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A B S T R A C T

We present an affine-invariant non-stationary subdivision scheme for the recursive refinement of any triangular
mesh that is regular or has extraordinary vertices of valence 4. In particular, when applied to an arbitrary convex
octahedron, it produces a G1-continuous surface with a blob-like shape as the limit of the recursive subdivision
process. In case of a regular octahedron, the subdivision process provides an accurate representation of ellip-
soids. Our scheme allows us to easily construct a new interactive 3D deformable model for use in the delineation
of biomedical images, which we illustrate by examples that deal with the characterization of 3D structures with
sphere-like topology such as embryos, nuclei, or brains.

1. Introduction

An important challenge in biomedical imaging is the characteriza-
tion of 3D structures. In a clinical context, the delineation of organs
such as lungs and kidneys allows for better 3D visualization and, hence,
facilitates preoperative steps. In a biological context, microscopic
images often contain hundreds of cells for which an automatized or
semi-automatized cell segmentation is necessary, because the manual
delineation of each cell would otherwise be overly time consuming.

3D deformable models are powerful tools for the extraction of vo-
lumetric structures. They consist in flexible surfaces that are deformed
from an initial user-provided configuration toward the boundary of the
object to delineate. The deformation can be driven manually, by in-
teractively modifying the parameters of the model, or automatically, by
applying suitable energies [14,27]. Currently, 3D deformable models
are described either implicitly, by level sets [2], or explicitly, by me-
shes [8,11] and parameterizations [9,25]. Therefore, the explicit defi-
nition of 3D deformable models can typically rely either on a discrete
(mesh-based) or a continuous (parametric) representation. A good de-
formable model must fulfill two main requirements. First, it must de-
pend on a small number of parameters (called control points), which
limits the complexity of the deformation and improves robustness.
Second, since we want to detect blob-like objects, it must reproduce or
approximate ellipsoids.

In recent years, the trend in computer graphics has been to use

subdivision surfaces as geometric tools for representation and mod-
eling [10,18]. A subdivision scheme consists in a refinement process
that is recursively applied to an initial coarse polygonal mesh. Since,
once infinitely refined, it provides a continuously defined surface, the
set of the coarse mesh initial vertices, although discrete, is sufficient to
fully describe the limit surface.

The goal pursued in this paper is to describe the surface of a 3D
deformable model by the continuous limit surface obtained by applying
a subdivision scheme to a suitable coarse mesh. The vertices of this
initial coarse mesh are regarded as the control points of the deformable
model. The idea of a subdivision-based deformable model offers the
following advantages: i) the model can handle surfaces of arbitrary
topological type; ii) easy and localized interactions can be achieved by
simply modifying the control points; iii) the discrete nature of the
scheme leads to an easy implementation.

In order to have few control points to manipulate, and as the
number of mesh vertices increases geometrically at each subdivision
step, we want a simple shape as initial mesh. Since we focus our at-
tention on the construction of 3D deformable models for the char-
acterization of structures with sphere-like topology, we choose as initial
mesh a 2-manifold triangular mesh with genus 0. In particular, among
the Platonic solids having triangular faces and a low number of vertices,
we choose the octahedron. It is the one that has a vertex valence closest
to the regular valence 6. (The icosahedron is discarded for its high
number of vertices and the octahedron is preferred to the tetrahedron
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since it has vertex valence 4 rather than 3.)
To the best of our knowledge, the only subdivision methods that

allow one to construct a good approximation of the unit sphere, starting
from a 2-manifold polygon mesh with arbitrary connectivity, are the
polar method proposed in [15] and improvements thereof proposed
in [22]. These methods can be used on polar meshes, which are meshes
with sphere-like topology described by triangles in the vicinity of ex-
traordinary vertices (i.e., internal vertices with a number of incident
edges that differ from the regular valence), and made of quadrilaterals
elsewhere. However, the extraordinary vertices contained in the polar
meshes are not allowed to have a valence smaller than 6. As a con-
sequence, the methods proposed in [15,22] cannot be applied to initial
triangular meshes defined by six vertices of valence 4, as is the case
with the regular octahedron.

A subdivision scheme that is able to handle a regular octahedron is
Loop’s scheme. It is an approximating subdivision scheme for triangular
meshes developed by Charles Loop in 1987 [19]. At each step of the
subdivision process, it refines each triangle of a given mesh into four
subtriangles, obtained by inserting one new vertex in correspondence to
each edge midpoint and to each existing vertex [1,19]. If applied to a 2-
manifold triangle mesh with arbitrary connectivity, it generates a limit
surface of arbitrary topology that is C2-continuous everywhere, except
at extraordinary vertices where the regularity is only C1. Thus, by ap-
plying Loop’s scheme to a regular octahedron, we get a limit surface
that is globally C1-continuous. However, as we show in Section 3.1.4, it
provides a bad approximation of the unit sphere because the stencil
used by Loop’s scheme to insert a new vertex in correspondence to an
edge midpoint is too small to take into account the desired geometry
and does not adapt to the refinement step.

In this paper, we resolve this issue by proposing a new non-sta-
tionary (or level-dependent) subdivision scheme. Like Loop’s scheme, it
belongs to the class of primal subdivision schemes [1,23] since, at each
step of the refinement process, a finer mesh is created by splitting the
faces of the coarse mesh. However, we use a level-dependent vertex-
point stencil and a much larger (and also level-dependent) edge-point
stencil. These modified rules for inserting new vertices fulfill the fol-
lowing properties:

1. affine invariance, which ensures that the limit surface is described
independently of its location and orientation;

2. applicability to an initial mesh with very few control points;
3. G1-continuity of the limit surface;
4. accurate representation of ellipsoids;
5. friendly user interactions whenever some manual editing of the

model is desired.

1.1. Organization of the article

In Section 2, we present our new non-stationary subdivision scheme.
Then, in Section 3, we analyze its main properties. Finally, in Section 4,
we illustrate how it can be effectively exploited to construct deformable
models with sphere-like topology. We also provide application ex-
amples in real volumetric biomedical images. Conclusions are drawn in
Section 5.

