subdivision snakes. We illustrate their use on real images
as well as on test data simulating real biological conditions.
We compare our proposed model to existing parametric snakes
and measure its robustness and accuracy w.r.t. noise and
initialization. Specifically, we show that the proposed coarse-
to-fine approach allows the optimizer to 1) have a larger
basin of attraction which makes it robust to initial conditions;
2) escape some local optima; 3) be efficient by progressively
increasing the snake resolution; 4) delineate structures of
different sizes contained within an image without having to
adapt the initialization.
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A. Organization of the Article

In Section II, we introduce and describe the theory of
subdivision that is relevant to the construction of curves.
In Section III, we fully specify the construction of generic
subdivision snakes. We also describe the proposed multireso-
lution algorithm for the optimization. In Section IV, we present
several types of multiresolution snakes where the subdivision
masks possess various properties such as being interpolatory,
having different sizes of support, and reproducing polynomi-
als. In Section V, we show how subdivision schemes can be
used to reproduce trigonometric functions for the construction
of elliptic and circular curves. In Section VI, we perform an
extensive validation of subdivision snakes based on test data
where the ground truth is known as well as on real biological
data. Finally, in Section VII, we discuss the choice of the
subdivision mask according to the application and we provide
a method to choose the parameters of the multiresolution
algorithm.

II. CLOSED SUBDIVISION CURVES

A. Notations

We represent by p[·] a discrete sequence of points p[m] =
(p1[m], p2[m]), indexed by m ∈ Z, where p1 and p2
are the corresponding coordinates. We write p(k)[·] =
(p1(k)[·], p2(k)[·]) to describe a (2k N0)-periodic sequence,
k ≥ 0, with the property that p(k)[m + n2k N0] = p(k)[m],
∀n ∈ Z. The discrete convolution of p(k)[·] with a scalar mask
h[·] is defined as

(h ∗ p(k))[m] =
+∞∑

n=−∞
h[m − n]p(k)[n].

B. Subdivision Schemes

A subdivision scheme generates a continuously defined
function as the limit of an iterative algorithm that is applied
to an initial set of N0 control points. A refinement rule is
applied repeatedly k times to double the number of points at
each iteration, ultimately yielding a set of 2k N0 points. Note
that, at each iteration, the new set of points does not necessary
contain the previous ones. The subdivision scheme is said to be
convergent when the set of points converges to the continuous
curve r = (r1, r2) with r1, r2 ∈ C0 as k → ∞.

A closed curve at resolution k is represented by a (2k N0)-
periodized coordinate sequence p(k)[·]. The refinement rule
from (k − 1) to k is defined by

p(k)[m] = h ∗ p(k−1)↑2
[m], (1)

where h is the subdivision mask of the subdivision scheme [22]
and ↑2 denotes an upsampling by a factor of 2, given by

p(k)↑2
[m] =

{
p(k)[n], m = 2n

0, otherwise.

In practice, the mask h has a finite number of non-zero
elements so that the infinite sum in (1) is often reduced to
a finite one. Applying (1) iteratively, we can express the
refinement rule as a function of the initial set of control

Fig. 1. Flowchart of a subdivision scheme. The periodic sequence p(k),
associated to the subdivision points at iteration k, converges to the continuous
curve r; h is the subdivision mask and the sequence h0→k , defined by (3),
allows one to obtain p(k) directly from the initial set of control points p(0).

points p(0). The subdivision points at the kth iteration (k ≥ 1)
are thereby described by

p(k) = h0→k ∗ p(0)↑
2k

, (2)

where

h0→k = h↑2k−1 ∗ h↑2k−2 ∗ · · · ∗ h↑2 ∗ h. (3)

The derivation of (2) is given in Appendix A. Note that
each set of points p(k) is encoded with the N0 control points
{p(0)[m]}m∈[0...N0−1]. The subdivision scheme is illustrated in
Figures 1 and 2.

In the following, the term control points designates the N0
initial points {p(0)[m]}m∈[0...N0−1] and the term subdivision
points describes the 2k N0 points {p(k)[m]}m∈[0...2k N0−1] at the
kth iteration (k ≥ 1).

C. Convergent Subdivision Schemes

Let h be a subdivision mask with z-transform1 H (z) =∑
n∈Z

h[n]zn . A necessary condition for the corresponding
subdivision scheme to be convergent is that

∑
n∈Z

h[2n] =∑
n∈Z

h[2n + 1] = 1 [23]. The subdivision scheme thus
reproduces constants and H (z) = (1 + z)B(z), where B(z) is
a Laurent polynomial and B(1) = 1 [24].

For any convergent subdivision scheme, the points of the
sequence p(k), as k → ∞, sample the limit curve r, in the
sense that [24]–[26]

r(t)
∣∣
t= m

2k
= p(k)[m]. (4)

When the coordinates function of the curve satisfy r1, r2 ∈ C1,
the derivative ṙ = dr

dt is also sampled by

ṙ(t)
∣∣
t= m

2k
= 2k(p(k)[m + 1] − p(k)[m]) (5)

in the limit case k → ∞ [25], [27]. The derivation of (5) is
given in Appendix B. A necessary and sufficient condition for
a subdivision scheme to converge uniformly to a continuous
limit function is [23], [27]

⎧
⎪⎪⎨

⎪⎪⎩

H (1) = 2

H (−1) = 0

max
m

|h0→k[m + 1] − h0→k−1[m]| −→
k→+∞ 0.

In practice, six iterations are enough to have satisfactory
convergence (see Figure 2).

1This is the conventional definition of the z-transform used in subdivision
theory.
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Fig. 2. Illustration of a non-interpolating subdivision scheme. (a) Control points. Dots in (b)-(e): Subdivision points of the first four iterations. As the
points become denser with each iteration, they converge to the continuous curve r (dashed black line), which is still encoded by the five control points
(orange crosses).

