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École polytechnique fédérale de Lausanne—2019

Cover design by Annette Unser
Printing and binding by Repro-EPFL
Typeset with LATEX
Copyright c© 2019 by Anäıs Badoual
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Abstract

Ongoing advances in imaging techniques create new demands regarding the analysis
of images in medicine and biology. Image segmentation is a key step of many image
analysis pipelines and its proper execution is a particularly challenging task. This
thesis is dedicated to the development of segmentation algorithms for biomedical
structures in 2D and 3D images. In this work, we aim to improve upon classical
parametric active contours/surfaces, whose limitations we address.

This thesis is organized in three parts. First, we introduce two representa-
tion models. They adapt their resolution to the level of detail of the object to
be segmented. We then focus on the formulation of cost functions, called ener-
gies, that guide the curve/surface toward the boundary of the target in the image.
Among others, we present novel energies based on ridge and texture information.
Finally, with these two ingredients in hand, we design new semi-automated active
contours/surfaces, also called snakes, for various applications. Our methods are
generic enough to be used with a broad variety of data. In particular, we illus-
trate their performance in segmenting real biomedical images. In addition to those
three parts, we provide mathematical tools for signal processing that we designed
to efficiently process periodic functions.

To find the optimal curve/surface that best fits a given target, we adopt through-
out the thesis a subdivide and conquer strategy. First, we look at several smoothed
versions of the original image and, for each, adapt the resolution of the snake
curve/surface to the level of detail of the target (i.e., subdivide). Then, we seg-
ment the object of interest at each resolution recursively, from the coarsest to the
finest image (i.e., conquer). This robust subdivide and conquer strategy exploits
the multiresolution property of our curve/surface representations, as well as char-
acteristics of smoothed images (few details and low noise).
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Finally, we give a special attention to the conversion of our algorithms into
usable software that respect the open-source, user-friendly and reproducibility cri-
teria.

Keywords: Biomedical image analysis, segmentation, active contours, active sur-
faces, geometric representation, parametrization, local refinement, subdivision, mul-
tiresolution, energy, ridge, texture, usable software, splines, inner product.



Résumé

Les nouvelles techniques d’imagerie ont donné naissance à de nouvelles exigences
concernant l’analyse d’images biomédicales. La segmentation constitue une étape
clé de l’analyse d’images dont la bonne exécution est une tâche particulièrement ar-
due. Cette thèse se consacre au développement d’algorithmes pour la segmentation
de structures biomédicales dans des images 2D et 3D. A travers ce travail, nous as-
pirons notamment à améliorer les méthodes dîtes classiques de modèles déformables
paramétriques, en identifiant leurs limitations.

Cette thèse est organisée en trois parties. Dans un premier temps, nous in-
troduisons deux modèles de représentation qui adaptent leur résolution au niveau
de détail de l’objet à segmenter. Ensuite, nous formulons des fonctions de coût,
appelées énergies, qui permettent de guider nos courbes/surfaces vers le pourtour
des objets d’intérêt dans des images. Entre autres, nous présentons de nouvelles
énergies basées sur la détection de texture et de lignes de crêtes. Enfin, avec ces
deux éléments en main, nous concevons de nouveaux modèles déformables semi-
automatisés, également appelés snakes. Nos approches sont suffisamment générales
pour être utilisées avec de nombreux types de données. En particulier, nous illus-
trons leurs performances pour la segmentation d’images biomédicales réelles. En
plus de ces trois parties, nous fournissons des outils mathématiques de traitement
du signal, conçus pour traiter efficacement des fonctions périodiques.

Pour trouver la courbe/surface qui délimite au mieux le pourtour de l’objet
d’intérêt, nous adoptons tout au long de cette thèse une stratégie qui consiste à
subdiviser pour régner. Tout d’abord, nous réalisons plusieurs versions lissées de
l’image originale. Pour chacune d’elles, nous adaptons la résolution du snake au
niveau de détail de l’objet à segmenter (i.e., subdiviser). Ensuite, nous segmentons
récursivement l’objet d’intérêt à chaque niveau de résolution, en allant de l’image
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la plus grossière à la plus fine (i.e., régner). Cette stratégie est robuste et exploite
la propriété de multirésolution de nos représentations, ainsi que les caractéristiques
des images lissées qui contiennent peu de détails et sont peu bruitées.

Enfin, nous portons une attention toute particulière à convertir nos algorithmes
en logiciels qui soient libres d’accès, faciles d’utilisation et reproductibles.

Mots clefs : Analyse d’images biomédicales, segmentation, contours actifs, surfaces
actives, représentation géométrique, paramétrisation, raffinement local, subdivision,
multirésolution, énergie, ligne de crête, texture, logiciels utilisateur, splines, produit
scalaire.



Nothing great is achieved without chimeras.
– Ernest Renan
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Chapter 1

Introduction

1.1 Context

Image analysis is usually understood as the extraction of meaningful information
or measurements from images. It typically consists of three main steps: Feature
extraction, segmentation to locate object boundaries, and meaningful description
through statistical metrics and interpretation (e.g., classification or recognition)
(Figure 1.1).

In this thesis, the focus is on the development and use of novel segmentation
algorithms for biomedical image analysis. Moreover, we give a special attention to
convert these algorithms to friendly and usable software.

Final shape

Feature Extraction 
Edge 
Ridge 

Texture 
…

Segmentation

Interpretation 
Statistical shape analysis 

Classification 
Tracking 

…

Figure 1.1: Image analysis workflow.
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2 Introduction

1.1.1 Biomedical Image Analysis

In the biomedical field, the characterization of the spatial and temporal organization
of a structure is an ever growing need [1–4]. Various advances in imaging techniques
have made this possible by improving spatial resolution and speed of acquisition,
which has led to improved temporal resolution as well. Such progresses do not
come without additional difficulties though: the size, number and complexity of
recorded data are constantly increasing. Typically, to study an in vivo development
of cells (time-lapse), one needs to process and analyze hundreds of images containing
hundreds of cells each.

The human analysis and processing of such large amounts of multidimensional
data is time consuming. Moreover, there is important variability among exper-
imenters, as well as within the realizations of a single experimenter. This has
promoted the development of computerized image analysis tools that 1) consider-
ably decrease processing time; 2) bring robustness and reproducibility to an extent
that is not achievable by humans.

Coined bioimage informatics [5,6], this emerging field has worked towards devel-
oping new algorithms for the image analysis workflow, and making them accessible
to the whole community. Many open source bioimage analysis tools have thus
been developed [7,8], such as ImageJ [9], Fiji [10], Icy [11], CellProfiler [12,13] and
Ilastik [14] for the biologists, and 3DSlicer [15], MIA [16] and GIMIAS [17] for the
medical world.

Recently, the emergence of deep learning techniques [18] (a.k.a. neural networks)
has drastically transformed the field of bioimage informatics and its quest for more
accurate and faster diagnostics. Deep learning-based approaches have for example
been used in medical imaging to detect skin [19] and brain [20] cancers. Successful
use of these learning-based techniques in various biomedical imaging problems are
found on a regular basis [21,22] and the trend is likely to continue.

1.1.2 Segmentation

Image segmentation is a key step of many image analysis pipelines (Figure 1.1).
The goal of segmentation is to partition an image into different regions, such that
pixels in each region have similar properties. In other words, segmentation separates
a desired object of interest from its background. This usually consists in finding
the boundaries or the homogeneous region of the target. In biomedical imaging,
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the objects of interest are typically cells or anatomical structures (e.g., vessels and
organs).

The conceptual interest of segmentation is that it aims for a high-level descrip-
tion of an object in an image (e.g., a shape) rather than focusing on individual
pixels. Segmentation is thus tasked with changing the representation of an image
into something that is more meaningful to analyze. The best apparatus to detect
and extract high level information from an image is the visual cortex [23]. For this
reason, many segmentation methods such as edge or ridge detectors and neural
networks are inspired by human visual perception models. If properly executed,
segmentation makes the subsequent extraction of information much easier. The
whole difficulty lies in the fact that the proper execution of segmentation is a par-
ticularly challenging task. Segmentation is highly application dependent and it is
an ill-defined problem.

A large variety of segmentation algorithms exists [24]. Unavoidably, no existing
segmentation method can be considered generic enough for all applications. They
differ depending on the imaging modality (e.g., x-ray tomography, fluorescence mi-
croscopy), the application domain, and the level of automation. Among classical
methods, we can cite intensity thresholding [25–27], edge detection, and watershed
approaches [28–32]. These methods perform well in good imaging conditions, but
they are known to be sensitive to noise, which often results in over-segmentation,
and poor image contrast. Popular alternative segmentation methods are deformable
models, also known as active contours/surfaces. Active contours are more flexible
compared to other approaches as they combine efficient and well-controlled im-
age segmentation with extensive and eased user interaction. Deformable models
allow for manual edition of the segmentation outcome, which is a significant ad-
vantage as automatic segmentation methods rarely reach 100% accuracy. Active
contours/surfaces are further described in Section 1.2 and constitute the main topic
of this thesis.

1.1.3 Usable Bioimaging Software

Eventually, the reason bioimage analysis algorithms are developed is to help bi-
ologists and physicians analyze their data. As those practitioners may have only
basic programming training and image processing knowledge, it is of fundamental
importance to convert the developed algorithms to friendly and usable software if
one aims to have a meaningful impact in the community.
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To ensure the success of a bioimage segmentation software, some requirements
have been established [33,34]. Among them we focus our attention on three specific
ones.

• User-friendly: Bioimaging software has to be usable by non-programming ex-
perts. The interface should be intuitive and easy-to-use, and documentations
such as clear instructions or video tutorials have to be provided.

• Open-source: The openness of a software provides the necessary transparency.
It is fundamental for a biologist or a scientist to be able to understand how
the algorithms work and to be able to adapt it for research purpose if needed.
Another advantage of the openness is that it is publicly accessible.

• Reproducibility: One should be able to replicate the experiments carried out
by the developer. Hence, data and parameters used for the software validation
should always be provided.

1.2 A Survey on Active Contours/Surfaces

Active contours/surfaces, also called “snakes”, are among the most popular tools for
image segmentation. They were first proposed in 2D by Kass et al [35] in 1988 and
generalized to the 3D case by Terzopoulos et al. [36]. They have became popular
models to segment structures in biomedical images as they provide an excellent
trade-off between flexibility and efficiency [37–43]. They consist in a deformable
curve/surface that is deformed from an initial-user provided position towards the
boundary of an object of interest in a 2D/3D image. The deformation of the snake
contour is driven by the minimization of a suitable objective function, often called
energy in this context [44]. They allow for user interactions, either to specify
the initial position or for manual corrections if needed. Two components thus
play an important role in the construction of an active contour: The geometric
representation of the snake, which describes the nature of its contour and determines
some geometric properties (e.g., smoothness, shape reproduction); and a suitable
energy functional that drives the fitting of the curve/surface to the image data.
The choice of this energy term is crucial because it determines the quality of the
segmentation outcome [44,45]. The choice and design of both the geometric model
and energy of the snake depend on the application and imaging modality.
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Many snake models have been proposed [37, 46]. Currently, active
contours/surfaces are described either implicitly (e.g., level sets [47, 48]), or ex-
plicitly, with point/mesh-based [43] and parametric snakes [49–52]. For the energy
term, the most common approaches are based on edge and intensity information
aggregated from either inside or on the curve [44].

1.2.1 Curve/Surface Representation

Snakes are usually categorized based on their curve/surface representation.

Geodesic snakes (or Level-set methods) are based on the idea developed by
Osher and Sethian to model propagating solid/liquid interfaces with curvature-
dependent speeds [53]. In geodesic approaches [47, 54–56], the curve/surface
of the snake has an implicit representation described as the zero level-set
of a higher-dimensional manifold (Figure 1.2 (a)). Formally, the continuous
curve/surface is given by Φ−1(0) = {p ∈ Rn|Φ(p) = 0}, where Φ : Rn → R
is a scalar function defined all over the image domain. These snakes can be
extended to any number of dimension and they are particularly flexible in
terms of topology. Indeed, under a suitable energy functional, they have the
ability to automatically handle topology changes. However, they tend to be
computationally expensive since they evolve a manifold with a higher number
of dimensions than the actual contour/surface to segment. They have many
degrees of freedom, which can lead to overfitting in practice. In summary,
geodesic snakes based on level-sets are well suited to segment shapes with
high variability, otherwise they are suboptimal.

Point-snakes/active meshes are historically the first snakes [35,49]. They have
a simple discrete representation where the shape is described by a set of or-
dered points (2D or 3D) (Figure 1.2 (b)). Point-snakes can handle topology
changes and their discrete nature allows for an easy implementation. More-
over, in 3D they are compatible with open source libraries for optimization
or visualization. However, they have two main drawbacks. First, the discrete
nature of the representation does not ensure smoothness of the curve/surface,
which requires an internal regularization term. Second, a lot of parameters
are required to encode shapes, even the simple ones. In fact, there are two
(or three in 3D) degrees of freedom for each snake point. This large number
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of parameters makes the segmentation algorithm none robust, and results in
a high computational complexity.

Parametric snakes have a continuous spatial representation via the use of ba-
sis functions. They are encoded by a set of control points and a continuous
parameter [50, 57] (Figure 1.2 (c)). Contrary to point-snakes, they are built
to ensure continuity and smoothness. They require fewer parameters, which
leads to a faster optimization and better robustness. One can also encode
more complex shapes by increasing the number of control points. Since the
curve/surface of parametric snakes is represented explicitly, it is easy to intro-
duce prior knowledge such as shape constraints [58,59]. Moreover, they allow
the user to suitably modify results in a user-friendly way by moving some
control points. However, well-known drawbacks of parametric approaches are
the restricted nature of the shape that they can generate, and their inability
to deal with topology changes such as contour/surface merging and splitting,
although solutions have been proposed for specific cases [60]. Parametric
snakes are at the heart of this thesis and are further described in Chapter 2.

1.2.2 Snake Energy

The energy functional of the snake drives the evolution of the curve/surface to fit
object boundaries. Kass et al. [34] originally formulated the snake energy as a
linear combination of three terms:

• the image energy Eimage, which is purely data driven and is responsible for
guiding the curve/surface of the snake towards the boundary of interest;

• the internal energy Eint, which ensures smooth boundaries of the segmented
object. In the formulation of parametric snakes, the smoothness of the repre-
sentation is often ensured by the choice of the basis functions, thus eliminating
the need for an explicit internal energy term;

• the constraint energy Ec, which gives rise to external constraints to put the
snake near the desired local minimum. This can be done through an interface
to let the user interact with the snake.
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(a) (b) (c)

Figure 1.2: The three main curve representations of active contours. (a) A geodesic
snake, defined as a continuous curve corresponding to the zero level-set Φ−1(0) of
a scalar function Φ; (b) a point-snake over the grid associated to a discrete image
model. The discrete curve is displayed as shaded pixels and here satisfies an 8-
neighbor connectivity; (c) a parametric snake, where the coordinate functions are
depicted in solid lines, and the dashed lines indicate the weighted basis functions.
The symbols “+" are the control points. Source: These illustrations are taken
from [37].

The total energy of the snake is expressed as

Esnake(Θ) = Eimage(Θ) + Eint(Θ) + Ec(Θ), (1.2.1)

where Θ stands for the curve/surface representation (manifolds, snake points or
control points). The deformation of the contour consists in an optimization pro-
cedure in which the snake is iteratively updated from an initial position until the
minimum of Esnake(Θ) is obtained. The optimal Θopt

1 is thus obtained as

Θopt = arg min
Θ

Esnake(Θ). (1.2.2)

1Note that Θopt is not necessarily unique.
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Many methods exist to minimize the energy functional (e.g., gradient descent, par-
tial differential equations approaches, dynamic programming, Powell-like line-search
method [61]), and each optimization scheme is usually linked to a particular snake
representation.

The image energy is the most important of the three terms in (1.2.1) since it
incorporates image information (features) to guide the snake towards the boundary
of the object of interest. Different image energy terms are used in practice. The
most commonly approaches can be categorized into two broadly defined categories:

• contour-based methods Econtour, which use local image information and are
purely based on edge or ridge maps obtained by computing the gradient or
Hessian of an image [35, 44, 50, 62]. They provide a good localization of the
contour of the object to segment. However, they have a narrow basin of
attraction making a good initialization critical;

• region-based methods Eregion, which use statistical information(e.g., intensity
distribution, texture) to distinguish different homogeneous regions [44,48,57,
63, 64]. The region-based energies have a larger basin of attraction and can
converge even if explicit edges are not present. However, they do not provide
a good localization of the boundaries of the object to segment.

In order to benefit from the advantages of both methods, a unified image energy
was proposed in [44] and in [64]. Typically, Eimage can be expressed by the following
combination

Eimage(Θ) = bEcontour(Θ) + (1− b)Eregion(Θ), (1.2.3)

where b ∈ [0, 1] is a trade-off parameter that balances the contribution of the two
energies. It is generally agreed that the choice of the features, i.e., the visual
attributes that differentiate the target from its surroundings, to detect through
Eimage depends on the modality and application. In Figure 1.3, we highlight some
features to detect according to the structure to segment.

1.2.3 Challenges
In the context of bioimage segmentation, there are ongoing challenges for snake-
model algorithms [37].

• Robustness: The snake has to robustly perform in real-life imaging conditions
(e.g., images with heavy noise and low contrast);
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(a) Ridges. (b) Homogeneous intensity
region delimited by edges.

(c) Texture.

Figure 1.3: Features in biomedical images. (a) The cell membranes of a C. ele-
gans embryo are separated by ridges; (b) two dividing cells that form an homoge-
neous intensity region delimited by edges; (c) a tumor whose intensity distribution
is not homogeneous. Here, the best feature to distinguish the tumor from the
background is its texture. Sources: (a) R. Jankele and P. Gönczy, EPFL; (b)
http://www.cellimagelibrary.org/images/35450/; (c) image taken from [65].

• Flexibility and prior knowledge: The snake has to be versatile enough to
accommodate a wide range of shapes. At the same time, one should have
the possibility to integrate prior knowledge (e.g., shape constraints) into the
segmentation procedure;

• Computational efficiency: It is crucial to provide reasonably fast implemen-
tations that run on standard computers, especially when dealing with 3D
data.

1.3 Contributions

This thesis is dedicated to the study and development of segmentation algorithms
for biomedical structures in 2D and 3D images. We identify limitations of paramet-
ric snakes and address them providing new representation models as well as novel
energies. We then merge these theories to construct new active contours/surfaces
for various applications.

Throughout this thesis, we focus on closed (i.e., periodic) curves/surfaces. Those
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models indeed have a wide range of applications in bioimaging [66,67]. In addition,
we are interested in models that accurately represent shape with few control points
as possible, since those have better robustness and lower computational cost (see
Section 1.2.3).

For the optimization process, we adopt a subdivide and conquer strategy. First,
we look at several smoothed versions of the original image and, for each, adapt the
resolution of the snake curve/surface to the level of detail of the target (i.e., subdi-
vide). Then, we segment the object of interest at each resolution recursively, from
the coarsest to the finest image (i.e., conquer). This robust strategy exploits the
multiresolution property of our new representation models, as well as characteristics
of smoothed images (few details and low noise).

Finally, we give special attention to the conversion of our algorithms into usable
software, as described in Section 1.1.3.

Hereafter we provide a short summary of our five main scientific contributions
and their related publications.

1. Locally refinable parametric snakes [68,69]: We introduce the possibility to
locally increase the number of control points of 2D/3D parametric snakes by
inserting basis functions at specific locations. Our approach relies on scaling
and refinable functions that are related to wavelets.

2. Subdivision snakes [70–73]: Subdivision snakes are our most significant con-
tribution. We introduce subdivision schemes, traditionally used in com-
puter graphics for modeling, into a new framework for 2D/3D multiresolution
snakes. We also derive the energy terms associated to this subdivision repre-
sentation. Subdivision snakes have the ability to adapt the resolution of their
curve/surface to the level of detail of their target. It allows us to also propose
and adopt a coarse-to fine optimization strategy. Those snakes are more ro-
bust to noise and initialization than parametric snakes, and their geometric
representation is also easier to extend to higher dimensions. Moreover, sub-
division snakes can handle topology changes such as curve/surface merging
and splitting.

3. Ridge and texture-based energies [73, 74]: We propose two new energies,
which allow for segmentation methods that are valid for a wider range of
applications. The first energy attracts the snake towards ridges in the image
and takes into account the direction of the normal to the curve/surface. The
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second energy incorporates texture information and can be used with any
filter-based texture features.

4. Bioimaging software: We implement our algorithms as 2D and 3D software
that respect user-friendliness, open access and reproducibility criteria.

5. Mathematical tools for periodic signal processing [75, 76]: We introduce
a calculus of the inner-product between two compactly supported and pe-
riodized basis functions. This tool is often needed in signal processing, es-
pecially in the construction of snakes. In addition, we present two approaches,
variational and statistical, for the reconstruction of periodic
continuous-domain signals from their corrupted discrete measurements.

In Figure 1.4, we give an outlook of these contributions, separated in modules, and
their interconnections.

1.4 Roadmap of The Thesis
The thesis is organized as follows.

In Chapter 2, we review parametric snakes, which are fundamental theoretical
tools for this thesis. We also recall the mathematical concepts that are extensively
used throughout our work.

We continue by introducing two new representation models. We first propose the
generic formulations of locally refinable parametric curves and surfaces in Chapter 3.
Then, we present in Chapter 4 subdivision schemes that generate curve and surfaces
satisfying the property of multiresolution.

In Chapter 5, we adapt standard energies initially defined for parametric snakes
to our new representation models. In addition, we propose two novel energies that
detect ridges and incorporate texture information.

The theories presented until now are merged in Chapters 6 and 7 to design new
active contours and surfaces, respectively.

Finally, conclusions are drawn in Chapter 8.
In Appendices A and B, we introduce two signal processing theories to efficiently

process periodic functions.
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Energies
Contour-based: Edge and Ridge Detection

Region-based: Intensity and Texture Information

Chapter 5 — Publications [68,70,72-74]

Representation models
Scaling and Refinable Functions

Subdivisions

Chapters 3 and 4 — Publications [68-72]

Signal Processing Tools
Inner-Product Calculus

Stochastic model of closed curves

Appendices A and B — Publications [75,76]

Active Contours/Surfaces
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Chapter 2

Review of Parametric Snakes

In this chapter, we review parametric snakes that are the foundation for our re-
search. We also introduce notations and notions that are relevant for this thesis.
Finally, we briefly revisit exponential B-splines that constitute basis functions and
introduce periodic exponential splines that naturally appear in the reconstruction
of closed curves.

2.1 Geometric Representation

2.1.1 Parametric Closed Curves
A 2D planar curve r : R → R2 is described by a pair of one dimensional coordi-
nate functions (r1(t), r2(t)), where t ∈ R is a continuous parameter. Each of these
functions is parametrized by a suitable linear combination of shifted basis func-
tions {ϕ(· −m)}m∈Z, where ϕ : R → R, specified by a sequence of control points
{c[m] = (c1[m], c2[m])}m∈Z, such that

r(t) =

(
r1(t)
r2(t)

)
=
∑
m∈Z

c[m]ϕ(t−m), t ∈ R. (2.1.1)

We are interested in closed curves in order to be able to segment blob-like or
elliptical structures as it is often the case in bioimages. In this case, the two

13
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coordinate functions r1 and r2 are periodic with the same period. The parametric
snake is thus characterized by an M -periodic sequence of control points {c[m]}m∈Z
with c[m] = c[m+M ]. We re-express (2.1.1) as the finite summation

r(t) =

M−1∑
m=0

∑
n∈Z

c[m+Mn]ϕ(t−m−Mn)

=

M−1∑
m=0

c[m]
∑
n∈Z

ϕ(t−m−Mn)

=

M−1∑
m=0

c[m]ϕM (t−m), (2.1.2)

where t ∈ [0,M [ and ϕM is the M -periodization of the basis function ϕ defined by

ϕM (t) =
∑
n∈Z

ϕ(t−Mn). (2.1.3)

Without loss of generality, the period can also be normalized to one so that
r(t) = r(t + 1) for all t ∈ R and hence, we only consider t ∈ [0, 1[, such that

r(t) =

M−1∑
m=0

c[m]ϕM (Mt−m). (2.1.4)

The number M of control points determines the degree of freedom of the model.
A small M leads to smooth and constrained shapes, while increasing M brings
additional flexibility to approximate intricate shapes. We show in Figure 2.1 a
parametric curve and its coordinate functions where the period was normalized to
unity.

2.1.2 Parametric Representation of Tensor-Product Surfaces
A 3D surface σ : R2 → R3 is described by a triplet of coordinate functions
(σ1(u, v), σ2(u, v), σ3(u, v)), where u, v ∈ R are continuous parameters. Each coor-
dinate function is parametrized by a suitable linear combination of integer-shifted
separable basis functions {ϕ1(u−m)ϕ2(v − n)}m,n∈Z weighted by a sequence of
control points {c[m,n]}m,n∈Z. The functions ϕ1 and ϕ2 determine the shapes that
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(a)

(b)

(c)

Figure 2.1: A parametric curve (a) and its coordinate functions (b) and (c). We
used the exponential B-spline presented in [64, (8)] as basis function ϕ and M = 4.
The blue dots are the control points and the dashed lines are the basis functions.

the parametric surface can adopt. Then, the parametric representation of the sur-
face is given by the equation

σ(u, v) =

σ1(u, v)
σ2(u, v)
σ3(u, v)

 =
∑
m∈Z

∑
n∈Z

c[m,n]ϕ1(u−m)ϕ2(v − n), (2.1.5)

where {c[m,n] = (c1[m,n], c2[m,n], c3[m,n])}m,n∈Z are the 3D control points de-
scribing the shape. To be a closed surface, σ(u, v0) must be periodic in u for all
v0. To satisfy this condition, it is necessary to apply periodic boundary conditions
along the first index of the sequence of control points. Therefore, the sequence of
control points becomesM1-periodic and satisfies c[m,n] = c[m+M1, n]. In (2.1.5),
we normalized this period to unity and the new expression is given by

σ(u, v) =

M1−1∑
m=0

∑
n∈Z

c[m,n]ϕ1,M1(M1u−m)ϕ2(M2v − n), (2.1.6)
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(a) Torus. (b) “Figure 8” immersion. (c) Sphere.

(d) Roman surface. (e) Pinched torus.

Figure 2.2: Parametric surfaces constructed with the family of interpolatory basis
functions proposed in our paper [77]. Blue dots: control points.

where ϕ1,M1
is the M1-periodization of ϕ1 given by (2.1.3). The basis functions ϕ1

and ϕ2 are usually chosen to be compactly supported. The infinite sums in (2.1.5)
and (2.1.6) can thus be reduced to a finite one, where the limits depend on the size
of the support of the basis functions. In Figure 2.2, we illustrate some parametric
shapes designed from (2.1.5) and (2.1.6).

2.1.3 Desirable Properties of the Basis Functions

The basis functions in (2.1.4) and (2.1.6) are responsible for the smoothness of the
curve/surface as well as the shape that the snake can reproduce. Moreover, impor-
tant considerations have to be taken into account to properly select the generator ϕ.
Hereafter, we describe in detail these requirements for the 2D case. The extension
to surfaces is straightforward by taking their bivariate analogous.
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Riesz basis: Uniqueness and stability of the representation are guaranteed by the
so-called Riesz-basis condition for the basis function ϕ [78]: There must exist
two positive constants 0 < A,B <∞ such that,

A‖c‖2`2(Z) ≤

∥∥∥∥∥∑
m∈Z

c[m]ϕ(· −m)

∥∥∥∥∥
2

L2(R)

≤ B‖c‖2`2(Z). (2.1.7)

Approximation power: A fundamental requirement is that the closed curve model
given by (2.1.4) should have the capability of approximating any closed curve
as closely as desired as the number M of control points tends to infinity. A
necessary (and sufficient) condition [78] is that ϕ should be able to reproduce
constants, which we formalize by

∀t ∈ R,
∑
m∈Z

ϕ(t−m) = 1. (2.1.8)

In the literature, this constraint is often named the partition-of-unity condi-
tion [78].

Affine invariance: We want to represent shapes independently from their location
and orientation. The parametric form of the model must be preserved at
least through scaling and rigid-body transformations. This is guaranteed if
the model (2.1.4) is affine invariant, which means that

A r(t) + b =

M−1∑
m=0

(A c[m] + b)ϕM (Mt−m), (2.1.9)

where A ∈ R2×2 and b ∈ R2. It is easy to show that the constraint (2.1.9) is
ensured if and only if the partition-of-unity condition (2.1.8) is satisfied.

Compact and small support: For practical and computational efficiency rea-
sons, ϕ is often chosen to be of compact support [52,78]. In fact, in this case
the change of position of a control point modifies the shape only locally. This
allows for a local control by the user.

A broad family of basis functions that fulfills the above properties are the ex-
ponential B-splines. Moreover, they have relevant reproduction properties for the
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segmentation of biomedical structures. For these two reasons, exponential B-splines
are often used to represent parametric snakes. We briefly describe these functions
in Section 2.3.1.

2.2 Image Energies

The evolution of the curve/surface described in Section 2.1 is driven by the opti-
mization of a cost functional referred to as snake energy. Using the notations intro-
duced in Section 1.2.2, the optimization process for parametric snakes is performed
by iteratively updating the collection of control points Θ = {c[m]}m∈{0,...,M−1}
from a starting position.

We here provide examples of standard image energies (see Section 1.2.2) for
parametric snakes that are relevant to our work. The most common approaches
are based on edge and intensity information aggregated from either inside or on
the curve/surface. Their expressions are set with a minus sign since the snake
optimization is defined as a minimization process (see (1.2.2)). In the following, we
denote by C the contour parametrized by r and we recall that the relation between
r and the control points is given by (2.1.2).

2.2.1 Contour-based energy

One traditional approach to detect edges is to use the magnitude of the gradient [50,
62]. The energy functional is then given by

Eedge(Θ) = −
˛
C
|∇f(r)|dr, (2.2.1)

where dr is an infinitesimal vector element of C, ∇f(r) is the gradient vector of
the input image f and r is the snake curve. A drawback of this approach is that
it does not take into account the direction of the gradient. An improvement was
proposed in [44], using the fact that, at the boundary of the object of interest, the
image gradient should be perpendicular to the contour. In this case, the energy is
expressed by

Eedge(Θ) = −
˛
C
〈∇f(r),n(r)〉dr, (2.2.2)
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Figure 2.3: Schematic representation of a parametric snake (red contour) in inter-
action with a target (green region).

where 〈·, ·〉 is the scalar product, n(r) is the unit vector normal to the curve r, and
∇f(r) is the within-plane gradient of the image f at location (r1, r2). In Figure 2.3,
we present the configuration of the various quantities involved.

The 3D extension of (2.2.2) is proposed in [52] and is expressed by

Egrad(Θ) = −
‹
S
〈∇f(σ),dσ〉 , (2.2.3)

where S is the surface parametrized by σ (see (2.1.6)) and dσ represents the vector
differential area.

These approaches give a good localization of the edges. However, they are
sensitive to noise and have a poor basin of attraction (Figure 2.5), which implies
that the snake has to be initialized near to the object to segment [37].

2.2.2 Region-based energy

Region-based energies discriminate a homogeneous region from its background [64,
79, 80]. They are usually based on intensity information. The idea is to build a
curve rλ around the snake r, obtained by dilating it by a factor

√
2 with respect

to its center of gravity. The surfaces enclosed by r and rλ, denoted by Ω and
Ωλ, respectively, are such that Ω ⊂ Ωλ and the surfaces Ω and Ωλ \ Ω have the
same area. We illustrate these quantities in Figure 2.4. The corresponding energy



20 Review of Parametric Snakes

functional is given by

Eintensity(Θ) = − 1

|Σ|

∣∣∣∣∣
¨

Ω

f(x)dx1dx2 −
¨

Ωλ\Ω
f(x)dx1dx2

∣∣∣∣∣ , (2.2.4)

where dx1dx2 is an infinitesimal vector element of Ω, f is the input image, and |Σ|
is the area of Ω with Σ := Σ(Θ) defined by

Σ(Θ) =

¨
Ω

dx1dx2. (2.2.5)

The term in the absolute value in (2.2.4) can be positive or negative depending
on whether we segment a bright object over a dark background or inversely. The
minus sign and the absolute value thus ensure that Eintensity is always minimized.
Equations (2.2.4) and (2.2.5) require the computation of surface integrals, which
are computationally expensive. To decrease the computational cost, an approach is
to apply Green’s theorem to convert them into line integrals [44]. This can only be
achieved if the curve/surface is defined continuously and it does not self-intersect.
For instance, the expanded formula of Σ is obtained by Green’s theorem and (2.1.4)
as [44,64]

Σ(Θ) = −
˛
C
r2dr1

= −
M−1∑
m=0

M−1∑
n=0

c1[m]c2[n]

ˆ M

0

ϕ̇M (t−m)ϕM (t− n)dt. (2.2.6)

Note that the area obtained by (2.2.6) is signed due to the clockwise or anti-
clockwise orientation of the curve. We therefore take the absolute value of Σ
in (2.2.4).

The 3D extension of (2.2.4) is proposed in [52] and adopt a strategy similar
to the one we followed in the 2D case. We build a surface σλ around the snake
σ, obtained by dilating it by a factor 3

√
2 with respect to its center of gravity.

The volumes enclosed by σ and σλ, denoted by V and Vλ, respectively, are such
that V ⊂ Vλ and V and Vλ \ V have the same volume. The corresponding energy
functional is expressed by

Eintensity(Θ) = − 1

|V|

∣∣∣∣∣
˚
V
f(x)dx1dx2dx3 −

˚
Vλ\V

f(x)dx1dx2dx3

∣∣∣∣∣ , (2.2.7)
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Figure 2.4: Illustration of the contours C and Cλ, and the shell Ωλ \ Ω.