2. BLOB: a Butterfly-Loop Optimal Blending non-stationary
subdivision scheme

In this section, we present our new non-stationary subdivision
scheme for the construction of 3D deformable models with sphere-like
topology.

2.1. Notation and vocabulary

In this paper we focus on 2-manifold triangular meshes with genus
0 [12], where each vertex is the meeting point of an arbitrary number n

(n≥ 3) of triangles. The value assumed by n is called the valence of the
vertex. Vertices of a triangular mesh are called regular when they have
valence =n 6 and extraordinary otherwise. LetM (0) denote an initial 2-
manifold triangular mesh. Then, the finer resolution mesh M ,k( )

 ∈ = ∖k *: {0}, is obtained by means of the recursive application of the
subdivision operators S = … −n k{ , 0, , 1}n that identify the non-sta-
tionary subdivision scheme, as

M S S S M= ⋯− − .k
k k

( )
1 2 0

(0) (2.1)

Since the subdivision operators are defined locally, in the remainder
of this paper we denote by R (0) and E (0) the submeshes of M (0) that
determine the behavior of the limit surface on the one-ring of a regular
and of an extraordinary vertex, respectively. The submesh R (0) (E ,(0)

respectively) is also called the neighborhood of a regular (extra-
ordinary, respectively) vertex.

In Sections 2.2 and 2.3, we describe how the subdivision operators
perform in R (0) and E ,(0) respectively.

2.2. Regular subdivision rules

We denote by = ∈αq {q , }α
(0) (0) 2 the set of vertices in the submesh

R (0) . Following the standard notation of [5], at each level ∈k , the
action of a non-stationary scheme on R (0) is described by the refine-
ment rules




∑= ∈+

∈
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k k k( 1)
2

( ) ( ) 2

2 (2.2)

which generate the refined data sequence = ∈+ + αq {q , }α
k k( 1) ( 1) 2

starting from the coarser data sequence = ∈αq {q , }α
k k( ) ( ) 2 . The

coefficients in (2.2), which are assumed to be finitely many, can be
conveniently collected in the kth-level subdivision mask

= ∈αa {a , }α
k k( ) ( ) 2

or incorporated in the kth-level subdivision symbol
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For our specific scheme, the kth-level subdivision mask is of the form
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where the non-zero entries are
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(2.4)

Remark 2.1. The parameter λ influences the final shape of the limit
surface. Since
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we can also assume v(0)∈ (0, 500) to be the free parameter that specifies
the shape of the surface we get in the limit.

The kth-level symbol associated to the subdivision mask in (2.3),
written in terms of v(k), is thus
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For the mask coefficients in (2.3), the refinement rules in (2.2) give rise
to the vertex-point and edge-point stencils illustrated in Fig. 1, where
local linear combinations of vertices are suggested graphically. The
coarser mesh is used to create a new vertex in correspondence to either
an old vertex or an old edge. Since the vertex-point rule has the same
size and structure as the vertex-point rule of Loop’s subdivision
scheme [19], and since the size and structure of the edge-point rule are
the same as those of the modified Butterfly scheme [31], the new
scheme is named the Butterfly-Loop Optimal Blending (BLOB) sub-
division scheme.

2.3. Extraordinary subdivision rules

We allow the starting mesh to contain extraordinary vertices of
valence 4. In fact, we are interested in applying the BLOB scheme to an
initial mesh given by an octahedron, which is a polyhedron made of
eight triangular faces and six vertices that all have valence 4. The
vertex-point stencil for an old vertex of valence 4 and the edge-point
stencil for an old edge, where one or both endpoints are extraordinary
vertices of valence 4, are illustrated in Fig. 2. The rule to create our
edge point with two extreme vertices of valence 4 (Fig. 2 (b)) is only
used in the first step of the subdivision process. In the subsequent steps,
the extraordinary vertices are isolated; thus, the regular rule (Fig. 1(b))
and the rule for extreme vertices with different valences (Fig. 2(c)) are
used. In addition, the rule for the computation of the vertex-point of
valence 4 (Fig. 2(a)) is used six times in each subdivision step since the
octahedron has six vertices of valence 4 and they are kept throughout
the whole subdivision process.

Denoting by p(0) the vector that collects the vertices of the submesh
E ,(0) we describe the action of the BLOB scheme in the vicinity of an
extraordinary vertex of valence 4 by the kth-level equation

=+p S p ,͠k
k

k( 1) ( ) ∈k (see again [5]). The matrix S͠k is the kth-level

subdivision matrix, and for all k > 1, is of the form
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Remark 2.2. The coefficients g(k) and h(k) in Fig. 2 (b) do not appear in
the subdivision matrix (2.6) since the corresponding stencil is used only
in the first step of the refinement process. The explicit form of the
subdivision matrix S͠k is given only for levels k > 1.

3. Properties of the BLOB scheme

In this section, we analyze the main properties of the BLOB scheme,
including its capability of generating/reproducing bivariate ex-
ponential polynomials or blob-like shapes, affine invariance, con-
vergence, and smoothness.

3.1. Generation and reproduction properties

Non-stationary subdivision schemes have become popular due to
their capability to reproduce conic sections or surfaces of revolution,
which appear very often in geometric modeling, isogeometric analysis,
or biomedical imaging.

Fig. 1. Stencils for vertex-point (a) and edge-point (b) rules of the
BLOB scheme in the regular regions of the mesh.
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3.1.1. Generation of exact ellipsoids from a regular triangular mesh with
poles
Proposition 3.1. In the submesh R ,(0) the BLOB subdivision scheme
generates exponential polynomials from the space EP ,(Γ ,Θ)1 with

= ∈ ≤ + ≤γ γ γ γΓ {( , ) : 0 1},1 1 2
2

1 2 = ± ± ± ±λ λ λ λΘ {(0, 0), ( , 0), (0, ), ( , )},
λ∈ (0, π) ∪ i(0, 2acosh(500)); that is,

± ± ± ± ± ± ± + ± −

± − ± −

x y x y x y

x y

span{1, , , e , e , e , e , e , e , e , e ,

e , e }.