Fig. 3. Illustration of an interpolating subdivision scheme. We show the control points (a) and the first four sets of subdivision points (dots in (b)-(e)). They
interpolate the limit curve r (dashed black line), which is still encoded by the five control points (orange crosses).

D. Interpolating Subdivision Schemes

A subdivision scheme is said to be interpolating if
h[2m] = δ[m], where δ denotes the Kronecker delta. It means
that, at each step k, the subdivision points interpolate the limit
curve r and {p(k−1)[m]}m∈Z ⊂ {p(k)[m]}m∈Z. We illustrate an
interpolating subdivision scheme in Figure 3.

III. SUBDIVISION SNAKES

Snakes are active-contour models that are optimized through
the minimization of an energy term. The snake is itera-
tively updated until the minimum of the energy functional
is obtained. In this section, we explain the construction of
subdivision snakes and propose an integrated multiresolution
optimizer.

A. Geometrical Representation of the Snake

In order to construct a snake, a suitable model to represent
shapes needs to be established. Geometric requirements need
to be taken into account such as shape-reproduction properties
or smoothness constraints. The geometric reproduction proper-
ties of a model determine which configurations the snake can
adopt, such as polynomial or elliptic. We implicitly describe
the contour of the snake by the continuous limit curve r
of the convergent subdivision scheme. This implies that the
properties of the snake are determined by the choice of the
mask h. An important requirement for the construction of the
snake is that the representation model (4) be affine invariant.
This property insures that a curve is described independently
from its location and orientation.

Definition 1: A subdivision scheme is said to be affine
invariant if, for any (2 × 2) matrix A and translation vector

b ∈ R
2, the following relation holds:

lim
k→∞ h0→k ∗ (

Ap(0) + b
)
↑2k

= A( lim
k→∞ h0→k ∗ p(0)) + b

= Ar + b.
Proposition 1: Every convergent subdivision scheme is

affine invariant.
The derivation of Proposition 1 is given in Appendix C.

B. Snake Energies and Optimization

Another important aspect in the construction of a snake is
the formulation of a suitable energy functional. The choice
of this energy term is crucial because it determines the
quality of the outcome. We use an image energy, which is
purely data driven. It involves a convex combination of an
edge-based term using gradient information to detect contours
[1], [28], [29] and a region-based term which uses
statistical information to distinguish different homogeneous
regions [30], [31]. We express the total snake energy as

Esnake( f, p(k)) = bEedge( f, p(k)) + (1 − b)Eregion( f, p(k)),

where b ∈ [0, 1], is a tradeoff parameter that balances
the contribution of the two energies, f is the image to be
segmented, and p(k) describes the contour of the snake.
The optimization is computed as a function of the control
points p(0) and the optimum is obtained as

p(0)opt = arg min
p(0)

Esnake( f, p(k)).

We propose

Eedge( f, p(k)) = − 1

2k

2k N0−1∑

m=0

∇ f (p(k)[m]) · nd(p(k)[m]) (6)
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as the edge-based energy, where p(k)[m] is the location
of the m-th subdivision point and where ∇ f (p(k)[m]) and
nd(p(k)[m]) are the within-plane gradient of the image f and
the approximation of the normal vector, respectively. The

vector nd =
(

nd,1
nd,2

)
is defined by

nd(p(k)[m]) =
(

2k(p2(k)[m + 1] − p2(k)[m])
−2k(p1(k)[m + 1] − p1(k)[m])

)

and converges to

nd(p(k)[m]) −→
k→∞ n(r(t)

∣∣
t= m

2k
) =

⎛

⎝
ṙ2(t)

∣∣
t= m

2k

−ṙ1(t)
∣∣
t= m

2k

⎞

⎠, (7)

where n(r) is the vector normal to the curve r. The main
advantage of using (6) instead of only using the image
gradient is that (6) incorporates information about the
directionality in its expression through the vector nd. This
allows the snake to discriminate on which side of an object
it is located (e.g., inside or outside of an object).

The region-based energy that we propose discriminates an
object from its background by building a curve rλ around the
snake r, obtained by dilating it by a factor

√
2 with respect to

its center of gravity. Then, the contrast is maximized between
the intensity of the data averaged over the surface � enclosed
by the curve r, and the intensity of the data averaged over the
shell �λ\�, where �λ is the surface enclosed by the curve rλ.
Note that � ⊂ �λ and |�λ| = 2|�|. The region-based energy
is expressed as

Eregion( f, p(k)) = 1

2k |�(p(k))|

×
(

2
2k N0−1∑

m=0

g1(p(k)[m])nd,1(p(k)[m])

−
2k N0−1∑

m=0

g1(pλ(k)[m])nd,1(pλ(k)[m])
)

,

(8)

where pλ(k) is the sequence of subdivision points that describes
the curve rλ and g1 is the pre-integrated image along the
first dimension defined by g1(p1, p2) = ∫ p1

−∞ f (τ, p2)dτ . We
define �(p(k)) as

�(p(k)) = 1

2k

2k N0−1∑

m=0

p1(k)[m]nd,1(p(k)[m]). (9)

The image g1 is precomputed and stored in a lookup
table, which dramatically speeds up the computation of the
algorithm.

Proposition 2: As k → ∞, the energies defined by (6), (8),
and (9) converge to

Eedge( f, p(k)) −→
k→∞ −

∫ N0

0
∇ f (r(t)) · n(r(t))dt

and

Eregion( f, p(k)) −→
k→∞

1

|�|
( ∫∫

�
f (r)dr1dr2

−
∫∫

�λ\�
f (r)dr1dr2

)
,

with

�(p(k)) −→
k→∞ � =

∫∫

�
dr1dr2,

where � and �λ are the surfaces enclosed by the curve r
and rλ, respectively, and � is the signed area enclosed by the
contour r.