(a) Initialization. (b) Eedge. (c) Eintensity. (d)
0.5

(
Eedge+Eintensity

)
.

Figure 2.5: Illustration of the edge- and region-based energies. In order to benefits
from the advantages of both energies, we use the combination (1.2.3) for b = 0.5.

where dx1dx2dx3 is an infinitesimal vector element of V, V is the volume of V, and
the relation between σ and its control points is given by (2.1.6).

Region-based energies are robust to noise and have a larger basin of attraction
than contour-based energies [37] (Figure 2.5). However, the functionals (2.2.4) and
(2.2.7) are well suited only when the intensity distributions of the object and its
background have different variances and means [44,74].
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Figure 2.6: L-th order exponential B-splines β(α,...,α) for L ∈ {1, . . . , 5} (from left
to right).

2.3 Splines

2.3.1 Exponential B-Splines as Basis Functions

Exponential B-splines are popular not only in sampling and approximation theory
but also to represent parametric curves and surfaces. They are the exponential
counterpart of the well-known polynomial B-splines [81–83]. They are compactly
supported [81] and have relevant reproduction properties for the segmentation of
biomedical structures. An exponential B-spline of order L is fully characterized by
its unordered list of (complex-valued) poles α = (α1, α2, . . . , αL), where the αn can
be non-distinct. It is supported in [0, L] and its causal form is characterized in the
frequency domain as

β̂α(ω) =

L∏
n=1

1− eαn−jω

jω − αn
. (2.3.1)

We illustrate in Figure 2.6 several exponential B-splines, where we see that a wide
range of behaviors can be obtained by varying L and α. An exponential B-spline has
the property of reproducing exponential polynomials, i.e., it generates the whole
family {eαnttp}p∈{0,...,Lαn−1}, where Lαn is the multiplicity of the element αn ∈ α.
If all the poles are equal to zero (i.e., α = 0L), we obtain the classical polynomial
B-splines of degree (L− 1).
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The most relevant properties of exponential B-splines for our purposes are [81]

• The exponential B-splines are always well-defined (i.e., bounded and com-
pactly supported), and form a Riesz basis if and only if (αn1

− αn2
) 6∈ 2πjZ

for all purely imaginary pairs such that n1 6= n2 [81];

• An exponential λβα satisfies the partition-of-unity condition (2.1.8) if it con-
tains at least one vanishing pole (i.e., if 0 is an element of α), with λ a
normalization constant;

• The convolution of two exponential B-splines yields another B-spline of aug-
mented order

βα1
∗ βα2

= βα1∪α2
, (2.3.2)

where (α1 ∪α2) denotes the concatenation of the two lists of poles α1 and
α2.

2.3.2 Exponential Splines and Their Periodic Counterpart
Exponential Splines

Exponential splines are naturally associated to a differential operator of a given
order [84] and are defined by the following definition [81].

Definition 2.3.1. Let Lα, α = (α1, . . . , αL), be a differential operator of order L
given by

Lα = (D− α1I) · · · (D− αLI), (2.3.3)

where D and I are the derivative and identity operators, respectively. We say that
a function r : R→ R is an exponential spline with parameter α if

Lαr(t) =

N∑
n=1

anδ(t− tn), (2.3.4)

for some integer N ≥ 1, weights an ∈ R, knot locations tn ∈ R, and δ is the Dirac
distribution.

The exponential B-splines βα described in Section 2.3.1 are examples of exponential
splines where the knots are at the integer, i.e. tn = n. Every cardinal exponential
spline of parameter α can be expressed as a linear combination of integer shifted
exponential B-splines βα of the same order [81].
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Figure 2.7: Illustration of the periodic exponential spline associated to Lα = D + I.
Dots: N = 4 nodes (tn, r(tn)).

Periodic Exponential Splines

Here we adapt Definition 2.3.1 to the periodic setting, where the Dirac impulse δ
is replaced by the Dirac comb X =

∑
n∈Z δ(· − n).

Definition 2.3.2. Consider the differential operator Lα given in (2.3.3). We say
that a function r : T = [0, 1) → R is a periodic exponential spline with parameter
α if

Lαr(t) =

N∑
n=1

anX(t− tn) (2.3.5)

for some integer N ≥ 1, weights an ∈ R, and knot locations tn ∈ T.

We illustrate the periodic exponential spline associated to Lα = D+I in Figure 2.7.

2.3.3 Periodic Exponential Splines as Optimal Interpolators
for Closed Curves

The reconstruction of continuous signals from a sequence of samples (also known
as interpolation problem) plays an essential role in signal and image processing as
it constitutes a bridge between the discrete and continuous worlds. Two recon-
struction paradigms over the real line have been widely developed in the literature:
variational and statistical. In the variational approach, the reconstructed signal is
solution of an optimization problem that establishes a tradeoff between fidelity to
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the data and smoothness conditions via a regularization term [85]. In the statistical
approach, the signal is modeled as a random process defined from a Gaussian white
noise and is optimally reconstructed using estimation theory [86]. Two fundamen-
tal results are that 1) these two frameworks are deeply connected [87]; and 2) the
solution of either problem can be expressed as a spline function in relation with a
differential operator involved in regularization (variational approach) or whitening
(statistical approach) [88,89].

In the context of this thesis, we are interesting in the reconstruction of a contin-
uous closed curve from its samples. This implies to reconstruct periodic continuous-
domain functions that are the coordinate functions of the closed curve. This mo-
tivated us to develop the theory of the variational and statistical approaches in a
periodic setting and in a very general context, i.e., for a broad class of differential
operators and for general measurements that include sampling. This theory is fully
presented in Appendix B and is subject to our publication [76]. In this section, we
summarize some of our results showing that periodic exponential splines naturally
appear when we optimally reconstruct a closed curve from its samples.

We consider the following problem. Let {r(tn)}n∈{1,...,N}, tn ∈ T = [0, 1), be
N samples of a continuous closed curve r(t) = (r1(t), r2(t)), t ∈ T, where the
coordinate functions r1 and r2 are 1-periodic. We look for the optimal closed curve
ropt that best connects its N (possibly noisy) observed data yn = (y1,n, y2,n) ≈
r(tn), for n = 1, . . . , N .

Variational Approach

We consider the variational problem

ropt =

(
r1,opt

r2,opt

)
= arg min

(r1,r2)

( N∑
n=1

(
(y1,n − r1(tn))

2
+ (y2,n − r2(tn))

2
)

+ λ
(
‖Lαr1‖2L2

+ ‖Lαr2‖2L2

))
, (2.3.6)

where Lα is the differential operator given by 2.3.3 and the parameter λ quantifies
the tradeoff between the fidelity to the data and the regularization constraint. The
solution ropt of (2.3.6) is unique and its coordinate functions ri,opt, i = 1, 2, are
periodic exponential splines associated to the operator (L∗αLα) (see Appendix B.3).
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Statistical Approach

We change perspective and consider that the coordinates functions ri, i = 1, 2, of
r are real periodic Gaussian processes with zero-mean and are related to Lα. We
are looking for the optimal estimator ropt = r̃MMSE over T of r, in the sense that
each of its coordinate functions r̃i,MMSE, i = 1, 2, satisfies

r̃i,MMSE = arg min
r̃i

E
[
‖ri − r̃i(·|{yi,n}n∈{1,...,N})‖2L2

]
(2.3.7)

among the estimators r̃i(·|{yi,n}n∈{1,...,N}) of ri such that r̃i(tn|{yi,n}n∈{1,...,N}) for
n = 1, . . . , N . The solution of (2.3.7) is unique and is a periodic exponential spline
associated to (L∗αLα) (see Appendix B.4). It means that the unique optimal closed
curve r̃MMSE has coordinate functions that are periodic splines. In Figure 2.8, we
optimally reconstruct (in the sense of (2.3.7)) stochastic closed curves from their
observed data {yn}n∈{1,...,N} for different operators Lα.
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(a) Lα = D + I and N = 40. (b) Lα = D2 + 4π2I and N = 15.

(c) Lα = D and N = 40. (d) Lα = D2 and N = 40.

Figure 2.8: Reconstruction of stochastic closed curves for different operators Lα.
Solid blue line: unknown stochastic curve r; dashed red line: estimator r̃MMSE of
r; Dots: samples.
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Chapter 3

Parametrization with Local
Refinement

The geometric representation of active contours/surfaces determines their ability
to approximate the shape of interest as well as the speed of convergence of related
optimization algorithms. It is thus of great interest that one can allocate additional
degrees of freedom to the curve/surface only where an increase in local detail is
required.

A crucial aspect in the development of local refinement algorithms is to refine
specific regions while keeping the rest of the curve/surface unchanged. This local
refinement is not inherent to standard methods as Non-Uniform Rational Basis
Splines (NURBS) or classical parametrizations of curves/surfaces. Existing meth-
ods to insert points at specific locations were developed in [90–94].

In this chapter, we present a new parametrization for curves and tensor-product
surfaces where the degrees of freedom (i.e., control points) can be locally increased
without altering the shape of the curve/surface. In a segmentation context, these
additional control points then allow to locally deform the shape with better accu-
racy. We locally improve the level of detail of the parametric model by inserting
basis functions at specific locations. Our approach is generic and relies on refinable
and scaling functions that are related to wavelets [95,96].

Among all scaling and refinable functions, throughout this chapter we focus on

29
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the one of compact support, as it is a desirable property in practice.
This chapter is based on our publications [68, 69], in collaboration with D.

Schmitter and M. Unser. The chapter is organized as follows: In Section 3.1 we
fix the notations. We review refinable functions in Section 3.2. Finally, the main
contribution is described in Section 3.3, where we propose a novel and generic
parametrization of closed curves, as well as tensor-product surfaces, that are locally
refinable.

3.1 Notations

We denote by t a continuous parameter in R. We define α = (α1, α2, . . . , αL)
where the αn can be non-distinct, and denote by Lαn the multiplicity of the
element αn ∈ α, for n = 1, . . . , L. We denote by ϕα a function that repro-
duces exponential polynomials in span

{
eαnt, . . . , tLαn−1eαnt

}
n∈{1,...,L}, i.e., for all

i ∈ {0, . . . , Lαn − 1} there exists a sequence {c[m]}m∈Z such as

tieαnt =
∑
m∈Z

c[m]ϕα(t−m). (3.1.1)

Exponential B-splines (see Section 2.3.1) are examples of such functions [81].

3.2 Scaling and Refinable Functions

In this section, we define the notions of scaling and refinable functions.

Definition 3.2.1. A basis function ϕ is called a scaling function for a refinement
factor ρ > 1 if it verifies the refinement relation given by

ϕ(t) =
∑
m∈Z

h[m]ϕ(ρt−m), (3.2.1)

where h is the discrete refinement filter [97,98].

If ϕ is a scaling function, it can thus be expressed as a linear combination of its
contracted version shifted by integers. Examples of such functions are polynomial
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Figure 3.1: Refinement of a quadratic B-spline with a refinement factor ρ equal to
2 (solid blue line). It can be expressed as a linear combination of four contracted
versions (green dashed lines) of integer-shifted quadratic B-splines.

B-splines [81]. In Figure 3.1, we illustrate the refinement of a quadratic B-spline
for ρ = 2, whose corresponding refinement filter is defined by its z-transform as

H(z) =
1

4

(
1 + z−1

)3
. (3.2.2)

Definition 3.2.2. A basis function ϕα is called a refinable function1 for a refine-
ment filter ρ > 1, if it verifies the refinement relation given by

ϕα(t) =
∑
m∈Z

hα
ρ ,ρ

[m]ϕα
ρ

(ρt−m), (3.2.3)

where {hα,ρ[m]}m∈Z are the coefficients of the discrete refinement filter [101,102].

The non-standard aspect here is the fact that the scheme is non-stationary, meaning
that the basis functions on both sides of (3.2.3) involve different parameters, i.e.,
α and α

ρ . If ϕα is a refinable function, its dilatation by ρ can be expressed as
a linear combination of the integer shifts of the generator ϕα

ρ
. Examples of such

functions are exponential B-splines [81]. When α = 0, we obtain a scaling function
as defined in Definition 3.2.1.

1In relation with the classical definition of a scaling function used in multiresolution models [99],
refinable functions defined in Definition 3.2.2 are sometimes also called scaling functions [99,100].
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When the functions ϕ and ϕα in (3.2.1) and (3.2.3) are compactly supported,
then the support of h and hα,ρ are compact as well. We denote by
{n0, . . . , n0 +N − 1} the support of the filters where N is the size.

3.3 Representation with Local Refinement
In the following, we first describe the local refinement of parametric closed curves.
We use scaling functions in order to present the theory in a clear manner, but the
extension to refinable functions is straightforward. We then extend the theory in
3D using the general case of refinable functions.

3.3.1 Closed Curves
We consider a closed curve r parametrized by (2.1.2), where we choose (compactly
supported) scaling functions (see Definition (3.2.1)) as basis functions. The shape
is encoded by M control points and we briefly recall the parametrization as

r(t) =

M−1∑
m=0

c[m]ϕM (t−m), (3.3.1)

where t ∈ [0,M [. In a non-periodic formulation (see (2.1.1)), the local refinement of
r with respect to one particular control point c[p] consists in replacing the shifted
basis function ϕ(· − p) by the linear combination of its N contracted version given
by (3.2.1). To ensure the periodicity in (3.3.1), we do it for each scaling function
ϕ(· − p− nM), n ∈ Z. In Proposition 3.3.1, we derive the new formulation of r in
which we locally increased its number of control points.

Proposition 3.3.1. A parametric closed curve that has been locally refined with
respect to c[p] can be expressed as

r(t) =

M−1∑
m=0
m 6=p

c[m]ϕM (t−m) +

n0+N−1∑
n=n0

c̃p[n]ϕρM (ρt− ρp− n), (3.3.2)

where ρ is the refinement factor and N is the size of the discrete filter h, whose
support is {n0, . . . , n0 + N}. The functions ϕM and ϕρM are the M - and ρM -
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periodization of ϕ as defined by (2.1.3), respectively, and

c̃p[n] = h[n]c[p]. (3.3.3)

The proof is given in Appendix 3.4.1. We give Proposition 3.3.1 for closed curves
as we focus on those models in this thesis. However, the extension of this Propo-
sition to open curves is straightforward. The local refinement described by Propo-
sition 3.3.1 allows the part of the curve initially controlled by c[p] to be described
by N new control points {c̃p[n]}n∈{n0,...,n0+N−1}. We thus increase the approx-
imation power of the curve at this specific region. By approximation power we
mean the ability of the model to approximate a shape with accuracy. The error of
approximation decreases when the number of control points increases [103]. The
local refinement of a parametric curve for ρ = 2 is illustrated in Figure 3.2.

3.3.2 Tensor-Product Surfaces
The idea to locally refine tensor-product surfaces is similar than in 2D. We use
(compactly supported) refinable functions as generators ϕα1

and ϕα2
to construct

surfaces described by (2.1.5). We apply the refinement relation (3.2.3) locally,
i.e., only with respect to the particular control point c[p, q] associated to the basis
functions ϕα1(u − p) and ϕα2(v − q). The refinement factors are equal to ρ1 and
ρ2 in the directions u and v, respectively.

Proposition 3.3.2. A locally refined parametric tensor-product surface is given by

σ(u, v) =
∑

(m,n)∈Z2

(m,n)6=(p,q)

c[m,n]ϕα1
(u−m)ϕα2

(v − n)

+

n1+N1−1∑
i=n1

n2+N2−1∑
j=n2

c̃p,q[i, j]ϕα1
ρ1

(ρ1u− ρ1p− i)ϕα2
ρ2

(ρ2v − ρ2q − j),

(3.3.4)

where N1 and N2 are the sizes of the discrete filters hα1
ρ1
,ρ1

and hα2
ρ2
,ρ2

, respectively,
whose supports are {n1, . . . , n1 +N1 − 1} and {n2, . . . , n2 +N2 − 1}, and

c̃p,q[i, j] = c[p, q]hα1
ρ1
,ρ1

[i]hα2
ρ2
,ρ2

[j]. (3.3.5)

Thereby, p and q are freely chosen.
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(a)

(b)

(c)

(d)

Figure 3.2: Locally refinable closed curve. (a) A parametric closed curve r rep-
resented with the quadratic B-spline and M = 5. The bold line corresponds to
the part of the curve that is controlled by c[p] (blue dot); (b) the first coordinate
function of r with its shifted basis functions (dotted lines). We highlight ϕ(· − p)
in a blue dashed line; (c) the curve r after local refinement with respect to c[p].
We used the refinement filter defined by (3.2.2). The bold line of the curve initially
encoded by c[p] is now controlled by four new control points {c̃p[n]}n∈{0,...,3} (green
dots.). The shape of r remains unchanged; (d) the first coordinate function of r,
where the blue dashed line in (b) was replaced by four new basis functions (green
dashed lines), such as in Figure 3.1. As the quadratic B-spline is not an interpo-
lating function, we projected the control points on the curve for better clarity of
these plots.
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(a) Refinement of σp,q . (b) Deformation with and without refinement.

Figure 3.3: Local refinement of a cylindrical surface. (a) One of the small areas
(red pattern) obtained by the local refinement of σp,q (green pattern); (b) the
displacement of the control point c[p, q] deforms the entire region σp,q (left), while
the local refinement with respect to c[p, q] allows to accurately control a specific
part of σp,q (right).

The proof is given in Appendix 3.4.2. The infinite sums in (3.3.4) are in practice
reduced to finite ones, as we consider compactly supported basis functions. One
can refine the surface at several specific locations by applying Proposition 3.3.2
with respect to each corresponding control point.

We denote by σp,q the region of the surface σ that is initially controlled by
c[p, q], i.e., σp,q(u, v) = c[p, q]ϕα1

(u−p)ϕα2
(v−q). The local refinement described

by Proposition 3.3.2 leaves the shape of the surface unchanged while dividing σp,q
in (N1 ×N2) smaller areas; each being controlled by one of the new control points
{c̃p,q[i, j]}i∈{n1,...,n1+N1−1},j∈{n2,...,n2+N2−1}. We thus increase the approximation
power of the surface at the specific region σp,q. In Figure 3.3, we illustrate a local
refinement on a cylindrical surface. We show the influence of the refinement for
each direction u and v in Figure 3.4. Finally, in Figure 3.5, we compare our local
approach to the global one used with the classical parametrization (2.1.2).



36 Parametrization with Local Refinement

(a) Refinement in the direc-
tion u with ρ1 = 2.

(b) Refinement in the direc-
tion v with ρ2 = 2.

(c) Refinement in both direc-
tions u and v with ρ1 = 2 and
ρ2 = 2.

Figure 3.4: Refinement of σp,q (green pattern) with respect to c[p, q] performed in
direction u in (a), v in (b) as well as in both directions in (c). Red pattern: surface
controlled by one of the new points c̃p,q.

(a) Initial parameter domain. (b) Global approach. (c) Local refinement.

Figure 3.5: Increase of the approximation power of the region σp,q (green pattern).
We compare our method to the global approach used with classical parametriza-
tions. (a) Initial configuration; (b) configuration obtained after globally increasing
by a factor 3 the number of control points in each direction. The entire parameter
domain is affected; (c) configuration obtained by applying a local refinement with
respect to the control point c[p, q] with ρ1 = ρ2 = 3. The region σp,q is divided
into 9 areas, whereas the rest of the parameter domain remains unchanged.
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3.4 Appendices

3.4.1 Proof of Proposition 3.3.1

Using (2.1.2) we write

r(t) =

M−1∑
m=0
m 6=p

c[m]ϕM (t−m) + c[p]ϕM (t− p). (3.4.1)

By combining (2.1.3) and (3.2.1), ϕM (t− p) can be expressed as

ϕM (t− p) =
∑
n∈Z

ϕ(t− p−Mn)

=
∑
n∈Z

∑
m∈Z

h[m]ϕ(ρt− ρp− ρMn−m)

=
∑
m∈Z

h[m]
∑
n∈Z

ϕ(ρt− ρp− ρMn−m)

=
∑
m∈Z

h[m]ϕρM (ρt− ρp−m). (3.4.2)

Therefore,

c[p]ϕM (t− p) =
∑
m∈Z

c[p]h[m]︸ ︷︷ ︸
c̃p[m]

ϕρM (ρt− ρp−m). (3.4.3)

By taking into account the size of the filter h, which is equal to N , as well as its
localization on {n0, . . . , n0 +N} we can simplify the infinite sum in (3.4.3) to obtain

c[p]ϕM (t− p) =

n0+N−1∑
m=n0

c̃p[m]ϕρM (ρt− ρp−m). (3.4.4)

By combining (3.4.1) and (3.4.4) we obtain (3.3.2).
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3.4.2 Proof of Proposition 3.3.2
Using (2.1.5) we write

σ(u, v) =
∑

(m,n)∈Z2

(m,n) 6=(p,q)

c[m,n]ϕα1
(u−m)ϕα2

(v − n) + c[p, q]ϕα1
(u− p)ϕα2

(v − q)︸ ︷︷ ︸
σp,q(u,v)

.

(3.4.5)
Using the refinement property (3.2.3) we obtain

σp,q(u, v) = c[p, q]
(∑
i∈Z

hα1
ρ1
,ρ1

[i]ϕα1
ρ1

(ρ1u− ρ1p− i)
)(∑

j∈Z

hα2
ρ2
,ρ2

[j]ϕα2
ρ2

(ρ2v − ρ2q − j)
)

=
∑
i∈Z

∑
j∈Z

c[p, q]hα1
ρ1
,ρ1

[i]hα2
ρ2
,ρ2

[j]︸ ︷︷ ︸
c̃p,q [i,j]

ϕα1
ρ1

(ρ1u− ρ1p− i)ϕα2
ρ2

(ρ2v − ρ2q − j).

(3.4.6)

To simplify the infinite sums in (3.4.6) we take into account the size of the filters
hα1
ρ1
,ρ1

and hα2
ρ2
,ρ2

, which is equal to N1 and N2, respectively, as well as their
localization on {n1, . . . , n1 +N1 − 1} and {n2, . . . , n2 +N2 − 1}. We obtain

σp,q(u, v) =

n1+N1−1∑
i=n1

n2+N2−1∑
j=n2

c̃p,q[i, j]ϕα1
ρ1

(ρ1u−ρ1p−i)ϕα2
ρ2

(ρ2v−ρ2q−j). (3.4.7)

By combining (3.4.5) and (3.4.7), we obtain (3.3.4).



Chapter 4

Subdivision-Based
Representation

As exposed in Chapter 2, parametric snakes have a continuous representation via
the use of basis functions. They are parametrized by only a few control points,
which results in a faster optimization and better robustness. They are usually built
in a way that ensures continuity and smoothness, and it is easy to introduce shape
constraints. However, two well-known drawbacks of parametric approaches are (i)
the restricted nature of the shape that they can generate; and (ii) their inability
to deal with topology changes such as contour merging and splitting. On the
contrary, point-snakes/active meshes can handle topology changes. In addition,
their discrete nature allows for an easy implementation and is compatible with
open-source libraries for optimization or visualization. However, they rely on a
large number of parameters (i.e., snake points/mesh vertices), which requires an
internal regularization term and makes the optimization more challenging.

In this chapter, we present a geometric representation that combines the advan-
tages of point-snakes and parametric snakes. In our representation, the curve/surface
is driven by a set of a few master points, the control points, that are the param-
eters of the model. Then, slave points describing the curve/surface are gener-
ated by specific iterative procedures. The property that makes it possible is called
subdivision [101, 104–106], which is one of the basic geometric tools in computer
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graphics for representation and modeling [107, 108]. It is tightly linked to the
theory of wavelets [109] and allows describing a contour/surface of arbitrary topol-
ogy [71, 110–112] by an initial set of a few control points which, by the iterative
application of refinement rules, becomes continuous in the limit. The discrete na-
ture of the representation is convenient in practical applications. At the same time,
it implicitly yields a continuously defined model whose smoothness depends on the
particular choice of the subdivision mask. The main benefits of subdivision schemes
are their simplicity of implementation, the possibility to control their order of ap-
proximation, and their multiresolution property, which allows for the contour of a
shape to be represented at varying resolutions.

This chapter is based on our publications [70, 71] and work [72], in collabora-
tion with P. Novara, L. Romani, D. Schmitter, V. Uhlmann and M. Unser. It is
organized as follows: We first fix the notations in Section 4.1. In Section 4.2, we
introduce and describe the theory of subdivision that is relevant to the construction
of closed curves. In Section 4.3, we present several subdivision schemes that possess
various properties such as being interpolatory (a useful property for user-interactive
applications), having different sizes of support, and reproducing polynomials. In
Section 4.4, we show how subdivision schemes can be used to reproduce trigono-
metric functions for the construction of elliptic and circular curves. In Section 4.5,
we emphasize the connection between the subdivision-based and parametric rep-
resentations. Finally, in Section 4.6 we extend the theory to the construction of
subdivision surfaces.

4.1 Notations

We represent by p[·] a discrete sequence of points p[m] = (p1[m], p2[m]), in-
dexed by m ∈ Z, where p1 and p2 are the corresponding coordinates. We write
p(k)[·] = (p1(k)[·], p2(k)[·]) to describe a (2kM)-periodic sequence, k ≥ 0, with the
property that p(k)[m + n2kM ] = p(k)[m], ∀n ∈ Z. The discrete convolution of
p(k)[·] with a scalar mask h[·] is defined as

(
h ∗ p(k)

)
[m] =

∑
n∈Z

h[m− n]p(k)[n]. (4.1.1)
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4.2 Subdivision Schemes

A subdivision scheme generates a continuously defined function as the limit of an
iterative algorithm that is applied to an initial set ofM control points. A refinement
rule is applied repeatedly k times to double the number of points at each iteration,
ultimately yielding a set of 2kM points. Note that, at each iteration, the new set
of points does not necessarily contain the previous ones. The subdivision scheme
is said to be convergent when the set of points converges to the continuous curve
r = (r1, r2) with r1, r2 ∈ C0 as k →∞.

A closed curve at resolution k is represented by a (2kM)-periodized coordinate
sequence p(k)[·]. The refinement rule from (k − 1) to k is defined by

p(k)[m] = h ∗ p(k−1)↑2
[m], (4.2.1)

where h is the subdivision mask of the subdivision scheme [113] and ↑2 denotes an
upsampling by a factor of 2, given by

p(k)↑2
[m] =

{
p(k)[n], m = 2n
0, otherwise. (4.2.2)

In practice, the mask h has a finite number of non-zero elements so that the infinite
sum in (4.2.1) is often reduced to a finite one. Applying (4.2.1) iteratively, we can
express the refinement rule as a function of the initial set of control points p(0).
The subdivision points at the kth iteration (k ≥ 1) are thereby described by

p(k) = h0→k ∗ p(0)↑
2k
, (4.2.3)

where
h0→k = h↑

2k−1
∗ h↑

2k−2
∗ · · · ∗ h↑2 ∗ h. (4.2.4)

The derivation of (4.2.3) is given in Appendix 4.7.1. Note that each set of points
p(k) is encoded with the M control points

{
p(0)[m]

}
m∈{0,...,M−1}. The subdivision

scheme is illustrated in Figures 4.1 and 4.2.
In the following, the term control points designates the M initial points{

p(0)[m]
}
m∈{0,...,M−1} and the term subdivision points describes the 2kM points{

p(k)[m]
}
m∈{0,...,2kM−1} at the kth iteration (k ≥ 1).
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Figure 4.1: Flowchart of a subdivision scheme. The periodic sequence p(k), associ-
ated to the subdivision points at iteration k, converges to the continuous curve r; h
is the subdivision mask and the sequence h0→k, defined by (4.2.4), allows obtaining
p(k) directly from the initial set of control points p(0).

4.2.1 Convergent Subdivision Schemes
Let h be a subdivision mask with z-transform1 H(z) =

∑
n∈Z h[n]zn, z ∈ C \ {0}.

A necessary condition for the corresponding (stationary) subdivision scheme to be
convergent [114] is that ∑

n∈Z
h[2n] =

∑
n∈Z

h[2n+ 1] = 1. (4.2.5)

This condition is similar to the partition-of-unity condition (2.1.8) presented for ba-
sis functions in Section 2.1.3. The subdivision scheme thus reproduces constants and
H(z) = (1 + z)B(z), where B(z) is a Laurent polynomial and B(1) = 1 [115].

For any convergent subdivision scheme, the points of the sequence p(k), as
k →∞, sample the limit curve r, in the sense that [115–117]

r(t)
∣∣
t= m

2k
= p(k)[m]. (4.2.6)

When the coordinates function of the curve satisfy r1, r2 ∈ C1, the derivative ṙ = dr
dt

is also sampled by

ṙ(t)
∣∣
t= m

2k
= 2k(p(k)[m+ 1]− p(k)[m]) (4.2.7)

in the limit case k → ∞ [116, 118]. The derivation of (4.2.7) is given in Ap-
pendix 4.7.2. A necessary and sufficient condition for a subdivision scheme to

1This is the conventional definition of the z-transform used in subdivision theory.
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(a) p(0). (b) p(1). (c) p(2). (d) p(4). (e) r.

Figure 4.2: Illustration of non-interpolating (first row) and interpolating (second
row) subdivision schemes. (a) Control points. Dots in (b)-(d): Subdivision points
of the first, second and fourth iterations. As the points become denser with each
iteration, they converge to the continuous curve r (e), which is still encoded by
the five control points (blue crosses). In the case of the interpolating scheme, the
subdivision points interpolate the limit curve at each iteration of the process.

converge uniformly to a continuous limit function is [114,118]
H(1) = 2
H(−1) = 0
max
m
|h0→k[m+ 1]− h0→k−1[m]| −→

k→+∞
0.

(4.2.8)

In practice, few iterations are enough for the contour points to be sufficiently dense.

4.2.2 Interpolating Subdivision Schemes
A subdivision scheme is said to be interpolating if h[2m] = δ[m], where δ denotes
the Kronecker delta. It means that, at each step k, the subdivision points inter-
polate the limit curve r and

{
p(k−1)[m]

}
m∈Z ⊂

{
p(k)[m]

}
m∈Z. We illustrate an

interpolating subdivision scheme in Figure 4.2 (second row).
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4.2.3 Affine Invariance

As mentioned in Section 2.1.3, an important requirement for the construction of
snakes, as it is our final motivation, is that the representation model be affine invari-
ant to ensure to describe the curve independently from its location and orientation.

Definition 4.2.1. A subdivision scheme is said to be affine invariant if, for any
(2× 2) matrix A and translation vector b ∈ R2, the following relation holds:

lim
k→∞

h0→k ∗
(
Ap(0) + b

)
↑
2k

= A

(
lim
k→∞

h0→k ∗ p(0)

)
+ b

= Ar + b. (4.2.9)

Proposition 4.2.2. Every convergent subdivision scheme is affine invariant.

The derivation of Proposition 4.2.2 is given in Appendix 4.7.3.

4.3 Design of Subdivision Schemes

In the context of segmentation, the continuously defined limit curve of a conver-
gent subdivision scheme can be used to describe an active contour. In this case,
the properties of the snake are determined by the choice of the subdivision mask
h. There are thus three important properties to consider for h. The first defines its
capability to perfectly reproduce specific shapes, such as polynomial or trigonomet-
ric curves. The second is whether the control points interpolate the curve or not.
The third is the support of the mask. This can affect the optimization of the snake
and, generally, a short mask is preferred over a large one in a context of user in-
teraction. In practice, a tradeoff between the advantages and limitations regarding
these properties has to be made. The purpose of this section is to offer guidance on
the choice of the subdivision mask. We discuss the two most interesting families:
the Deslauriers-Dubuc and the minimum-support subdivision schemes.

4.3.1 Generation of Polynomials

Proposition 4.3.1 gives a criterion that a subdivision scheme must verify to generate
polynomials.
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Proposition 4.3.1. (Conti and Hormann [115, Equation (7)]) A subdivision scheme
generates polynomials up to degree (L−1) if the z-transform of the subdivision mask
takes the form

H(z) = (1 + z)LB(z), (4.3.1)

where B(z) is a Laurent polynomial with B(1) = 1
2L−1 and B(−1) 6= 0.

4.3.2 Deslauriers-Dubuc Subdivision Scheme

The Deslauriers-Dubuc subdivision scheme is convergent and interpolating [119], [120].
It reproduces polynomials up to degree (L− 1) [109,121,122]. The mask has a sup-
port of size 2 (L− 1) + 1 and is computed by solving the system [100,123]{

H(z) +H(−z) = 2

H(z) = R(z)Q(z),
(4.3.2)

whereR(z) = (1+z)L andQ(z) is the shortest-possible polynomial. We solve (4.3.2)
using Bézout’s theorem and we obtain

H(z) = (−1)
L
2

(
1− z2

)L
z−L

(
L∑
q=1

(−1)qaq
(z − 1)q

)
, (4.3.3)

where {aq}q∈{1,...,L} are the coefficients of the simple-fraction decomposition

2(−1)
L
2 zL

(z2 − 1)L
=

L∑
q=1

aq

(
1

(z + 1)q
+

(−1)q

(z − 1)q

)
. (4.3.4)

Example-Reproduction of Third-Degree Polynomials: We now focus on the partic-
ular case when L = 4. It corresponds to the well-known subdivision scheme
introduced by Deslauriers and Dubuc in [119] that reproduces polynomials
up to degree 3. The corresponding subdivision mask h has a support of size
7 and its z-transform is defined by

H(z) = − 1
16z
−3 + 9

16z
−1 + 1 + 9

16z −
1
16z

3. (4.3.5)
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4.3.3 Minimum-Support Subdivision Scheme
The minimum-support subdivision scheme has the property to generate polynomials
with the shortest mask. However, it is not interpolating, meaning that the control
points do not lie on the limit curve. In a segmentation context, it results that it is
less intuitive for the user to interact with the curve. The mask associated to the
scheme that generates polynomials up to degree (L− 1) is defined as

H(z) =
1

2L−1
(1 + z)

L (4.3.6)

and has a support of size L+ 1 [124].