λx λy λx λy λy λx λ x y λ x y

λ x y λ x y

( ) ( )

( ) ( )

(3.1)

In particular, it reproduces linear polynomials from the space
= x yΠ span{1, , }1

2 with respect to the parameterization ∈kT{ , },k( )

= = ∈{ }αT t ,α
αk k( ) ( )
2

2
k .

The proof of Proposition 3.1 is given in Appendix A. This gives the
BLOB scheme the ability to generate exact ellipsoids, starting from a
regular triangular mesh. To build an exact ellipsoid (Fig. 4(b)), we need
to apply the regular rules shown in Fig. 1 to the initial control mesh

= ∈αϕq t{ ( ), },α
(0) (0) 2 where ϕ also denotes an ellipsoid, and select

λ∈ (0, π) accordingly. Since we require the initial control mesh q(0) to
be regular (i.e., made of vertices of valence 6), we apply the refinement
process to an initial mesh described by the twenty-eight vertices of
coordinates

= =

=

− − − −

−

s t s t

s

q q

q

[( ) ] cos( )cos( ), [( ) ] cos( )sin( ),

[( ) ] sin( ),

i j i j i j i j

i j i

(0)
1 , 1 1

(0)
2 , 1 1

(0)
3 , 1

(3.2)

where 1≤ i≤ 4, 1≤ j≤ 7, = − +s m ,m
π π
2 3 =m 0, 1, 2, 3 and =t n ,n

π
3

=n 0, 1, 2, 3, 4, 5, 6. Since the sm and tn values are equally spaced with
step size ,π

3 we select =λ π
3 . Definition (3.2) implies that the vertices of

the first and last line of =q q q q(( ) , ( ) , ( ) )(0) (0)
1

(0)
2

(0)
3 are assumed to be

topologically identical, namely they have the same coordinates, to de-
fine the ellipsoid’s poles of coordinates −(0, 0, 1) and (0, 0, 1) (Fig. 3).
But, although the initial mesh contains only fourteen distinct points
(Fig. 4(a)), the subdivision rules are blind to the topological identifi-
cation. Thus, they are virtually applied to a mesh with twenty-eight
vertices. (While the vertices of the mesh in Fig. 4(a) are apparently of
valence 5, they actually have valence 6 due to the poles that are“-
multiple” vertices (Fig. 3(a)).

Remark 3.2. The poles are preserved during the subdivision process.

However, if the initial mesh is deformed, additional conditions are
required in order to keep the mesh closed and smooth at the poles.

3.1.2. Generation of blob-like shapes from a triangular mesh without poles
It is possible as well to consider only six vertices, thus applying the

extraordinary refinement rules of Fig. 2 to an octahedron. The corre-
sponding limit surface then takes an ellipsoidal shape. In Fig. 5(a) and
(b), we show the blob-like shapes obtained from the regular octahe-
drons in the first row. We used =λ π

2 to define v(k) as in (2.4). More-
over, if the BLOB scheme is applied to an arbitrary convex octahedron,
we can produce a rich collection of blob-like shapes, in particular, all
affine transformations of the approximate sphere (Fig. 5(c) and (d)).

Remark 3.3. The initial mesh can be non convex. The convexity is only
required to obtain a blob-like shape.

3.1.3. Comparison
The number of vertices of the triangular meshes obtained at each

subdivision step differs significantly when generating exact and ap-
proximate spheres. On one hand, the kth-level mesh obtained from the
initial 28-point regular mesh with poles by applying the regular re-
finement rules in Fig. 1 contains + +18·4 9·2 1k k vertices. On the other
hand, the number of vertices obtained by applying the extraordinary
refinement rules in Fig. 2 on an octahedron is only ++4 2k 1 . In Table 1,
we compare these two numbers for subdivision levels = …k 0, ,8. We
observe that the use of regular meshes to construct exact ellipsoids
requires more initial vertices than those that are effectively needed if
we allow the initial mesh to contain extraordinary vertices. As the
vertices will be the control points of the deformable model, we certainly
prefer to use the octahedron as initial mesh.

3.1.4. Comparison with Loop’s scheme
If we refine the regular octahedron using Loop’s subdivision

scheme [19], the shape that we obtain in the limit is more distant from
the unit sphere than if we use the proposed BLOB scheme. We denote by
C the center of gravity of the octahedron, which is the center of the
circumscribed sphere. We denote by f(k) the set of points, of cardinality

f# ,k( ) that define the subdivision mesh at the kth step. We say that a
subdivision scheme produces a better approximation of the unit sphere
if it defines a smaller error =

→∞
ɛ lim ɛ ,

k
k where

= − − −
= … = …

C Cɛ max f min f .k
i

i
k

i
i
k

f f1, , #

( )

1, , #

( )
k k( ) ( )

Fig. 2. Stencils for vertex-point and edge-point rules invol-
ving extraordinary vertices of valence 4.

A. Badoual et al. Graphical Models 94 (2017) 38–51

41



It turns out that the error 0.01 obtained for the BLOB scheme is almost
eight times smaller than the error 0.08 produced by Loop’s scheme
(Fig. 6).

If we insist in letting Loop’s scheme match the quality of the BLOB
scheme, then we need to consider a starting mesh with many more
vertices than the octahedron. Precisely, we need to consider an initial
mesh defined by 258 vertices (Fig. 7).

This suggests that the BLOB scheme will be more accurate when
delineating spherical shapes with a small number of initial vertices
(Fig. 9(b)). As more control points are included, the two schemes will
produce outcomes of equivalent quality.

3.2. Affine invariance

The property of affine invariance means that the geometry of the
limit surface produced by the subdivision scheme changes in synchrony
with any affine transformation that would be applied to the initial
mesh. When applied on R ,(0) the affine invariance of the BLOB scheme
follows from the capability of reproducing Π ,1

2 as stated in
Proposition 3.1 [1,4]. Near extraordinary vertices, affine invariance is
also achieved since the entries in each row of the matrix S͠k defined
in (2.6) sum up to 1 [1,23].