These are the standard energies given in [32] and [33]. The
proof of Proposition 2 is given in Appendix D.

C. Multiresolution Approach

The segmentation outcome, when using active-contour mod-
els, depends on the initialization of the snake. A larger
basin of attraction allows for a rougher initialization. With
common singleresolution segmentation algorithms, a tradeoff
has to be made between the desired accuracy and the amount
of blurring one applies to an image. Blurring enlarges the
basin of attraction but also decreases the resolution of an
object, which in turn affects the quality of the delineation.
Multiresolution approaches are powerful methods to speed
up the optimization process and improve robustness. Existing
methods mainly rely on the construction of an image pyramid,
where the active contour is upsampled from a coarse scale to
a finer scale of the image [34]–[36]. One limitation of those
methods is that the object to segment may not have the same
topology on the coarsest and finest images. In this section, we
present a multiresolution approach which is inherent to the
iterative process of subdivisions. The subdivision snake has
the advantage that the resolution of the representation can be
adapted to the resolution of the object to be segmented. The
number of subdivision points used to describe the snake and to
determine its energies according to Section III-B is controlled
by the number k of subdivisions. If fewer points are used, the
optimization is faster. We exploit this multiresolution property
both to enlarge the basin of attraction and to accelerate the
optimization.

Algorithm: We apply k successive lowpass filters Gk to the
original image to obtain k smoothed images fk . The snake is
first optimized on the coarsest image f1 that corresponds to
the lowest resolution and, hence, the structure of interest only
contains few details. The initialization on f1 can be very rough
because the blurring enlarges the basin of attraction. The snake
is optimized on f1 and is then used as initialization at the next
resolution level on f2. The process continues until the opti-
mization reaches the finest resolution level that corresponds to
the original image f . Because the smoothed images contain
fewer details and less noise than the original one the snake
is more robust to initial conditions. The subdivision scheme
allows us to adapt the number of subdivision points describing
the curve r to the level of detail in the image. Thus, we start
with few subdivision points (i.e., one subdivision step), which
allows for fast optimization. At each subsequent iteration of
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TABLE I

MULTIRESOLUTION ALGORITHM

the multiresolution algorithm, we keep constant the number
of control points and increase the density of the subdivision
points. The pseudo-code in Table I describes this algorithm.
Note that the position of the control points p(0) changes
after each optimization. We denote by p(0)opt,k the sequence
describing the optimized control points at iteration k. The
images fk and their pre-integrated versions are pre-computed,
which accelerates the segmentation process and decreases the
memory requirements.

IV. DESIGN OF SUBDIVISION SCHEMES

When choosing or designing a subdivision mask to construct
the active contour model, there are three important proper-
ties to consider. The first defines its capability to perfectly
reproduce specific shapes, such as polynomial or trigonometric
curves. The second is whether the control points interpolate
the curve or not. The third is the support of the mask, given
by the number of its non-zero elements. This can affect the
optimization and, generally, a short mask is preferred over
a large one. In practice, a tradeoff between the advantages
and limitations regarding these properties has to be made. The
purpose of this section is to offer guidance on the choice of
the subdivision mask. We discuss the two most interesting
families: the Deslauriers-Dubuc and the minimum-support
subdivision schemes.

A. Generation of Polynomials

Proposition 3 gives a criterion that a subdivision scheme
must verify to generate polynomials.

Proposition 3: (Conti and Hormann [24, eq. (7)]) A subdi-
vision scheme generates polynomials up to degree (L − 1) if
the z-transform of the subdivision mask takes the form

H (z) = (1 + z)L B(z),

where B(z) is a Laurent polynomial with B(1) = 1
2L−1 .

B. Deslauriers-Dubuc Subdivision

The Deslauriers-Dubuc subdivision scheme is convergent
and interpolating [37], [38]. It reproduces polynomials up
to degree (L − 1) [14], [39], [40]. The mask has a support

of size 2(L − 1) + 1 and is computed by solving the
system [19], [41]

{
H (z) + H (−z) = 2

H (z) = R(z)Q(z),
(10)

where R(z) = (1+ z)L and Q(z) is the shortest-possible poly-
nomial. We solve (10) using Bézout’s theorem and we obtain

H (z) = (−1)
L
2 (1 − z2)Lz−L

( L∑

q=1

(−1)qaq

(z − 1)q

)
,

where {aq}q∈[1...L] are the coefficients of the simple-fraction
decomposition

2(−1)
L
2 zL

(z2 − 1)L =
L∑

q=1

aq
( 1

(z + 1)q + (−1)q

(z − 1)q

)
.

Example-Reproduction of Third-Degree Polynomials: We
now focus on the particular case when L = 4. It corresponds to
the well-known subdivision scheme introduced by Deslauriers
and Dubuc in [37] that reproduces polynomials up to degree 3.
The corresponding subdivision mask h has a support of size 7
and is defined by

h[m] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

16
, |m| = 3

0, |m| = 2
9

16
, |m| = 1

1, m = 0

0, otherwise.

C. Minimum-Support Subdivision Scheme

The minimum-support subdivision scheme has the property
to generate polynomials with the shortest mask. However, it
is not interpolating, meaning that the control points do not lie
on the limit curve, in which case it will be less intuitive for
the user to interact with the curve. The mask associated to the
scheme that generates polynomials up to degree (L − 1) is
defined as

H (z) = 1

2L−1 (1 + z)L

and has a support of size L + 1 [42].

Example-Shortest Generation of Third-Degree Polynomials:
In this example, we construct a minimum-support subdivision
scheme that generates polynomials up to degree 3. The corre-
sponding mask is of size 5 and is defined by

H (z) = 1

8
+ 1

2
z + 3

4
z2 + 1

2
z3 + 1

8
z4.