Example-Shortest Generation of Third-Degree Polynomials: In this example, we con-
struct a minimum-support subdivision scheme that generates polynomials up
to degree 3. The corresponding mask is of size 5 and is defined by

H(z) =
1

8
+

1

2
z +

3

4
z2 +

1

2
z3 +

1

8
z4. (4.3.7)

4.4 Design of Non-Stationary Subdivision Schemes
The subdivision schemes that we have described so far are called stationary, mean-
ing that the subdivision mask h is the same at each iteration k. A subdivision
scheme is called non-stationary if the subdivision mask hk is different at each
iteration k, with the rest of the procedure being the same as in Section 4.2. Non-
stationary subdivision schemes are required to reproduce exponential polynomials,
which allows to construct trigonometric functions. The refinement rule is now

p(k) = hk ∗ p(k−1)↑2
, (4.4.1)

where hk is the subdivision mask at the kth iteration. The relation between the
periodic sequence p(k) at the kth iteration and the control points p(0) is still defined
by (4.2.3) but h0→k is now computed by

h0→k = h1↑
2k−1

∗ h2↑
2k−2

∗ · · · ∗ hk−1↑2
∗ hk. (4.4.2)

If we set h = hk, we recover all the formulas of the stationary scheme. Further-
more, every convergent stationary subdivision scheme verifies the property of affine
invariance stated in Definition 4.2.1 (see Proposition 4.2.2). In the non-stationary
setting, however, it must be verified case by case [115].
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4.4.1 Generation of Exponential Polynomials
We define α = (α1, α2, . . . , αL) and denote by Lαn the multiplicity of the element
αn ∈ α, for n = 1, . . . , L. A non-stationary subdivision scheme is said to generate
exponential polynomials if it generates the whole family {eαmttn}n∈{0,...,Lαm−1}.
In this case, the subdivision mask at the kth iteration is characterized by αk = α

2k

and its z-transform is denoted by Hα
k .

4.4.2 Generation of Trigonometric Functions
The generation of trigonometric functions allows one to efficiently construct a
scheme that is capable of generating circles and ellipses, which are useful struc-
tures in the context of segmentation in bioimaging. We now present a criterion
that a (non-stationary) subdivision scheme must verify to generate trigonometric
functions.

Proposition 4.4.1. (Romani [102, Proposition 2]) A non-stationary subdivision
scheme perfectly generates ellipses if the z-transform of the subdivision mask at the
kth iteration verifies

Hk(z) = (1 + z)
(

1 + e
j2π

2kM z
)(

1 + e
−j2π

2kM z
)
Qk(z), (4.4.3)

where Qk(z) is a polynomial in z.

That means that the subdivision scheme has to generate exponential polynomials
and that

(
0, j2π

M , −j2π
M

)
⊂ α. In the following we provide two examples of ellipse-

generating subdivision schemes: the non-stationary Deslauriers-Dubuc and the non-
stationary minimum-support subdivision schemes.

4.4.3 Non-Stationary Deslauriers-Dubuc Subdivision Scheme
The non-stationary Deslauriers-Dubuc subdivision scheme is interpolating and ca-
pable of reproducing the exponential polynomials defined in Section 4.4.1 [100,
123], [125]. As for the stationary case, the mask at the kth iteration has a support
of size 2 (L− 1) + 1 and is obtained by solving{

Hα
k (z) +Hα

k (−z) = 2

Hα
k (z) = Rαk(z)Qk(z),

(4.4.4)
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where Rα(z) =
L∏
n=1

(1 + eαnz), αk = α
2k
, and Qk(z) is a polynomial in z. Vonesch

et al. [100] extensively studied this scheme and proposed simplified solutions to
solve (4.4.4) by applying Bézout’s identity

Ck(Z)Dk(Z) + Ck(−Z)Dk(−z) = 2, (4.4.5)

where Z = z+z−1

2 , Ck(Z) = z−
L
2 Rαk(z), and Dk(Z) = z

L
2 Qk(z). The shortest

polynomial Dk(Z) is given by

Dk(Z) =

 K∑
q=1

Lq∑
s=1

(−1)saq,s
(Z + Zq)s

Ck(−Z), (4.4.6)

where K < L is the number of different elements of α, {Zq}q∈{1,...,K} are the roots
of Ck(Z) with multiplicity Lq, and {aq,s}q∈{1,...,K},s∈{1,...,Lq} are the coefficients of
the simple-fraction decomposition

2

Ck(−Z)Ck(Z)
=

K∑
q=1

Lq∑
s=1

aq,s

(
1

(Z − Zq)s
+

(−1)s

(Z + Zq)s

)
. (4.4.7)

Example-Ellipse-Reproducing Scheme: We construct a non-stationary Deslauriers-
Dubuc subdivision scheme that is capable of reproducing ellipses. Therefore,
we want to be able to construct trigonometric functions. According to Propo-
sition 4.4.1,

(
0, j2π

M , −j2π
M

)
⊂ α. Moreover, it was shown in [100] that the ele-

ments of α must come in complex-conjugate pairs and that, if 0 is an element
of α, then it must have even multiplicity. Hence, α =

(
0, 0, 2jπ

M ,− 2jπ
M

)
. The

mask at iteration k is of size 7. By solving (4.4.4), for M = 4, we obtain the
scheme

hk[m] =


−

2k
√
−1

2(1+ 2k+1√
−1)2(1+ 2k

√
−1)

, |m| = 3

(1+ 2k+1√
−1+ 2k

√
−1)2

2(1+ 2k+1√
−1)2(1+ 2k

√
−1)

, |m| = 1

1, m = 0
0, otherwise.

(4.4.8)
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Note that, when k → ∞, the mask hk converges towards the stationary
Deslauriers-Dubuc scheme defined by (4.3.5) which reproduces polynomials
of degree up to 3.

4.4.4 Non-Stationary Minimum-Support Subdivision Scheme

The non-stationary minimum-support subdivision scheme generates exponential
polynomials defined in Section 4.4.1 with the shortest mask [81]. It has a support
of size L+ 1 and is given by

Hα
k (z) =

1

2L−1

L∏
n=1

(
1 + e

αn
2k z
)
. (4.4.9)

Example-Shortest Ellipse-Generating Scheme: We construct a non-stationary
minimum-support subdivision scheme that is capable of generate ellipses.
Therefore, we choose α =

(
0, 2jπ

M ,− 2jπ
M

)
. By imposing the affine invariance

of Definition 4.2.1, the subdivision mask at iteration k is of size 4 and is given
by sinc−2( 1

M )Hα
k (z), where

Hα
k (z) =

1

4

(
1 +

(
1 + e

−2jπ

2kM + e
2jπ

2kM

)
z +

(
1 + e

−2jπ

2kM + e
2jπ

2kM

)
z2 + z3

)
.

(4.4.10)

4.5 Connection with Scaling Functions and Para-
metric Curves

For any convergent stationary subdivision scheme, there is a continuously-defined
function ϕ associated to the mask h0→k, given by (4.2.4), and applied to initial
data δ [116, 117], which is the Kronecker delta. The function ϕ is called the basic
limit function of the subdivision scheme [106] (a.k.a. fundamental function [119])
and is defined as

ϕ(t)
∣∣
t= m

2k
= lim
k→+∞

h0→k[m]. (4.5.1)
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Figure 4.3: Illustration of the basic limit functions of the stationary Deslauriers-
Dubuc (red solid line) and minimum-support (blue dashed line) subdivision schemes
that reproduce polynomials up to degree 3.

The function ϕ is actually a scaling function (see Definition 3.2.1) that verifies the
two-scale refinement relation [126]

ϕ(t) =
∑
n∈Z

h[n]ϕ(2t− n), (4.5.2)

and recursively, we have that

ϕ(t) =
∑
n∈Z

h0→k[n]ϕ(2kt− n). (4.5.3)

In Figure 4.3, we illustrate the basic limit functions of the Deslauriers-Dubuc and
minimum-support subdivision schemes that reproduce polynomials up to degree
3 (see (4.3.5) and (4.3.6), respectively). They correspond to the Deslaurier-Dubuc
interpolation function [119], given by the auto-correlation of the Daubechies scaling
function [99, 109, 122], and the cubic B-spline β(0,0,0,0) (see Section 2.3.1). By
combining (4.2.3), (4.2.6) and (4.5.1), for any convergent stationary subdivision
scheme we write
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r(t)
∣∣
t= m

2k
= lim
k→+∞

p(k)[m]

= lim
k→+∞

(
h0→k ∗ p(0)↑

2k

)
[m]

=
∑
n∈Z

p(0)[n]ϕ

(
m− 2kn

2k

)
=
∑
n∈Z

p(0)[n]ϕ(t− n), (4.5.4)

wherem ∈ Z and t = m
2k
∈ R is a continuous parameter. We recover the formulation

of a parametric curve. It means that in the particular case where the basis functions
of parametric curves are scaling functions, there is a connection with the proposed
work: the discrete filters of the scaling functions can be used as subdivision masks
for stationary schemes.

4.6 Subdivision Surfaces

4.6.1 Notation and Terminology
A triangular mesh M(k), at resolution k, is defined by the set
P(k) =

{
p(k)[m] ∈ R3, m ∈ {0, . . . , Nk − 1}

}
of Nk points. These points are im-

plicitly connected by triangles. The valence ξ of the vertex p(k)[m] denotes the
number of its adjacent vertices in the meshM(k). A vertex is extraordinary if its
valence is different from six, otherwise it is regular. A meshM(k) is called regular
if all its vertices have valence six.

4.6.2 Subdivision Schemes
Given the coarse mesh M(0), we apply repeatedly k times a subdivision rule to
obtain a finer mesh M(k), which does not necessarily contain the coarser mesh
M(k−1). At the limit of the process, we obtain the continuously defined surface
σ = (σ1, σ2, σ3) with σ1, σ2, σ3 ∈ C0. The subdivision rule from (k − 1) to k is
defined by

P(k) = Sk−1P(k−1), (4.6.1)
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where Sk is the subdivision operator at the kth iteration of the subdivision scheme.
As in 2D, we say that a subdivision scheme is stationary if the subdivision rules in
Sk are the same at each iteration; otherwise, it is non-stationary. The vertices of
the mesh at the kth iteration (k ≥ 1) can be directly obtained from the initial set
of control points P(0) by

P(k) = Sk−1Sk−2 · · ·S0P(0). (4.6.2)

Formulation (4.6.2) makes it obvious that P(k) depends exclusively on the N0 ver-
tices of P(0), which we call control points. The Nk vertices of the meshM(k) at the
kth iteration (k ≥ 1) are called subdivision points.

4.6.3 Properties

In the literature there is a wide range of subdivision schemes to produce surfaces.
They differ in the properties that they confer to the limit surface.

Reproduction of specific shapes: The ability of a subdivision scheme to reproduce
ellipsoids or spheres [71,101,105,127].

Interpolation: At each iteration, the control points lie on the limit surface [111,
128–131].

Smoothness: The subdivision rule given in [132] leads to C1 limit surfaces, while
the ones developed in [110, 133] produce C2 continuous limit surfaces ev-
erywhere except at extraordinary vertices where they are only C1 continu-
ous. Non-stationary schemes generalizing the Doo-Sabin and Catmull-Clark
schemes were proposed in [134]. Theorems to analyze the smoothness of a
non-stationary scheme in regions with regular and extraordinary vertices can
be found in [135] and [136], respectively.

Affine invariance: The geometry of the limit surface changes in synchrony with any
affine transformation that would be applied to the initial mesh. Conditions
on the subdivision operators Sk to ensure this property are given in [105,137].
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4.6.4 Examples of Subdivision Schemes
Stationary Loop’s scheme

Loop’s scheme is a widely used subdivision scheme for triangular meshes. It has
been developed by Charles Loop in 1987 [110]. It generates a limit surface which
is C2-continuous everywhere, except at extraordinary vertices where the regularity
is C1. This scheme refines each triangle of a coarse mesh into four subtriangles
(Figure 4.5 (a) and (b)). A subdivision iteration from k to (k + 1) consists in two
steps.

Vertex-Point Rule: The location of every former vertex p(k)[m],m ∈ {0, . . . , Nk − 1},
is updated. A new vertex p(k+1)[q], q ∈ {0, . . . , Nk+1 − 1}, is obtained by the
convex combination

p(k+1)[q] = α p(k)[m] + β
∑

p(k)[u]∈Vm

p(k)[u], (4.6.3)

where Vm is the set of the ξ adjacent vertices of p(k)[m] in M(k),

α = 3
8 +

(
3
8 + 1

4 cos( 2π
ξ )
)2

and β = 1−α
ξ . In Figure 4.4 (a) we illustrate the

vertex-point stencil where the local linear combination (4.6.3) is suggested
graphically.

Edge-Point Rule: For every edge in the coarser mesh, a new vertex is inserted.
Let us consider the two old adjacent triangles made of the vertices p(k)[m0],
p(k)[m1], p(k)[m2] and p(k)[m3], with m0,m1,m2,m3 ∈ {0, . . . , Nk− 1}, such
that p(k)[m0]p(k)[m1] is the common edge (Figure 4.4 (b)). The subdivision
rule yields

p(k+1)[q] = 3
8

(
p(k)[m0] + p(k)[m1]

)
+ 1

8

(
p(k)[m2] + p(k)[m3]

)
, (4.6.4)

where q ∈ {0, . . . , Nk+1 − 1}.

This scheme is stationary, easy to implement, and has the property to be affine
invariant. In Figure 4.5, we illustrate the sphere approximated by Loop’s scheme
using an octahedron as initial mesh. Extensions of Loop’s scheme to get addi-
tional properties like optimal shrinkage and exponential polynomial reproduction
are considered in [71].
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(a) Vertex-point stencil. (b) Edge-point stencil.

Figure 4.4: Stencils for vertex-point (a) and edge-point (b) rules of Loop’s scheme.

Non Stationary BLOB scheme

The Butterfly-Loop optimal blending (BLOB) scheme is a new subdivision scheme
that we introduced in [71]. It is an affine-invariant non-stationary subdivision
scheme for the recursive refinement of any triangular mesh that is regular or has
extraordinary vertices of valence 4. In particular, when applied to an arbitrary
convex octahedron, it produces a G1-continuous surface with a blob-like shape as
the limit of the recursive subdivision process. In case of a regular octahedron, the
subdivision process provides an accurate representation of ellipsoids. Like Loop’s
scheme, it belongs to the class of primal subdivision schemes [127, 137] since, at
each step of the refinement process, a finer mesh is created by splitting the faces
of the coarse mesh. However, we use a level-dependent vertex-point stencil and a
much larger (and also level-dependent) edge-point stencil. A subdivision iteration
from k to (k + 1) consists in two steps.

Vertex-Point Rules: The location of every former vertex p(k)[m],m ∈ {0, . . . , Nk − 1},
is updated. A new vertex p(k+1)[q], q ∈ {0, . . . , Nk+1 − 1}, is obtained by the
convex combination

p(k+1)[q] =


a(k) p(k)[m] + b(k)

∑
p(k)[u]∈Vm

p(k)[u], p(k)[m] is regular,

ã(k) p(k)[m] + b̃(k)
∑

p(k)[u]∈Vm
p(k)[u], p(k)[m] has valence four,

(4.6.5)
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(a)M(0) (b)M(1) (c)M(2)

(d)M(3) (e)M(4) (f)M(5)

Figure 4.5: Sphere approximated by Loop’s scheme, starting from an octahedron.

where Vm is the set of the ξ adjacent vertices of p(k)[m] inM(k),

a(k) =
4(v(k))

2
+2v(k)+1

4(v(k)+1)
2 , b(k) = 2v(k)+1

8(v(k)+1)
2 ,

ã(k) =
45(v(k))

2
+18v(k)+1

48(v(k)+1)
2 , b̃(k) =

3(v(k))
2
+78v(k)+47

192(v(k)+1)
2 ,

(4.6.6)

and

v(k) =
1

2

(
e
j λ

2(k+1) + e
−j λ

2(k+1)

)
, λ ∈ [0, π) ∪ j(0, 2acosh(500)). (4.6.7)

The parameter λ influences the final shape of the limit surface. These rules
are illustrated in Figures 4.6 (a) and 4.7 (a).

Edge-Point Rules: For every edge in the coarser mesh, a new vertex is inserted.
We distinguish three cases: the old edge has 1) two regular endpoints; 2)
two extraordinary endpoints with valence four; 3) one regular endpoint and
one extraordinary endpoint with valence four. We graphically provide the
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(a) Vertex-point stencil. (b) Edge-point stencil.

Figure 4.6: Stencils for vertex-point (a) and edge-point (b) rules of the BLOB
scheme in the regular regions of the mesh.

corresponding linear combinations in Figure 4.6 (b) and Figure 4.7 (b) and
(c), respectively. The involved coefficients are defined by

c(k) = 2v(k)+1

16(v(k)+1)3
, d(k) =

(2v(k)+1)
2

8(v(k)+1)3
, e(k) = 1

16(v(k)+1)3
,

f (k) =
(2v(k)+1)(4(v(k))

2
+6v(k)+3)

16(v(k)+1)3
, d̃(k) =

16(v(k))
2
+18v(k)+5

32(v(k)+1)3
, ẽ(k) = 2v(k)+5

64(v(k)+1)3
,

f̃ (k) =
32(v(k))

3
+64(v(k))

2
+54v(k)+15

64(v(k)+1)3
, g(k) =

(2v(k)+3)(2v(k)+1)
8(v(k)+1)2

, h(k) = 1

8(v(k)+1)2
,

(4.6.8)
where v(k) is defined in (4.6.7).

The vertex-point rules have the same size and structure as the one of Loop’s sub-
division scheme [110], and the size and structure of the edge-point rules are the
same as those of the modified Butterfly scheme [128]. This is why we named this
scheme the Butterfly-Loop optimal blending subdivision scheme. In Figure 4.8, we
illustrate the sphere approximated by the BLOB scheme using an octahedron as
initial mesh. This scheme is non-stationary, so more challenging to implement than
Loop’s scheme. However, it provides a better approximation of the sphere than
Loop’s scheme while starting from a coarse mesh with few control points [71]. In a
segmentation context, this suggests that the BLOB scheme will be more accurate
when delineating spherical shapes with a small number of control points. As more
control points are included, the two schemes will produce outcomes of equivalent
quality [71].
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(a) Vertex-point rule for
a vertex of valence 4.

(b) Edge-point rule for an edge
with two end-point vertices of va-
lence 4.

(c) Edge-point rule for an edge
with one end-point vertex of va-
lence 4 and the other of valence
6.

Figure 4.7: Stencils for vertex- and edge-point rules of the BLOB scheme involving
extraordinary vertices of valence four.

(a)M(0) (b)M(1) (c)M(2)

(d)M(3) (e)M(4) (f)M(5)

Figure 4.8: Sphere approximated by the BLOB scheme, starting from an octahe-
dron.



58 Subdivision-Based Representation

4.7 Appendices

4.7.1 Derivation of Equation (4.2.3)

Using (4.2.1), we have that

p(1)[m] =
∑
n∈Z

h[m− 2n]p(0)[n] (4.7.1)

and

p(2)[m] =
∑
n∈Z

h[m− 2n]p(1)[n]

=
∑
n∈Z

h[m− 2n]
∑
q∈Z

h[n− 2q]p(0)[q]

=
∑
q∈Z

(∑
l∈Z

h[m− 4q − 2l]h↑2 [2l]

)
p(0)[q]

=
∑
q∈Z

(h ∗ h↑2)︸ ︷︷ ︸
h0→2

[m− 4q]p(0)[q]. (4.7.2)

Combining (4.2.1), (4.7.1), and (4.7.2), we recursively obtain

p(k)[m] =
∑
n∈Z

h0→k[m− 2kn]p(0)[n], (4.7.3)

where h0→k is given by (4.2.4).

4.7.2 Derivation of Equation (4.2.7)

ṙ(t)
∣∣
t= m

2k
= lim
ε→0

r(t+ ε)− r(t)

ε

∣∣∣∣
t= m

2k

= lim
k→∞

2k
(

r(t+
1

2k
)− r(t)

) ∣∣∣∣
t= m

2k

, (4.7.4)
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where we used ε = 1
2k
. Combining this result with (4.2.6), we obtain

ṙ(t)
∣∣
t= m

2k
= lim
k→+∞

2k(p(k)[m+ 1]− p(k)[m]), (4.7.5)

which ends the proof.

4.7.3 Proof of Proposition 4.2.2
For any convergent subdivision scheme, we have the necessary condition (4.2.5).
Under this condition, it follows directly from (4.2.1) that constant functions are
reproduced [115]. It means that if p(0)[m] = 1, ∀m, then we have that, for a fixed
k, p(k)[m] = 1, ∀m. We rewrite (4.2.3) for this particular case and we obtain that∑

n∈Z
h0→k[m− 2kn] = 1, ∀m ∈ Z. (4.7.6)

Let A be a (2× 2) matrix and b ∈ R2 be a translation vector. We calculate(
h0→k ∗ (Ap(0) + b)↑

2k

)
[m] =

(
A
(
h0→k ∗ p(0)↑

2k

))
[m] + b

∑
n∈Z

h0→k[m− 2kn].

(4.7.7)
We use (4.2.3) and (4.7.6) in (4.7.7) to obtain(

h0→k ∗ (Ap(0) + b)↑
2k

)
[m] = Ap(k)[m] + b. (4.7.8)

For k → +∞ in (4.7.8), we obtain

lim
k→∞

(
h0→k ∗ (Ap(0) + b)↑

2k

)
[m] = Ar(t)

∣∣
t= m

2k
+ b, (4.7.9)

which corresponds to the condition of affine invariance.
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Chapter 5

Image Energies

In the previous chapters, we introduced two new representation models for
curves/surfaces. In Table 5.1, we summarize the geometric representations and
their parameters Θ that we have seen so far. We now focus on the second main
aspect of active contours/surfaces, namely the snake energy. We recall that the
energy is a function of Θ that is minimized during the optimization process by
adapting the values of Θ, i.e,

Θopt = arg min
Θ

Esnake(Θ). (5.0.1)

In particular, we focus on the image energy term (see (1.2.1) and Section 1.2.2).
The choice of this term is crucial as it drives the evolution of the snake contour to
fit image data, and thus determines the quality of the segmentation. It is generally
tuned according to the features of a given segmentation task.

In this chapter, we collect and unify all the image energies that were proposed
in our publications [68, 70, 73, 74] and work [72]. These have been carried out in
collaboration with A. Depeursinge, A. Galan, L. Romani, D. Sage, D. Schmitter, V.
Uhlmann and M. Unser. The chapter is organized as follows: In Sections 5.1 and 5.2,
we first adapt the standard edge- and region-based energies, initially defined for
parametric snakes in Section 2.2, to our new representation models (see Chapters 3
and 4). Then, in Sections 5.3 and 5.4, we identify some limitations of these energies
and propose new ones, namely ridge- and texture-based energies, that overcomes

61
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Table 5.1: Summary of the representation models and their parameters Θ.

Model Parameters Relation

Parametrization Θ = {c[m]}m∈{0,...,M−1}
r := r(Θ) (2.1.2)
σ := σ(Θ) (2.1.6)

Locally refinable Θ = {c[m]}m∈{0,...,M−1},m 6=p r := r(Θ) (3.3.2)
parametrization

⋃
{c̃p[n]}n∈{n0,...,n0+N−1} σ := σ(Θ) (3.3.4)

Subdivision
Θ =

{
p(0)[m]

}
m∈{0,...,M−1} p(k) := p(k)(Θ) (4.2.3)

with M = N0 in 3D P(k) := P(k)(Θ) (4.6.2)

these problems.
We strongly recommend the reader to refer to Table 5.1 throughout this chapter.

5.1 Edge-based Energy
By definition an edge is a border between areas of high and low gray value. The
energy term (2.2.2) is an efficient edge-based energy proposed by [44] that we briefly
recall as

Eedge(Θ) = −
˛
C
〈∇f(r),n(r)〉dr. (5.1.1)

It relies on edge maps derived from the image and incorporates information about
the directionality of the snake curve. This allows the snake to discriminate on which
side of an object it is located (e.g., inside or outside an object).

5.1.1 Derivation for the Locally Refinable Parametrization
The energy term Eedge(Θ) has the advantage of being independent of the parametriza-
tion. It can thus be applied to our new parametrization (3.3.2), that is to a para-
metric closed curve that has been locally refined with respect to the control point
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c[p]. In Proposition 5.1.1, we derive1 the explicit formula of Eedge(Θ) associated
to locally refinable curves in which the control points Θ = {c[m]}m∈{0,...,M−1}

m 6=p⋃
{c̃p[n]}n∈{n0,...,n0+N−1} are highlighted.

Proposition 5.1.1. Let r be a locally refinable curve as described in Proposi-
tion 3.3.1. Then, the edge-based energy term Eedge(Θ) can be expressed as

EedgeLR(Θ) =

M−1∑
m=0
m6=p

c2[m]

ˆ M

0

G(r(t))ϕ̇M (t−m)dt

+ ρ

n0+N−1∑
n=n0

c̃p,2[n]

ˆ M

0

G(r(t))ϕ̇ρM (ρt− ρp− n)dt, (5.1.2)

where ρ is the refinement factor, {n0, . . . , n0+N} is the support of the refinement fil-
ter, r := r(Θ) and c̃p = (c̃p,1, c̃p,2) are given by (3.3.2) and (3.3.3), respectively, and
ϕ̇(t) = dϕ(t)

dt . The image G is given by

G(x1, x2) = −
ˆ x1

−∞
∆f(τ, x2)dτ, (5.1.3)

where ∆f is the Laplacian of the image f .

The proof of Proposition 5.1.1 is given in Appendix 5.6.1.

5.1.2 Discretization for the Subdivision-based Representa-
tion

The subdivision-based representation presented in Chapter 4 is discrete by nature.
We derive2 the corresponding discrete edge-based energy term as

EedgeSD(p(k)(Θ)) = − 1

2k

2kM−1∑
m=0

〈
∇f(p(k)[m]),n(p(k)[m])

〉
, (5.1.4)

1This work is based on our publication [68], in collaboration with D. Schmitter and M. Unser.
2This work is based on our publication [70], in collaboration with D. Schmitter, V. Uhlmann

and M. Unser.
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where p(k)[m] is the location of the m-th subdivision point defined by (4.2.3), and
∇f(p(k)[m]) and n(p(k)[m]) are the within-plane gradient of the image f and
the approximation of the unit normal vector, respectively, at p(k)[m]. The vec-
tor n(p(k)[m]) is defined by

n(p(k)[m]) =

(
n1(p(k)[m])
n2(p(k)[m])

)
=

1

b1

(
2k(p2(k)[m+ 1]− p2(k)[m])

−2k(p1(k)[m+ 1]− p1(k)[m])

)
(5.1.5)

and converges to

n(p(k)[m]) −→
k→∞

n(r(t)
∣∣
t= m

2k
) =

1

b2

(
ṙ2(t)

∣∣
t= m

2k

−ṙ1(t)
∣∣
t= m

2k

)
, (5.1.6)

where n(r) is the unit vector normal to the curve r and, b1 and b2 are constants
such that ‖n(p(k))‖ = 1 and ‖n(r)‖ = 1.

Proposition 5.1.2. The energy defined by (5.1.4) converges to the standard energy
Eedge(Θ), i.e.,

EedgeSD(p(k)(Θ)) −→
k→∞

Eedge(Θ) = −
˛
C
〈∇f(r),n(r)〉dr. (5.1.7)

The proof of Proposition 5.1.2 is given in Appendix 5.6.2. This proposition guar-
anties the efficiency of our discrete formulation (5.1.4) as it has the proper limit
commonly used in the continuous case.

Extension to the surface energy

Following the notations of Section 4.6, we derive3 the discrete formulation for sub-
division surfaces of the gradient energy (2.2.3). The term is expressed as

EgradSD(P(k)(Θ)) = − 1

22k

Nk−1∑
m=0

〈
∇f(p(k)[m]),n(p(k)[m])

〉
, (5.1.8)

where ∇f(p(k)[m]) and n(p(k)[m]) are the gradient of f and the approximation
of the unit normal vector, respectively, at the vertex p(k)[m]. The expression of

3This work is based on our work [72], in collaboration with L. Romani and M. Unser.
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n(p(k)[m]) is given by

n(p(k)[m]) =

∑
T∈Om nt(T )

||
∑
T∈Om nt(T )||

, (5.1.9)

where Om is the set of all the triangles to which p(k)[m] belongs and nt(T ) is the
normal of the triangle T .

Proposition 5.1.3. The energy given by (5.1.8) converges to the standard en-
ergy Egrad(Θ), i.e.,

EgradSD(P(k)(Θ)) −→
k→∞

Egrad(Θ) = −
‹
S
〈∇f(σ),dσ〉 , (5.1.10)

where S is the surface described by σ and dσ represents the vector differential area.

The proof of Proposition 5.1.3 is given in Appendix 5.6.4. This proposition justifies
our discretization (5.1.8) for the gradient energy.

5.2 Region-based Energy using Intensity Distribu-
tion

The region-based energy (2.2.4) allows to distinguish between homogeneous regions
in the image using intensity information. We recall its definition as

Eintensity(Θ) = − 1

|Σ|

∣∣∣∣∣
¨

Ω

f(x)dx1dx2 −
¨

Ωλ\Ω
f(x)dx1dx2

∣∣∣∣∣ . (5.2.1)

It maximizes the contrast between the mean intensity over the surface Ω enclosed
by r and the mean intensity over the shell Ωλ \ Ω. The surface Ωλ is built from
rλ = (rλ,1, rλ,2), a dilated version of r, such that Ω ⊂ Ωλ, and Ωλ \ Ω and Ω
have the same area. This last criteria is to enforce Eintensity(Θ) = 0 when f takes a
constant value, for instance in flat regions of the image. Note that the energy (5.2.1)
implicitly supposes that r does not self-intersect.
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5.2.1 Derivation for the Locally Refinable Parametrization
The energy term Eintensity(Θ) is independent of the parametrization. We explicit4
the formula in case of locally refinable closed curves, where the refinement has been
done with respect to the control point c[p].

Proposition 5.2.1. If r is locally refinable in the sense of Proposition 3.3.1, then
the region-based energy Eintensity(Θ) can be expressed as

EintensityLR(Θ) = − 1

|Σ|

∣∣∣∣∣∣∣2
M−1∑
m=0
m 6=p

c2[m]

ˆ M

0

F (r(t))ϕ̇M (t−m)dt

+ 2ρ

n0+N−1∑
n=n0

c̃p,2[n]

ˆ M

0

F (r(t))ϕ̇ρM (ρt− ρp− n)dt

−
M−1∑
m=0
m6=p

cλ2[m]

ˆ M

0

F (rλ(t))ϕ̇M (t−m)dt

−ρ
n0+N−1∑
n=n0

c̃λp,2[n]

ˆ M

0

F (rλ(t))ϕ̇ρM (ρt− ρp− n)dt

∣∣∣∣∣ ,
(5.2.2)

where ρ is the refinement factor, c̃p = (c̃p,1, c̃p,2) is given by (3.3.3),
{n0, . . . , n0 +N} is the support of the refinement filter and F is the pre-integrated
image along the first dimension defined by

F (x1, x2) =

ˆ x1

−∞
f(τ, x2)dτ. (5.2.3)

The signed area Σ := Σ(Θ) enclosed by r is given by

4This work is based on our publication [68], in collaboration with D. Schmitter and M. Unser.
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Σ(Θ) =−
M−1∑
m=0
m6=p

M−1∑
n=0
n 6=p

c2[m]c1[n]

ˆ M

0

ϕM (t−m)ϕ̇M (t− n)dt

− ρ
M−1∑
m=0
m6=p

n0+N−1∑
n=n0

c2[m]c̃p,1[n]

ˆ M

0

ϕM (t−m)ϕ̇ρM (ρt− ρp− n)dt

−
n0+N−1∑
m=n0

M−1∑
n=0
n6=p

c̃p,2[m]c1[n]

ˆ M

0

ϕρM (ρt− ρp−m)ϕ̇M (t− n)dt

− ρ
n0+N−1∑
m=n0

n0+N−1∑
n=n0

c̃p,2[m]c̃p,1[n]

ˆ M

0

ϕρM (ρt− ρp−m)ϕ̇ρM (ρt− ρp− n)dt.

(5.2.4)

The proof is given in Appendix 5.6.5.

5.2.2 Discretization for the Subdivision-based Representa-
tion

The discrete region-based energy that we propose5 for subdivision curves is ex-
pressed as

EintensitySD(p(k)(Θ)) = − 1

2k
∣∣Σ(p(k))

∣∣
∣∣∣∣∣∣2

2kM−1∑
m=0

F (p(k)[m])n1(p(k)[m])

−
2kM−1∑
m=0

F (pλ(k)[m])n1(pλ(k)[m])

∣∣∣∣∣∣ , (5.2.5)

where pλ(k) is the sequence of subdivision points that describes the curve rλ, n1 is
the first coordinate of the approximation of the unit normal vector given by (5.1.5),

5This work is based on our publication [70], in collaboration with D. Schmitter, V. Uhlmann
and M. Unser.
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and F is defined by (5.2.3). We define the signed area Σ(p(k)) := Σ(p(k)(Θ)) as

Σ(p(k)(Θ)) =
1

2k

2kM−1∑
m=0

p1(k)[m]n1(p(k)[m]). (5.2.6)

Proposition 5.2.2. The area (5.2.6) and the energy defined by (5.2.5) converges
to

Σ(p(k)(Θ)) −→
k→∞

Σ(Θ) =

¨
Ω

dx1dx2, (5.2.7)

and

EintensitySD(p(k)(Θ)) −→
k→∞

Eintensity(Θ) = − 1

|Σ|

∣∣∣∣¨
Ω

f(x)dx1dx2

−
¨

Ωλ\Ω
f(x)dx1dx2

∣∣∣∣∣ , (5.2.8)

where Σ := Σ(Θ) is the signed area enclosed by the contour r and, Ω and Ωλ are
the surfaces enclosed by the curve r and rλ, respectively.