3.3. Convergence and smoothness

Convergence and smoothness of the BLOB scheme in the neigh-
borhood of a regular and extraordinary vertex are investigated by
means of the theoretical results proposed in [3,5].

3.3.1. Analysis in regular regions of the mesh
Proposition 3.4. The BLOB scheme converges to C4 limit surfaces when
applied to regular triangular meshes.

The proof of Proposition 3.4 is given in Appendix B.

3.3.2. Analysis in the vicinity of extraordinary vertices
To study convergence and smoothness of the BLOB scheme in the

vicinity of an extraordinary vertex of valence 4, we apply the theore-
tical results in [5]. More precisely, we prove Proposition 3.5
in Appendix C.

Proposition 3.5. When applied to triangular meshes with extraordinary
vertices of valence 4, the BLOB scheme converges to limit surfaces that are
G1-continuous at the limit points of the extraordinary vertices.

4. Deformable models for biomedical images

The BLOB scheme can be exploited to efficiently construct a de-
formable model with sphere-like topology. The surface σ of the de-
formable model is defined by M→+∞lim ,k

k( ) with M k( ) in (2.1),
S = … −n k{ , 0, , 1}n the subdivision operators of the BLOB scheme and
M (0) the (possibly refined) octahedron (Fig. 8).

Remark 4.1. For the implementation of the deformable model, we
select a suitable resolution level kf > 0 and use the kf-level meshM k( )f

as a discretization of the surface σ. The meshM k( )f is obtained by (2.1)
after the application of kf subdivision operators.

The generated surface is then iteratively deformed until the
boundary of the object is reached. We denote the vertices f(0) ofM (0) as
the control points of σ. The shape of σ is entirely encoded by these
points. To attract σ towards the surface of interest in the image, we
locally adjust the control points f(0). This is done either manually or
automatically by minimizing the energy functional

E = −∯ σg·d ,σ σ

where ∇g is the image gradient and dσ is the vector differential of the
area. This functional consists in an image energy that is based on gra-
dient information contained in the data [14,16,17,28]. We use a Po-
well-like line-search method [24] to find the optimum

E=f arg min σfopt
(0)

(0) . The optimizer proceeds as follows: For each con-
trol point, a direction is chosen depending on the partial derivatives of

Fig. 3. 3D triangular mesh defined by twenty-eight vertices.

Fig. 4. Generation of an exact ellipsoid (b) starting from a regular
triangular mesh with twenty-eight vertices, of which only fourteen are
distinct (a).
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the energy. Then, the control point is displaced along the selected di-
rection to minimize the energy. The process is repeated until con-
vergence. The use of few control points accelerates the optimization,
while the ability of the model to approximate complex shapes improves
as the number of control points increases. Thus, a tradeoff has to be
made between accuracy and fast optimization. The image gradient ∇g is
precomputed, which accelerates the segmentation process and de-
creases the memory requirements.

In the following, we first show the advantage of describing the
surface σ by means of the BLOB scheme instead of Loop’s scheme. Then,
we illustrate the use of this deformable model through several biome-
dical applications. The experiments were carried out on a 1.7 GHZ
processor with 8GB RAM. We used the fine-resolution meshM (4) for the
discretization of σ.

Fig. 5. Initial triangular meshes (first row) and corresponding limit surfaces (second row) obtained by the BLOB scheme with extraordinary rules.

Table 1
Number of vertices of the kth-level meshes.

Level Vertices of the Vertices of the
k subdivided regular subdivided

mesh with poles octahedron

0 28 6
1 91 18
2 325 66
3 1225 258
4 4753 1026
5 18721 4098
6 74305 16386
7 296065 65538
8 1181953 262146

Fig. 6. Approximation of the unit sphere obtained with (b) the BLOB scheme and (c) Loop’s scheme when using the regular octahedron (a) as initial mesh.

Fig. 7. Approximation of the unit sphere obtained with (b) the BLOB scheme and (c) Loop’s scheme when applied to an initial mesh consisting of 258 vertices (a).
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4.1. Comparison with Loop’s scheme

We saw in Section 3.1.4 that the improvement of BLOB over Loop’s
scheme lies in the fact that it better approximates the sphere starting
from an initial mesh with few vertices. Both schemes cannot be dis-
tinguished when the initial mesh has 258 vertices. The goal of this
section is to compare the accuracy of the deformable model for the
delineation of structures with a spherical shape when 1) we describe the
surface by either scheme; 2) we vary the number of control points. We
carried out an experiment in which, for each scheme, we delineated a
spherical nucleus (Fig. 9(a)) using 6 control points. We used the Jaccard
index to measure the overlap between the deformed mesh and the
ground truth. For two sets A and B, it is defined as = ∩

∪J A B
A B . Clearly,

0≤ J≤ 1, and the maximum overlap is described by =J 1. The results

and corresponding Jaccard indices are shown in Fig. 9(b). We repeated
the experiment with 258 control points. However, the resulting meshes
were poor (Fig. 9(c)). As the control points were too dense compared to
the size of the object, the optimization algorithm failed to reach an
acceptable local optimum. This lead to a bad distribution of the ver-
tices. Hence, for small structures with a sphere-like topology, we have a
more robust and accurate deformable model when using the BLOB
scheme with few control points.

4.2. Biological images

4.2.1. Characterization of a nucleus
After having delineated a nucleus, we get direct access to properties

such as symmetry, mean intensity, and curvature. In Fig. 10, we report
the result of the automatical delineation of the nucleus of the neuron of

Fig. 8. First row: initial meshM (0) . Second row: fourth-level discretization of the surface σ (red mesh) and its control points (blue dots). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Delineations of a spherical nucleus (a) when the surface was described by either scheme. We used 6 (b) and 258 (c) control points.

Fig. 10. Characterization of the nucleus of a neuron in 3D microscopic images. Red mesh: fourth-level discretization of the surface σ. Blue dots: control points. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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a rat in 3D microscopic images [7]. The shape of the nucleus has many
details (concavities); hence, as starting mesh M ,(0) we used a refined
octahedron with 66 control points (Fig. 8(c)). The delineation was
executed in 20 s. The initialization of the deformable model is shown in
Fig. 10(a) and the outcome is illustrated in Fig. 10(b).