V. DESIGN OF NON-STATIONARY SUBDIVISION SCHEMES

The subdivision schemes that we have described so far
are called stationary, meaning that the subdivision mask h
is the same at each iteration k. A subdivision scheme is called
non-stationary if the subdivision mask hk is different at each
iteration k, with the rest of the procedure being the same
as in Section II.B. Non-stationary subdivision schemes are
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required to reproduce exponential polynomials, which allows
to construct trigonometric functions. The refinement rule is
now

p(k) = hk ∗ p(k−1)↑2
,

where hk is the subdivision mask at the kth iteration. The
relation between the periodic sequence p(k) at the kth iteration
and the control points p(0) is still defined by (2) but h0→k is
now computed by

h0→k = h1↑
2k−1

∗ h2↑
2k−2

∗ · · · ∗ hk−1↑2
∗ hk .

If we set h = hk , we recover all the formulas of the stationary
scheme. Furthermore, every convergent stationary subdivision
scheme verifies the property of affine invariance stated in
Definition 1 (see Proposition 1). In the non-stationary setting,
however, it must be verified case by case [24].

A. Generation of Exponential Polynomials

We define γ = (γ1, γ2, . . . , γL) and denote by Lm the
multiplicity of the element γm ∈ γ , for m = 1, . . . , L.
A non-stationary subdivision scheme is said to generate
exponential polynomials if it generates the whole family
{eγmt tn}n∈[0...Lm−1]. In this case, the subdivision mask at the
kth iteration is characterized by γ k = γ

2k and its z-transform
is denoted by H γ

k .

B. Generation of Trigonometric Functions

The generation of trigonometric functions allows one to
efficiently construct a scheme that is capable of generating
circles and ellipses which are useful structures in the context
of segmentation in bioimaging. We now present a criterion that
a (non-stationary) subdivision scheme must verify to generate
trigonometric functions.

Proposition 4: (Romani [43, Proposition 2]) A non-
stationary subdivision scheme perfectly generates ellipses if
the z-transform of the subdivision mask at the kth iteration
verifies

Hk(z) = (1 + z)(1 + e
j2π

2k N0 z)(1 + e
−j2π

2k N0 z)Qk(z),

where Qk(z) is a polynomial in z.
That means that the subdivision scheme has to generate

exponential polynomials and that (0, j2π
N0

, −j2π
N0

) ⊂ γ . In the
following we provide two examples of ellipse-generating sub-
division schemes: the non-stationary Deslauriers-Dubuc and
the non-stationary minimum-support subdivision schemes.

C. Non-Stationary Deslauriers-Dubuc Subdivision Scheme

The non-stationary Deslauriers-Dubuc subdivision scheme
is interpolating and capable of reproducing the exponential
polynomials defined in Section V-A [19], [41], [44]. As for
the stationary case, the mask at the kth iteration has a support
of size 2(L − 1) + 1 and is obtained by solving

{
H γ

k (z) + H γ
k (−z) = 2

H γ
k (z) = Rγ k (z)Qk(z),

(11)

where Rγ (z) =
L∏

m=1
(1 + eγm z), γ k = γ

2k , and Qk(z) is a

polynomial in z. Vonesch et al. [41] extensively studied this
scheme and proposed simplified solutions to solve (11) by
applying Bézout’s identity

Ck(Z)Dk(Z) + Ck(−Z)Dk(−z) = 2,

where Z = z+z−1

2 , Ck(Z) = z− L
2 Rγ k (z), and Dk(Z) =

z
L
2 Qk(z). The shortest polynomial Dk(Z) is given by

Dk(Z) =
( K∑

q=1

Lq∑

s=1

(−1)saq,s

(Z + Zq)s

)
Ck(−Z),

where K < L is the number of different elements of γ ,
{Zq}q∈[1...K ] are the roots of Ck(Z) with multiplicity Lq ,
and {aq,s}q∈[1...K ],s∈[1...Lq ] are the coefficients of the simple-
fraction decomposition

2

Ck(−Z)Ck(Z)
=

K∑

q=1

Lq∑

s=1

aq,s
( 1

(Z − Zq)s
+ (−1)s

(Z + Zq)s

)
.

Example-Ellipse-Reproducing Scheme: We construct a
non-stationary Deslauriers-Dubuc subdivision scheme that
is capable of reproducing ellipses. Therefore, we want to
be able to construct trigonometric functions. According to

Proposition 4, (0, j2π
N0

, −j2π
N0

) ⊂ γ . Moreover, it was shown
in [41] that the elements of γ must come in complex-
conjugate pairs and that, if 0 is an element of γ , then it

must have even multiplicity. Hence, γ = (0, 0, 2jπ
N0

,− 2jπ
N0

).
The mask at iteration k is of size 7. By solving (11), for
N0 = 4, we obtain the scheme

hk[m] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
2k√−1

2(1 + 2k+1√−1)2(1 + 2k√−1)
, |m| = 3

(1 + 2k+1√−1 + 2k√−1)2

2(1 + 2k+1√−1)2(1 + 2k√−1)
, |m| = 1

1, m = 0

0, otherwise.

Note that, when k → ∞, the mask hk converges towards the
stationary Deslauriers-Dubuc scheme given in Section IV-B
which reproduces polynomials of degree up to 3.

D. Non-Stationary Minimum-Support Subdivision Scheme

The non-stationary minimum-support subdivision scheme
generates exponential polynomials defined in Section V-A with
the shortest mask [45]. It has a support of size L + 1 and is
given by

H γ
k (z) = 1

2L−1

L∏

m=1

(1 + e
γm
2k z).