The proof of Proposition 5.2.2 is given in Appendix 5.6.6. This proposition justifies
our discrete formulation (5.2.5) of Eintensity(Θ).

Extension to volume energy

We consider a continuously defined, orientable, closed limit surface σ of a subdivi-
sion scheme that does not self-intersect. Following the notations of Section 4.6, for
the 3D extension of (5.2.5) we propose6

EintensitySD(P(k)(Θ)) = − 1∣∣V(P(k))
∣∣ 22k

∣∣∣∣∣2
Nk−1∑
m=0

F (p(k)[m])n1(p(k)[m])

−
Nk−1∑
m=0

F (pλ(k)[m])n1(pλ(k)[m])

∣∣∣∣∣ , (5.2.9)

6This work is based on our work [72], in collaboration with L. Romani and M. Unser.
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where Pλ(k) is the set of subdivision points that defines the surface σλ, n1 is the
first coordinate of the approximation of the unit normal vector given by (5.1.9),
and F is the pre-integrated volumetric image along the first dimension defined by

F (x1, x2, x3) =

ˆ x1

−∞
f(τ, x2, x3)dτ. (5.2.10)

The quantity V(P(k)) is the signed volume of the triangular meshM(k) that defines
σ. To obtain this volume, we decompose the mesh in tetrahedrons, each one being
composed of the center of gravity and a triangle of the mesh. We then sum the
volume of each tetrahedron to obtain V(P(k)).

Proposition 5.2.3. The volume V(P(k)) and the energy (5.2.9) converges to

V(P(k))(Θ) −→
k→∞

V(Θ) =

˚
V

dx1dx2dx3, (5.2.11)

and

EintensitySD(P(k)(Θ)) −→
k→∞

Eintensity(Θ) = − 1

|V|

∣∣∣∣˚
V
f(x)dx1dx2dx3

−
˚
Vλ\V

f(x)dx1dx2dx3

∣∣∣∣∣ ,
(5.2.12)

where V and Vλ are the volume enclosed by σ and its dilated version σλ, respectively,
V := V(Θ) is the signed volume of V, and dx1dx2dx3 is an infinitesimal vector
element of V.

The proof of Proposition 5.2.3 is given in Appendix 5.6.7. This proposition justifies
our discrete formulation (5.2.9) as it converges to the standard energy (2.2.7).

5.3 Ridge-based Energy
In some application, the structures of interest are delimited by ridges, i.e., thin lines
darker or brighter than their neighborhood. If we perform an edge detection on
ridge areas we will obtain a double line, one from each side of the ridge (Figure 5.1).
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(a) Original image. (b) Edge detection. (c) Ridge detection.

Figure 5.1: Illustration of edge and ridge detection. Source: R. Jankele and P.
Gönczy, EPFL.

Edge-based energies, such as (2.2.2), are thus not well suited for these kind of
applications. In this section, we propose7 an oriented ridge-based energy. We
provide its continuous and discrete formulations.

To detect ridges, a common approach is to compute the Hessian matrix U at
location x = (x1, x2) as

U(x) =

∂2u(x1,x2)
∂x2

1

∂2u(x1,x2)
∂x1∂x2

∂2u(x1,x2)
∂x2∂x1

∂2u(x1,x2)
∂x2

2

 , (5.3.1)

where u(x1, x2) = f(x1, x2) ∗
(
g(x1)g(x2)

)
with f the input image and

g(xi) = 1
σ
√

2π
e
−(xi)

2

2σ2 for i = 1, 2. High values of the standard deviation σ ∈ R
increase the basin of attraction of the active contour. We define the ridge strength
at location x by

ξ(x) =
√
|λmin(x)|

√
|λmin(x)− λmax(x)|, (5.3.2)

where λmin(x) and λmax(x) are the minimum and maximum eigenvalues of U(x),
respectively. On the ridge, the ridge strength is maximum and the eigenvector
vmin(x) is normal to the ridge.

7This work is based on our publication [73], in collaboration with D. Sage, A. Galan and M.
Unser.
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ridge

v     (x     )ridgemin

v     (x     )ridgemax

xridge
snake

n(x)

Figure 5.2: Ridge feature. When minimizing the ridge-based energy (5.3.4), the
snake (red line) tends to align with the center of the ridge (green line).

The oriented ridge-based energy that we propose is

Eridge(Θ) = −
˛
C
ξ(r)
|〈vmin(r),n(r)〉|
‖vmin(r)‖

dr, (5.3.3)

where n(r) is the unit vector normal to the curve r and dr is an infinitesimal
vector element of C. The energy (5.3.3) is minimal when the vectors vmin and n
are aligned and when the snake lies on the ridge (Figure 5.2). This energy term is
independent from the parametrization so it can be applied either to parametric or
locally refinable parametric curves defined by (2.1.2) and (3.3.2), respectively. The
discretization of (5.3.3) for subdivision curves is given by

EridgeSD(p(k)(Θ)) = − 1

2k

2kM−1∑
m=0

ξ(p(k)[m])

∣∣〈vmin(p(k)[m]),n(p(k)[m])
〉∣∣∥∥vmin(p(k)[m])

∥∥ , (5.3.4)

where p(k) is defined by (4.2.3), and n(p(k)[m]), ξ(p(k)[m]) and vmin(p(k)[m]) are
the approximations of the unit normal vector, the ridge strength and the eigen-
vector, respectively, at the mth subdivision point. The vector n(p(k)[m]) is given
by (5.1.5) and we have that

n(p(k)[m]) −→
k→∞

n(r(t)
∣∣
t= m

2k
), (5.3.5)

ξ(p(k)[m]) −→
k→∞

ξ(r(t)
∣∣
t= m

2k
), (5.3.6)
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and
vmin(p(k)[m]) −→

k→∞
vmin(r(t)

∣∣
t= m

2k
). (5.3.7)

Our discretization(5.3.4) is justified by the following proposition.

Proposition 5.3.1. The discrete energy EridgeSD(p(k)(Θ)) converges to the con-
tinuous one Eridge(Θ), i.e.,

EridgeSD(p(k)(Θ)) −→
k→∞

Eridge(Θ) = −
˛
C
ξ(r)
|〈vmin(r),n(r)〉|
‖vmin(r)‖

dr. (5.3.8)

Given (4.2.6), (5.3.5), (5.3.6) and (5.3.7), the proof of Proposition 5.3.1 is straight-
forward.

5.4 Texture-based Energy

Most often, structures cannot be fully characterized from their internal distribution
of pixel values. Therefore, segmentation methods based on image intensity alone,
such as the energy term (2.2.4), do not perform well on images where the contrast
between the object of interest and the background is low [44,74]. The incorporation
of texture information is one complementary way to account for the spatial orga-
nization of the pixels inside the desired object [138–140]. It allows one to capture
the morphological structure of a tissue [141].

We propose8 a new energy term that combines image intensity and texture
information. The method is developed for 2-dimensional images and is valid for
any 2D filter-based texture feature extraction method, including Gabor filters [142]
or circular harmonic wavelets (CHW) [143]. The optimal balance between intensity
and texture is learned using Fisher’s linear discriminant analysis (LDA).

5.4.1 Texture Analysis with Filters

We use a set of N filters φn : R2 → R to extract texture properties at a given
position of the input 2-dimensional image f . We create a sequence {fn}n∈{0,...,N}

8This work is based on our publication [74], in collaboration with A. Depeursinge and M.
Unser.
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of 1 +N intensity and texture channels defined by

fn(x) =

{
f(x), n = 0
|(f ∗ φn)(x)| , n 6= 0,

(5.4.1)

where x = (x1, x2) is a coordinate position and φn is a filter. For better clarity,
we present the formulation for gray images but the extension to color images is
straightforward: For a color image in red-green-blue (RGB) representation, we
instead compute the response maps of the red, green, and blue image components.
In this case, we have a sequence of 3 (1 +N) channels {fn}n∈{0,...,3(1+N)−1}.

The proposed method is valid for any collection of filters {φn}n∈{1,...,N} extract-
ing texture information. Here after we describe two state-of-the-art filters: CHWs
and Gabor filters.

Circular Harmonic Wavelets

CHWs provide an estimation of the local organization of image directions (LOID) in
a rotation-invariant fashion and at a low computational price. The LOID was found
to be a fundamental property of structures found in e.g. biomedical tissue [144]. It
allows one to linearly characterize the local circular frequencies, which are at the
origin of the success of texture approaches based on local binary patterns [145].

In (5.4.1) let φn = φ(p,q) be the CHWs of harmonic index p = 0, . . . , P − 1 and
scale q = 1, . . . , Q for n = 1, . . . , N . The N = P ·Q positive response maps |f ∗ φn|
characterize local circular frequencies in f up to a maximum harmonic order (P−1)
and scale Q [143]. They are also locally rotation invariant [146]. The CHWs are
defined in the Fourier domain indexed with polar coordinates (ω, θ) as

φ̂(p,q)(ω, θ) = 2qĥ(2qω) · ejpθ. (5.4.2)

There, ĥ is a purely radial function that controls the scale profile of the wavelet.
We use Simoncelli’s radial wavelet for ĥ, which is expressed by

ĥ(ω) =

{
cos
(
π
2 log2

(
2ω
π

))
, π

4 < ω ≤ π
0, otherwise.

(5.4.3)
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Gabor Filters

Gabor filter banks allow extracting multi-directional and multi-scale texture infor-
mation via a systematic parcellation of the Fourier domain with elliptic Gaussian
windows [142]. They are not rotation-invariant and are therefore best suited for
application where the absolute feature orientation is meaningful. In the spatial do-
main, Gabor kernels are complex Gaussian-windowed oscillatory functions defined
as

φ(u,s)(x) =
γ2
s

πσ1σ2
e
−γ2

s

((
x̃u,1
σ1

)2
+
(
x̃u,2
σ2

)2)
ej2πγsx̃u,1 , (5.4.4)

where (x̃u,1, x̃u,2) = Rθux defines the radial and orthoradial elliptic Gaussian axes
at the orientation θu via the rotation matrix Rθu . In polar Fourier, σ1 and σ2 are
the radial and orthoradial standard deviations of the Gaussian window, respectively,
and γs is the radial position of its center.

We follow the procedure described in [142] to extract response maps at multi-
ple orientations {θu}u∈{1,...,U} and frequencies {γs}s∈{1,...,S}, where σ1 and σ2 are
defined to cover all directions and scales up to the maximum frequency γS .

5.4.2 Energy Term
We propose an energy that combines image intensity and texture information. It
is expressed by

Etexture(Θ) =

N∑
n=0

wnEn(Θ), (5.4.5)

where the wn are weights balancing the importance of the region-based energies
En, that allow for the distinction between homogeneous regions in the channel fn.
The weights are of great importance for the efficiency of (5.4.5). In Section 5.4.3
we will present an adequate method to choose them. For En, we adopt a strategy
similar to the term (5.2.1) i.e., the energy functional is given by

En(Θ) = − 1

|Σ|

∣∣∣∣∣
¨

Ω

fn(x)dx1dx2 −
¨

Ωλ\Ω
fn(x)dx1dx2

∣∣∣∣∣ , (5.4.6)

where {fn}n∈{0,...,N} is the sequence of images described in Section 5.4.1, Ω and
Ωλ are the surfaces enclosed by the curves r and its dilated version rλ, respectively,
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and Σ := Σ(Θ) =
˜

Ω
dx is the area of Ω. The discrete counterpart of (5.4.6) for

subdivision curves is given by

En(p(k)(Θ)) = − 1

2k
∣∣Σ(p(k))

∣∣
∣∣∣∣∣∣2

2kM−1∑
m=0

Fn(p(k)[m])n1(p(k)[m])

−
2kM−1∑
m=0

Fn(pλ(k)[m])n1(pλ(k)[m])

∣∣∣∣∣∣ (5.4.7)

(see Proposition 5.2.2), where pλ(k) is the sequence of subdivision points that de-
scribes the curve rλ, n1 is the first coordinate of the approximation of the unit
normal vector given by (5.1.5), and the signed area Σ(p(k)) is defined by (5.2.6).
The image Fn is given by

Fn(x1, x2) =

ˆ x1

−∞
fn(τ, x2)dτ. (5.4.8)

5.4.3 Fisher’s Linear Discriminant Analysis
The N + 1 channels {fn}n∈{0,...,N} contain information about the object to be
segmented and the background of the image f . While some of these information
allows to well discriminate the target from its background, others can be redundant.
It is thus important to well balance these information. This is the purpose of the
weights in (5.4.5).

To adequately set the weights {wn}n∈{0,...,N} in (5.4.5), we use Fisher’s LDA
[147], which is a supervised technique for dimensionality reduction and classifica-
tion. Given two classes C and B, Fisher’s LDA seeks the most discriminant hy-
perplane, characterized by the normal vector w, that maximizes the between-class
variance while minimizing the within-class variance. In our segmentation context,
the two classes are the core of the target (C) and the background (B) of f . The
vector w ∈ RN+1 then contains the optimal weights wn for the energy term (5.4.5).

Let ΩC and ΩB be two regions of interest of C and B, respectively, in the
image (see Figure 6.4). We consider f(x) = (f0(x), . . . , fN (x)), where fn is given
by (5.4.1), for x = (x1, x2) belonging to ΩC or ΩB. The optimal solution is given
by [148]

w ∝ (SC + SB)−1(µC − µB), (5.4.9)
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Table 5.2: Summary of the Different Types of Image Energies.

Type Feature Continuous Discrete
Formulation Formulation

Contour-based
Edge (2.2.2) in 2D (5.1.4) in 2D

(2.2.3) in 3D (5.1.8) in 3D

Ridge (5.3.3) (5.3.4)

Region-based
Intensity (2.2.4) in 2D (5.2.5) in 2D

(2.2.7) in 3D (5.2.9) in 3D

Texture (5.4.5) and (5.4.6) (5.4.5) and (5.4.7)

where SC,SB ∈ R(N+1)×(N+1) are covariance matrices. Their expressions are given
by

µI =
1

|ΣI |

¨
ΩI

f(x)dx1dx2 (5.4.10)

and
SI =

1

|ΣI |

¨
ΩI

〈f(x)− µI , f(x)− µI〉dx1dx2, (5.4.11)

where I = {B,C}, µI is the mean vector of size N + 1 of the class C or B, and
|ΣI | is the area of ΩI . In practice, we discretize f , and the integrals in (5.4.10)
and (5.4.11) are sums over the pixels of ΩI .

5.5 Conclusion
This chapter is a unification of the image energies that were developed in our pub-
lications. Those energies shall be validated in the two next chapters, in which
implementation tools to speed up their computation are also presented. We sum-
marized in Table 5.2 the standard and novel energies that we have seen so far. One
can refer to this table throughout its reading.
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5.6 Appendices

5.6.1 Proof of Proposition 5.1.1
We first recall the following theorem.

Green’s Theorem: Let C be a positively oriented, piecewise-smooth, simple
closed curve in a plane and let Ω be the region bounded by C. If Q and A are
functions of (x1, x2) defined on an open region containing Ω and have continuous
partial derivatives there, then˛

C
(Q(r1, r2)dr1 +A(r1, r2)dr2) =

¨
Ω

(
∂A(x1, x2)

∂x1
− ∂Q(x1, x2)

∂x2

)
dx1dx2,

(5.6.1)
where the path of integration along C is counterclockwise.

We rewrite (2.2.2) as

EedgeLR(Θ) = −
˛
C

(
∂f(r1, r2)

∂r1
dr2 −

∂f(r1, r2)

∂r2
dr1

)
. (5.6.2)

Using Green’s theorem with Q(r1, r2) = −∂f(r1,r2)
∂r2

and A(r1, r2) = ∂f(r1,r2)
∂r1

, (5.6.2)
is expressed as the surface integral

EedgeLR(Θ) = −
ˆ ˆ

Ω

∆f(x)dx1dx2 =

˛
C
G(r)dr2

=

ˆ M

0

G(r(t))
dr2(t)

dt
dt. (5.6.3)

Taking the derivative of the second component r2 of r in (3.3.2) and combining it
with (5.6.3), we obtain (5.1.2).

5.6.2 Proof of Proposition 5.1.2
We first recall the following theorem.

Theorem of the Riemann Sum: Let g : [a, b]→ R be a real function that is
Riemann-integrable on [a, b]. The Riemann sum Rn is defined by

Rn =
b− a
n

n−1∑
m=0

g

(
m
b− a
n

)
(5.6.4)
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and converges to lim
n→+∞

Rn =
´ b
a
g(t)dt.

By combining (4.2.6), (5.1.4), and (5.1.6), we obtain that

lim
k→∞

EedgeSD(p(k)(Θ)) = − lim
k→∞

1

2k

2kM−1∑
m=0

g
(m

2k

)
︸ ︷︷ ︸

E

, (5.6.5)

where g(t) = 〈∇f(r(t)),n(r(t))〉 is Riemann-integrable on [0,M ] because f, r1, r2

are differentiable. We use the theorem of the Riemann sum with a = 0, b = M ,
and n = 2kM to obtain

E = −
ˆ M

0

〈∇f(r(t)),n(r(t))〉dt

= −
˛
C
〈∇f(r),n(r)〉dr, (5.6.6)

which concludes the proof.

5.6.3 Notation and Properties of Regular Meshes

In this section, we present properties of regular meshes, i.e., without extraordinary
vertices, that will be used in Appendices 5.6.4 and 5.6.7. For subdivision schemes
applied to regular meshes, the vertices of a meshM(k), k ≥ 0, are on a rectangular
grid (u, v) and

Nk = 22kN0. (5.6.7)

Let the N0 control points be on a rectangular grid of size (N0,u × N0,v), such
that N0,u, N0,v ∈ N and N0,uN0,v = N0. We re-express the set P(k), initially
defined in Section 4.6.1, as P(k) = {p(k)[p, q] ∈ R3, p ∈ {0, . . . , 2kN0,u − 1},
q ∈ {0, . . . , 2kN0,v − 1}} (Figure 5.3).

For convergent subdivision schemes applied to regular meshes, we have that

lim
k→∞

p(k)[p, q] = σ(u, v)
∣∣
(u,v)=( p

2k
, q
2k

). (5.6.8)
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Figure 5.3: Flat image of a regular mesh that forms a closed surface. We show the
mesh for two subdivision steps of an interpolating subdivision scheme. The initial
coarse meshM(0) (black) is made of N0 = 9 control points that are on a rectangular
grid of size (N0,u ×N0,v), with N0,u = N0,v = 3. At the first subdivision step, we
obtain a regular meshM(1) (red) made of 22N0 = 36 vertices (black and red circles)
that are on a rectangular grid of size (2N0,u × 2N0,v). The indices correspond to
the pair (p, q) of p(k)[p, q], k = 0, 1.

5.6.4 Proof of Proposition 5.1.3
We first recall a classical result.

Theorem of the double Riemann sum: Let g : [a, b]× [c, d]→ R2 be a real
continuous function that is Riemann integrable on [a, b]× [c, d]. The Riemann sum
Rn,m defined by

Rn,m =
b− a
n

d− c
m

n−1∑
p=0

m−1∑
q=0

g

(
p
b− a
n

, q
d− c
m

)
(5.6.9)

satisfies

lim
n→+∞

lim
m→+∞

Rn,m =

ˆ b

a

ˆ d

c

g(u, v)dudv. (5.6.10)



80 Image Energies

We first prove Proposition 5.1.3 for regular meshes that are topologically equivalent
to a torus. Surfaces that are topologically equivalent to a torus are periodic along
u, v and are parametrized by

σ(u, v) =

N0,u−1∑
p=0

N0,v−1∑
q=0

c[p, q]ϕN0,u(u− p)ϕN0,v (v − q), (5.6.11)

where (u, v) ∈ [0, N0,u]× [0, N0,v], the c[p, q] are the control points, and ϕN0,u
and

ϕN0,v are the N0,u- and N0,v-periodizations (Equation (2.1.3)), respectively, of a
suitable basis function ϕ.

Using the notation for regular meshes described in Appendix 5.6.3, we rewrite
EgradSD(P(k)(Θ)) as

EgradSD(P(k)(Θ)) = − 1

22k

2kN0,u−1∑
p=0

2kN0,v−1∑
q=0

〈
∇f(p(k)[p, q]),n(p(k)[p, q])

〉
.

(5.6.12)
Combining (5.6.8) and (5.6.12), we have that

lim
k→∞

EgradSD(P(k)(Θ)) = − lim
k→∞

1

22k

2kN0,u−1∑
p=0

2kN0,v−1∑
q=0

g(
p

2k
,
q

2k
)︸ ︷︷ ︸

E

, (5.6.13)

where g(u, v) = 〈∇f(σ(u, v)),n(σ(u, v))〉 is Riemann integrable on [0, N0,u] ×
[0, N0,v] because f, σ1, σ2, σ3 ∈ C1. We use the theorem of the double Riemann
sum with a = c = 0, b = N0,u, d = N0,v, n = 2kN0,u, and m = 2kN0,v to obtain
that

E = −
ˆ N0,u

0

ˆ N0,v

0

〈∇f(σ(u, v)),n(σ(u, v))〉dudv. (5.6.14)

We have that

dσ = (σu ∧ σv)dudv

= n(σ(u, v))dudv. (5.6.15)
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So, using (5.6.14) and (5.6.15), we finally obtain that

E = −
‹
S
〈∇f(σ),dσ〉 . (5.6.16)

This concludes the proof for regular meshes with a topology equivalent to a torus.
For regular meshes that form closed surfaces with a different topology, the proof is
the same. The parametrization (5.6.11) still holds for (u, v) ∈ [0, N0,u]×[0, N0,v] but
the bounds of the sum over q depend on the support of ϕ and additional conditions
over the control points may be necessary.

For meshes with extraordinary vertices, we give a gist of the proof, as a detailed
one may imply the introduction of too many notations and notions. The gist of the
proof is based on the following mathematical pipeline:

• we consider a portion of the initial mesh that contains one extraordinary
vertex only, and we locally express the limit surface σ as the union between
the limit point of the extraordinary vertex and the sequence of rings {ε(k)}k≥0

defined by the regular vertices around it [136,149];

• for each ring ε(k), we apply the reasoning that we used for regular meshes
where the Riemann integral is instead defined on a local part of the surface
σ;

• finally, doing this for each ring and taking the union over k we conclude the
proof.

5.6.5 Proof of Proposition 5.2.1
We rewrite (2.2.4) as

EintensityLR(Θ) = − 1

|Σ|

∣∣∣∣2 ˆ ˆ
Ω

f(x)dx1dx2 −
ˆ ˆ

Ωλ

f(xλ)dx1dx2

∣∣∣∣
= − 1

|Σ|

∣∣∣∣2 ˛
C
F (r)dr2 −

˛
Cλ
F (rλ)dr2,λ

∣∣∣∣ , (5.6.17)

where C and Cλ are the positive oriented contours described by r and rλ, re-
spectively, and the image F is given by (5.2.3). The area can be expressed as
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Σ := Σ(Θ) =
˜

Ω
dx1dx2, while Green’s theorem (recalled in Appendix 5.6.1) yields

the signed area

Σ = −
˛
C
r2dr1. (5.6.18)

Using equation (3.3.2) and its derivative, and combining with (5.6.17) and (5.6.18),
we obtain (5.2.2) and (5.2.4).

5.6.6 Proof of Proposition 5.2.2

We use (4.2.6), (5.1.6), (5.2.5), and the theorem of the Riemann sum (recalled in
Appendix 5.6.2) with a = 0, b = M , n = 2kM , and g(t) = F (r(t))ṙ2(t) with F
defined in (5.2.3). The function g is Riemann-integrable on [0,M ] because f ∈ C1.
We obtain that

lim
k→∞

EintensitySD(p(k)(Θ) =
1

|Σ|

∣∣∣∣∣2
ˆ M

0

F (r(t))ṙ2(t)dt−
ˆ M

0

F (rλ(t))ṙλ,2(t)dt

∣∣∣∣∣
=

1

|Σ|

∣∣∣∣2 ˛
C
F (r)dr2 −

˛
Cλ
F (rλ)drλ,2

∣∣∣∣ , (5.6.19)

where C and Cλ are the positive oriented contours that describe r and rλ, respec-
tively. We use Green’s theorem with A = F and Q = 0. We finally obtain that

lim
k→∞

EintensitySD(p(k)(Θ) =
1

|Σ|

∣∣∣∣2¨
Ω

f(x)dx1dx2 −
¨

Ωλ

f(xλ)dxλ1dxλ2

∣∣∣∣
=

1

|Σ|

∣∣∣∣∣
¨

Ω

f(x)dx1dx2 −
¨

Ωλ\Ω
f(x)dx1dx2

∣∣∣∣∣ . (5.6.20)

For Σ(p(k)), we apply the same reasoning as previously, using first the theorem of
the Riemann sum and then Green’s theorem, to obtain that

Σ(p(k)(Θ)) −→
k→∞

Σ(Θ) =

¨
Ω

dx1dx2. (5.6.21)
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5.6.7 Proof of Proposition 5.2.3
We first recall the following theorem.

Gauss’ theorem: Let V be a subset of Rn that is compact and has a piecewise-
smooth boundary S. If G is a continuously differentiable vector field defined on a
neighborhood of V, then we have that

‹
S
〈G,dS〉 =

˚
V

div(G)dV. (5.6.22)

For this proof, we follow the same procedure as described in Appendix 5.6.4, with
the same gist of proof for meshes with extraordinary vertices. Hereafter, we thus
only detail the proof for regular meshes with a topology equivalent to a torus.

Using the notation for regular meshes introduced in Appendix 5.6.3, we can
rewrite EintensitySD(P(k)(Θ)) as

EintensitySD(P(k)(Θ)) =− 1∣∣V(P(k))
∣∣ 22k

∣∣∣∣∣∣2
2kN0,u−1∑

p=0

2kN0,v−1∑
q=0

F (p(k)[p, q])n1(p(k)[p, q])

−
2kN0,u−1∑

p=0

2kN0,v−1∑
q=0

F (pλ(k)[p, q])n1(pλ(k)[p, q])

∣∣∣∣∣∣ . (5.6.23)

As σ is the limit surface of the subdivision scheme, i.e., σ = lim
k→∞

M(k), we have

lim
k→∞

∣∣V(P(k)(Θ))
∣∣ = |V| , (5.6.24)

where V(P(k)) and V are the volume enclosed byM(k) and σ, respectively. Com-
bining (5.6.8), (5.6.23) and (5.6.24) we obtain

lim
k→∞

EintensitySD(P(k)(Θ)) = − lim
k→∞

1

22k |V |

∣∣∣∣∣∣2
2kN0,u−1∑
p=0

2kN0,v−1∑
q=0

g(
p

2k
,
q

2k
)

−
2kN0,u−1∑
p=0

2kN0,v−1∑
q=0

gλ(
p

2k
,
q

2k
)

∣∣∣∣∣∣
= E, (5.6.25)
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where g(u, v) = F (σ(u, v))n1(σ(u, v)) and gλ(u, v) = F (σλ(u, v))n1(σλ(u, v)) are
Riemann integrable on [0, N0,u]× [0, N0,v] because f, σ1, σ2, σ3, σλ,1, σλ,2, σλ,3 ∈ C1.
We use the theorem of the double Riemann sum (recalled in Appendix 5.6.4) with
a = c = 0, b = N0,u, d = N0,v, n = 2kN0,u and m = 2kN0,v to obtain that

E = − 1

|V |

∣∣∣∣∣2
ˆ N0,u

0

ˆ N0,v

0

F (σ(u, v))n1(σ(u, v))dudv

−
ˆ N0,u

0

ˆ N0,v

0

F (σλ(u, v))n1(σλ(u, v))dudv

∣∣∣∣∣
= − 1

|V |

∣∣∣∣∣2
ˆ N0,u

0

ˆ N0,v

0

〈G(σ(u, v)),n(σ(u, v))〉dudv

−
ˆ N0,u

0

ˆ N0,v

0

〈G(σλ(u, v)),n(σλ(u, v))〉dudv

∣∣∣∣∣ , (5.6.26)

where G(x1, x2, x3) = (F (x1, x2, x3), 0, 0). Thus, we have that

E = − 1

|V |

∣∣∣∣2‹
S

〈G,dσ〉 −
‹
Sλ

〈G,dσ〉
∣∣∣∣ . (5.6.27)

The use of Gauss’ theorem then yields

E = − 1

|V |

∣∣∣∣2˚
V

div(G)dV −
˚
Vλ

div(G)dV

∣∣∣∣
= − 1

|V |

∣∣∣∣2˚
V
fdV −

˚
Vλ
fdV

∣∣∣∣
= − 1

|V |

∣∣∣∣∣
˚
V
f(x)dx1dx2dx3 −

˚
Vλ\V

f(x)dx1dx2dx3

∣∣∣∣∣ , (5.6.28)

which concludes the proof in case of regular meshes.



Chapter 6

Design of Active Contours

In this chapter, we merge the theories on curve representation and image energy
presented so far, and summarized in Tables 5.1 and 5.2, to design four new active
contours. Each one has a specific purpose that addresses a limitation of standard
parametric snakes [64].
We developed our active contours with the following characteristics:

• The concern to fill in the requirements mentioned in Section 1.2.3, that is
robustness, reasonable computational time, flexibility, and friendly user in-
teraction.

• The energy consists in an image energy term only (see Section 1.2.2 and (1.2.1)).
In fact, we use representation models that ensure the smoothness of the curve,
which eliminates the need for an explicit internal energy term. We also ob-
viate the constraint energy and we instead provide an interface allowing the
user to interact with the snake.

• The optimization process is efficiently carried out by a Powell-like line search
method [61] that can be summarize as follows: For each control point, a
direction is chosen depending on the partial derivatives of the energy. Then,
the control point is displaced along the selected direction to minimize the
energy. The process is repeated until convergence.

85
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• A validation is performed on both synthetic and real data. We use the Jaccard
J index to measure the overlap between a segmentation result Ω and the
corresponding ground truth ΩGT. It is defined as

J =
|Ω ∩ ΩGT|
|Ω ∪ ΩGT|

. (6.0.1)

Clearly, 0 ≤ J ≤ 1, and perfect overlap is described by J = 1.

• An implementation as a user-friendly plugin1 for the bioimaging platform
Icy [11]. In order for the software to be usable (see Section 1.1.3), we provide
a website with the source code, some documentations (abstract, link to the
related scientific paper and demo), and the necessary data and parameters
needed to replicate some of our experiments.

We present the four new active contours in independent sections that are struc-
tured as follows: We first describe the framework. Then, we provide implementation
details or algorithms that speed up the computation. Finally, we perform an ex-
tensive validation of the snake. The main contributions related to the design of the
active contour are summarized in a concluding part.

This chapter is organized as follows: In Sections 6.1 and 6.2, we present new
parametric snakes that are either locally refinable or that incorporate texture in-
formation. In Sections 6.3 and 6.4, we propose a new family of active contours by
taking advantage of subdivisions, and we illustrate their use on different applica-
tions.

1All plugins can be found at http://bigwww.epfl.ch/demo/deformable-models-
segmentation.html.

http://bigwww.epfl.ch/demo/deformable-models-segmentation.html
http://bigwww.epfl.ch/demo/deformable-models-segmentation.html
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6.1 Locally Refinable Parametric Snakes

The shapes of biological structures often exhibit different levels of detail [45, 66].
For conventional parametric snakes, this is dealt with in a global fashion by simply
increasing the number of control points resulting in an increase of the degrees of
freedom of the model [50, 150]. While this improves the approximation power of
the snake model [151], it renders the optimization more challenging and increases
the computation substantially. Moreover, introducing more degrees of freedom in
the part of the curve where they are not required does not necessarily improve
the segmentation outcome. On the other hand, few parameters allow for faster
optimization [152–154] but with less accurate approximation. A precise location of
the insertion of the additional control points is thus preferable.

In this section, we propose2 a new parametric snake that has the ability to
locally increase its approximation power. This allows for a more efficient allocation
of the degrees of freedom of the snake by concentrating them on segments of higher
complexity. This is controlled by a user-interface that permits the refinement of an
initial segmentation around an anchor position selected by a user. For this purpose
we exploit the refinability property of scaling functions [95]. We demonstrate the
accuracy of our snake and its robustness under noisy conditions on phantom data.
We also present segmentation results on real cell images, which are our main target.

6.1.1 Framework

We represent our active contour by a parametric closed curve that is locally re-
finable with respect to the control point c[p], as described by (3.3.2). Its shape is
parametrized by the control points Θ = {c[m]}m∈{0,...,M−1}

m 6=p

⋃
{c̃p[n]}n∈{n0,...,n0+N−1},

where c̃p is given by (3.3.3),M is the number of control point before refinement and
{n0, . . . , n0 +N − 1} is the support of the refinement filter. Note that the index p
is freely chosen and that one can refine the curve at several specific locations by
applying Proposition 3.3.1 with respect to each corresponding control point.

For the snake energy, we use a combination of the edge and region-based ener-

2This section is based on our publication [68], in collaboration with D. Schmitter and
M. Unser. A demo of the corresponding plugin and related documentation are available at
http://bigwww.epfl.ch/demo/locally-refinable-snake/.

http://bigwww.epfl.ch/demo/locally-refinable-snake/
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gies (5.1.2) and (5.2.2) such as

Esnake(Θ) = bEEdgeLR(Θ) + (1− b)EintensityLR(Θ), (6.1.1)

where b ∈ [0, 1] is a trade-off parameter that balances the contribution of the two
energies. The curve of the snake is thus deformed based on gradient and intensity
information from image data.