4.3. Medical images

4.3.1. Characterization of the total intracranial volume
The total intracranial volume (TIV) is an important measure for

volumetric analyses of the brain [20]. It is used in medicine to detect
temporal morphological changes related to neurological diseases [26].
However, TIV algorithms are challenging because the brain contains
many concavities such as the convoluted areas around the temporal
lobe and cerebellum. In a 3D MRI scan, we performed the automatic
delineation of the TIV of a human brain using the initial mesh shown in
Fig. 8(d). The average time for the computation was less than 75 s. The
initialization is given in Fig. 11(a). The result is illustrated in Fig. 11(b).

4.3.2. User-interactive modeling
We finally illustrate how a surface can be manually modified to

design a shape of interest, starting from an approximate sphere.1 Dif-
ferent steps of the modeling of a bone structure are shown in Fig. 12.

5. Conclusion

We have proposed an affine-invariant non-stationary subdivision
scheme, called the BLOB scheme, capable of producing G1-continuous
blob-like surfaces. The refinement process is started from a convex
octahedron. The choice of this octahedron as starting mesh is motivated
by two facts. First, since we are interested in blob-like structures, it is
natural to consider control meshes with sphere-like topology. Second,
to reduce the complexity of the deformable model, it is appropriate to
use as few control points as possible. The benefits provided by the new
subdivision scheme in the field of biomedical imaging are related to its
efficiency to characterize 3D biomedical structures with sphere-like
topology.
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Appendix A. Proof of Proposition 3.1

Let = − ∈ ∪λ λ λ πΛ {(0, , ) : (0, ) i(0, 2acosh(500))},λ = ×Θ Λ Λ ,λ λ and = ∈ ≤ + ≤γ γ γ γΓ {( , ) : 0 1}1 1 2
2

1 2 . We consider the space of exponential
polynomials EP(Γ ,Θ)1 in (3.1) and the set

Fig. 11. TIV delineation in a 3D MRI volume. Red mesh: fourth-level discretization of the surface σ; Blue dots: control points. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 12. Deformation of the sphere by user interaction. Blue dots: control points for user interaction. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

1 A video that illustrates the modeling of a bone is available at http://bigwww.epfl.ch/demo/subdivision-surfaces/.
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In the submesh R ,(0) the BLOB-subdivision scheme generates exponential polynomials from the space EP ,(Γ ,Θ)1 if

V = ∀ ∈ ∈ ∀ ∈D a ν ν ν ν γ γ k* ( , ) 0, ( , ) , ( , ) Γ , ,γ γ k
k

( , ) ( )
1 2 1 2 ,Θ 1 2 11 2 (A.1)

where = ∂
∂

∂
∂

D γ γ
z z

( , ) γ
γ

γ
γ1 2

1

1
1

2

2
2 is the directional derivative of the symbol along (γ1, γ2) [4, Proposition 4.2]. The kth-level symbol a z z* ( , )k( )

1 2 given in (2.5)

is such that condition (A.1) is satisfied. Hence, the BLOB scheme generates EP(Γ ,Θ)1 .
In the submesh R ,(0) the BLOB scheme reproduces = x yΠ span{1, , }1

2 if it is EP(Γ ,0)1 -generating and if its kth-level symbol satisfies [4,
Theorem 4.4]

= = = ∀ ∈a D a D a k* (1, 1) 4, * (1, 1) 0, * (1, 1) 0, .k k k( ) (1,0) ( ) (0,1) ( ) (A.2)

As the scheme is EP(Γ ,Θ)1 -generating, it is in particular EP(Γ ,0)1 -generating. Using (2.5), we see that (A.2) is also satisfied. Thus, the BLOB scheme

reproduces Π1
2 with respect to the parameterization ∈kT{ , },k( ) = = ∈{ }αT t ,α

αk k( ) ( )
2

2
k .

Appendix B. Proof of Proposition 3.4

We first need to recall [3, Definition 3] and [6, Definition 7].

Definition B.1. [3, Definition 3] Let Z = − − − −{( 1, 1), (1, 1), ( 1, 1)} and let D γ γ( , )1 2 be the directional derivative along (γ1, γ2). A non-stationary,
bivariate subdivision schemeS identified by the sequence of symbols ∈za k{ * ( ), },k( ) ∈ ∖z ( {0}) ,2 is said to satisfy the approximate sum rules of
order +r 1, ∈r , if the sequences ∈μ k{ , }k and ∈δ k{ , },k with

Z
= − =

≤ + ≤ ∈
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Definition B.2. [6, Definition 7] A stationary subdivision schemeS and a non-stationary oneS are termed asymptotically similar if the sequences
{a} and ∈ka{ , }k( ) of subdivision masks have the same support J ( i.e. , = =a a 0α α

k( ) for all J∉α ) and satisfy J= ∀ ∈→+∞ αlim a a , .α αk
k( )

To prove that the BLOB scheme converges to C4 limit surfaces when applied to regular triangular meshes, we have to show that it is asymp-
totically similar to a stationary, convergent, bivariate subdivision scheme whose basic limit function is C4 [3, Corollary 4] and that it satisfies the
approximate sum rules of order 5. The proof of this first result is based on Proposition B.3.

Proposition B.3. The stationary counterpart of the BLOB scheme converges to C4 limit surfaces when applied to regular triangular meshes.