Example-Shortest Ellipse-Generating Scheme: We construct
a non-stationary minimum-support subdivision scheme that
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Fig. 4. Comparison of the accuracy of the segmentation between the multiresolution subdivision snake and the parametric singleresolution snake. Both snakes
generate polynomials of degree up to 2. (a) Evolution of the subdivision snake during the six-level multiresolution process. The last illustration shows the
final segmentation on the original image. (b) Initialization. (c) Several segmentation results obtained with the parametric singleresolution snake for different
blurred versions of the original test image.

is capable of generate ellipses. Therefore, we choose

γ = (0, 2jπ
N0

,− 2jπ
N0

). By imposing the affine invariance of
Definition 1, the subdivision mask at iteration k is of size
4 and is given by sinc−2( 1

N0
)H γ

k (z), where

H γ
k (z) = 1

4

(
1 + (1 + e

−2jπ
2k N0 + e

2jπ
2k N0 )z

+ (1 + e
−2jπ
2k N0 + e

2jπ
2k N0 )z2 + z3

)
.

VI. EXPERIMENTS AND VALIDATION

In this section, we compare the proposed multiresolution
snake to parametric singleresolution snakes [29]. We first test
the robustness w.r.t. initial conditions and, in a second step,
we measure its robustness w.r.t. noise as well as its ability
to segment objects of varying sizes in an image. Finally, we
illustrate applications on real data where the ground truth is not
available. For each experiment the optimization of the snakes
is carried out by a Powell-like line-search method [46].

A. Accuracy and Robustness to Initial Conditions

We carry out two experiments in which we compare
the multiresolution subdivision snake to a parametric
singleresolution snake based on quadratic B-splines as
described in [29]. In order to compare snakes with the same
reproduction properties, the subdivision snake is constructed
with a minimum-support subdivision scheme that generates
polynomials of degree up to 2 (see Section IV-C).

In the first experiment, we test the accuracy of the
segmentation. We use the Jaccard index to measure the overlap
between the segmentation result and the ground truth. For
two sets A and B , it is defined as

J = |A ∩ B|
|A ∪ B| .

Clearly, 0 ≤ J ≤ 1, and the maximum overlap is described
by J = 1. We created a test image of 854 × 768 pixels that

TABLE II

JACCARD INDICES FOR SEGMENTATION OBTAINED WITH THE
SINGLERESOLUTION AND SUBDIVISION SNAKES, BOTH

GENERATING POLYNOMIALS OF DEGREE UP TO 2

simulates realistic conditions in fluorescence microscopy (see
Figure 4(b)), including noise. It shows a rod-shaped cell rep-
resentative of a Schizosaccharomyces pombe (S. pombe) [47].
We then blurred the test image with five Gaussian kernels
having different standard deviations σ , which are given in
the first column of Table II. Four resulting images are shown
in Figure 4(a). The higher the standard deviation, the fewer
details are present in the filtered image. The initialization of
the snakes was drawn manually with N0 = 8 control points
(Figure 4(b)). Its overlap with the actual structure corresponds
to the Jaccard index J = 0.544. First, we optimized the sub-
division snake using the multiresolution algorithm described
in Section III-C. At each iteration we did one subdivision step
corresponding to a multiplication by a factor of 2, starting
with 2N0 = 16 subdivision points. The curve evolves guided
by an edge energy. The optimized contours at different levels
of the multiresolution algorithm are shown in Figure 4(a). We
compared the final segmentation to the ground truth of the
synthetic data; the corresponding Jaccard index is given in
Table II. We consider that a snake succeeds in segmenting
the structure of interest if J ≥ 0.95. We then independently
optimized the singleresolution snake with an edge energy on
the six images (the five blurred images and the original one)
using the same initialization. Results are shown in Figure 4(c)
and the corresponding Jaccard indices are given in Table II.
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Fig. 5. Comparison of the basin of attraction of the multiresolution subdivision snake versus the parametric singleresolution snake using an edge energy.
Basins of attraction of the singleresolution snake ((a) and (b)) were obtained for the original image and for a blurred version (σ = 10). (c) Basin of attraction
of the multiresolution subdivision snake obtained on the original image (d).

The segmentation succeeded only on the smoothed image
corresponding to σ = 8. The singleresolution snake is able
to segment the structure of interest only on a smoothed image
because the basin of attraction is too narrow otherwise for
the edge energy. The variance of the Gaussian filter has to
be well-chosen according to the initialization. We conclude
that the multiresolution approach improves the accuracy of
the segmentation. This result is explained by the fact that
the multiresolution is initialized on the coarsest image with
reduced details and a large basin of attraction. By adapting
the resolution of the subdivision snake to the image details,
it is able to converge to the structure to segment on the original
image.

In the second experiment, we evaluate the impact of the
multiresolution approach on the robustness of the snake w.r.t.
the initialization. For this experiment, we generated another
test image (Figure 5(d)) of 854 × 768 pixels of a sickle
cell [48] acquired through fluorescence microscopy. We com-
pared the basin of attraction of both the singleresolution and
the multiresolution subdivision snakes using N0 = 6 control
points. Each basin of attraction was computed as follows: a
rough approximation of the goldstandard was constructed. This
shape was rescaled to construct several initial positions of
the snake. We optimized the snake using an edge energy. For
each segmentation result, we computed the Jaccard index and
associated a grayscale value to J where white corresponds to
J = 0 and black to J = 1. We generated an image where
each initialization was drawn with the color corresponding to
the Jaccard index of the corresponding segmentation result.
For the singleresolution snake, we realized this experiments
on two images: the original one and a smoothed version with
σ = 10, where the results are shown in Figure 5(a) and (b),
respectively. For the subdivision snake, we used the multires-
olution approach on the original image. The result is given
in Figure 5(c). The white regions in the images showing
the basin of attraction correspond to positions that were not
considered for initialization, including the boundary of the
shape to segment. Note that the average Jaccard values inside
the shape to segment appear to be less uniform than outside.
This can be attributed to the two following reasons: First,
as seen on the original image (Figure 5(d)), the outside of the
shape is completely uniform in intensity while the inside of the
shape exhibits variations in pixel values. Snakes evolving from