6.1.2 Implementation Details

The local refinement is handled by the user through an interface by clicking on the
control point c[p]. He can also adjust the parameter b and the refinement factor
ρ > 1.

From a computational point of view, the few number of control points allowed
by the locally refinable parametric curve speeds up the optimization. Moreover,
the use of the explicit equations (5.1.2) and (5.2.2) allows for the exact analytical
computation of the energy gradient with respect to each control point. To further
speed up the computation of Esnake, that is evaluated at each iteration of the opti-
mization process, we 1) precompute and store in look-up tables the images (5.1.3)
and (5.2.3) that only depend on the input image f ; and 2) use the inner-product
calculus that we propose in Appendix A to efficiently compute the exact calculation
of the signed area Σ in (5.2.2).

6.1.3 Experiments and Validation

We performed experiments on phantom and real data to test the accuracy and the
robustness of our proposed method. For each experiment, in (3.3.2) we chose as
refinement factor ρ = 2 and we used quadratic B-splines as scaling functions, i.e.,
ϕ = β(0,0,0) (see Section 2.3.1). The corresponding refinement filter h is defined by
its z-transform by

H(z) =
1

4

(
1 + z−1

)3
. (6.1.2)

Phantom data

We created a test image simulating fluorescence microscopy showing a cell. We then
corrupted this image by different levels of additive Gaussian white noise. For each
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(a) SNR= −13, 40dB. (b) SNR= −16, 16dB. (c) SNR= −17, 35dB.

(d) Initialization.

(e) Close-up of a
boundary region.

Figure 6.1: Robustness with respect to noise of the locally refinable parametric
snake. (a)-(c) Comparison for different SNR between two quadratic B-spline snakes
with M = 4: locally refinable (top row) and traditional (bottom row) snakes; (d)
initialization for both snakes; (e) close-up of a boundary region between the test
cell and its background, SNR= −17, 35dB.

image, we segmented the structure of interest using our locally refinable parametric
snake as well as a traditional parametric snake [64]. For both snakes we used the
same initialization with M = 4 control points (Figure 6.1 (d)).

For our snake, we first performed an optimization without local refinement. In
this way, our initial segmentation is rough at first but the upside is a fast segmen-
tation. Then, the user clicks on a desired control point through the interface and
the corresponding basis function is refined. Finally, we optimized again to refine
local details.

Signal-to-noise ratios (SNRs) corresponding to the noise level and Jaccard in-
dices are shown in Table 6.1 and illustrated in Figure 6.1. Both Table 6.1 and
Figure 6.1 show the improved accuracy induced by the local refinement and the
robustness of our method.
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Table 6.1: Jaccard indices for segmentation of noisy data.

SNR [dB]
With local Without local
refinement refinement

−7, 44 0.95 0.79 (fail)
−10, 95 0.95 0.73 (fail)
−13, 40 0.95 0.79 (fail)
−15, 07 0.94 0.81 (fail)
−16, 16 0.94 0.83 (fail)
−16, 88 0.92 0.84 (fail)
−17, 35 0.91 0.78 (fail)

Real data

We have applied our snake on two real fluorescence microscopy images, where the
ground truth is unknown. They are challenging because of the presence of noise, and
because the structures of interest have different level of detail. The segmentation
outcomes are satisfactory (Figure 6.2).

6.1.4 Conclusions

We have presented a new and complete formulation of locally refinable parametric
snakes for image segmentation. Through a user interface, we introduced the pos-
sibility of inserting additional basis functions at a specific location. Our method
is generic and can be used with any valid scaling function. It allows for a fast
and efficient energy computation with few control points. We have demonstrated
its ability of improving segmentation results as well as its robustness under noisy
conditions. The primary contributions related to this work are:

• A novel parametrization of closed curves that are refinable locally (see (3.3.2));

• The derivation of corresponding edge and region-based energies (5.1.2) and
(5.2.2)
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(a) Heligmosomoides polygyrus bakeri. (b) Sickle cell.

Figure 6.2: Segmentation of an Heligmosomoides polygyrus bakeri (a) and a sickle
cell (b) on fluorescence microscopy images using locally refinable parametric snakes.

• The demonstration of the benefits of refinability in the context of semi-
interactive segmentation.



92 Design of Active Contours

6.2 Texture-Driven Parametric Snakes

In this section, our motivation is to develop a general and versatile framework for
interactive segmentation of a single structure of interest in an image, possibly under
low-contrast conditions. We want the user to be able to easily specify the desired
structure and to modify the outcome when needed.

As it was mentioned in Section 2.2, the most common energies of active contours
are based on edge or intensity information aggregated from either inside or on the
curve [44]. However, these intensity-only schemes do not perform well on images
where the contrast between the object of interest and the background is low. In
this context, an efficient approach to account for the spatial organization of the
pixels inside the desired object is to incorporate texture information. It allows one
to capture the morphological structure of a tissue [141].

Recent approaches were proposed to incorporate texture information into active
contours [155–158]. Among them, common characterizations of texture properties
were gray-level co-occurrence matrices [139], Gabor filters [140, 159, 160], sparse
texture dictionaries [161], variational image decompositions [162], or deep learning
based on convolutional neural networks (CNN) [138,163–167]. Those methods can
be categorized into supervised and unsupervised methods. A limitation of unsu-
pervised approaches, such as in [162], is that the incorporation of prior knowledge
is difficult. Meanwhile, a limitation of supervised approaches such as CNNs is that
they cannot be trained on-the-fly with only a few labeled pixels, as required for
natural interactions with snakes. For instance, in the interactive methods of [139]
and [161], texture is learned from the pixels inside the manual initialization of the
snake or by providing region boxes for the foreground and the background, respec-
tively.

In this section, we design3 a new texture-driven parametric snake for the super-
vised and interactive segmentation of single structures of interest in images. The
framework is based on the theory presented in Section 5.4, that is an energy term
that combines image intensity and texture information, and the Fisher’s linear dis-
criminant analysis (LDA) that finds the optimal balance between the two type of
information. A very small number of samples provided by the user is sufficient to
perform adequate on-the-fly training. The framework is valid for any filter-based

3This section is based on our publication [74], in collaboration with A. Depeursinge and
M. Unser. A demo of the corresponding plugin and related documentation are available at
http://bigwww.epfl.ch/demo/texture-snake/.

http://bigwww.epfl.ch/demo/texture-snake/
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texture feature extraction method, including Gabor filters [142] or circular har-
monic wavelets (CHW) [143]. Here, we mainly focus on CHWs as they provide a
powerful tool to model local circular frequencies at multiple scales with invariance
to local image rotations. We perform a comprehensive performance evaluation of
the texture-driven parametric snake on both synthetic and natural images. We
measure its robustness and accuracy with respect to noise and initialization, as
well as to parameter sensitivity. In addition, we compare our model to supervised
and interactive segmentation methods. Regarding the advantages of our method,
it is worth noting that a comparison to fully automatic approaches as CNN would
not be relevant as they cannot be trained on-the-fly. Overall, our approach allows
one to efficiently segment subtle structures in low-contrast images with only a few
clicks while allowing a high level of interaction with the user.

6.2.1 Framework
We describe our snake by the parametric closed curve (2.1.2) encoded byM control
points Θ = {c[m]}m∈{0,...,M−1}. We use as basis function ϕ the exponential B-spline
defined in [64] (Equation (8)) by

ϕ(t) = sinc

(
1

M

)−2

β(0,− 2jπ
M , 2jπM ) =


cos( 2π|t|

M ) cos( πM )−cos( 2π
M )

1−cos( 2π
M )

0 ≤ |t| ≤ 0.5,

1−cos( 2π(1.5−|t|)
M )

2(1−cos( 2π
M ))

0.5 ≤ |t| ≤ 1.5,

0 1.5 ≤ |t|,
(6.2.1)

with M ≥ 3.This basis function ensures that the snake can perfectly reproduce
elliptical shapes using few control points, which is relevant to delineate blob-like
objects. In addition, the snake is versatile enough to provide good approximations
of any closed curves. The exponential B-spline has a small support, which is ad-
vantageous for both computational aspects and the user interaction (moving one
control point affects the structure of the snake locally only). Moreover, it verifies
the partition-of-unity condition (2.1.8), which ensures that our model is invariant
under affine transformations.

To drive the deformation of the curve, we use the energy functional
Esnake(Θ) = Etexture(Θ) given by (5.4.5) that combines image intensity and texture
information. It is obtained as follows: we first perform a texture analysis of the
image using a bank of N filters {φn}n∈{1,...,N} (see Section 5.4.1); then, we perform
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Figure 6.3: Flowchart of the proposed framework: a texture analysis is first per-
formed with a bank of filters {φn}n∈{1,...,N}. Note that the symbol ∗ denotes a
convolution. Then, the original image f0 = f and the resulting positive response
maps {fn = |f ∗ φn|}n∈{1,...,N} are balanced using Fisher’s linear discriminant anal-
ysis. We thus obtain the vector of weights w ∈ R(N+1). Finally, the curve r of the
snake is deformed through the minimization of the region-based energy Etexture

given (5.4.5). This term allows for the distinction between homogeneous regions in
each channel fn weighted by wn.

Fisher’s LDA (see Section 5.4.3) to obtain a vector of weights that balances the
original image f0 = f and the positive response maps {fn = |f ∗ φn|}n∈{1,...,N}.
Finally, the term (5.4.5) allows for the distinction between homogeneous regions
in each channel fn weighted by wn. The flowchart of the proposed framework is
depicted in Figure 6.3.

6.2.2 Implementation Details

Fast Implementation

The main computational bottleneck of our framework is the evaluation of the surface
integrals in (5.4.6), which needs to be performed (N + 1) times at each iteration of
the optimization process. We use Green’s theorem to efficiently implement (5.4.6)
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Figure 6.4: Extraction of ΩC (blue ROI) and ΩB (green ROI) for training Fisher’s
LDA.

with line integrals as

En(Θ) = − 1

|Σ|

∣∣∣∣2 ˛
C
Fn(r)dr2 −

˛
Cλ
Fn(r)dr2

∣∣∣∣ , (6.2.2)

where C and Cλ are the positive oriented contours described by r and rλ, respec-
tively, and the image Fn is given by (5.4.8). Similarly, we have that
Σ := Σ(Θ) =

¸
C r1dr2. The use of Green’s theorem dramatically reduces the

computational cost. To further accelerate the computation, we 1) precompute and
store in lookup tables the images Fn and the weights wn, for n ∈ {0, . . . , N}; and
2) use the inner-product calculus that we propose in Appendix A to efficiently
compute the signed area Σ in (5.4.6).

Supervision of Fisher’s LDA

Two rectangular ROIs ΩC and ΩB, necessary to train Fisher’s LDA (see Sec-
tion 5.4.3), are automatically extracted from the initialization of the snake. The
first one is localized at the center of gravity of the initialization and the second one
outside of the snake (Figure 6.4). A manual mode is also provided to adjust either
one of the ROIs when needed. In the global framework, Fisher’s LDA is trained
on-the-fly once during the initialization of the snake. The resulting weights remain
then unchanged during the entire optimization process.
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6.2.3 Experiments and Validation

We proceed in three steps to evaluate the performance of the proposed texture-
driven parametric snake. First, we test the effect of the parameters on the accuracy
of the outcome and study the robustness with respect to initialization and noise.
Second, we compare the proposed snake in term of accuracy against other segmen-
tation methods. Third, we illustrate applications on real data. In all the following
experiments we use CHWs in our method to extract texture information.

Databases

To validate our model, we created three databases drawn from the real textures of
the Prague Texture Segmentation Benchmark4 [168]. Each database was created
based on the following pipeline. First, we selected a set of texture classes; then,
each texture was combined in pairs using a binary mask of blob-like shape to create
an image of (512× 512) pixels. The mask was obtained by thresholding a mixture
of several Gaussians with random parameters. To vary the shape to be segmented,
we used the five different masks of Figure 6.5 for each combination. For the first
database, called Database 1, we used a set of ten textures of different classes (e.g.,
wood, stone, flowers). The textures are shown in Figure 6.6 (a). Database 1, made
of 450 images, allows us to test the snake on a diverse set of texture patterns. An
image of this database is illustrated in Figure 6.16. The two other databases were
constructed using five textures of the same class. Database 2 is made of the class
“wood" and Database 3 of the class “flower". The corresponding textures are shown
in Figure 6.6 (b) and (c). We use those two databases, made of 100 images each, to
study the efficiency of the snake when segmenting similar textures that differ only
in subtle ways.

Databases 1, 2, and 3 are made of color images in the RGB representation.
One advantage of the proposed snake is that it can handle several channels. In
the case of RGB images, it uses both texture and intensity information in every
color channel. However, the multichannel information can be predominant over
the texture. Typically, textures of Database 3 are very similar (i.e., flowers) but
often the color differs. Hence, in order to evaluate the ability of our snake to
discriminate textures, as opposed to colors, the validation is performed on both

4The textures were taken from http://mosaic.utia.cas.cz/index.php?act=intro.

http://mosaic.utia.cas.cz/index.php?act=intro
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Figure 6.5: Masks used for the evaluation.

(a) Database 1.

(b) Database 2.

(c) Database 3.

Figure 6.6: Textures used for the evaluation.
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RGB and grayscale versions of the three databases. The grayscale images are
obtained by averaging the red, green, and blue channels of the RGB images.

For all experiments, Fisher’s LDA is trained using two fixed ROIs that contain
the foreground and background in each mask of Figure 6.5.

Parameters and Validation of the Model

Degrees of Freedom of the Curve: The numberM of control points is an important
parameter of the proposed snake. The choice of M depends on the applica-
tion. A large value of M increases the ability of the snake to approximate
intricate shapes but makes the optimization process more complex and pe-
nalizes robustness. To illustrate this, we segmented Database 1 for different
values of M , for P = 5 harmonics and Q = 3 scales. The corresponding
Jaccard indices are reported in Figure 6.7. The default box spans from the
0.25 quantile to the 0.75 quantile. The dark (grey, respectively) dots are the
outliers defined as points beyond 1.5 (3, respectively) times the interquantile
range from the edge of the box. We observe that the median increases as
M increases. However, the segmentation becomes less robust as the num-
ber of outliers increases. The best tradeoff between accuracy and robustness
was found to be M = 6 for Database 1. In fact, keeping M small acts as a
regularizer for the curve.

Influence of P and Q for the CHW Decomposition: We study the impact of the
number of harmonics and scales on the accuracy of the segmentation out-
come. For fixed P and Q, we can reconstruct the image fsnake to generate a
two-dimensional projection that estimates what the snake “sees” using

fsnake =

N∑
n=0

wnfn, (6.2.3)

where {wn}n∈{0,...,N} are the weights in (5.4.5) estimated with Fisher’s LDA.
In Figure 6.8, fsnake is shown for different values of P and Q, along with their
Jaccard index. The original image is a grayscale image of Database 2. The
initialization of the snake and the original image are depicted in Figure 6.9.
We observe that the wavelet scale acts as regularizer. It smooths the textures
on fsnake. At high P and Q, the image is less detailed and the snake is less
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Figure 6.7: Segmentation performance on Database 1 (RGB images) according to
the number M of control points. We used 3 scales and 5 harmonics.

likely to be trapped in local minima but, when Q is too large, the boundary
of the object is not well-defined, which results in an inaccurate segmentation.
Increasing the number of harmonics leads to a better discrimination of the
two textures. However, more than 5 harmonics yields no more relevant in-
formation, resulting in decreased segmentation performance because Fisher’s
LDA fails to find adequate separating hyperplanes in spaces with too many
dimensions.

In a second experiment, Database 2 was segmented using various values of
P and a fixed Q equal to 3. The results are shown in Figure 6.10. It can
be observed that the accuracy improves from P = 1 to P = 5, which is
even more remarkable on grayscale images. Then, the accuracy plateaus
and decreases. To conclude, the combination of 5 harmonics with 3 scales
provides enough information to discriminate the textures while preserving an
accurate segmentation. Hence, P = 5 and Q = 3 were fixed in all following
experiments.

Dependence on Initialization: An important aspect is the initial position from which
the snake is optimized. Circular shapes for closed snakes are common initial
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P=1 P=3 P=5 P=7

Q
=

1

J=0.66 J=0.89 J=0.85 J=0.82

Q
=

3

J=0.69 J=0.91 J=0.92 J=0.90

Q
=

5

J=0.81 J=0.81 J=0.89 J=0.80

Q
=

7

J=0.75 J=0.66 J=0.65 J=0.68

Figure 6.8: Illustrations of fsnake for P = 1, 3, 5, 7, and Q = 1, 3, 5, 7.
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Figure 6.9: Initialization on the original image, J = 0.62.

contours. We segmented Database 1 using the five initializations shown in
Figure 6.11. The corresponding Jaccard indices are reported in Figure 6.12.
The best accuracy is obtained for the first two initializations. In fact, the
energies En, n ∈ {0, . . . , N}, given in (5.4.6), are sensitive to the image con-
trast between the core and the shell of the snake. Hence, the snake should
be initialized such that the core intersects the object of interest and the shell
intersects the background.

Robustness with Respect to Noise: We investigated the robustness of the texture-
driven snake to noise in the image as a function of the number M of control
points. We generated 100 realizations of noisy data for each one of five lev-
els of additive white Gaussian noise. We ran the optimization process until
convergence using the proposed texture-driven snake. SNR corresponding to
a given noise level and median Jaccard index were computed. We used a pix-
elwise SNR that compares the noisy image and the ground-truth image. The
results are summarized in Table 6.2. The initialization of the snake is overlaid
in the thumbnails which depict the noise-corrupted images. Its overlap with
the ground truth corresponds to J = 0.55. From the results, we observe that
the texture-driven snake is robust with respect to noise since it is able to give
a proper segmentation outcome even for low SNRs. This can be explained by
the fact that each energy En in (5.4.5) , for n = 0, . . . , N , estimates the mean
intensity over regions, while Gaussian noise has zero mean. The performance
of the snake decreases faster for numerous control points, where higher noise
levels induce many local minima.
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Table 6.2: Jaccard indices for the segmentation of noisy data on RGB (top) and
grayscale (bottom) images.
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Figure 6.10: Segmentation performance on Database 2 for various numbers P of
harmonics. We used 3 scales and 6 control points.

Comparisons with Existing Approaches

We carry out two experiments in which we compare the proposed texture-driven
snake in term of accuracy against two segmentation methods: 1) the exponential
B-spline parametric snake described in [64]. This snake has the same reproduction
properties and smoothness as the proposed snake but relies on a different region-
based energy (intensity information only). The implementation of this method was
taken from the free open-source image-processing package Icy [11]; 2) the texture-
based discrete parametric snake described in [139]. This algorithm generates texture
feature maps from gray-level co-occurence matrices (GLCM) and selects the features
that are best suited using a relative standard deviation criteria. We used the
implementation given in the platform MESA [169]. In the following, we refer to
those methods as “intensity-based snake" and “GLCM-based snake", respectively.
Similarly to our framework, those two snakes allow for user interaction and can be
trained on-the-fly. We recall that a comparison to fully automatic approaches would
not be appropriate since we focus on methods that can be trained on-the-fly with
one image. It is worth noting that the two competing methods assume grayscale
images.
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(a) Init 1. (b) Init 2. (c) Init 3.

(d) Init 4. (e) Init 5.

Figure 6.11: Various initializations with 6 control points. Inner red circle: snake;
Outer green circle: shell. The initializations are superimposed on the image of the
sum of the five masks given in Figure 6.5.

Mean and Variance Equalization: The goal of this experiment is to emphasize the
importance of textural information by illustrating the limitations of the intensity-
based snake, and to justify our choice to use CHWs to extract texture infor-
mation. To only have texture information in the grayscale databases 1, 2,
and 3, we equalized mean and variance inside and outside the mask. We
optimized the intensity-based, GLCM-based and proposed snakes on each re-
sulting database. Our snake and the intensity-based snake were initialized
using 6 control points. For the proposed method we used 3 scales and 5 har-
monics. For the GLCM-based snake we set the sensitivity parameter to 3
and enable the option “All angles". The corresponding Jaccard indices are
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Figure 6.12: Segmentation performance on Database 1 for the initializations de-
picted in Figure 6.11. We used 6 control points, 3 scales, and 5 harmonics.

reported in Figure 6.13. Note that the energy of the GLCM-based snake is
based on a sensitivity parameter. Therefore, if the algorithm does not suf-
ficiently discriminate the texture of interest, the snake will spread over the
entire image yielding low Jaccard indices. This explains the high standard
deviations for this method in Figure 6.13. We observe that, in each case, the
proposed texture-driven snake achieved an adequate segmentation of the ob-
ject of interest, whereas the intensity-based snake got trapped in local energy
minima due to the presence of inhomogeneous regions. Thus, the additional
value of texture information is clearly observed. This is reinforced by the
GLCM-based snake that yields to a higher maximum Jaccard index than the
intensity-based snake on Databases 1 and 2. However, in each database, the
GLCM-based snake is less accurate and robust than the proposed snake. The
bad result on Database 3 could be explained by the fact that the feature
selection algorithm in [169] penalizes feature maps with high relative stan-
dard deviation, which is not a true discriminative criteria when compared to
Fisher’s LDA.

We want to compare the effectiveness of our method when using CHWs or
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Figure 6.13: Segmentation performance for the three databases when mean and
variance were equalized inside and outside the mask. For the proposed snake we
used 6 control points, 3 scales, and 5 harmonics.

Gabor filters in the texture analysis. We thus repeated the experiment using
the Gabor filters, described in Section 5.4.1, with 3 scales and 5 orientations.
The results are given in Figure 6.14. The performances of Gabor filters and
CHWs are similar on Database 1. On Database 2, Gabor filters are more
efficient. This is due to the strong and constant directionality of the textures
in this database (Figure 6.6 (b)), which is efficiently captured by Gabor fil-
ters because they are not invariant to image rotations. However, this lack
of rotation-invariance explains that their efficiency significantly decreases on
Database 3 where the flower petals have different orientations within the
same texture class (Figure 6.6 (c)). This justify our choice to use CHWs
in our experiments in order to be more robust. Moreover, an advantage of
our framework is that one can choose the filters that are best suited to his
application.
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Figure 6.14: Segmentation performance obtained with the proposed snake for the
three databases when mean and variance were equalized inside and outside the
mask. We used 3 scales and 5 harmonics for the CHW decomposition, and 3 scales
and 5 orientations for the Gabor filters.

Original Data: In this experiment, we evaluate the segmentation performance on
the original databases described in Section 6.2.3. For comparison purposes,
we also provide results obtained with the proposed snake when w = 1 to
investigate the influence of Fisher’s LDA. The GLCM-based snake was ini-
tialized with a circle inside the texture of interest and we set the sensitivity
parameter to 3 and enable the option “All angles". We initialized the other
methods with a circle centered on the image and let them evolve automatically
until convergence using 6 control points. For our snake we used 3 scales and
5 harmonics. We compared the final segmentation result to the correspond-
ing ground truth of the synthetic data. The associated Jaccard indices are
reported in Figure 6.15. Illustrations of the segmentation results are shown
in Figure 6.16. We observe that, for each database, we obtain more accu-
rate segmentation outcomes with the proposed texture-driven snake, either
on RGB or grayscale images. We also remark that removing Fisher’s LDA
from the proposed method (i.e., when w = 1) significantly decreases the per-
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Figure 6.15: Segmentation performance for the three databases. Database 1: 450
images; Database 2 and Database 3: 100 images. For the proposed snake we used
6 control points, 3 scales, and 5 harmonics.

formances. This shows the importance of the weights w and that Fisher’s
LDA is an adequate method to choose them. Finally, the proposed method
gets better results and robustness when it is applied on RGB images rather
than on grayscale images. This is striking for Database 3 and highlights the
advantage of our method to be able to deal with different channels.

Real Data Scenarios

We illustrate the behavior of the proposed snake on real data scenarios. For each
experiment we manually initialized the snake and let the optimization evolve until
convergence for P = 5 and Q = 3. As user interaction is one of the main assets of
our framework, we locally refined some segmentation outcomes by manually moving
one or several control points.
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(a) Proposed snake, J = 0.95. (b) Proposed snake without Fisher’s
LDA, J = 0.90.

(c) Intensity-based snake, J = 0.60. (d) GLCM-based snake, J = 0.87.

Figure 6.16: Segmentation of an image of Database 1. The intensity-based snake
and GLCM-based snake are optimized on the grayscale version of the image as they
can not handle several channels.

Photographic Images: We applied our snake on 4 natural photographs taken from
Unsplash5, a website dedicated to sharing copyright-free photography. Those
images are challenging as the background and the object of interest have
similar color. Moreover, the illumination is not uniform which makes the
texture more difficult to extract. The initializations, segmentation outcomes
and manual edits are shown in Figures 6.17, 6.18, 6.19, and 6.20.

Biological Images: Texture information is also widely used to characterize biological
tissues. We applied our snake to 3 microscopy images from the Cell Image
Library 6. Those images are challenging as the color inside and outside the
structure to segment are similar, and they contain several textures. The
initializations and segmentation outcomes are shown in Figures 6.21, 6.22,

5The images were taken from https://unsplash.com/, as of September 2018.
6The images were taken from http://www.cellimagelibrary.org/, as of September 2018.

https://unsplash.com/
http://www.cellimagelibrary.org/
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(a) Initialization. (b) Outcome. (c) Manual edit.

Figure 6.17: Segmentation of a squirrel. Source: J de Gier.

and 6.23. The qualitative assessment of the segmentation yields satisfactory
results.

6.2.4 Conclusions
We have presented a new parametric snake that efficiently allows one to segment
structures with similar intensity distribution and low contrast with the background.
Our main contribution related to this work is the derivation of a new energy that
combines intensity and texture information (see (5.4.5) and Section 5.4). The con-
tribution of the two types of information is balanced using Fisher’s LDA (Sec-
tion 5.4.3). The method is general and any suited filter banks can be used to ex-
tract texture features. This framework is trained on-the-fly from small collections
of pixels provided by the user. One main advantage of this method is that one can
easily interact with the snake to edit the segmentation outcome when required. We
have compared the performance of our snake to existing ones. In particular, we
have observed that the texture-driven snake always performs better than classical
parametric snakes that rely on intensity information only. This improvement was
even more substantial when the intensity distributions are similar over the back-
ground and the object of interest. We have studied the parameter sensitivity of
our proposed method as well as its robustness to noise. Finally, we have shown its
practical usefulness on real images.
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(a) Initialization. (b) Outcome. (c) Manual edit.

Figure 6.18: Segmentation of a leaf. Source: Joshua Newton.

(a) Initialization. (b) Outcome. (c) Manual edit.

Figure 6.19: Segmentation of leaves. Source: Mikael Kristenson.

(a) Initialization. (b) Outcome.

Figure 6.20: Segmentation of a mushroom. Source: Nancy Newton.
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(a) Initialization. (b) Outcome.

Figure 6.21: Segmentation of a hair follicle on a light micropgraph. Source: Ivor
Mason, 2012, CIL:39094.

(a) Initialization. (b) Outcome.

Figure 6.22: Segmentation of a nascent digestive vacuole on an electron microscopy
image. Source: Richard Allen, University of Hawaii, 2012, CIL:39720.

(a) Initialization. (b) Outcome.

Figure 6.23: Segmentation of a fossil of red sponge coral on a microscopy image.
Source: Norm Barker, 2009, CIL:41842.
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6.3 Multiresolution Subdivision Snakes
Subdivision is a powerful scheme to generate a continuously defined curve starting
from an initial set of points. As it was motivated in Chapter 4, this geometric
representation combines the advantages of parametric and point snakes. Moreover,
its discrete nature and multiresolution property are particularly relevant for the
design of active contours.

The use of subdivisions for the construction of segmentation models was pio-
neered by [170] and [171] for Doo-Sabin surfaces [132] and the DLG-scheme [172],
respectively. In the first case, left ventricles are modeled whereas, in the second
case, they improved editing semantics of traditional snakes.

In this section, we propose7 a general approach that remains valid for any sub-
division scheme as we derive the construction of a 2D subdivision snake in a generic
way. The main contributions related to this work are: 1) a new geometrical rep-
resentation based on subdivision. A crucial aspect is the choice of the subdivi-
sion mask that determines important properties of the model such as its approxi-
mation properties, the capability of reproducing circular, elliptical, or polynomial
shapes [123], as well as the possibility of being interpolatory [173, 174] or not; 2)
the derivation of associated energy functions; 3) the presentation of an integrated
strategy where the snake is optimized in a coarse-to-fine fashion. This multiscale
approach is algorithmic and inherently recursive: We increase the number of points
describing the curve as the algorithm progresses to the solution; at each step, the
scale of the image feature (on which the optimization is performed) is matched to
the density of the point cloud. This speeds up the computation and increases the
robustness.

We give several examples of explicit constructions of subdivision snakes. We
illustrate their use on real images as well as on test data simulating real biologi-
cal conditions. We compare our proposed model to existing parametric snakes and
measure its robustness and accuracy with respect to noise and initialization. Specif-
ically, we show that the proposed coarse-to-fine approach allows the optimizer to
1) have a larger basin of attraction which makes it robust to initial conditions; 2)
escape some local optima; 3) be efficient by progressively increasing the snake reso-
lution; 4) delineate structures of different sizes contained within an image without

7This section is based on our publication [70], in collaboration with D. Schmitter, V. Uhlmann
and M. Unser. A demo of the corresponding plugin and related documentation are available at
http://bigwww.epfl.ch/demo/subdivision-snake/.

http://bigwww.epfl.ch/demo/subdivision-snake/
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having to adapt the initialization.

6.3.1 Framework

We implicitly describe the contour of our snake by the continuously defined limit
curve r of a convergent subdivision scheme given by (4.2.6) and (4.2.3). Its shape is
encoded by the M control points Θ =

{
p(0)[m]

}
m∈{0,...,M−1}. This representation

implies that the properties of the snake (e.g., smoothness, shape reproducibility)
are determined by the choice of the subdivision mask h. We shown in Section 4.2.3
that affine invariance is ensured for every convergent subdivision scheme.

For the snake energy, we use a combination of the edge- and region-based
terms (5.1.4) and (5.2.5) such as

Esnake(p(k)(Θ)) = b EedgeSD(p(k)(Θ)) + (1− b) EintensitySD(p(k)(Θ)), (6.3.1)

where b ∈ [0, 1], is a tradeoff parameter that balances the contribution of the two
energies, and p(k) describes the contour of the snake and is given by (4.2.3).

6.3.2 Optimization: a Multiresolution Approach

The segmentation outcome, when using active-contour models, depends on the
initialization of the snake. A larger basin of attraction allows for a rougher initial-
ization. With common singleresolution segmentation algorithms, a tradeoff has to
be made between the desired accuracy and the amount of blurring one applies to an
image. Blurring enlarges the basin of attraction but also decreases the resolution
of an object, which in turn affects the quality of the delineation. Multiresolution
approaches are powerful methods to speed up the optimization process and improve
robustness. Existing methods mainly rely on the construction of an image pyramid,
where the active contour is upsampled from a coarse scale to a finer scale of the
image [175–177]. One limitation of those methods is that the object to segment
may not have the same topology on the coarsest and finest images. In this section,
we present a multiresolution approach which is inherent to the iterative process
of subdivisions. The subdivision snake has the advantage that the resolution of
the representation can be adapted to the resolution of the object to be segmented.
The number of subdivision points used to describe the snake and to determine its
energies (5.1.4) and (5.2.5) is controlled by the number k of subdivisions. If fewer
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points are used, the optimization is faster. We exploit this multiresolution property
both to enlarge the basin of attraction and to accelerate the optimization.

Algorithm: We apply K successive lowpass filters Gk to the original image to ob-
tain K smoothed images fk. The snake is first optimized on the coarsest
image f1 that corresponds to the lowest resolution and, hence, the structure
of interest only contains few details. The initialization on f1 can be very
rough because the blurring enlarges the basin of attraction. The snake is op-
timized on f1 and is then used as initialization at the next resolution level on
f2. The process continues until the optimization reaches the finest resolution
level that corresponds to the original image f . Because the smoothed images
contain fewer details and less noise than the original one the snake is more
robust to initial conditions. The subdivision scheme allows us to adapt the
number of subdivision points describing the curve r to the level of detail in
the image. Thus, we start with few subdivision points (i.e., one subdivision
step), which allows for fast optimization. At each subsequent iteration of
the multiresolution algorithm, we keep constant the number of control points
and increase the density of the subdivision points. The pseudo-code in Al-
gorithm 6.3 describes this algorithm. Note that the position of the control
points p(0) changes after each optimization. We denote by p(0)opt the se-
quence describing the optimized control points. From now on, we denote by
Esnake(f,p(k)(Θ)) the energy of the snake as it also depends on the image on
which it is optimized. The images fk and their pre-integrated versions (5.2.3)
are pre-computed, which accelerates the segmentation process and decreases
the memory requirements.

6.3.3 Experiments and Validation

We compare the proposed multiresolution snake to parametric singleresolution
snakes [50]. We first test the robustness with respect to initial conditions and, in
a second step, we measure its robustness with respect to noise as well as its ability
to segment objects of varying sizes in an image. Finally, we illustrate applications
on real data where the ground truth is not available.
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ALGORITHM 6.3: Multiresolution algorithm.

Input: original image f , low-resolution snake encoded by p(0)

Initialization: p(1) = p(0)↑2
∗ h

For K iterations (K ≥ 1) over k:
compute: image fk = f ∗Gk
optimize: p(0)opt

= arg min
p(0)opt

Esnake

(
fk,p(k)(p(0)opt

)
)

p(k)opt
= p(0)opt↑

2k
∗ h0→k

increase the resolution of the snake: p(k+1) = p(k)opt↑2
∗h

Until: high-resolution segmentation on the original image f

Accuracy and Robustness to Initial Conditions

We carry out two experiments in which we compare our multiresolution subdivision
snake to a parametric singleresolution snake based on quadratic B-splines as de-
scribed in [50]. In order to compare snakes with the same reproduction properties,
we construct our subdivision snake with a minimum-support subdivision scheme
that generates polynomials of degree up to 2 (see Section 4.3.3).