Proof.We derive the stationary counterpart of the BLOB scheme by computing the limit of its local rules when → +∞k . Since =→+∞vlim 1k
k( ) for all

λ∈ [0, π) ∪ i(0, 2acosh(500)), it follows that the stationary counterpart of the BLOB scheme applied on R (0) is identified by the mask
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The associated symbol is

= = + + +
→+∞

a z z a z z
z z

z z z z* ( , ) lim * ( , ) 1
128

( 1) ( 1) ( 1) .
k

k
1 2

( )
1 2
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3
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3 1

3
2

3
1 2

3

(B.2)

The result of Proposition B.3 follows by observing that the Laurent polynomial a*(z1, z2) in (B.2) is the symbol of the C4 and Π5
2-generating

subdivision scheme proposed in [13, Example 5, case 3]. □

In light of Proposition B.3, the BLOB scheme is asymptotically similar to the C4 stationary subdivision scheme with symbol a*(z1, z2) in (B.2). It is
therefore left to prove that the BLOB scheme satisfies approximate sum rules of order 5. Indeed, since =μ 0,k the sum∑ =

∞ μk k0 is trivially convergent.
We thus only need to show that
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From Proposition 3.1, we already know that the BLOB scheme generates the space EP(Γ ,Θ)1 defined by (3.1). This means that its kth-level symbol
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Thus, recalling the definition of v(k) in (2.4), and letting c be some positive constant, we exploit the fact that
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Hence, the BLOB scheme satisfies approximate sum rules of order 5. We can thus conclude that the BLOB scheme is C4-convergent (it converges to C4

limit surfaces) when applied to regular triangular meshes.

Appendix C. Proof of Proposition 3.5

To prove that the BLOB scheme is convergent and produces G1-continuous surfaces at the limit points of extraordinary vertices of valence 4, we
need to prove that the BLOB scheme and its stationary counterpart satisfy the assumptions of Theorem C.1.

Theorem C.1. [5, Theorems 4.6 and 4.8] Let E (0) denote the neighborhood of an extraordinary element of valence n. LetS be a non-stationary subdivision
scheme whose action inE (0) is described by the matrix sequence S{ }͠ k and letS be a stationary subdivision scheme that in E (0) is identified by S{ }͠ . Moreover,
let Sk and S be the block-circulant matrices possessing the same eigenvalues as S͠k and S͠ and, in case the extraordinary element is an extraordinary vertex,
−n( 1) additional null eigenvalues. Assume that

(i) S is C1-convergent in R (0) with symbol a*(z) containing the factor + +z z(1 )(1 ),1 2 and G1-convergent in E (0);
(ii) S is defined in R (0) by the symbols za{ * ( )}k( ) where each za* ( )k( ) contains the factor + +z z(1 )(1 )1 2 ;
(iii) S is asymptotically equivalent of order 1 to S in R (0) ;
(iv) inE ,(0) the matrices Sk and S satisfy C∥ − ≤∞S S ,k σk whereC is some finite positive constant and > >σ 1λ

1
1

with ∈ +λ1 the subdominant eigenvalue of
S which is double and non-defective.

Then, for all bounded initial data, the non-stationary subdivision schemeS is convergent in E (0) and produces a tangent-plane continuous surface at the
limit points of extraordinary elements.
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Fig. C.13. Left: control net c of the characteristic map of
the stationary counterpart of the BLOB scheme for ex-
traordinary vertices of valence 4. Right: control points
defining the first segment of the characteristic map (only
the subscripts of the control points are shown). The solid
green area corresponds to the first segment that con-
stitutes the ring of regular patches defined around the
extraordinary vertex. The two red lines delimiting this
area identify the directions e1 and e3. (For interpretation
of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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A gist of the proof of Theorem C.1 is given in Appendix D. We start by considering Assumption (i). We already know that the stationary
counterpart S of the BLOB scheme is C1-convergent in R (0) with symbol a*(z) and that it contains the factor + +z z(1 )(1 )1 2 (see Proposition B.3
and (B.2)). To prove that S is G1-convergent in E ,(0) we exploit Theorem C.2.

Theorem C.2. [29, Theorem 3.1] LetS be a stationary subdivision scheme identified by the block-circulant matrix S{ }͠ and let … −λ λ, , N0 1 be its eigenvalues
with ≥ ≥ ⋯≥ −λ λ λN0 1 1 . Let the subdominant eigenvalue λ1 be real with geometric multiplicity 2. If =λ λ ,1 2 = > >λ λ λ1 ,0 1 3 and moreover, the
characteristic map of S is regular and injective, then the limiting surface is C1-continuous for almost all initial control meshes.

To apply [29, Theorem 3.1], we need to construct the subdivision matrix S,͠ study its eigenvalues and the associated characteristic map. Using the
fact that =

→+∞
vlim 1

k
k( ) for all λ∈ [0, π) ∪ i(0, 2acosh(500)), it follows that S͠ is given by
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Before transforming S͠ into the block-circulant matrix
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4

that has the same eigenvalues as S͠ plus three null eigenvalues, we first extend the blocks Mj, as well as the vectors r and s, from size 3 to 15. This is
actually needed to properly define the characteristic map ofS . In fact, due to the support of the basic limit function ofS which, inR ,(0) coincides
with the C4 bivariate three-directional box-spline defined by the set {e1, e1, e1, e2, e2, e2, e3, e3, e3} with =e (1, 0) ,T

1 =e (0, 1) ,T
2 =e (1, 1) ,T

3 the
submesh E (0) must be extended to a 5-ring neighborhood of the extraordinary vertex in order to define a full ring of regular patches around it
(Fig. C.13).

There follows that S has size (64× 64), =λ 10 is its unique dominant eigenvalue with corresponding eigenvector 1, =λ 0.37761 is the sub-
dominant eigenvalue with algebraic and geometric multiplicity 2, and =λ 0.22013 . Hence, the conditions =λ λ1 2 and = > >λ λ λ10 1 3 of [29,
Theorem 3.1] are verified.

To define the characteristic map ofS , we extract from S the two eigenvectors that correspond to the subdominant eigenvalue. They are real and
linearly independent. Their entries define the 2D coordinates of the control net c of the characteristic map, which is depicted in Fig. C.13 (left). Then,
once c is computed, the characteristic map is simply defined as the limit surface obtained by c using the subdivision scheme S .

For such a symmetric subdivision scheme, the characteristic map is made up of 4 rotationally symmetric segments. A segment is defined by a
subsetX of the 2D control points of c. ForS , the setX that defines the first segment of the characteristic map, normalized such that it is symmetric
with respect to the 1-axis (Fig. C.13 (right)), is given by

X =
−

−
−

−
−

−
−

−
−

c
c
c

c
c

c
c
c
c

c
c

c
c
c
c
c

c
c

c
c
c
c
c
c

c
c

c
c
c
c
c
c

c

c
c
c
c
c
c

.