TABLE III

JACCARD INDICES FOR THE SEGMENTATION OF NOISY DATA

outside of the object therefore encounter no risk of getting
diverted from their target due to variations of pixel intensities.
Snakes which start to deform from the inside of the shape
are, however, evolving on a nonuniform region and are more
likely to get trapped into local energy minima. Second, for a
given number of control points, smaller snakes tend to diverge
more easily than larger ones. This effect is simply due to the
fact that, if their number is fixed, control points are physically
closer in smaller shapes. During the optimization process and
as the control points are moved, it becomes therefore more
likely for the snake to get entangled. In the present experiment,
initial shapes inside the object to segment are smaller than
the ones outside the object, and optimization results tend to
get more unstable due to the enhanced risk of entanglement.
We observe that the singleresolution snake is very sensitive to
the initialization. On the contrary, the subdivision snake leads
to accurate segmentation even for initializations far from the
object to segment.

B. Robustness With Respect to Noise

As further test of robustness, we performed segmentation
on data with different levels of additive white Gaussian noise.
We used the multiresolution subdivision snake constructed
with the minimum-support subdivision scheme generating
polynomials of degree up to 2 and N0 = 8 control points
(Figure 6(b)). Signal-to-noise ratios (SNRs) corresponding
to a given noise level and associated Jaccard indices were
computed. We used a pixelwise SNR that compares the noisy
image and the ground truth image. The results for the test
image of Section VI-A are summarized in Table III and
Figure 6(a). The initial overlap of the snake with the ground
truth corresponds to J = 0.593. For all cases, we obtained
J > 0.95.
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Fig. 6. Robustness w.r.t. noise of the multiresolution subdivision snake.
(a) Top left: SNR= −7.83dB; top right: SNR = −13.80dB; bottom left:
SNR = −16.60dB; bottom right: SNR = −17.82dB. (b) Initialization.
(c) Close-up of a boundary region between the test rod-shape and its
background, SNR = −17.82dB.

Fig. 7. Segmentation of circles with different radii using the ellipse-
reproducing Deslauriers-Dubuc subdivision scheme. Top: initializations;
bottom: segmentation results.

C. Segmentation of Objects of Varying Sizes

The multiresolution algorithm for segmentation presented
in Section III-C suggests that the approach is very robust to
initialization. To verify this property, we created a test image
of size 5,500 × 2,700 pixels (Figure 7), which is composed
of eight circular cells of different sizes. The initializations
correspond to circles with a radius of 461 pixels centered in
each cell (Figure 7, top). By adjusting the variance of the
lowpass filters to the smallest structure present in the image,
we were able to segment all the cells. We used a multires-
olution subdivision snake based on the ellipse-reproducing
Deslauriers-Dubuc scheme presented in Section V-C. Results
are shown in Figure 7 (bottom) and the corresponding Jaccard
indices are presented in Table IV (first line). Each structure
was accurately segmented with J ≥ 0.95.

D. Real Data

We illustrate the behaviour of the proposed snake on real
data. In this context, the ground truth is unknown and we have

TABLE IV

JACCARD INDICES FOR THE SEGMENTATION OF CIRCLES OF VARIOUS
SIZES OBTAINED WITH THE STATIONARY AND THE NON-STATIONARY

DESLAURIERS-DUBUC SCHEMES

to rely on qualitative assessments to validate the accuracy of
the segmentation. We applied our multiresolution subdivision
snake, constructed with the non-stationary minimum-support
subdivision scheme that generates ellipses (Section V-D),
to four microscopic images (Figure 8(b)). These images
are challenging because of the presence of noise and of
objects with different sizes. Moreover, shapes can be close
to each other. They represents elliptic cells (top left, inverted
contrast), rod-shaped cells of S. pombe (top right), circular
cells (bottom left), and a sickle cell (bottom right). The
initializations are shown in Figure 8(a). The qualitative
assessment of the segmentation yields satisfactory results. We
used both the edge and region energies and the average time
to delineate one cell was less than 0.2 seconds on a 1.7 GHZ
processor with 8 GB RAM.

Note that, as the principal motivation for our work is the
segmentation of biological images, it was important trough
those experiments to show that our model can reproduce circu-
lar or elliptic shapes. However, the reproduction properties of
the presented schemes are not restricted to those shapes. More
complex shapes can be segmented by increasing the number
of control points.

VII. DISCUSSION

A. Guidelines for the Choice of the Subdivision Scheme

Minimum-Support vs. Deslauriers-Dubuc Subdivision
Schemes: The computation of the snake energy and the
speed of the optimization algorithm is related to the length
of the support N of the subdivision mask. More precisely,
the complexity when calculating the subdivision points (2)
is O((N − 1)k). Therefore, the fastest algorithm is obtained
using minimum-support subdivision schemes. In return, the
Deslauriers-Dubuc subdivision is interpolating. This can
be an advantage if user interaction is involved, because it
facilitates the editing of the curve. We present in Figure 9
an intermediate stage in the segmentation of a dividing cell.
User interaction makes it possible to improve the result by
moving the control points. However, the interaction is more
intuitive when they lie on the curve (Figure 9(b)). Otherwise,
it is difficult to know which parameter controls the part of
the curve that has to be modified (Figure 9(a)).

The choice of the subdivision mask ultimately depends
on the application: for an automatic method, we suggest
to use a minimum-support subdivision scheme; whereas,
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Fig. 8. Segmentation of real data using multiresolution subdivision snakes constructed with the non-stationary minimum-support subdivision scheme that
generates ellipses. (a) Initial contours of the snakes. (b) Segmentation of: elliptic cells (top left); S. pombes (top right); circular cells (bottom left), and a sickle
cell (bottom right).