In the first experiment, we test the accuracy of the segmentation. We created
a test image of (854× 768) pixels that simulates realistic conditions in fluorescence
microscopy (Figure 6.24 (second row)), including noise. It shows a rod-shaped cell
representative of a Schizosaccharomyces pombe (S. pombe) [178]. We then blurred
the test image with five Gaussian kernels having different standard deviations σ
whose values are given in Table 6.4. Four resulting images are shown in Figure 6.24
(first row). The higher the standard deviation, the fewer details are present in the
filtered image. The initialization of the snakes was drawn manually with M = 8
control points (Figure 6.24 (second row)). Its overlap with the actual structure
corresponds to the Jaccard index J = 0.544. We first optimized our subdivision
snake using the multiresolution algorithm described in Section 6.3.2. At each it-
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eration we did one subdivision step corresponding to a multiplication by a factor
of 2, starting with 2M = 16 subdivision points. The curve evolves guided by the
edge-based energy EedgeSD, i.e., we choose b = 1 in (6.3.1). The optimized contours
at different levels of the multiresolution algorithm are shown in Figure 6.24 (first
row). We compared the final segmentation to the ground truth of the synthetic
data; the corresponding Jaccard index is given in Table 6.4. We consider that a
snake succeeds in segmenting the structure of interest if J ≥ 0.95. We then indepen-
dently optimized the parametric singleresolution snake with the edge energy Eedge,
given by (2.2.2), on the six images (the five blurred images and the original one)
using the same initialization. Results are shown in Figure 6.24 (third row) and the
corresponding Jaccard indices are given in Table 6.4. The segmentation succeeded
only on the smoothed image corresponding to σ = 8. The singleresolution snake
is able to segment the structure of interest only on a smoothed image because the
basin of attraction is too narrow otherwise for the edge energy. The variance of the
Gaussian filter has to be well-chosen according to the initialization. We conclude
that the multiresolution approach improves the accuracy of the segmentation. This
result is explained by the fact that the multiresolution is initialized on the coarsest
image with reduced details and a large basin of attraction. By adapting the res-
olution of the subdivision snake to the image details, it is able to converge to the
structure to segment on the original image.

In the second experiment, we evaluate the impact of the multiresolution ap-
proach on the robustness of the snake with respect to the initialization. For this ex-
periment, we generated another test image of (854× 768) pixels of a sickle cell [179]
acquired through fluorescence microscopy (Figure 6.25 (d)). We compared the basin
of attraction of both the singleresolution and the multiresolution subdivision snakes
using M = 6 control points. Each basin of attraction was computed as follows: a
rough approximation of the goldstandard was constructed. This shape was rescaled
to construct several initial positions of the snake. We then optimized the active con-
tour using an edge-based energy (i.e., Eedge and EedgeSD). For each segmentation
result, we computed the Jaccard index and associated a grayscale value to J where
white corresponds to J = 0 and black to J = 1. Finally, we generated an image
where each initialization was drawn with the color corresponding to the Jaccard
index of the corresponding segmentation result. For the singleresolution snake, we
realized this experiments on two images: the original one and a smoothed version
with σ = 10. The results are shown in Figure 6.25 (a) and (b), respectively. For
our subdivision snake, we used the multiresolution approach on the original image.
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Figure 6.24: Comparison of the accuracy of the segmentation between our multires-
olution subdivision snake and the parametric singleresolution snake. Both snakes
generate polynomials of degree up to 2. First row: Evolution of the subdivision
snake during the six-level multiresolution process. The last illustration shows the
final segmentation on the original image. Second row: Initialization. Third row:
Several segmentation results obtained with the parametric singleresolution snake
for different blurred versions of the original test image.

The result is given in Figure 6.25 (c). The white regions in the images showing
the basin of attraction correspond to positions that were not considered for initial-
ization, including the boundary of the shape to segment. Note that the average
Jaccard values inside the shape to segment appear to be less uniform than outside.
This can be attributed to the two following reasons: First, as seen on the original
image (Figure 6.25 (d)), the outside of the shape is completely uniform in intensity
while the inside of the shape exhibits variations in pixel values. Snakes evolving
from outside of the object therefore encounter no risk of getting diverted from their
target due to variations of pixel intensities. Snakes which start to deform from the
inside of the shape are, however, evolving on a nonuniform region and are more
likely to get trapped into local energy minima. Second, for a given number of con-
trol points, smaller snakes tend to diverge more easily than larger ones. This effect
is simply due to the fact that, if their number is fixed, control points are physically
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Table 6.4: Jaccard indices for segmentation obtained with the singleresolution and
subdivision snakes, both generating polynomials of degree up to 2.

σ [pixel] J Result

32 0.803 fail
16 0.860 fail

Singleresolution 8 0.950 succeed
snake 4 0.544 fail

2 0.544 fail
0 0.544 fail

Subdivision snake 0 0.989 succeed

closer in smaller shapes. During the optimization process and as the control points
are moved, it becomes therefore more likely for the snake to get entangled. In the
present experiment, initial shapes inside the object to segment are smaller than the
ones outside the object, and optimization results tend to get more unstable due to
the enhanced risk of entanglement. We observe that the singleresolution snake is
very sensitive to the initialization. On the contrary, the subdivision snake leads to
accurate segmentation even for initializations far from the object to segment.

Robustness with Respect to Noise

As further test of robustness, we performed segmentation on the test image de-
scribed in Figure 6.24 (second row) with different levels of additive white Gaussian
noise. We still used the multiresolution subdivision snake constructed with the
minimum-support subdivision scheme that generates polynomials of degree up to 2
(see Section 4.3.3) and M = 8 control points. The initial overlap of our snake with
the ground truth corresponds to J = 0.593 (Figure 6.26 (e)). SNRs corresponding
to a given noise level and associated Jaccard indices were computed. We used a
pixelwise SNR that compares the noisy image and the ground truth image. The
results are summarized in Table 6.5 and Figure 6.26. For all cases, we obtained
J > 0.95.
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(a) σ = 0 (b) σ = 10 (c) Multiresolution (d) Test image

Figure 6.25: Comparison of the basin of attraction of the multiresolution subdivi-
sion snake versus the parametric singleresolution snake using an edge energy. (a)-(b)
Basins of attraction of the singleresolution snake obtained for the original image
and for a blurred version (σ = 10); (c) basin of attraction of the multiresolution
subdivision snake obtained on the original image (d).

Table 6.5: Jaccard indices for the segmentation of noisy data.

SNR [dB] J

−7.83 0.990
−13.80 0.987
−16.60 0.987
−17.82 0.984

Segmentation of Objects of Varying Sizes

The multiresolution algorithm for segmentation presented in Section 6.3.2 suggests
that the approach is very robust to initialization. To verify this property, we created
a test image of size (5,500× 2,700) pixels composed of eight circular cells of different
sizes (Figure 6.27). The initializations correspond to circles with a radius of 461
pixels centered in each cell (Figure 6.27 (a)). By adjusting the variance of the
lowpass filters to the smallest structure present in the image, we were able to
segment all the cells. We used a multiresolution subdivision snake based on the
ellipse-reproducing Deslauriers-Dubuc scheme defined by (4.4.8). Results are shown
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(a) SNR= −7.83dB. (b) SNR= −13.80dB.

(c) SNR= −16.60dB. (d) SNR= −17.82dB.

(e) Initialization.

(f) Close-up of a boundary
region.

Figure 6.26: Robustness with respect to noise of the multiresolution subdivision
snake. A close-up of a boundary region between the test rod-shape and its back-
ground for SNR= −17.82dB is depicted in (f).

in Figure 6.27 (b) and the corresponding Jaccard indices are presented in Table 6.6
(first line). Each structure was accurately segmented with J ≥ 0.95.

Real Data

We illustrate the behavior of the proposed snake on real data. In this context, the
ground truth is unknown and we have to rely on qualitative assessments to vali-
date the accuracy of the segmentation. We applied our multiresolution subdivision
snake, constructed with the non-stationary minimum-support subdivision scheme
that generates ellipses defined by (4.4.10), to four microscopic images (Figure 6.28).
These images are challenging because of the presence of noise and of objects with
different sizes. Moreover, shapes can be close to each other. They represent elliptic
cells (Figure 6.28 (a), inverted contrast), rod-shaped cells of S. pombe (Figure 6.28
(b)), a sickle cell (Figure 6.28 (c)), and circular cells (Figure 6.28 (d)). The quali-
tative assessment of the segmentation yields satisfactory results. We used b = 0.5
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(a) Initializations. (b) Segmentation outcomes.

Figure 6.27: Segmentation of circles with different radii using the ellipse-
reproducing Deslauriers-Dubuc subdivision scheme defined by (4.4.8).

Table 6.6: Jaccard indices for the segmentation of circles of various sizes obtained
with the stationary and the non-stationary Deslauriers-Dubuc schemes.

Radius [pixels] 55 75 95 115 165 195 315 415
Reproducing scheme

Ellipses 0.992 0.994 0.995 0.996 0.996 0.996 0.997 0.998
Polynomials of degree up to 3 0.810 0.778 0.764 0.772 0.756 0.777 0.771 0.765

in (6.3.1) and the average time to delineate one cell was less than 0.2 seconds on a
1.7 GHZ processor with 8 GB RAM.

Note that, as the principal motivation for our work is the segmentation of bio-
logical images, it was important trough those experiments to show that our model
can reproduce circular or elliptic shapes. However, the reproduction properties of
the presented schemes are not restricted to those shapes. More complex shapes can
be segmented by increasing the number of control points.

6.3.4 Discussion

Guidelines for the Choice of the Subdivision Scheme

In Chapter 4, we presented two main families of subdivision schemes: the Deslauriers-
Dubuc and the minimum support subdivision schemes. We highlighted their prop-
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(a) Elliptic cells. (b) S. pombes. (c) Sickle cell. (d) Circular cells.

Figure 6.28: Segmentation of real data using multiresolution subdivision snakes
constructed with the non-stationary minimum-support subdivision scheme that
generates ellipses (see (4.4.10)). First row: snake initializations. Second row: seg-
mentation outcomes.

erties in case of stationary or non-stationary approaches (see Sections 4.3 and 4.4,
respectively). Here after, we discuss the choice of the subdivision mask to construct
our snake according to the application.

Minimum-Support vs. Deslauriers-Dubuc Subdivision Schemes: The computation
of the snake energy and the speed of the optimization algorithm is related
to the length of the support N of the subdivision mask. More precisely, the
complexity when calculating the subdivision points (4.2.3) is O((N − 1)k).
Therefore, the fastest algorithm is obtained using minimum-support subdivi-
sion schemes. In return, the Deslauriers-Dubuc subdivision is interpolating.
This can be an advantage if user interaction is involved, because it facilitates
the editing of the curve. We present in Figure 6.29 an intermediate stage
in the segmentation of a dividing cell. User interaction makes it possible to
improve the result by moving the control points. However, the interaction is
more intuitive when they lie on the curve (Figure 6.29 (b)). Otherwise, it is
difficult to know which parameter controls the part of the curve that has to
be modified (Figure 6.29 (a)).
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(a) Non-interpolating control points. (b) Interpolating control points.

Figure 6.29: User-friendly interaction according to the interpolation property of the
subdivision scheme. Blue crosses: control points; red curve: snake; green circles:
control points for which it is difficult to know which part of the curve they control.
Source: http://www.cellimagelibrary.org/images/35450/.

The choice of the subdivision mask ultimately depends on the application:
for an automatic method, we suggest to use a minimum-support subdivision
scheme; whereas, when one would like to benefit from friendly user interac-
tions, it is preferable to use a Deslauriers-Dubuc subdivision scheme.

Stationary vs. Non-Stationary Subdivision Schemes: Non-stationary subdivision
schemes are somewhat more complicated than stationary ones because the
subdivision mask is different at each iteration. Their main advantage lies in
their capability to reproduce cosinus and sinus, which allows for an efficient
construction of ellipses and circles. In biomedical imaging, circular or elliptic
structures are often encountered. It is therefore desirable for the snake to be
able to reproduce these shapes. The non-stationary schemes presented in Sec-
tions 4.4.3 and 4.4.4 reproduce ellipses with the minimum number of control
points M = 3, whereas the reproduction is only approximated with the sta-
tionary schemes for M < +∞. As the speed of the algorithm scales with the
number of control points, it is preferable to use a non-stationary subdivision
scheme with few control points to segment elliptic structures. To illustrate
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(c) M = 20

Figure 6.30: Approximation of trigonometric curves with the stationary (red solid
line) and non-stationary (blue dashed line) Deslauriers-Dubuc subdivision schemes.
(a) Evolution of the approximation error as a function of the control points. Ap-
proximated ellipses for M = 3 (b) and M = 20 (c) are given for each scheme.

this property, we computed the error when approximating a circle as a func-
tion of M with the stationary Deslauriers-Dubuc subdivision scheme defined
by (4.3.5). In Figure 6.30, we see that the error decreases as M increases.
However, a large number of control points is needed to obtain an acceptable
error. Therefore, the segmentation of circular shapes with a small number of
control points p(0) is more accurate with a non-stationary scheme. To high-
light this property, we performed the same experiment as the one presented in
Figure 6.27, using the stationary Deslauriers-Dubuc scheme that reproduces
polynomials of degree up to 3 (see (4.3.5)). We used the same initializations
and M = 4 control points. The results are shown in Figure 6.31. We com-
puted the Jaccard indices and compared them to the ones obtained previously
with the non-stationary scheme (see Table 6.6). All the Jaccard indices are
worse than 0.95, which is due to the fact that the stationary scheme does not
approximate well circles for M = 4.
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Figure 6.31: Segmentation of circles of different sizes obtained with the multires-
olution subdivision snake based on the stationary Deslauriers-Dubuc scheme that
reproduces polynomials of degree up to 3 (see (4.3.5)).

Table 6.7: Properties of the different subdivision schemes.

Subdivision Ellipse Interpolant Shortest
scheme reproduction mask

Minimun-support (MS) No No Yes
Non-stationary MS Yes No Yes

Deslauriers-Dubuc (DD) No Yes No
Non-stationary DD Yes Yes No

To conclude, if the structure of interest has many details, that requires a
high number of control points, then we suggest the use of stationary schemes,
thereby privileging computation simplicity while preserving the accuracy of
the result; otherwise, one should use a non-stationary scheme.

Summary: The properties and advantages of each subdivision scheme presented in
Sections 4.3 and 4.4 are summarized in Table 6.7. As in biomedical imaging we
often deal with elliptic structures and that biologists may need to interact with
the segmentation result, we recommend the use of non-stationary Deslauriers-
Dubuc subdivision schemes.
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Table 6.8: Parameters of the multiresolution algorithm.

Level 1 2 3 4 5 6
Parameter

σ 32 16 8 4 2 0
p(k) p(1) p(2) p(3) p(4) p(5) p(6)

Choice of the Multiresolution Parameters in Practice

Regarding the variance and the number of subdivision steps at each level of the
multiresolution algorithm, we found in practice that six subdivision iterations are
enough to obtain satisfactory convergence. At each resolution level, we compute one
subdivision step, so that the samples of the curve are upsampled by a factor 2. As
smoothing is equivalent to a downsampling operation, we obtain the variance of the
coarser lowpass filter by decreasing the resolution of the original image by a factor
2 at each iteration. Hence, we propose a multiresolution algorithm with 6 levels
where the first one is characterized by σ = 25 and 2M subdivision points. At each
iteration, the value of σ is divided by two and one subdivision step is performed.
The value of the parameters at each step are summarized in Table 6.8. The choice of
these parameters holds when the snake is initialized far from the object to segment.
Otherwise, a smaller variance can be used for the coarsest lowpass filter but the
convergence of the subdivision scheme is still required on the finest level.

6.3.5 Conclusions
We have presented the 2D generic construction of multiresolution snakes based on
subdivision. The snakes approximate closed curves with arbitrary precision by iter-
atively refining a set of control points. We have provided several examples of explicit
constructions of such snakes and discussed their properties. We have shown how
they should be chosen according to desired properties that depend on the structures
to be segmented. We have also proposed a multiresolution algorithm to adapt the
resolution of the curve to the level of detail in the image. We have compared our
framework to traditional parametric singleresolution snakes and shown that our
snakes have a larger basin of attraction, which means that they are more robust
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with respect to initial conditions. Furthermore, the multiresolution property accel-
erates the optimization. We have validated our snakes on test data as well as on
real bioimages. The primary contributions related to this work are:

• A new geometrical representation based on subdivision;

• The derivation of associated energy functions such as the region- and edge-
based terms (5.1.4) and (5.2.5), respectively;

• The presentation and integration of an algorithmic coarse-to-fine optimization
strategy (see Section 6.3.2).
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6.4 Active Tessellations
In this section, we address8 the segmentation of the cell aggregates that appear in
images of several biological specimen such as C. elegans embryo or cornea endothe-
lium (Figures 6.32 and 6.38). This task is challenging because of the proximity of
the cells and the presence of gaps in the membranes.

Over the past decade, automated methods were proposed for the segmenta-
tion of cell membranes, including intensity thresholding, morphological operations,
Voronoi-based methods [180], labeling procedures [181], or watershed transform [28–
32]. Those methods have three main limitations. First, they suffer from leakage
in case of dimmed membranes. Second, they are sensitive to noise and might re-
sult in over-segmentation. Third, it is not easy to introduce prior knowledge to
improve the accuracy of the segmentation [182]. Recent approaches are based on
the detection of membrane patterns coupled with graph-cut [183], or on deep learn-
ing [184]. If these methods are better suited for incorporating prior knowledge, they
do not allow for easy and user-friendly interaction. Moreover, they may provide
non-continuous cell boundaries, which complicates the extraction of quantitative
measurements. Topology adaptive methods, such as level sets or T-snakes [60,185],
are not required in this context as the topological structure of the cell aggregate is
generally known.

As it was exposed in Chapter 2, parametric snakes are built to ensure continu-
ity and smoothness, which prevents leakage, and they are encoded by only a few
control points, which results in fast optimization and provides robustness to noise.
Moreover, the underlying shape has a continuous representation in terms of basis
functions, which facilitates the incorporation of prior knowledge. However, para-
metric snakes are not well suited to segment objects that are close to each other:
They might yield overlapping segmentations (Figure 6.32 (c)) as the snakes are op-
timized independently. In the literature, only few works regarding active contours
address the segmentation of touching objects. An extension of traditional para-
metric snakes to track non-occluding objects that transiently touch each other is
presented in [42,186]. These methods could only segment cell aggregates with thick
membranes or non-touching cells. Networks of active contours were introduced
in [187] and [188]. However, they involve many parameters (nodal points).

8This section is based on our publication [73], in collaboration with D. Sage, A. Galan and
M. Unser. A demo of the corresponding plugin and related documentation are available at
http://bigwww.epfl.ch/demo/active-tessellation/.

http://bigwww.epfl.ch/demo/active-tessellation/
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(a) Seed points. (b) Watershed.

(c) Five classical snakes. (d) Active tessellation.

Figure 6.32: Segmentation of a C. elegans embryo; Source: R. Jankele and P.
Gönczy, EPFL. (a) Seed points used for the initialization of each method; (b)
watershed method; (c) five classical snakes [64]; (d) active tessellation.

In this section, we propose a new active contour with a geometric representation
that keeps the advantages of parametric snakes while addressing globally the seg-
mentation problem of cell aggregates. The model consists in a smooth tessellation,
so-called active tessellation, that is globally deformed towards the cell membranes
through the minimization of a suitable ridge-based energy. The smooth tessellation
is encoded by a set of control points and generated through a subdivision scheme.
By construction, the segmented tiles are non-overlapping and the tessellation struc-
ture bridges membrane gaps. After optimization, each cell of the aggregate can be
individually extracted to compute statistical descriptors. We illustrate the benefits
of the proposed active tessellation on real biological applications in the context of
semi-interactive segmentation.

6.4.1 Framework

Our active contour model is a smooth tessellation, as described in Figure 6.33 (e).
Its shape is parametrized by control points that are grouped in tiles (Figure 6.33
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(a)
(b)

(c)

(d)

(e)

Figure 6.33: Construction of the smooth tessellation. Given seed points (a), we
first generate control points (blue crosses) grouped in tiles (b). Then, we specify
the smooth boundary of each tile with a continuous closed curve by applying a
subdivision scheme to its control points (c). Finally, we keep one of the common
edges (d) to obtain the final smooth tessellation (e).

(b)). Each tile is associated with a closed curve that specifies its smooth boundary
(Figure 6.33 (c)). This smooth curve is generated from the control points via a
subdivision scheme. The smooth tessellation is the union of the closed curve of
each tile. As two control points that belong to two adjacent tiles are connected by
two continuous edges (Figure 6.33 (d)), we keep only the edge of the largest tile
(Figure 6.33 (e)). The remaining edges are then optimized by fitting them to the
image data via energy optimization using the ridge energy presented in Section 5.3.

A Tiling Made of Closed Subdivision Curves

We use the subdivision process presented in Chapter 4 to generate the closed curve
of each tile. In the present case, p(0) is the M -periodic sequence that contains
the control points of a tile. We apply the recursive refinement (4.2.3) to obtain the
(2kM)-periodic sequence of subdivision points p(k), such that the contour points are
sufficiently dense. For the subdivision mask h we use the convergent Deslauriers-
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(a) p0. (b) Subdivision steps. (c) p6(p0).

Figure 6.34: Interpolating Deslauriers-Dubuc subdivision scheme. (a) Control
points p0; (b) subdivision steps that converge to the continuous curve (c) which is
encoded by the five control points p0 (blue crosses).

Dubuc subdivision scheme defined by (4.3.5) which generates C1-continuous func-
tions and reproduces polynomials up to degree 3. We choose this scheme as it
has the advantages to be interpolating, which facilitates the editing of the curve,
and affine invariant. Moreover, it ensures smoothness as it produces C1-continuous
curve. In Figure 6.34, we illustrate the generation of a tile using the interpolating
Delauriers-Dubuc subdivision scheme.

An Oriented Ridge-based Energy

To attract the smooth tessellation towards the cell membranes, we use the discrete
formulation of the oriented ridge-based energy (5.3.4), that is Esnake = EridgeSD.
Let Θ be the control points of the active tessellation. They generate a set of N
points ptess := ptess(Θ) that delineates the smooth tessellation. Then, the ridge-
based energy (5.3.4) can be re-expressed as

EridgeSD(ptess(Θ)) = − 1

N

N−1∑
m=0

ξ(ptess[m])
|〈vmin(ptess[m]),n(ptess[m])〉|

‖vmin(ptess[m])‖
, (6.4.1)

where n(ptess[m]), ξ(ptess[m]) and vmin(ptess[m]) are the approximation of the unit
normal vector defined by (5.1.5), the ridge strength and the eigenvector of the
Hessian matrix of the image, respectively, at the mth point of the tessellation. This
energy is minimal when the active tessellation lies on the ridge.
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6.4.2 Implementation Details
We initialize the active tessellation as follows: We construct a Voronoi diagram
around seed points and then apply a mask to shrink the Voronoi tiles in the neigh-
borhood of the cell aggregate. This mask is obtained by constructing the convex
hull of the seed points. The vertices of the resulting tiles are the control points Θ
of the active tessellation. Note that the seed points are manually specified through
the interface or automatically detected from a provided image of the cells’ nuclei.

We follow a coarse-to-fine optimization strategy. We first optimize the active
tessellation made of the few control points of the Voronoi tiling. We obtain a rough
segmentation that is less likely to be stuck in local minima. We then double the
number of control points to increase the flexibility of the active tessellation and
we optimize it once again. This strategy makes our active contour less sensitive to
initialization.

6.4.3 Experiments and validation
We perform three experiments to evaluate the performance of our active tessellation.
We first investigate its robustness with respect to noise and dim membranes on
synthetic data. Then, we illustrate applications on real data.

Synthetic Data

We compare our approach in term of accuracy against the watershed method [189]
implemented by I. Arganda-Carreras and D. Legland for the bioimage platform
Fiji9. In the experiments, we compute the Jaccard index for each cell and take
the average. It is this average value that we refer to as Jaccard index in the next
sections.

We created a test image that simulates the fluorescence microscopy of a C.
elegans embryo with 5 cells (Figure 6.35 (a)). We use the same seed points to
initialize the two methods. The initial configuration of the active tessellation is
illustrated in Figure 6.35 (a). Its initial similarity with the ground truth corresponds
to J = 0.64.

Robustness with Respect to Noise: We corrupted the test image by different levels
of additive Gaussian noise (20 realizations per level of noise, Figure 6.35

9The source code is available at https://imagej.net/Classic_Watershed.

https://imagej.net/Classic_Watershed
https://imagej.net/Classic_Watershed
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(a) Test image. (b) Active tessellation,
J = 0.98.

(c) Watershed, J = 1.0.

(d) Noisy image. (e) Active tessellation, J = 0.90. (f) Watershed, J = 0.46.

(g) Image with dimmed mem-
branes.

(h) Active tessellation,
J = 0.94.

(i) Watershed, J = 0.44.

Figure 6.35: Segmentation outcomes. (a)-(c) Test images. (a) Initial configuration
of the active tessellation; (d)-(f) noisy data with SNR= 0.81; (g)-(i) image with
23.95% of membrane information loss.
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Figure 6.36: Segmentation of noisy data. Evolution of the Jaccard index as a
function of the SNR. Filled area: standard deviation across the 20 realizations.

(d)). The SNR corresponding to a given noise level and Jaccard index were
computed. The SNR that we use is the ratio of the mean value of the signal
and the standard deviation of the noise. The results are given in Figure
6.36 and illustrated in Figures 6.35 (e) and (f). We observe that the active
tessellation is robust with respect to noise since it is able to give a proper
segmentation outcome even for low SNRs. On the contrary, the accuracy of
the watershed method degrades significantly for a SNR below 2.4.

Robustness with Respect to Dim Membranes: We progressively dimmed the fluores-
cence signal on the membranes of the test image (Figure 6.35 (g)). We com-
puted the Jaccard index as a function of the information-loss percentage.
This dimming percentage corresponds to the ratio of the mean intensity on
the membrane of the test image over the one of the corrupted image. The
resulting plot is given in Figure 6.37 and we illustrate results in Figures 6.35
(h) and (i). The active tessellation accurately segments the cells until 49% of
information loss while the watershed method can tolerate no more than 15%
of information loss, then it quickly decreases. As this model is only based on
intensity, it leaks through dim membranes. Due to the structure and smooth-
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Figure 6.37: Evolution of the Jaccard index as a function of the dimming percent-
age.

ness of the active tessellation, the proposed framework does not suffer from
leakage.

Real Data

We applied our active tessellation on real biomedical images. These images are
challenging because of the presence of noise and gaps in the membranes. For each
segmentation, the initial configuration of the active tessellation has 2.6 control
points per cell in average. We compute the Jaccard index of each outcome consid-
ering a manual segmentation as ground truth. The results obtained are satisfactory
in most cases (Figures 6.32 and 6.38).

6.4.4 Conclusions

We have presented a new subdivision-based active contour for the segmentation
of cell aggregates. We have modeled the active contour by a smooth tessellation
and used the oriented-ridge-based energy term designed in Section 5.3 to efficiently
attract the curve toward the membranes. The tessellation structure prevents from
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(a) J = 0.86. (b) J = 0.95.

Figure 6.38: Cell segmentation of (a) cornea endothelium; (b) C. elegans embryo
a in light-sheet fluorescence-microscopy image. Source: R. Jankele and P. Gönczy,
EPFL.

overlapping segmentation of the cells and from leakage issues. Moreover, each
cell of the segmentation outcome can be easily extracted as a continuous closed
curve making possible the computation of cell metrics. We have demonstrated the
robustness of our method under noisy conditions and to dim membranes. We have
also illustrated its behavior on real bioimages. The main contributions related to
this work are:

• The construction of a smooth tessellation to describe an active contour;

• The derivation of an oriented ridge-based energy functional (see (5.3.3) and
(5.3.4));

• The implementation of the whole framework.
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Chapter 7

Active Subdivision Surfaces

In this chapter, we extend the 2D multiresolution subdivision snake exposed in
Section 6.3 to its 3D counterpart for the extraction of volumetric structures.

Subdivision is widely used in computer graphics for representation and mod-
eling [107, 108]. As it was motivated in Chapter 4, this geometric representation
combines the advantages of parametric and mesh-based approaches: The continu-
ously defined limit surface is fully driven by the initial coarse mesh which consists
of only few parameters.

The use of subdivision to construct segmentation models was pioneered in 2D
by [171] for the DLG-scheme [172]. We then presented a generic framework that is
valid for any convergent subdivision schemes in [70]. The extension to 3D models is
more challenging. From a computational point of view, the geometry of the surface
and the mesh connectivity increase the complexity of the implementation. Shapes
are encoded with more control points, with three degrees of freedom for each one,
which renders the optimization more complicated and slower. Moreover, it might
be necessary to maintain evenly spaced control points to favor a representative
sampling of the surface. In the literature, only few works used subdivision to
segment volumes. The authors of [170] presented the modelization of left ventricles
using Doo-Sabin surfaces [132], while the segmentation of branch vessel structures
was performed in [190] using Loop’s subdivision scheme [110].

139
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In this chapter, we present1 the generic construction of active subdivision sur-
faces in the context of any subdivision scheme that operates on triangular meshes.
The main contributions related to this work are 1) a new 3D geometrical represen-
tation based on subdivision. The subdivision operator confers important properties
to the surface such as smoothness, reproduction of desirable shapes and interpo-
lation; 2) the derivation of region- and gradient-based energy functions that are
guaranteed to have the proper limit proposed in [52]; 3) the presentation and inte-
gration of an algorithmic coarse-to-fine optimization strategy. This speeds up the
computations and increases the robustness. We have implemented the method as
a user-friendly open-source plugin2 for the bioimaging platform Icy [11].

Throughout this chapter we use the notations described in Section 4.6. More-
over, we consider orientable closed surfaces, i.e., compact and without boundary,
since we want our active surface to segment blob-like objects within 3D images.

The chapter is organized as follows: In Section 7.1, we describe the generic con-
struction of active subdivision surfaces on triangular meshes. Then, in Section 7.2,
we provide a coarse-to-fine optimization strategy. In Section 7.3, we perform an
extensive validation of active subdivision surfaces on both synthetic and real bio-
logical images. In particular, we show that the scheme is robust in the presence
of noise and with respect to the initialization. Finally, conclusions are drawn in
Section 7.4.

7.1 Framework

We implicitly represent the surface of the deformable model by the continuously
defined, orientable, closed limit surface σ of a convergent subdivision scheme

σ = lim
k→∞

M(k), (7.1.1)

whereM(k) is the triangular mesh at the k-th subdivision step obtained by (4.6.2).
Its shape is encoded by theM = N0 control points Θ = P(0) =

{
p(0)[m]

}
m∈{0,...,M−1}.

The numberM of control points determines the number of degrees of freedom of the

1This section is based on our work [72], in collaboration with L. Romani and M.
Unser. A demo of the corresponding plugin and related documentation are available at
http://bigwww.epfl.ch/demo/subdivision-surfaces/.

2See footnote 1.

http://bigwww.epfl.ch/demo/subdivision-surfaces/
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model. A small M leads to simple and constrained shapes, while an increase in M
brings additional flexibility to approximate arbitrary surfaces. This representation
implies that the properties of the active surface depend on the choice of the sub-
division scheme (see Section 4.6.3). A mandatory requirement is affine invariance.
Moreover, the quality of the segmentation outcome can be influenced as follows:
first, the regularity of the surface defines the smoothness of the segmentation result;
second, the geometric reproduction properties have to match the shape of interest.

We reduce the energy of the active subdivision surface to an image energy
term (see Section 1.2.2). The smoothness of the surface is ensured by choosing a
subdivision scheme that produces at least C1 surfaces. We use a combination of the
gradient- and region-based terms (5.1.8) and (5.2.9) such as

Esnake(P(k)(Θ)) = bEgradSD(P(k)(Θ)) + (1− b)EintensitySD(P(k)(Θ)), (7.1.2)

where P(k) := P(k)(Θ), given by (4.6.2), describes the surface and b ∈ [0, 1] is a
tradeoff parameter that balances the contribution of the two energies.

7.2 A Coarse-to-Fine Optimization Strategy
In Section 6.3, we have shown the advantage of a multiresolution strategy, for 2D
subdivision models, to accelerate the segmentation and to make it more robust
to the initialization. The use of such algorithms is even more relevant in 3D as
the optimization is more difficult. There, we propose an integrated coarse-to-fine-
optimization strategy that combines the refinement of 1) the mesh resolution, to
make the computation faster and less sensitive to the initialization; 2) the number
of control points, to maintain a favorable sampling of the mesh throughout the
process.

Coarse-to-Fine Mesh Resolution: The energy terms (5.1.8) and (5.2.9) depend on
the subdivision points P(k), which is the source of the main computational
bottleneck. The accuracy of the energy and, therefore, of the segmentation,
increases with the resolution of the mesh. However, it also considerably slows
down the computation. Moreover, active surfaces tend to be sensitive to
the initialization, especially when using gradient-based energy. To address
those issues, we optimize the active surface in a coarse-to-fine fashion that is
inherent to the iterative process of subdivisions. Our algorithm exploits the
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following properties: 1) a smoothed volume contains fewer details and less
noise than the original one; 2) the resolution of the mesh (i.e., the number
of subdivision points) can be adapted to the resolution of the object to be
segmented (i.e., the level of detail in the volume).