0,2

0,1

0,0

0, 1

0, 2

1,3

1,2

1,1

1,0

1, 1

1, 2

2,4

2,3

2,2

2,1

2,0

2, 1

2, 2

3,5

3,4

3,3

3,2

3,1

3,0

3, 1

3, 2

4,5

4,4

4,3

4,2

4,1

4,0

4, 1

5,5

5,4

5,3

5,2

5,1

5,0

(C.2)

Now, we denote by

∇ = − =+q q q n, 1, 2, 3α α αn
k k k

e
( ) ( ) ( )

n (C.3)

the directional difference ∇n of the points q ,α
k( ) ∈α 2. To prove that the characteristic map of S is regular and injective, we state Theorem C.3.

Theorem C.3. [30, Theorem 1] LetX be the control net that defines the first segment of the characteristic map and letCn denote the cone of length Cn defined
by

C
X X

⎡
⎣

⎤
⎦

= ∠ ∇ − ∠ ∇ − =
∈ ∈

ninf ( c , 1 axis), sup ( c , 1 axis) , 1, 2, 3.n n ni i
c ci i

For a symmetric subdivision scheme, the characteristic map is regular and injective if

- the divided ∇1- and ∇3-difference schemes are scalar and use only convex combinations;
- none of the ∇1- and ∇3-differences of X vanish; and
- the cones C1 and C3 satisfy the conditions
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C C C C∪ < ∩ = ∅π and .1 3 1 3

Since, inR ,(0) the stationary counterpart of the BLOB scheme has the subdivision symbol in (B.2) and converges to C4 limit surfaces, we can easily
observe that, for all =n 1, 2, 3, there exists a scalar subdivision scheme using only convex combinations that maps the divided ∇n-differences of level
k, defined by (C.3), into the divided ∇n-differences of level +k 1. Moreover, since the points ofX in (C.2) are pairwise distinct, it is immediate to see
that none of the ∇1- and ∇3-differences ofX vanishes. Finally, it is not difficult to see that the first coordinates of the points ofX in (C.2) increase in
the direction e1 while the second coordinates decrease in the direction e1 and increase in direction e2. Thus, the first coordinates of the ∇1-
differences and the second coordinates of the ∇2-differences are positive, while the second coordinates of the ∇1-differences are negative. This yields
for the cones C ,1 C ,2 and C ,3 that C ⊆ −π( /2, 0),1 C ⊆ π(0, ),2 and C ⊆ π(0, /2)3 . It follows that

C C C C∪ < ∩ = ∅π and .1 3 1 3

Hence, we conclude that the characteristic map of the stationary BLOB scheme is regular and injective. Then, in light of [29, Theorem 3.1], the
stationary counterpart of the BLOB scheme is C1-convergent in the neighborhood of extraordinary vertices of valence 4 and, therefore, G1-con-
vergent, too.

To apply [5, Theorem 4.8], we need to prove that all remaining assumptions are satisfied. Assumption (ii) is trivially satisfied because of (2.5).
Assumptions (iii) and (iv) compare the behavior of the BLOB scheme with that of its stationary counterpart. The comparison focuses on the
neighborhood of regular and extraordinary vertices, separately. In the neighborhood of regular vertices, the comparison consists in showing that the
subdivision masks a(k) and a in (2.3) and (B.1), respectively, are asymptotically equivalent of order 1 so that they satisfy the property in
Definition C.4.

Definition C.4. [5, Definition 3.2.] The stationary subdivision schemeS and the non-stationary schemeS are termed asymptotically equivalent of
order 1 if the sequences {a} and ∈ka{ , }k( ) of subdivision masks satisfy



∑ ∑⎧
⎨
⎩

− ∈
⎫
⎬
⎭
< +∞

=

+∞

∈
− − α2 max a a : {(0, 0), (0, 1), (1, 0), (1, 1)} .

β
α β α β

k

k k

0
2

( )
2

2

Exploiting the identities

= − + ∈− − − −λ λ λ ξ ξ λcos(2 ) 1
2

2
24

2 cos( ), (0, 2 ),k k k k
2

2
4

4

= − + ∈− − − −λ λ λ ξ ξ λcos (2 ) 1 2
3

2 cos(2 ), (0, 2 ),͠ ͠k k k k2 2 2
4

4

and

= + + ∈− − − −λ λ λ η η λcosh(2 ) 1 2
24

2 cosh( ), (0, 2 ),k k k k2 2
4

4

= + + ∈− − − −λ λ λ η η λcosh (2 ) 1 2 2
3

2 cosh(2 ), (0, 2 ),͠ ͠k k k k2 2 2
4

4

given by the Lagrange form of the remainder of the Taylor expansion, we get the bounds

A B C

D E F

− ≤ − ≤ − ≤
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(C.4)

with A B C D E F, , , , , finite positive constants independent of k. Thus, we can write that

A B C D E F



∑⎧
⎨
⎩

− ∈
⎫
⎬
⎭

= ⎧
⎨⎩

− + − − + − + − + − ⎫
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≤ + + + +

∈
− − α

a b c d e f

max a a : {(0, 0), (0, 1), (1, 0), (1, 1)}

max 7
16
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128

2 39
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1
4

max{ 6 , 4 2 2 2 },
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α β α β
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k k k k k k
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2

so that

A B C D E F


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⎫
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As a consequence, Assumption (iii) is satisfied.
We now focus on the neighborhood of extraordinary vertices. After transforming S͠k into the block circulant matrix
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⎟
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= …jS circ B B B B B
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0 1
( )

1 2
( )

2 3
( )
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Each norm on the right-hand side can be explicitly computed and shown to satisfy the upper bounds
M∥ − ∥ ≤∞B B ,j

k
j

( )
4

j
k = …j 0, ,3 withMj finite

positive constants independent of k, in view of the inequalities (C.4).
Hence M∥ − ≤∞S S ,k 4k with M M M M M= + + +0 1 2 3 a finite positive constant independent of k. Observing that =λ 0.37761 has algebraic and

geometric multiplicity 2 and satisfies > >4 1,λ
1
1

we can conclude that Assumption (iv) is satisfied for =σ 4.
It follows that all the assumptions of Theorem C.1 are verified. Thus, the non-stationary BLOB scheme is convergent at extraordinary vertices and

the limit surfaces obtained by such a scheme are G1-continuous at the limit points of extraordinary vertices.