Fig. 9. User-friendly interaction according to the interpolation property of
the subdivision scheme. (a) Non-interpolating control points. (b) Interpolating
control points. Blue crosses: control points; red curve: snake; green circles:
control points for which it is difficult to know which part of the curve they
control. Source: http://www.cellimagelibrary.org/images/35450/.

when one would like to benefit from friendly user interactions,
it is preferable to use a Deslauriers-Dubuc subdivision scheme.

Stationary vs. Non-Stationary Subdivision Schemes: Non-
stationary subdivision schemes are somewhat more compli-
cated than stationary ones because the subdivision mask is
different at each iteration. Their main advantage lies in their
capability to reproduce cosinus and sinus, which allows for
an efficient construction of ellipses and circles. In biomedical
imaging, circular or elliptic structures are often encountered.
It is therefore desirable for the snake to be able to repro-
duce these shapes. The non-stationary schemes presented in
Sections V-C and V-D reproduce ellipses with the minimum
number of control points N0 = 3, whereas the reproduction is
only approximated with the stationary schemes for N0 < +∞.
As the speed of the algorithm scales with the number of control
points, it is preferable to use a non-stationary subdivision
schemes with few control points to segment elliptic struc-
tures. To illustrate this property, we computed the error when
approximating a circle as a function of N0 with the stationary
Deslauriers-Dubuc subdivision scheme. In Figure 10, we see
that the error decreases as N0 increases. However, a large

Fig. 10. Approximation of trigonometric curves with the stationary
(blue solid line) and non-stationary (red dashed line) Deslauriers-Dubuc
subdivision schemes. (a) Evolution of the approximation error as a function
of the control points. Approximated ellipses for N0 = 3 (b) and N0 = 20
(c) are given for each scheme.

number of control points is needed to obtain an acceptable
error. Therefore, the segmentation of circular shapes with a
small number of control points p(0) is more accurate with
a non-stationary scheme. To highlight this property, we per-
formed the same experiment as the one presented in Figure 7,
using the stationary Deslauriers-Dubuc scheme that reproduces
polynomials of degree up to 3. We used the same initializations
and N0 = 4 control points. The results are shown in Figure 11.
We computed the Jaccard indices and compared them to
the ones obtained previously with the non-stationary scheme
(see Table IV). All the Jaccard indices are worse than 0.95,
which is due to the fact that the stationary scheme does not
approximate well circles for N0 = 4.

To conclude, if the structure of interest has many details,
that requires a high number of control points, then we
suggest the use of stationary schemes, thereby privileging
computation simplicity while preserving the accuracy of the
result; otherwise, one should use a non-stationary scheme.
Note that, in the particular case where the basis functions
of classical parametric snakes are refinable [49], so called
scaling functions, there is a connection with the proposed



1198 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 3, MARCH 2017

Fig. 11. Segmentation of circles of different sizes obtained with the
multiresolution subdivision snake based on the stationary Deslauriers-Dubuc
scheme that reproduces polynomials of degree up to 3.

TABLE V

PROPERTIES OF THE DIFFERENT SUBDIVISION SCHEMES

work: the discrete filters of the scaling functions can be used
as subdivision masks for stationary schemes.

Summary: The properties and advantages of each subdivi-
sion scheme presented in Sections IV and V are summarized in
Table V. As in biomedical imaging we often deal with elliptic
structures and that biologists may need to interact with the
segmentation result, we preconize the use of the non-stationary
Deslauriers-Dubuc subdivision scheme.

B. Choice of the Multiresolution Parameters in Practice

Regarding the variance and the number of subdivision steps
at each level of the multiresolution algorithm, we found in
practice that six subdivision iterations are enough to obtain
satisfactory convergence. At each resolution level, we compute
one subdivision step, so that the samples of the curve are
upsampled by a factor 2. As smoothing is equivalent to a
downsampling operation, we obtain the variance of the coarser
lowpass filter by decreasing the resolution of the original
image by a factor 2 at each iteration. Hence, we propose a
multiresolution algorithm with 6 levels where the first one is
characterized by σ = 25 and 2N0 subdivision points. At each
iteration, the value of σ is divided by two and one subdivision
step is performed. The value of the parameters at each step are
summarized in Table VI. The choice of these parameters holds
when the snake is initialized far from the object to segment.
Otherwise, a smaller variance can be used for the coarsest
lowpass filter but the convergence of the subdivision scheme
is still required on the finest level.

VIII. CONCLUSION AND SUMMARY

We have presented the 2D generic construction of multires-
olution snakes based on subdivision. The snakes approximate
closed curves with arbitrary precision by iteratively refining
a set of control points. We have provided several exam-
ples of explicit constructions of such snakes and discussed

TABLE VI

PARAMETERS OF THE MULTIRESOLUTION ALGORITHM

their properties. We have shown how they should be chosen
according to desired properties that depend on the structures
to be segmented. We have also proposed a multiresolution
algorithm to adapt the resolution of the curve to the level of
details in the image. We have compared our framework to
traditional parametric singleresolution snakes and shown that
our snakes have a larger basin of attraction, which means that
they are more robust w.r.t. initial conditions. Furthermore, the
multiresolution property accelerates the optimization. We have
validated our snakes on test data as well as on real bioimages.
We have implemented the method described in this paper as a
user-friendly open-source plugin available2 for the bioimaging
platform Icy [50]. This paper is a first step on the way of
designing subdivision active contours of higher dimensions.