Algorithm: We apply K successive lowpass filters Gk to the original volume
f to obtain K smoothed volumes fk, with the width of Gk being higher than
that of Gk+1. The active subdivision surface is first optimized on the coarsest
volume f1, where the object of interest only contains few details. The initial
mesh on f1 can be coarse as well since the shape of the underlying object
tends to get simplified. The optimization on f1 is fast and the outcome is
then used as initialization at the next resolution level on f2. We refine the
mesh and optimize it on f2. The process continues until the optimization
reaches the finest resolution level that corresponds to the original volume f .

Coarse-to-Fine Density of the Control Points: The segmentation of intricate shapes
requires a large number M of control points in order to catch all the de-
tails. However, the segmentation becomes less robust when M increases as
the optimization iterative process is more likely to be stuck in local minima.
Moreover, the deformation of the surface can lead to an undesirable distribu-
tion of the control points along the surface, which results in an unfavorable
sampling of the mesh. To avoid it during the optimization, we start with
few control points and then progressively increase M . This is made possi-
ble by the fact that the mesh M(k) is entirely defined by any coarser mesh
M(q), 0 ≤ q ≤ k − 1. In this way, our initial segmentation is rough at first,
with a poor flexibility of the active subdivision surface. The upside is a good
distribution of the control points and, thus, of the subdivision points over
the surface. We then progressively refine local details by increasing M . The
final number of control points depends on the intricacy of the shape to be
segmented.

The pseudo-code in Algorithm 7.1 describes the entire coarse-to-fine optimization
strategy. It combines the refinement of the resolution of the mesh with that of the
density of the control points. In this code, the set C contains the control points.
Note that they change after each round of optimization. We thus denote by Copt the
set of the optimized control points. From now on, we denote by Esnake(f,P(k)(Θ))
the energy of the active surface as it also depends on the volume image on which it
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ALGORITHM 7.1: Coarse-to-fine optimization strategy.

Input: original volume f , initial control points P(0), level kf for
the final control points P(kf )

Initialization: P(1) = S0P(0) (low-resolution mesh)
C = P(0) (set containing the control points)
k0 = 0 (current level of the control points)

For K iterations over k ≥ k0 + 1:
compute: fk = f ∗Gk
optimize: Copt = arg min

Copt

Esnake(fk,P(k)(Copt))

P(k)opt
= Sk−1Sk−2 · · ·Sk0Copt

refine the resolution of the mesh: P(k+1) = SkP(k)opt

refine the density of the control points:
If (k0 < kf ) Copt = Sk0Copt and k0 ← k0 + 1

Until: high-resolution segmentation on the original volume f

is optimized. The volumes fk and their pre-integrated versions are precomputed,
which accelerates the segmentation process.

7.3 Experiments and Validation

We proceed in four steps to evaluate the performance of the proposed active sub-
division surface. We first test its robustness to noise and, in a second step, its
sensitivity to the initialization. Then, we investigate its accuracy in the context of
the segmentation of an intricate shape, when a lot of flexibility is required from the
active surface. Finally, we illustrate applications on real biomedical data where the
ground truth is not available.

For each experiment, we use Loop’s scheme, presented in Section 4.6.4, to repre-
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sent our active subdivision surface. We carry out the optimization by a Powell-like
line-search method [61]. The experiments are performed on a 1.7 GHZ processor
with 8 GB RAM.

We use the Jaccard index J to measure the overlap between a segmentation
result V and the corresponding ground truth VGT. It is defined as

0 ≤ J =
|V ∩ VGT|
|V ∪ VGT|

≤ 1. (7.3.1)

7.3.1 Robustness to Noise

We investigate the robustness to noise of the active subdivision surface as a function
of the number M of control points. The test images consist in a binary sphere of
radius 40 voxel units on a 3D array of size (256×256×256) voxels. We corrupted the
test image by six levels of additive white Gaussian noise (50 realizations per level
of noise). We initialized the active subdivision surface with the roughly spherical
surface described by the high-resolution mesh M(4) given in Figure 4.5 (e). Its
overlap with the ground truth corresponds to J = 0.39 (Figure 7.1). We ran
the optimization process for 3,500 iterations using only the region-based energy
EintensitySD, i.e., we choose b = 0 in (7.1.2), and the coarse-to-fine strategy described
in Section 7.2. The signal-to-noise ratio corresponding to a given noise level and
the median Jaccard index were computed. The SNR that we use is the ratio of
the mean value of the signal and the standard deviation of the noise. The results
are summarized in Table 7.2, where M is the final number of control points. We
observe that the active subdivision surface is robust to noise since it is able to
segment satisfactorily, even for low SNRs. This can be explained by the fact that
the region energy EintensitySD, given by (5.2.9), estimates the mean intensity over
regions, while Gaussian noise has zero mean.

7.3.2 Robustness to the Initialization

To study the sensitivity of the active subdivision surface to its initialization, we
compared our model in terms of accuracy and speed against other segmentation
methods such as the active parametric surface described in [52] and the 3D active
mesh of [43]. The implementation of the two methods was taken from the package
Icy [11].
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TABLE 7.2: Jaccard Indices for the Segmentation of Noisy Data.
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Figure 7.1: Initialization on the volumetric image, J = 0.39.

The test image is the binary sphere of Section 7.3.1. For each method, the
initialization is (essentially) a sphere of radius r voxel units centered in the image.
The goal is to segment the binary sphere from several initializations by varying the
value of r.

We initialized our active subdivision surface with the low-resolution meshM(2)

illustrated in Figure 4.5 (c), the control points being the 6 vertices that make up the
octahedron (see Figure 4.5 (a)). We optimized the model using the gradient-based
energy EgradSD, i.e., we choose b = 1 in (7.1.2), and the coarse-to-fine strategy with
the parameters given in Table 7.3. In this table, γ denotes the standard deviation
of a Gaussian filter. For the active mesh, we set the mesh resolution to 12, the time-
evolution step to 0.1, the window size to 100, the contour smoothness to 0.04, and we
evolved the mesh using a gradient-based energy with weight (−0.1). For the active
parametric surface, we set the number of control points to 12 as it favors ellipsoid-
like shapes during the segmentation process. We deformed the parametric surface
using Egrad, given by (2.2.3). For this method only, we ran the optimization on both
the original image and on a smoothed version of the image filtered with a Gaussian
kernel with γ = 7. We computed the Jaccard index of the segmentation outcome
over all initializations and methods. The results as well as the segmentation time
(without preprocessing) are given in Table 7.4. In this table,“failed" means that the
active mesh did not detect the sphere and vanished, or that the parametric surface
self-intersected. Active subdivision surfaces and active parametric surfaces have a
similar performance in terms of accuracy and speed as soon as the initialization
is close enough to the object to segment. Otherwise, the basin of attraction of
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TABLE 7.3: Parameters of the Coarse-to-Fine Optimization Strategy.

Iteration Control Points Mesh Filter Size γ

1 P(0) 6 pts M(2) 66 pts 7
2 P(1) 18 pts M(3) 258 pts 2
3 P(1) 18 pts M(4) 1026 pts none

the active parametric surface is too narrow for the gradient-based energy. We
observe that the standard deviation γ = 7 is large enough to attract the active
parametric surface for almost every initial configuration. However, in each case the
segmentation is less accurate as the boundary of the sphere to segment is smoothed.
The active mesh performs well, provided that the initialization includes the sphere
to segment. Otherwise, it systematically fails. The active subdivision surface led to
accurate segmentation even for initializations far from the object to segment. This
result is explained by the use of the coarse-to-fine optimization strategy since the
model is initialized on the coarsest image with reduced details and a large basin of
attraction. In addition, the proposed method is also the fastest.

7.3.3 Segmentation Accuracy

In this section, we generated a binary synthetic blebbing cell [191] located at the
center of a volumetric image of size (256× 256× 256) voxels (Figure 7.2 (a)). The
presence of blebs on the surface of the cell makes the segmentation challenging and
requires a lot of flexibility from the segmentation model. We then compared our
proposed method in terms of accuracy to the two segmentation methods mentioned
in Section 7.3.2.

For each method, the initialization is (essentially) a centered sphere of radius
50 voxel units. Its overlap with the blebbing cell corresponds to J = 0.56. We
initialized the active subdivision surface with the low-resolution mesh M(2) illus-
trated in Figure 4.5 (c), encoded by the 6 control points that form the octahedron
of Figure 4.5 (a). For the energy Esnake, we set the tradeoff parameter to b = 0.8
in (7.1.2). We evolved the active subdivision surface using the coarse-to-fine opti-
mization strategy with the parameters given in Table 7.5. For the active mesh, we
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TABLE 7.4: Accuracy and Efficiency with Respect to the Initialization.
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TABLE 7.5: Parameters of the coarse-to-fine optimization strategy.

Iteration Control Points Mesh Filter Size γ

1 P(0) 6 pts M(2) 66 pts 10
2 P(1) 18 pts M(3) 258 pts 5
3 P(2) 66 pts M(4) 1026 pts 2.5
4 P(3) 258 pts M(5) 4098 pts none

set the mesh resolution to 5, the time-evolution step to 0.1, the window size to 100,
the contour smoothness to 0.05, and we optimized the mesh using a region-based
energy with weight 1. For the active parametric surface, we used a mix of the
gradient-based energy Egrad and the region-based energy Eintensity, given by (2.2.3)
and (2.2.7), respectively, with a tradeoff parameter equal to 0.8.

For this last segmentation method, we repeated the experiment for different
numbers of control points. They are listed in Table 7.6, where we also show a
comparison of the final Jaccard index3. 3D views as well as 2D orthogonal views of
the segmentation outcomes are illustrated in Figures 7.2 and 7.3, respectively. We
observe that both our proposed method and the active mesh accurately segment
the blebbing cell and give smooth meshes (Figure 7.2 (b) and (c)). The active
mesh tends to extend outside of the boundary of the object compared to the active
subdivision surface (Figure 7.3, YZ plane). However, it segments better two close
blebs (Figure 7.3, XZ plane). Clearly, the active parametric surface has the worst
performance. The segmentation with 12 control points leads to a very smooth sur-
face. However, only the main sphere of the blebbing sphere is segmented, as the
flexibility afforded by 12 control points is low. With the additional flexibility af-
forded by 36 control points it is able to segment some blebs. However, irregularities
in the surface start to appear. When we further increase the flexibility of the active
parametric surface, the distribution of the control points misbehaves; moreover,
irregularities and twists of the surface grow too large.

3The ideal segmentation of just the main sphere of the blebbing cell would correspond to
J = 0.88.
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(a) Ground truth. Blue lines: planes used for the 2D views
of Figure 7.3.

(b) Active subdivision sur-
face.

(c) Active mesh. (d) Active parametric sur-
face (12 control points).

(e) Active parametric sur-
face (36 control points).

(f) Active parametric surface
(62 control points).

(g) Active parametric surface
(96 control points).

Figure 7.2: 3D views of the segmentation outcomes.
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TABLE 7.6: Jaccard Indices for the Segmentation of a Blebbing Cell.

Method J

Active Subdivision Surface 0.98
Active Mesh 0.96

Active Parametric Surface (12 control points) 0.87
Active Parametric Surface (36 control points) 0.93
Active Parametric Surface (62 control points) 0.87
Active Parametric Surface (96 control points) 0.69

Plane Active subdivision
surface Active mesh

Active parametric
surface (36 control

points)

XY

XZ

YZ

Figure 7.3: 2D orthogonal views of the segmentation outcomes.
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(a) Initialization. (b) Intermediate stage. (c) Outcome.

Figure 7.4: Segmentation of the nucleus of the neuron of a rat in a 3D microscopic
volume. Dots: control points.

7.3.4 Segmentation on Real Biomedical Images
We illustrate the behavior of the proposed active subdivision surface on two real
biomedical images, with unknown ground truth. We rely on qualitative assessments
to validate the accuracy of the segmentation. The volumetric data of Figure 7.4
represent the optical density of the neuron of a rat in a 3D microscopic image [1].
The volumetric data of Figure 7.5 results from the MRI acquisition of a human
brain, with the purpose of measuring its total intracranial volume (TIV). TIV is
used in medicine to detect temporal morphological changes related to neurological
diseases [4]. However, its segmentation is challenging because of the numerous ir-
regularities that compose the brain, such as the convoluted areas formed around the
temporal lobe and the cerebellum. The qualitative assessment of our segmentations
yields satisfactory results.

7.4 Conclusions
We have presented the 3D generic construction of a new family of active surfaces
on triangular meshes. The deformable model is characterized by few control points
and a natural discrete implementation. It can approximate closed surfaces with
arbitrary precision by iteratively refining a set of 3D control points. We have also
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(a) Initialization. (b) Intermediate stages. (c) Outcome.

Figure 7.5: TIV segmentation of a 3D MRI scan. Dots: control points.

proposed an integrated coarse-to-fine optimization strategy to adapt the resolution
of the mesh to the level of detail in the volume. It results in speed-up of the opti-
mization and better robustness. Moreover, this multiresolution strategy allows us
to maintain a favorable sampling of the mesh by gradually increasing the flexibility
of the model during the optimization. We have applied our proposed method to
a variety of problems that involve synthetic data and real biomedical images. We
have compared our framework with two segmentation methods and shown that our
model is robust with respect to noise and initial conditions. The primary contribu-
tions related to this work are:

• A new geometrical representation based on subdivision;

• The design of the gradient-based energy (5.1.8) as well as the robust region-
based energy term (5.2.9);

• The presentation and integration of an algorithmic coarse-to-fine optimization
strategy (see Section 7.2).
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Chapter 8

Conclusion

We end this thesis with a concluding chapter. We first recap the novel scientific
contributions and results. Then, we briefly comment on further directions of re-
search.

8.1 Contributions

We focused on the problem of segmentation in the context of biomedical image anal-
ysis. We identified limitations of parametric snakes and addressed them providing
new representation models as well as novel energies. With these two ingredients
in hand, we constructed new active contours and surfaces. In the following, we
summarize our contributions grouped by field.

Representation

• Locally refinable parametrization: We presented a new parametrization for
curves and tensor-product surfaces where the number of control points can
be locally increased without altering the shape. In a segmentation context,
these additional control points then allow to locally deform the shape with
better accuracy.
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• Subdivision-based representation: We introduced subdivision schemes, tradi-
tionally used in computer graphics, into a segmentation framework by de-
scribing a snake as a subdivision curve/surface. The main benefits of this
representation is it simplicity of implementation and its multiresolution prop-
erty, which allows for the contour of a shape to be represented at varying
resolutions.

Image Energy
• Edge- and region-based energies: We adapted standard edge- and region-based

energies to our locally refinable parametric closed curves. In addition, we
provided discrete edge- and region-based energies tailored for the subdivision-
based representation.

• Ridge-based energy: As edge-based energies do not perform well on ridge ar-
eas, we proposed an oriented ridge-based energy. We provided the continuous
and discrete formulations.

• Texture-based energy: We proposed a novel energy that combines image in-
tensity and texture information. The two types of image information are
balanced using Fisher’s linear discriminant analysis and the framework can
be used with any filter-based texture features. We provided the continuous
and discrete formulations. This energy was motivated by the inefficiency of
standard edge- and region-based energies to discriminate a target from its
background in images with a low contrast between the two.

Optimization
• Subdivide and conquer strategy: We presented and integrated to our snakes an

algorithmic coarse-to-fine optimization strategy. First, we successively apply
lowpass filters to the original image to obtain several smoothed images. We
initialize the snake on the coarsest image and adapt its resolution to the scale
of the target feature (i.e., subdivide). Then, we perform a first optimization
on this image that is fast, and we use the outcome as initialization at the
next resolution level. We successively increase the resolution of the snake
and the image until the optimization reaches the finest resolution level that
corresponds to the original image (i.e., conquer). This subdivide and conquer
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strategy was tailored for our representations that satisfy the multiresolution
property. It improves the robustness in the presence of noise and enlarges the
basin of attraction of our snakes compared to traditional parametric snakes.

Bioimaging Software for Segmentation

With the previous contributions in hand, we designed new active contours/surfaces
that are generic enough to be applied in a wide range of applications. We imple-
mented the corresponding framework as bioimaging software for segmentation.

• 2D locally refinable snakes: We presented new parametric snakes that are
locally refinable. We exploited our parametrization for locally refinable closed
curves, as well as our corresponding edge- and region-based energies. Our
method is generic and can be used with any valid scaling function. Locally
refinable snakes segment intricate shapes with better accuracy using fewer
control points than classical parametric snakes.

• 2D/3D subdivision snakes: We proposed a generic framework to construct
subdivision snakes. We exploited subdivision schemes to represent the snakes,
and as energy terms we used our discrete formulations of the edge- and region-
based energies. These snakes satisfy the property of multiresolution, which
allowed us to well adopt the subdivide and conquer strategy. In addition, they
are robust in the presence of noise and have a enlarged basin of attraction
compared to classical parametric snakes.

• 2D active tessellations: We presented a new active contour to segment cell
aggregates. We described the snake by a smooth tessellation built from sub-
division schemes, and we deformed it in a global manner using our oriented
ridge-based energy. By construction, cells are segmented without overlap and
the tessellation structure is maintained even on dim membranes. Leakage,
which afflicts usual image-processing methods, is thus prevented. In addi-
tion, the proposed method is robust to membrane gaps and to high levels of
noise.

• 2D texture-driven parametric snakes: We proposed new parametric snakes
that are efficient to segment structures with a similar intensity distribution as
their background. We represented the snake with a classical parametric closed
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curve and used our texture-based energy. This framework is interactive and is
trained on-the-fly from small collections of pixels provided by the user. These
snakes are robust to noise and improve the segmentation performance when
compared to classical parametric snakes that rely on intensity information
only.

Mathematical Tool for Signal Processing
• Inner-product calculus: We introduced an inner-product calculus to evaluate

correlations and L2 distances between closed curves represented by basis func-
tions. In particular, we presented formulas for the direct and exact evaluation
of correlation matrices in the case of closed (i.e., periodic) parametric curves
and periodic signals. Our first motivation for this work was to provide an effi-
cient way to compute the exact calculation of the area enclosed by parametric
snakes.

• Stochastic model of closed curves: We presented two approaches for the re-
construction of periodic continuous-domain signals, that are the coordinate
functions of a closed curve, from their noisy measurements. We focused on
two reconstruction paradigms: variational and statistical. We showed that
the two approaches are connected, and that for each one the optimal solution
is a periodic spline related to a differential operator.

8.2 Research Outlook
The research presented in this thesis opens several interesting avenues for future
investigation. Some of them are listed below.

• Extend the texture-driven parametric snake for the segmentation of 3D and
multi-modal data: A combination of medical image modalities (e.g. MRI,
CT with various contrasts) can provide complementary information about
the texture of a specific tissue (e.g. organ, tumor). Hence, as our texture-
driven parametric snake handles several channels, it could be of interest to
use images of different modalities as inputs of the framework.
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• Incorporate normal control in active subdivision surfaces: The introduction
of adjustable normals in a deformable model has several advantages: First, it
provides additional control over the shape, which facilitates the reproduction
of sharp corners or circonvolutions; second, it allows for the design of direc-
tional energy functionals. We would like to introduce normal control in active
surfaces by using normal-based subdivision schemes for their representation.
Our publication [192] is a first step in this direction.

• Further exploit subdivision schemes: Subdivision is a powerful paradigm for
the generation of surfaces of arbitrary topology. In this thesis, we focused on
closed subdivision curves/surfaces of genus 0. We plan to account for other
kinds of topological properties. For instance, to segment cell aggregates, we
could use a subdivision scheme to generate a smooth tessellation composed
of several tiles, instead of generating each tile independently, as our active
tessellation does. This method would be more elegant, simpler to implement
and much easier to extend to 3D.

• Incorporate deep neural networks into deformable models: A snake energy
is usually tailored to detect specific features in images. This approach has
some limitations. If the features of the object to segment are also present in
an object of the image background, the segmentation will fail as too many
features would be detected. In this context, we could use the potential of
neural networks. It is possible to train an appropriate deep neural network
to detect exclusively the desired edges or features of the object of interest.
Then, we could directly use our energies with the output of the network.
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Appendix A

An Inner-Product Calculus for
Periodic Functions and Curves

In this chapter, our motivation1 is the design of efficient algorithms to process
closed curves represented by basis functions or wavelets. To that end, we introduce
an inner-product calculus to evaluate correlations and L2 distances between such
curves. In particular, we present formulas for the direct and exact evaluation of
correlation matrices in the case of closed (i.e., periodic) parametric curves and pe-
riodic signals. We give simplifications for practical cases that involve B-splines. To
illustrate this approach, we also propose a least-squares approximation scheme that
is able to resample curves while minimizing aliasing artifacts. Another application
is the exact calculation of the enclosed area (see (2.2.6)).

1This work is based on our publication [75], in collaboration with D. Schmitter and M. Unser.
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A.1 Introduction

A.1.1 Notations
We consider parametric closed curves as given by (2.1.4), that we briefly recall as

r(t) =

(
r1(t)
r2(t)

)
=

M−1∑
m=0

c[m]ϕM (Mt−m), (A.1.1)

where t ∈ [0, 1]. To a closed curve ri is assigned the couple (ϕi,Mi), where ϕi is
the basis function and Mi is the associated number of control points. We express
the corresponding Mi-periodized basis function by

ϕi,Mi
(t) =

∑
n∈Z

ϕi(t− nMi). (A.1.2)

We define the vector ϕi, of size Mi, that contains the basis
{ϕi,Mi

(Mi · −m)}m∈{0,...,Mi−1}, as

ϕi(t) =

 ϕi,Mi(Mit)
...

ϕi,Mi
(Mit−Mi + 1)

 . (A.1.3)

The condensed notation
ri(t) = CT

i ϕi(t) (A.1.4)

is equivalent to (A.1.1). There, Ci is the (Mi × 2) matrix defined as

Ci =

 ci,1[0] ci,2[0]
...

...
ci,1[Mi − 1] ci,2[Mi − 1]

 . (A.1.5)

In the case of 1D signals, the matrix Ci collapses to a vector.

A.1.2 Inner Products
The exact computation of inner products is a frequent operation in signal and
image processing such as for the evaluation of L2 distances, orthogonal projections
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or similarity measurements. Thus, our interest here is in the efficient calculation
of the L2-distance between two curves that may be parametrized with a different
number of control points [99, 193]. We express the L2-inner product between the
two closed curves r1, r2 ∈ L2([0, 1]) as

〈r1, r2〉L2([0,1]) =

ˆ 1

0

rT1 (t)r2(t)dt

= tr

(
CT

1

(ˆ 1

0

ϕ1(t)⊗ϕ2(t)dt︸ ︷︷ ︸
A12

)
C2

)
, (A.1.6)

where A12 is the correlation matrix of size (M1 × M2) specified as[
A12

]
k,l

=
〈[
ϕ1

]
k
,
[
ϕ2

]
l

〉
L2([0,1])

and ⊗ denotes the tensor product. To evalu-
ate (A.1.6), the entries of the correlation matrix require the evaluation of some
integrals. We present in Section A.2 a calculus that facilitates these computations
in the continuous domain.

A.2 Inner-Product Calculus

A.2.1 General Calculation
We start by providing a general formula for precomputing the matrix A12 and then
discuss a number of situations that can be resolved analytically.

Proposition A.2.1. Let ϕ1 and ϕ2 be two compactly supported generators with
supp{ϕ1} = [a1, b1], supp{ϕ2} = [a2, b2], M1 ≥ supp{ϕ1}, and M2 ≥ supp{ϕ2}.
The entries of the (M1 ×M2) cross-correlation matrix A12 =

´ 1

0
ϕ1(t) ⊗ ϕ2(t)dt

are given by [
A12

]
k,l

=
1

M1

m2∑
m=m1

a12(−τk,l,m), (A.2.1)

where
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a12(t) =

ˆ
R
ϕ1(u)ϕ2(

M2

M1
(u− t))du

=

(
ϕ1 ∗ ϕ2(−M2

M1
·)
)

(t), (A.2.2)

τk,l,m = M1

(
m+ k

M1
− l

M2

)
, m1 = dmin(p1, p2))e, m2 = bmax(1 + p1, 1 + p2)c,

p1 =
(

1
M2

(a2 + l)− 1
M1

(a1 + k)
)
, and p2 =

(
1
M2

(a2 + l)− 1
M1

(b1 + k)
)
. There, b·c

and d·e denote the floor and the ceil function, respectively.

The proof of Proposition A.2.1 is given in Appendix A.5.1. In the case where
the generators are even or odd functions with respect to the same axis, Proposi-
tion A.2.1 is simplified as specified by Corollary A.2.2.

Corollary A.2.2. Let ϕ1 and ϕ2 be two even or odd functions with respect to the
same axis of symmetry.

a) The correlation between the one-periodic functions
[
ϕ1

]
k
and

[
ϕ2

]
l
is

[
A12

]
k,l

=
1

M1

(
a12(−τk,l) + a12(M1 − τk,l) + a12(−M1 − τk,l)

)
, (A.2.3)

where τk,l = M1( k
M1
− l

M2
).

b) If ϕ1 and ϕ2 have the same parity, then the correlation is expressed as[
A12

]
k,l

=
1

M1

(
a12(|τk,l|) + a12(|τk,l| −M1)

)
, (A.2.4)

with τk,l = M1

(
k
M1
− l

M2

)
.

Observe that, if M1 = M2, further simplifications of Proposition A.2.1 are ob-
tained. For instance, the case when ϕ1 = ϕ2 or ϕ2 = ϕ̇1 = dϕ1

dt implies that
a12 = ȧ11. Also note that, due to the periodicity of the generators and to M1 =
M2, the matrix A12 is circulant and thus entirely specified by its M1 entries
{
[
A12

]
0,l
}l∈{0,...,M1−1} [194]. This matrix is diagonalizable and hence, an explicit

expression for its inverse is easy to obtain.
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A.2.2 Specific Cases of a12 in Practice

(Exponential) B-splines, that we reviewed in Section 2.3.1, are basis functions that
are widely used in signal processing and have interesting mathematical properties
that can be exploited to simplify the proposed inner-product calculus. In this
section, we illustrate how the expression of a12 is simplified for specific cases that
frequently appear in practice and that involve B-splines. We use the notations and
properties presented in Section 2.3.1.

Correlation Between Polynomial B-Splines

The function a12 for the case of polynomial B-splines of different orders is deter-
mined according to Proposition A.2.3.

Proposition A.2.3. Let ϕ1 = β0L1
and ϕ2 = β0L2

. Then,

a12(t) =

(
M2

M1

)L2−1 L1∑
l=0

L2∑
k=0

(
L1

l

)(
L2

k

)
(−1)l+k+L2ςL1+L2−1(t+

kM1

M2
− l),

(A.2.5)
where ςL is the polynomial simple element of degree L defined as ςL(t) = tLsgn(t)

2(L!)

for L ∈ N.

The proof is given in Appendix A.5.2.

Correlation Between Exponential B-Splines

In the case where ϕ1 = βα1 and ϕ2 = βα2 are two exponential B-splines of order
L1 and L2, respectively, and M1 = M2, we obtain

a12(t) =

(
L2∏
n=1

eα
∗
2,n

)
βα1∪(−α∗2)(t+ L2), (A.2.6)

where α∗ is the complex conjugate of α [81]. Equation (A.2.6) corresponds to the
cross-correlation of two exponential B-splines which yields an exponential B-spline
of augmented order. Proposition A.2.4 provides a simplified expression of (A.2.6)
in the case where ϕ1 = βα and ϕ2 = ϕ̇1.
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Proposition A.2.4. Let ϕ1 = βα be an exponential B-spline of order L that
contains at least one vanishing pole (we suppose αL = 0), and ϕ2 = β̇α. Then,

a12(t) = −

(
L−1∏
n=1

eα
∗
n

)
∆βα∪(−(α∗\{0}))(t+ L− 1), (A.2.7)

where ∆f(t) = (f(t) − f(t − 1)) denotes the finite difference of f , and α \ {αn}
describes a list from which the element αn has been excluded.

The proof is given in Appendix A.5.3. Note that, the same kind of formula also
applies for fractional B-splines [195].

A.3 Applications

A.3.1 Resampling of a Spline Curve
The general scheme to reduce the size of a polygonal or spline curve r1 is to de-
crease its number M1 of control points [196]. The standard method is to simply
resample the curve [78]. However, this does not take into account details local-
ized between two samples, which alters the accuracy of the approximation while
eventually introducing aliasing artifacts [151]. We propose a new method which
consists in computing the L2 approximation r2 of the curve r1, with M1 > M2.
This is equivalent to compute arg min

C2

‖r1 − r2‖2L2
. It is not difficult to show that

the general solution, in the context of our framework, is given by

C2 = A−1
22 A21C1, (A.3.1)

where C1 and C2 are the coefficient matrices of size (M1 × 2) and
(M2× 2), respectively. The entries of the matrices A21 and A22, of size (M2×M1)
and (M2×M2), respectively, can be evaluated using Proposition A.2.1 and Propo-
sition A.2.3.

To experimentally compare resampling and approximation, we propose to reduce
the outline r1 of the map of Switzerland defined by M1 = 930 control points inter-
polated with the linear spline ϕ1 = β(0,0) (Figure A.1, black curve). We resample
r1 with both the sampling and the L2 approximation methods for different values
of M2 < M1 control points and in the basis of the quadratic spline ϕ2 = β(0,0,0).
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Figure A.1: Resampling of the outline of the map of Switzerland (black curve).
Solid red curve and dashed blue curve: resampled versions obtained by the L2

approximation and sampling methods, respectively, with M2 = 40 samples. Green
curve: reduced version of the map obtain with the L2 approximation.

We illustrate the case M2 = 40 in Figure A.1. We observe that the resampled
curves act as smoothed versions of r1 with less details and increased regularity. We
compute their approximation error for each value of M2 . In Figure A.2, it is seen
that the best approximation of the reduced version of the map, without aliasing
artifacts, is obtained with our proposed method (Figure A.1, green curve).

A.3.2 Area Enclosed by a Parametric Curve

In this section, we consider a non-intersecting curve r1 and its derivative
ṙ1 = M1C

T
1 ϕ̇1. The factor M1 is due to the normalization in (A.1.1). The compu-

tation of the area enclosed by a parametric curve usually involves the evaluation of
a surface integral. We propose instead to use Green’s theorem [197] to express this
surface integral as a contour integral, which results in a signed area expressed as

I =

˛
r1

r1,2dr1,1 = 〈r1,2, ṙ1,1〉L2([0,1]) = M1c
T
1,2A12c1,1, (A.3.2)
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Figure A.2: Evolution of the approximation error as a function of the number M2

of samples.

where ϕ2 = ϕ̇1, M2 = M1, and c1,1 and c1,2 are the first and second column of the
matrix (A.1.5), respectively. The sign of I depends on the direction in which the
curve is traversed.

In the case of centered (exponential) B-splines, (A.3.2) is easily computed. For
ϕ1 = βα, we evaluate the entries of the matrix A12 using Corollary A.2.2.a) and
Proposition A.2.4. We obtain

[
A12

]
k,l

=
1

M1

1∑
n=−1

∆cβα∪(α\{0})(k − l + nM1), (A.3.3)

where ∆cf(t) = f(t + 1
2 ) − f(t − 1

2 ) denotes the centered finite difference of
f . As the matrix is circulant, we only compute these values for k = 0 and
l ∈ {0, . . . ,M1 − 1}. For instance, if the parametric curve (A.1.4) is constructed
with the centered linear B-spline ϕ1 = β(0,0) (Figure A.3, solid green line), we have
∆cβα∪(α\{0}) = ∆cβ(0,0,0) (Figure A.3, dot-dashed blue line), where β(0,0,0) is the
centered quadratic B-spline (Figure A.3, dashed red line). Then, each row of the
correlation matrix is expressed as a periodic shift of the centered finite difference[

1
2 0 − 1

2

]
.
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Figure A.3: Solid green line: centered linear B-spline; red dashed line: centered
quadratic B-spline; blue dot-dashed line: ∆cβ(0,0,0); pink diamonds: ∆cβ(0,0,0)(k)
for k = −1, 0, 1.

A.4 Conclusion
The computation of inner products between periodized basis functions requires the
evaluation of a correlation matrix A12. This matrix frequently appears in periodic
settings in classical L2-based signal processing as well as in image processing when
dealing with parametric closed curves. We have presented exact formulas to evalu-
ate its entries and gave simplified expressions for particular cases. As the correlation
matrix itself does not depend on the weights (or control points) that specify the
signal (or parametric curve), its values can be precomputed and stored in look up
tables for a fast evaluation of L2 distances. We also proposed an L2 approximation
method to resample a curve, which consists in describing the curve in a different
basis using less control points. These new points are found by a least-squares min-
imization: The general solution requires the evaluation of two correlation matrices
that can be precomputed using our proposed formulas. We compared our approach
to the classical uniform resampling method and showed that the best approximation
was obtained with our method. We also illustrated the use of the proposed formulas
to evaluate the area enclosed by a parametric closed curve. Our inner-product cal-
culus allows for a fast and exact evaluation of correlation integrals, which frequently
appear in practice and are often only approximately computed up to date.
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A.5 Appendices

A.5.1 Proof of Proposition A.2.1
ˆ 1

0

ϕ1,M1(M1t− k)ϕ2,M2(M2t− l)dt =

ˆ 1− l
M2

− l
M2

ϕ1,M1(M1(t′ +
l

M2
)− k)ϕ2,M2(M2t

′)dt′

=

ˆ 1+
a2
M2

a2
M2

ϕ1,M1(M1(t+
l

M2
)− k)ϕ2(M2t)dt

=

ˆ 1+
a2
M2

a2
M2

+∞∑
m=−∞

ϕ1(M1t− τk,l,m)ϕ2(M2t)dt.