Appendix D. Gist of the Proof of Theorem C.1

Let us start by defining some notation and vocabulary. Since we deal with triangular meshes, we denote by Ωk, ∈k the subdomain of 2 defined
by

= ∈ ≥ ≤ + ≤− −u v u v u vΩ {( , ) , 0 and 2 2 }.k
k k2 1

Moreover, since we focus our analysis around an isolated extraordinary vertex of valence n, we consider the local domain consisting of n copies of Ωk,
briefly denoted by ×Ωk n with   = nn . During the refinement process, the subdivision scheme S generates a sequence of regular rings

∈kr{ , },k where the kth regular ring  × →r : Ωk k n
3 can be expressed in terms of a control point vector dk and the associated basic limit function

vector Φk.
The gist of the proof is based on the following mathematical pipeline:

• To prove convergence of S , we have to show that, for all bounded initial vectors d0 (containing the vertices of E (0)), there exists a limit point
∈rc

3 such that  − =
→+∞ ∈ × ∞u vr rlim sup ( , ) 0

k u v k c( , ) Ωk n .

• Then, ifS converges, = ⋃ ∪∈r r r{ }k k c is a surface without gap; i.e., r is a surface that is continuous at all points including rc (which is in fact r(0,
0)).

• Finally, to prove that the limit surface r is G1-continuous at rc, we have to show that the sequence of normal vectors

 = ∈ × ∈∂ ∧ ∂
∂ ∧ ∂{ }u v u v kn ( , ) , ( , ) Ω ,k

u v u v
u v u v k n

r r
r r

( , ) ( , )
( , ) ( , )

u k v k
u k v k 2

converges uniformly to the normal vector n(rc) defined at the limit point rc, i.e.,

 − =
→+∞ ∈ × ∞u vn n rlim sup ( , ) ( ) 0

k u v k c( , ) Ωk n .

To obtain the existence of the limit point rc, we first study the behavior of ∈Φ u v k{ ( , ), }k and ∈kd{ , }k when → +∞k .
We start by considering Assumptions (ii), (iii) and the fact thatS is C1-convergent inR (0) with a symbol that contains the factor + +z z(1 )(1 )1 2

(i.e., first part of Assumption (i)). These assumptions allow us to claim that S is C1-convergent in R ,(0) that the sequence of basic limit function
vectors ∈Φ k{ , }k converges uniformly to the basic limit function vector Φ of S when → +∞k , and that the sequence ∂ ∈Φ k{ , }u k (resp.

∂ ∈Φ k{ , }v k ) converges uniformly to ∂ Φu (resp. ∂ Φv ) when → +∞k . We call this Result (A).
The control point vector dk is linked to the initial control point vector d0 by the relation

= = ⋯ ∈− − kd S d S S S S Swith , *,k
k k

k k
( )

0
( )

1 2 1 0

where Sj, = … −j k0, , 1, is the jth block-circulant matrix defining S in E (0). Hence, to study the behavior of dk as → +∞k , we write the product
matrix S(k) in terms of the stationary matrix S. It follows that

= +d S d y ,k
k

k0 (D.1)

where yk is the corresponding residual term. Assuming convergence of S in E (0) (which is implied by the second part of Assumption (i)), for k
sufficiently large, we get

= + O λS d x q ( )k T k
0 0 0 1 (D.2)

with =q x d͠T T
0 0 0. The symbols x͠T

0 and x0 denote respectively the left and right eigenvector of S associated with its unique dominant eigenvalue =λ 1,0
while ∈ +λ1 is the subdominant eigenvalue of S which is assumed to be double and non-defective. Moreover under Assumption (iv), we are able to
show that, when k is large enough, we have

= + ⎛
⎝

⎞
⎠

β O
σ

y x 1 ,k
T

k0 0 (D.3)

for = →+∞β y(lim )k k
T x

x0
0

0 2
2 . Using (D.1), (D.2) and (D.3), we have that

= +
→+∞

βd x qlim ( ) .
k

k
T

0 0 0 (D.4)

Combining the result in (D.4) with Result (A), we then are able to prove the existence of the limit point rc, which is exactly = + βr qc 0 0. Hence,
S is convergent in E (0).

We now want to prove that the limit surface r is G1-continuous at rc. In light of the G1-convergence ofS in E (0) ( i.e., considering exactly the
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second part of Assumption (i)), we know that, for k sufficiently large,

= + + +S λ o λd x q x q x q( ( ) ( ) ) ( ),k T k T T k
0 0 0 1 1

0
1
0

1
1

1
1

1

where q1
0 and q1

1 are vectors in  ,3 while x1
0 and x1

1 are the two linearly independent eigenvectors associated to λ1. Thus, using the resulting asymptotic
expansion

= + + + +β θλd x q x q x q( ) ( ( ) ( ) ) ,k
T T k T T

k0 0 0 1 1
0

1
0

1
1

1
1 (D.5)

where θk is a vector with all its entries behaving as + ( )o λ O( ) ,k
σ1
1
k we are able to show that, for k sufficiently large,
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2

Hence, in light of Result (A) and of the fact that

⎜ ⎟= ⎛

⎝
⎜

⎛

⎝

∂ ∂
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⎞

⎠
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x x
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( ) sign det

(0, 0) (0, 0)
(0, 0) (0, 0)
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,c

u
T
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T T
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1
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1
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we obtain that  − =→+∞ ∈ × ∞u vn n rlim sup ( , ) ( ) 0.k u v k c( , ) Ωk n This proves that the limit surface r is G1-continuous at =r r(0, 0),c which ends the
proof.
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