APPENDIX

A. Derivation of p(k) = h0→k ∗ p(0)↑
2k

Using (1), we have that

p(1)[m] =
∑

n∈Z

h[m − 2n]p(0)[n] (12)

and

p(2)[m] =
∑

n∈Z

h[m − 2n]p(1)[n]

=
∑

n∈Z

h[m − 2n]
∑

q∈Z

h[n − 2q]p(0)[q]

=
∑

q∈Z

( ∑

u∈Z

h[m − 4q − 2u]h↑2[2u]
)

p(0)[q]

=
∑

q∈Z

(h ∗ h↑2)︸ ︷︷ ︸
h0→2

[m − 4q]p(0)[q]. (13)

Combining (1), (12), and (13), we recursively obtain

p(k)[m] =
∑

n∈Z

h0→k[m − 2kn]p(0)[n],

where h0→k is given by (3).

B. Calculation of ṙ[ m
2k ]

ṙ(t)
∣∣
t= m

2k
= lim

ε→0

r(t + ε) − r(t)
ε

∣∣∣∣
t= m

2k

= lim
k→∞ 2k

(
r(t + 1

2k
) − r(t)

)∣∣∣∣
t= m

2k

,

2The plugin will be available for Windows/Linux / Mac at http://bigwww.
epfl.ch/algorithms.html.
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where we used ε = 1
2k . Combining this result with (4), we

obtain

ṙ(t)
∣∣
t= m

2k
= lim

k→+∞ 2k(p(k)[m + 1] − p(k)[m]).

C. Proof of Proposition 1

For any convergent subdivision scheme, the z-transform of
the subdivision mask verifies H (z) = (1+z)B(z), where B(z)
is a Laurent polynomial with B(1) = 1 (see Section II-C). We
rewrite (3) in the z domain and we obtain

H0→k(z) =
( k−1∏

m=0

(1 + z2m
)

)( k−1∏

m=0

B(z2m
)

︸ ︷︷ ︸
Qk(z)

)

=
( 2k−1∑

m=0

zm
)

Qk(z), ∀k > 0, (14)

where Qk is a Laurent polynomial with Qk(1) = 1.
Equation (14) is equivalent to saying that the convergent
subdivision scheme associated to the subdivision mask h0→k

and with a refinement factor equal to 2k reproduces constants
[24, eq. (7)]. Thus, we have that

∑

n∈Z

h0→k [m − 2kn] = 1, ∀m ∈ Z. (15)

Let A be a (2×2) matrix and b ∈ R
2 be a translation vector.

We calculate(
h0→k ∗ (Ap(0) + b)↑2k

)
[m] =

(
Ah0→k ∗ p(0)↑

2k

)
[m]

+b
∑

n∈Z

h0→k [m − 2kn]. (16)

We use (2) and (15) in (16) to obtain
(

h0→k ∗ (Ap(0) + b)↑2k

)
[m] = Ap(k)[m] + b. (17)

For k → +∞ in (17), we obtain

lim
k→∞

(
h0→k ∗ (Ap(0) + b)↑2k

)
[m] = Ar(t)

∣∣
t= m

2k
+ b

which corresponds to the condition on affine invariance.

D. Proof of Proposition 2

For this proof we first recall two theorems.

Theorem of the Riemann Sum: Let g : [a, b] → R be a real
function that is Riemann-integrable on [a, b]. The Riemann

sum Rn is defined by Rn = b−a
n

n−1∑
m=0

g(m b−a
n ) and converges

to lim
n→+∞ Rn = ∫ b

a g(t)dt .

Green’s Theorem: Let C be a positively oriented, piecewise-
smooth, simple closed curve in a plane and let � be the region
bounded by C . If Q and M are functions of (r1, r2) defined
on an open region containing � and have continuous partial
derivatives there, then∮

C
(Qdr1 + Mdr2) =

∫∫

�
(
∂M

∂r1
− ∂ Q

∂r2
)dr1dr2,

where the path of integration along C is counterclockwise.

For the edge energy, using (4), (6), and (7), we obtain

lim
k→∞ Eedge( f, p(k)) = − lim

k→∞
1

2k

2k N0−1∑

m=0

g(
m

2k
)

︸ ︷︷ ︸
E

,

where g(t) = ∇ f (r(t)) · n(r(t)) is Riemann-integrable on
[0, N0] because f, r1, r2 ∈ C1. We use the theorem of the
Riemann sum with a = 0, b = N0, and n = 2k N0 to obtain

E = −
∫ N0

0
∇ f (r(t)) · n(r(t))dt .

Likewise, we use (4), (7), (8), and the theorem of the Riemann
sum with a = 0, b = N0, n = 2k N0, and g(t) = g1(r(t))ṙ2(t),
where g is Riemann-integrable on [0, N0] because f ∈ C1, to
obtain lim

k→∞ Eregion( f, p(k)) = F , where F is defined by

F = 1

|�|
(
2

∫ N0

0
g1(r(t))ṙ2(t)dt −

∫ N0

0
g1(rλ(t))ṙλ,2(t)dt

)

= 1

|�|
(
2

∮

C
g1(r)dr2 −

∮

Cλ

g1(rλ)drλ,2
)
,

where C and Cλ are the positive oriented contours that
describe r and rλ = (rλ,1, rλ,2), respectively. We use Green’s

theorem with M = g1(r1, r2) =
r1∫

−∞
f (τ, r2)dτ and Q = 0.

We obtain

F = 1

|�|
(

2
∫∫

�
f (r)dr1dr2 −

∫∫

�λ

f (rλ)drλ1drλ2

)

= 1

|�|
( ∫∫

�
f (r)dr1dr2 −

∫∫

�λ\�
f (r)dr1dr2

)
.

For �(p(k)), we apply the same reasoning as previously,
using first the theorem of the Riemann sum and then Green’s
theorem, to obtain

�(p(k)) −→
k→∞ � =

∫∫

�
dr1dr2.
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