(A.5.1)

We set τk,l,m = M1(m + k
M1
− l

M2
), m1 = dmin(p1, p2)e, m2 = 1 + bmax(p1, p2)c,

p1 = ( 1
M2

(a2 + l)− 1
M1

(a1 + k)) and p2 = ( 1
M2

(a2 + l)− 1
M1

(b1 + k)). Now, (A.5.1)
is simplified as

m2∑
m=m1

ˆ 1+
a2
M2

a2
M2

ϕ1(M1t− τk,l,m)ϕ2(M2t)dt =
1

M1

m2∑
m=m1

ˆ
R
ϕ1(t− τk,l,m)ϕ2(

M2

M1
t)dt

=
1

M1

m2∑
m=m1

ˆ
R
ϕ1(t)ϕ2(

M2

M1
(t+ τk,l,m))dt

=
1

M1

m2∑
m=m1

a12(−τk,l,m), (A.5.2)

where a12(t) =
(
ϕ1 ∗ ϕ2(−M2

M1
·)
)

(t) and we have used the fact that

ϕ2(±M2

2 −M2n) = 0 if |n| ≥ supp{ϕ2}+M2

2M2
and that ϕ1(±M1

2 − M1p) = 0 if
|p| ≥ supp{ϕ1}+M1

2M1
.

A.5.2 Proof of Proposition A.2.3
We define by ∆L

b the Lth-order causal finite-difference operator with b 6= 0, defined
as

∆L
b f(t) =

L∑
k=0

(
L

k

)
(−1)kf(t− k

b
). (A.5.3)
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The Fourier transform F of the causal polynomial B-spline β0L is given by

F{β0L(t)}(ω) = β̂0L(ω) =

(
1− e−jω

jω

)L
= ∆̂L

1 (ω)F{ςL−1(t)}(ω), (A.5.4)

where F{ςL(t)}(ω) = 1
(jω)L+1 . Let ϕ1 = β0L1

and ϕ2 = β0L2
. We compute

a12(t) =

(
β0L1

∗ β0L2
(−M2

M1
·)
)

(t)

= F−1

{
β̂0L1

(ω)
M1

M2
β̂0L2

(−M1

M2
ω)

}
(t)

= F−1


(

1− e−jω

jω

)L1 M1

M2

(
1− ej

M1
M2

ω

−jM1

M2
ω

)L2
 (t)

= F−1

(−1)L2

(
M2

M1

)L2−1
(
1− e−jω

)L1
(

1− ej
M1
M2

ω
)L2

(jω)
L1+L2

 (t)

= (−1)L2

(
M2

M1

)L2−1

F−1

{
∆̂L1

1 (ω)∆̂L2

−M2
M1

(ω)ς̂L1+L2−1(ω)
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=
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)(
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k
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(A.5.5)

A.5.3 Proof of Proposition A.2.4

The derivative of an exponential B-spline that contains a vanishing pole is given by
β̇α∪{0} = ∆βα. Let ϕ1 = βα and ϕ2 = ϕ̇1. Using (A.2.6), we compute

a12(t) =
(
βα ∗ β̇α(−·)

)
(t)
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= −
(
βα ∗∆βα\{0}(−·)

)
(t)

= −

(
L−1∏
n=1

eα
∗
n

)
∆βα∪(−(α∗\{0}))(t+ L− 1). (A.5.6)



Appendix B

Periodic Splines and Gaussian
Processes for the Resolution of
Linear Inverse Problems

This chapter deals with the resolution of inverse problems in a periodic setting or,
in other terms, the reconstruction of periodic continuous-domain signals from their
noisy measurements. We focus1 on two reconstruction paradigms: variational and
statistical. In the variational approach, the reconstructed signal is solution to an
optimization problem that establishes a tradeoff between fidelity to the data and
smoothness conditions via a quadratic regularization associated to a linear operator.
In the statistical approach, the signal is modeled as a stationary random process
defined from a Gaussian white noise and a whitening operator; one then looks
for the optimal estimator in the mean-square sense. We give a generic form of the
reconstructed signals for both approaches, allowing for a rigorous comparison of the
two. We fully characterize the conditions under which the two formulations yield
the same solution, which is a periodic spline in the case of sampling measurements.
We also show that this equivalence between the two approaches remains valid on
simulations for a broad class of problems. This extends the practical range of

1This work is based on our publication [76], in collaboration with J. Fageot and M. Unser.
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applicability of the variational method.

B.1 Introduction

This chapter deals with inverse problems: one aims at recovering an unknown signal
from its corrupted measurements. To be more specific, the motivation of this work
is the reconstruction of an unknown continuous-domain and periodic signal f from
its M noisy measurements ym ≈ 〈νm, f〉 =

´ 1

0
νm(t)f(t)dt for m = 1 . . .M , where

the νm are measurement functions. The goal is then to build an output signal fopt

that is as close as possible to f .

B.1.1 Inverse Problems in the Continuous Domain

Inverse problems are often formulated in the discrete domain [198–202]. This is
motivated by the need of manipulating digital data on computers. Nevertheless,
many naturally occurring signals depend on continuous variables (e.g., time or
position). This leads us to attempt recovering a signal fopt(t) that depends on
the continuous variable t ∈ [0, 1]. In contrast with the classical discrete setting,
our search space for this reconstructed signal is thus infinite-dimensional [203].
Moreover, we choose a regularization based on true derivatives (as opposed to finite
differences) to impose some smoothness on the reconstructed signal, a concept that
is absent in the discrete setting.

When considering continuous-domain reconstruction methods, a majority of
works, typically in machine learning, deal with sampling measurements. The goal
is then to recover f from its (possibly noisy) values ym ≈ f(tm) at fixed location
tm. In order to investigate a more general version of inverse problems, we shall
consider generalized measurements [204, 205]. They largely exceed the sampling
case and include Fourier sampling or convolution (e.g., MRI, x-ray tomography [206,
207]). Our only requirement is that the measurements ym depend linearly on, and
evolve continuously with, the unknown signal f up to some additive noise, so that
ym ≈ 〈νm, f〉.
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B.1.2 Variational vs. Statistical Methods
In the discrete domain, two standard strategies are used to reconstruct an input
signal x from its noisy measurements y ≈ Hx, where H models the acquisition
process [202]. The first approach is deterministic and can be tracked back to the
’60s with Tikhonov’s seminal work [85]. The ill-posedness of the problem usually
imposes the addition of a regularizer. By contrast, Wiener filtering is based on the
stochastic modelization of the signals of interest and the optimal estimation of the
targeted signal x. This chapter generalizes these ideas for the reconstruction of
continuous signals from their discrete measurements.

In the variational setting, the reconstructed signal is a solution to an optimiza-
tion problem that imposes some smoothness conditions [208]. More precisely, the
optimization problem may take the form

fopt = arg min
f

( M∑
m=1

(
ym − 〈νm, f〉

)2
+ λ‖Lf‖2L2

)
, (B.1.1)

where L is a linear operator. The first term in (B.1.1) controls the data fidelity. The
regularization term ‖Lf‖2L2

constrains the function to satisfy certain smoothness
properties (for this reason, the variational approach is sometimes called a smoothing
approach). The parameter λ in (B.1.1) quantifies the tradeoff between the fidelity
to the data and the regularization constraint.

In the statistical setting, the signal is modeled as a random process and is
optimally reconstructed using estimation theory [86]. More precisely, one assumes
that the continuous-domain signal is the realization of a stochastic process s and
that the samples are given by ym = 〈νm, s〉+εm, where εm is a random perturbation
and νm a linear measurement function. In this case, one specifies the reconstructed
signal as the optimal statistical estimator in the mean-square sense

fopt = arg min
s̃

E
[
‖s− s̃(·|y)‖2L2

]
, (B.1.2)

where the estimators t 7→ s̃(t|y) are computed from the generalized samples ym.
The solution depends on the measurement function νm and the stochastic models
specified for s and εm. In our case, the random process s is characterized by a
linear operator L that is assumed to have a whitening effect (it transforms s into a
periodic Gaussian white noise, see Definition B.4.1), while the perturbation is i.i.d.
Gaussian.
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B.1.3 Periodic and General Setting
The variational and statistical approaches have been extensively studied for
continuous-domain signals defined on the infinitely supported real line. However,
it is often assumed in practice that the input signals are periodic. In fact, a stan-
dard computational approach to signal processing is to extend by periodization
the signals of otherwise bounded support. Periodic signals arise also naturally in
applications such as the parametric representation of closed curves [64, 70, 209].
This has motivated the development of signal-processing tools and techniques spe-
cialized to periodic signals in sampling theory, error analysis, wavelets, stochastic
modelization, or curve representation [75,151,210–214].

In this chapter, we develop the theory of the variational and statistical ap-
proaches for periodic continuous-domain signals in a very general context, including
the following aspects:

• We consider a broad class of measurement functions, with the only assump-
tions that they are linear and continuous.

• Both methods refer to an underlying linear operator L that affects the smooth-
ness properties of the reconstruction. We deal with a very broad class of linear
operators acting on periodic functions.

• We consider possibly non-quadratic data fidelity terms in the smoothing ap-
proach.

B.1.4 Related Works
The topics investigated in this chapter have already received some attention in the
literature, mostly in the non-periodic setting.

Reconstruction over the Real Line: Optimization problems of the form (B.1.1)
appear in many fields and receive different names, including inverse problems
in image processing [202], representer theorems in machine learning [215], or
sometimes interpolation elsewhere. Schoenberg was the first to show the con-
nection between (B.1.1) and spline theory [216]. Since then, this has been
extended to other operators [217], or to the interpolation of the derivative
of the signal [51, 218]. Many recent methods deal with non-quadratic reg-
ularization, especially for the reconstruction of sparse discrete [219, 220] or
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continuous signals [203,221–223]. We discuss this aspect more extensively in
Section B.6.2.

A statistical framework requires the specification of the noise and of the sig-
nal stochastic model. The signal is then estimated from its measurements. A
classical measure of the quality of an estimator is the mean-square error. This
criterion is minimized by the minimum mean-square error (MMSE) estima-
tor [86, 224]. The theory has been developed mostly for Gaussian processes
and in the context of sampling measurements [87]. We are especially inter-
ested in innovation models, for which one assumes that the signal can be
whitened (i.e., transformed into a white noise) by the application of a linear
operator [225, 226]. Non-periodic models have been studied in many situa-
tions, including the random processes associated with differential [227,228] or
fractional operators [229]. Extensions to non-Gaussian models are extensively
studied by Unser and Tafti [230].

The statistical and variational frameworks are deeply connected. It is remark-
able that the solution of either problem can be expressed as spline functions in
relation with the linear operator L involved in regularization (variational ap-
proach) or whitening (statistical approach). Wahba has shown that the two
approaches are strictly equivalent in the case of stationary Gaussian mod-
els [88]. This equivalence has also been recognized by several authors since
then, as shown by Berlinet and Thomas-Agnan [87], and Unser and Blu [89].
In the non-stationary case, this equivalence is not valid any more and the
existence of connections has received less attention.

Reconstruction of Periodic Signals: Some strong practical concerns have mo-
tivated the need for an adaptation of the theory to the periodic setting. Im-
portant contributions in that direction have been proposed. Periodic splines
are constructed and applied to sampling problems by Schoenberg [231] and
Golomb [232]. The smoothing spline approach is studied in the periodic
setting by Wahba [88] for derivative operators of any order. Although the
periodic extension of the classical theory is briefly mentioned by several au-
thors [87,88,233], we are not aware of a global treatment. Providing a general
analysis in the periodic setting is precisely what we propose in this chapter.
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B.1.5 Outline and Main Contributions

Section B.2 contains the main notations and tools for periodic functions and opera-
tors. In Section B.3, we state the periodic representer theorem (Theorem B.3.4). It
fully specifies the form of the solution in the variational approach in a very general
setting. For the specific case of sampling measurements, we show that this solution
is a periodic spline (Proposition B.3.6). Section B.4 is dedicated to the statisti-
cal approach. We introduce a class of periodic stationary processes (the Gaussian
bridges) for which we specify the MMSE estimator in the case of generalized linear
measurements (Theorem B.4.4). We also provide a theoretical comparison between
the variational and statistical approaches by reformulating the MMSE estimation
as the solution of a new optimization problem (Proposition B.4.5). This highlights
the strict equivalence of the two approaches for invertible operators and extends
known results from sampling to generalized linear measurements. For non-invertible
operators, we complete our analysis with simulations in Section B.5. In particular,
we give empirical evidence of the practical relevance of the variational approach for
the reconstruction of periodic stationary signals. We provide in Section B.6 a com-
parison between our results in the periodic setting and the known results over the
real line. Finally, we conclude in Section B.7. All the proofs have been postponed
to the Appendix sections.

B.2 Mathematical Background for Periodic Signals
Throughout the chapter, we consider periodic functions and random processes.
Without loss of generality, the period can always be normalized to one. Moreover,
we identify a periodic function over R with its restriction to a single period, chosen
to be T = [0, 1). We use the symbols f , s, and s̃ to specify a function, a random
process, and an estimator of s, respectively.

We call S(T) the space of 1-periodic functions that are infinitely differentiable,
S ′(T) the space of 1-periodic generalized functions (dual of S(T)), and L2(T) the
Hilbert space of square integrable 1-periodic functions associated with the norm
‖f‖L2

= (
´ 1

0
|f(t)|2dt)1/2. Working with S ′(T) allows us to deal with functions

with no pointwise interpretation, such as the Dirac comb defined by

X =
∑
k∈Z

δ(· − k), (B.2.1)
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where δ is the Dirac impulse. The duality product between an element f ∈ S ′(T)
and a smooth function g ∈ S(T) is denoted by 〈f, g〉. For instance, 〈X, g〉 = g(0) for
every g. When the two real functions are in L2(T), we simply have the usual scalar
product 〈f, g〉 =

´ 1

0
f(t)g(t)dt. All these concepts are extended to complex-valued

functions in the usual manner with the convention that 〈f, g〉 =
´ 1

0
f(t)g(t)dt for

square-integrable functions. The complex sinusoids are denoted by ek(t) = ej2πkt

for any k ∈ Z and t ∈ T. Any periodic generalized function f ∈ S ′(T) can be
expanded as

f(t) =
∑
k∈Z

f̂ [k]ej2πkt =
∑
k∈Z

f̂ [k]ek(t), (B.2.2)

where the f̂ [k] are the Fourier coefficients of f , given by f̂ [k] = 〈f, ek〉. Finally, the
convolution between two periodic functions f and g is given by

(f ∗ g)(t) = 〈f, g(t− ·)〉. (B.2.3)

If f, g ∈ L2(T), we have that (f ∗ g)(t) =
´ 1

0
f(τ)g(t− τ)dτ .

B.2.1 Linear and Shift-Invariant Operators
Let L be a linear, shift-invariant (LSI), and continuous operator from S(T) to S ′(T).
The shift invariance implies the existence of L̂[k] ∈ C such that

Lek = L̂[k]ek, (B.2.4)

for any k ∈ Z. We call L̂[k] the frequency response of the operator L; it is also
given by

L̂[k] = 〈L{X}, ek〉 =

ˆ 1

0

L{X}(t)e−j2πktdt. (B.2.5)

The sequence (L̂[k]) is the Fourier series of the periodic generalized function L{X},
and is therefore of slow growth [234, Chapter VII]. This implies that L, a priori
from S(T) to S ′(T), actually continuously maps S(T) into itself. This is a significant
difference with the non-periodic setting — we discuss this point in the conclusion
in Section B.7. Therefore, one can extend it by duality from S ′(T) to S ′(T). Then,
for every f ∈ S ′(T), we easily obtain from (B.2.4) that

Lf(t) =
∑
k∈Z

(̂Lf)[k]ek(t), where (̂Lf)[k] = f̂ [k]L̂[k]. (B.2.6)



180 Periodic Splines and Gaussian Processes

The null space of L is NL = {f ∈ S ′(T) | Lf = 0}. We shall only consider operators
whose null space is finite-dimensional, in which case NL can only be made of linear
combinations of sinusoids at frequencies that are annihilated by L. We state this
fact in Proposition B.2.1 and prove it in Appendix B.8.1.

Proposition B.2.1. Let L be a continuous LSI operator. If L has a
finite-dimensional null space NL of dimension N0, then the null space is of the
form

NL = span{ekn}
N0
n=1, (B.2.7)

where the kn ∈ Z are distinct.

From (B.2.4) and (B.2.7), we deduce that L̂[k] = 0 if and only if k = kn for some
n ∈ [1 . . . N0]. In the following, we consider real-valued operators. In that case, we
have the Hermitian symmetry L̂[−k] = L̂[k]. Moreover, ekn ∈ NL if and only if
e−kn ∈ NL. The orthogonal projection of f on the null space NL is given by

ProjNL
{f} =

N0∑
n=1

f̂ [kn]ekn . (B.2.8)

Let KL = Z\{kn}n∈{1...N0}. Then, (B.2.2) can be re-expressed as
f = ProjNL

{f}+
∑
k∈KL

f̂ [k]ek and we have that Lf(t) =
∑
k∈KL

f̂ [k]L̂[k]ek(t),
which yields the Parseval relation

ˆ 1

0

|Lf(t)|2dt =
∑
k∈KL

∣∣f̂ [k]
∣∣2∣∣L̂[k]

∣∣2. (B.2.9)

B.2.2 Periodic L-Splines

Historically, splines are functions defined to be piecewise polynomials [235]. A
spline is hence naturally associated to the derivative operator of a given order [84]
in the sense that, for a fixed N ≥ 1, a spline function f : R → R satisfies
Lf(t) =

∑
amδ(t− tm) with L = DN the Nth derivative. Splines have been ex-

tended to differential [81, 236–238], fractional [217, 239] or, more generally, spline-
admissible operators [230]. We adapt here this notion to the periodic setting, where
the Dirac impulse δ is replaced by the Dirac comb X.
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Figure B.1: Illustrations of periodic L-splines. Dots: nodes
(
tm, f(tm)

)
. The spline

in (a) corresponds to the periodization of an exponential B-spline (see Figure 1
in [81]).

Definition B.2.2. Consider an LSI operator L with finite-dimensional null space.
We say that a function f is a periodic L-spline if

Lf(t) =

M∑
m=1

amX(t− tm) (B.2.10)

for some integer M ≥ 1, weights am ∈ R, and knot locations tm ∈ T.

Periodic L-splines play a crucial role in the variational and statistical approaches
for the resolution of inverse problems in the periodic setting. We represent some
periodic splines associated to different operators in Figure B.1.

B.3 Periodic Representer Theorem

We now consider a continuous LSI operator L with finite-dimensional null space
NL. Let ν be the vector of the linear measurement functions ν1, . . . , νM . They
usually are of the form νm = δ(· − tm) for time-domain sampling problems. Here,
we consider general linear measurements to include any kind of inverse problems. In
this section, our goal is to recover a function f from observed data y = (y1, . . . , yM )
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such that ym ' 〈νm, f〉. To do so, we consider the variational problem

min
f

(
F (y,ν(f)) + λ‖Lf‖2L2

)
, (B.3.1)

where F : RM × RM → R+ is a strictly convex and continuous function called the
cost function. This function controls the fidelity to data. A special attention will
be given to the quadratic data fidelity of the form

F (y,ν(f)) =

M∑
m=1

(ym − 〈νm, f〉)2. (B.3.2)

We give the solution of (B.3.1) for the space of 1-periodic functions in Theo-
rem B.3.4. To derive this solution, we first introduce and characterize the space of
functions on which (B.3.1) is well-defined.

B.3.1 Search Space
The optimization problem (B.3.1) deals with functions such that Lf is square-
integrable, which leads us to introduce HL = {f ∈ S ′(T) | Lf ∈ L2(T)}. Due to
(B.2.9), we have that

HL = {f ∈ S ′(T) |
∑
k∈KL

|f̂ [k]|2|L̂[k]|2 < +∞}. (B.3.3)

Similar constructions have been developed for functions over R or for sequences by
Unser et al. [222, 240]. We now identify a natural Hilbertian structure on HL. If
L : HL → L2(T) is invertible, then HL inherits the Hilbert-space structure of L2

via the norm ‖Lf‖L2 . However, when L has a nontrivial null space, ‖Lf‖L2 is only
a semi-norm, in which case there exists f 6= 0 (any element of the null space of L)
such that ‖Lf‖L2

= 0. To obtain a bona fide norm, we complete the semi-norm
with a special treatment for the null-space components in Proposition B.3.1.

Proposition B.3.1. Let L be a continuous LSI operator whose finite-dimensional
null space is defined by NL = span{ekn}

N0
n=1. We fix γ2 > 0. Then, HL is a Hilbert

space for the inner product

〈f, g〉HL = 〈Lf,Lg〉+ γ2
N0∑
n=1

f̂ [kn]ĝ[kn]. (B.3.4)
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The proof is given in Appendix B.8.2. We have that
‖f‖2HL

= ‖Lf‖2L2
+ γ2‖ProjNL

{f}‖2L2
, where ProjNL

{f} is given by (B.2.8). The
coefficient γ2 balances the contribution of both terms.

B.3.2 Periodic Reproducing-Kernel Hilbert Space

Reproducing-kernel Hilbert spaces (RKHS) are Hilbert spaces on which the evalu-
ation maps f 7→ f(t) are well-defined, linear, and continuous. In this section, we
answer the question of when the Hilbert space HL associated to an LSI operator
L with finite-dimensional null space is a RKHS. This property is relevant to us
because periodic function spaces that are RKHS are precisely the ones for which
one can use measurement functions of the form νm = X(· − tm) in (B.3.1).

Definition B.3.2. Let H ⊆ S ′(T) be a Hilbert space of 1-periodic functions and H′
be its dual. Then, we say that H is a RKHS if the shifted Dirac comb X(·−t0) ∈ H′
for any t0 ∈ T.

This implies that any element f of a RKHS has a pointwise interpretation as a
function t→ f(t). As is well known, for any RKHS there exists a unique function
h : T× T→ R such that h(·, t0) ∈ H′ and 〈f, h(·, t0)〉 = f(t0), for every t0 ∈ T and
f ∈ H. We call h the reproducing kernel of H.

Proposition B.3.3. Let L be a continuous LSI operator with finite-dimensional
null space. The Hilbert space HL (see (B.3.3)) is a RKHS if and only if∑

k∈KL

1

|L̂[k]|2
< +∞. (B.3.5)

Then, the reproducing kernel for the scalar product (B.3.4) is given by
h(t, τ) = hγ(t− τ), where hγ ∈ S ′(T) is

hγ(t) =

N0∑
n=1

ekn(t)

γ2
+
∑
k∈KL

ek(t)

|L̂[k]|2
. (B.3.6)

The proof is given in Appendix B.8.3. Note that the reproducing kernel only
depends on the difference (t− τ).
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B.3.3 Periodic Representer Theorem
Now that we have defined the search space of the optimization problem (B.3.1), we
derive the representer theorem that gives the explicit form of its unique periodic
solution.

Theorem B.3.4. We consider the optimization problem

min
f∈HL

(
F (y,ν(f)) + λ‖Lf‖2L2

)
, (B.3.7)

where

• F : RM × RM → R+ is strictly convex and continuous;

• L is an LSI operator with finite-dimensional null space;

• ν = (ν1, . . . , νM ) ∈ (H′L)M such that NL ∩Nν = {0};

• y = (y1, . . . , yM ) ∈ RM are the observed data; and

• λ > 0 is a tuning parameter.

Then, (B.3.7) has a unique solution of the form

fRT(t) =

M∑
m=1

amϕm(t) +

N0∑
n=1

bnekn(t), (B.3.8)

where am, bn ∈ R, ϕm = hγ ∗ νm, and hγ is given by (B.3.6). Moreover, the vector
a = (a1, . . . , aM ) satisfies the relation PTa = 0, with P the (M ×N0) matrix with
entries [P]m,n = 〈ekn , νm〉.

The proof of Theorem B.3.4 is given in Appendix B.8.4. The optimal solution
depends on (M + N0) coefficients, but the condition PTa = 0 implies that there
are only (M +N0 −N0) = M degrees of freedom. In the case when F is quadratic
of the form (B.3.2), the solution is made explicit in Proposition B.3.5.

Proposition B.3.5. Under the conditions of Theorem B.3.4, if F is given by (B.3.2),
then the vectors a and b satisfy the linear system(

a
b

)
=

(
G + λI P

PT 0

)−1(
y
0

)
, (B.3.9)
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where P ∈ CM×N0 is defined by [P]m,n = 〈ekn , νm〉 and G ∈ RM×M is a Gram
matrix such that

[G]m1,m2
=

ˆ 1

0

ˆ 1

0

νm1
(t)hγ(t− τ)νm2

(τ)dtdτ. (B.3.10)

The proof is given in Appendix B.8.5. In the case of sampling measurements, we
show moreover in Proposition B.3.6 that the optimal solution is a periodic spline in
the sense of Definition B.2.2. We recall that such measurements are valid as soon
as the search space HL is a RKHS, a situation that has been fully characterized in
Proposition B.3.3.

Proposition B.3.6. Under the conditions of Proposition B.3.5, if L satisfies (B.3.5)
and if the measurements are of the form νm = X(· − tm), tm ∈ T, then the unique
solution of (B.3.7) is a periodic (L∗L)-spline with weights am and knots tm.

The proof is given in Appendix B.8.6.

B.4 Periodic Processes and MMSE

In this section, we change perspective and consider the following statistical problem:
given noisy measurements of a zero-mean and real periodic Gaussian process, we
are looking for the optimal estimator (for the mean-square error) of the complete
process over T.

B.4.1 Non-Periodic Setting

In a non-periodic setting, it is usual to consider stochastic models where the random
process s is a solution to the stochastic differential equation [230]

Ls = w, (B.4.1)

where L is a linear differential operator and w a continuous domain (non-periodic)
Gaussian white noise. When the null space of the operator is nontrivial, it is
necessary to add boundary conditions such that the law of the process s is uniquely
defined.
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B.4.2 Gaussian Bridges

In the periodic setting, the construction of periodic Gaussian processes has to be
adapted. We first introduce the notion of periodic Gaussian white noise, exploiting
the fact that the law of a zero-mean periodic Gaussian process s is fully character-
ized by its covariance function rs(t, τ) such that

E[〈s, f〉〈s, g〉] =

ˆ 1

0

ˆ 1

0

f(t)rs(t, τ)g(τ)dtdτ. (B.4.2)

Definition B.4.1. A periodic Gaussian white noise2 is a Gaussian random process
w whose covariance is rw(t, τ) = X(t− τ).

For any periodic real function f , the random variable 〈w, f〉 is therefore Gaussian
with mean 0 and variance ‖f‖2L2

. Moreover, 〈w, f〉 and 〈w, g〉 are independent if
and only if 〈f, g〉 = 0. Hence, the Fourier coefficients ŵ[k] = 〈w, ek〉 of the periodic
Gaussian white noise satisfy the following properties:

• ŵ[k] = <(ŵ[k]) + j =(ŵ[k]);

• ŵ[−k] = ŵ[k];

• <(ŵ[k]), =(ŵ[k]) ∼ N (0, 1
2 ), ∀k > 0;

• ŵ[0] ∈ R and ŵ[0] ∼ N (0, 1);

• <(ŵ[k]), =(ŵ[k]), and ŵ[0] are independent.

Put differently, for any nonzero frequency k, E[ŵ[k]2] = 0 and E[ŵ[k]ŵ[k]] = 1. This
means that ŵ[k], k 6= 0, follows a complex normal distribution with mean 0, covari-
ance 1, and pseudo-covariance 0 [241]. When L has a nontrivial null space, there
is no hope to construct a periodic process s solution of (B.4.1) with w a periodic
Gaussian white noise. Indeed, the operator L kills the null-space frequencies, which
contradicts that ŵ[kn] 6= 0 almost surely for n = 1 . . . N0. One should adapt (B.4.1)
accordingly by giving special treatment to the null-space frequencies. We propose

2Without loss of generality, we only consider Gaussian white noise with zero-mean and variance
1.
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TABLE B.1: Gaussian bridges for several operators.

D + I D D2 + 4π2I D2

L̂[k] j2πk + 1 j2πk 4π2(1− k2) −4π2k2

NL span{0} span{e0} span{e1, e−1} span{e0}

Gaussian
bridges
γ20 = 1 -1.0 -0.5 0.5

t

-0.2

0.2

0.4

0.6

s

-1.0 -0.5 0.5
t

-1.0

-0.5

s

-1.0 -0.5 0.5
t

-0.5

0.5

s

-1.0 -0.5 0.0 0.5
t

-0.82

-0.80

-0.78

-0.76

-0.74

-0.72

s

here to consider a new class of periodic Gaussian processes: the Gaussian bridges.
Given some operator L and γ0 > 0, we set

Lγ0 = L + γ0ProjNL
, (B.4.3)

where ProjNL
is given by (B.2.8). Note that Lγ0 = L for any γ0 when the null space

of L is trivial. Moreover, we remark that

‖Lγ0f‖2L2
= ‖Lf‖2L2

+ γ2
0‖ProjNL

{f}‖2L2
= ‖f‖2HL

, (B.4.4)

where ‖f‖2HL
= 〈f, f〉HL is given in (B.3.4) (with γ = γ0).

Definition B.4.2. A Gaussian bridge is a periodic Gaussian process s, solution to
the stochastic differential equation

Lγ0s = w, (B.4.5)

with w a periodic Gaussian white noise and Lγ0 given by (B.4.3) for some LSI
operator L with finite-dimensional null space and γ0 > 0. We summarize this
situation with the notation s ∼ GB(L, γ2

0). When the null space is trivial, in which
case the parameter γ2

0 is immaterial, we write s ∼ GB(L).

The Gaussian-bridge terminology is inspired by the Brownian bridge, the periodic
version of the Brownian motion3. Several realizations of our Gaussian bridges for

3Our definition differs from the classical one, in which the Brownian bridge is zero at the origin
instead of being zero-mean [242].
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various operators are shown in Table B.1 for γ2
0 = 1. The influence of the parameter

γ2
0 is illustrated in Figure B.2.

Proposition B.4.3. The covariance function of the Gaussian bridge s ∼ GB(L, γ2
0)

is
rs(t, τ) = hγ0(t− τ), (B.4.6)

where hγ0 is defined in (B.3.6). It implies that

E[〈s, f〉〈s, g〉] = 〈hγ0 ∗ f, g〉. (B.4.7)

In particular, we have that

E[|ŝ[k]|2] = ĥγ0 [k]. (B.4.8)

The proof of Proposition B.4.3 is given in Appendix B.8.7. An important conse-
quence is that a Gaussian bridge is stationary since its covariance function only
depends on the difference (t− τ).

B.4.3 Measurement Model and MMSE Estimator
For this section, we restrict ourselves to operators L for which the native space HL

is a RKHS. In that case, using (B.4.8) and (B.3.6), the Gaussian bridge s satisfies

E[‖s‖2L2
] =

∑
k∈Z

E[|ŝ[k]|2] =
∑
k∈KL

1

|L̂[k]|2
+

N0∑
n=1

1

γ2
0

, (B.4.9)

which is finite according to (B.3.5). Therefore, the Gaussian bridge s is (almost
surely) square-integrable.

The observed data y are assumed to be generated as

y = 〈ν, s〉+ ε, (B.4.10)

where s ∼ GB(L, γ2
0) is a Gaussian bridge (see Definition B.4.2), ν = (ν1, . . . , νM )

is a vector of M linear measurement functions, and ε are independent random
perturbations such that ε ∼ N (0, σ2

0I). Given y in (B.4.10), we want to find
the estimator s̃ of the Gaussian bridge s, imposing that it minimizes the quantity
E[‖s− s̃‖22].
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Theorem B.4.4. Let y = (y1, . . . , yM ) be the noisy measurement vector (B.4.10)
of the Gaussian bridge s ∼ GB(L, γ2

0), with measurement functions νm ∈ H′L,
m = 1 . . .M . Then, the MMSE estimator of s given the samples {ym}m∈[1...M ]

is

s̃MMSE(t) =

M∑
m=1

dmϕm(t), (B.4.11)

where ϕm = hγ0 ∗ νm with νm ∈ H′L, d = (d1, . . . , dM ) = (G + σ2
0I)−1y, and G is

the Gram matrix defined in (B.3.9).

The proof is given in Appendix B.8.8. Theorem B.4.4 can be seen as a general-
ization of the classical Wiener filtering, designed for discrete signals, to the hybrid
case where the input signal is in a (periodic) continuous-domain and the (finite-
dimensional) measurements are discrete. A leading theme of this chapter is that
the form of the MMSE estimator s̃MMSE is very close to the one of the solution of
the representer theorem fRT with λ = σ2

0 and for a quadratic cost function. This
connection is exploited in Section B.4.4.

B.4.4 MMSE Estimation as a Representer Theorem
The MMSE estimator given in Theorem B.4.4 can be interpreted as the solution of
the optimization problem described in Proposition B.4.5.

Proposition B.4.5. Consider an LSI operator L with finite-dimensional null space,
γ > 0, and νm ∈ H′L for m = 1 . . .M . We set Lγ as in (B.4.3). Then, the solution
of the optimization problem

min
f∈HL

( M∑
m=1

(ym − 〈f, νm〉)2 + λ‖Lγf‖2L2

)
(B.4.12)

exists, is unique, and given by

fopt(t) =

M∑
m=1

dmϕm(t), (B.4.13)

where ϕm = hγ ∗νm and d = (d1, . . . , dM ) = (G+λI)−1y. In particular, the unique
minimizer of (B.4.12) is the MMSE estimator given in Theorem B.4.4 for λ = σ2

0

and γ = γ0.
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The proof of Proposition B.4.5 follows the same steps as the ones of Theorem B.3.4
(form of the minimizer for the periodic representer theorem) and Proposition B.3.5
(explicit formulas in terms of system matrix for the vectors a and b), with significant
simplifications that are detailed in Appendix B.8.9. Proposition B.4.5 has obvious
similarities with Theorem B.3.4, but it also adds new elements.

• Proposition B.4.5 gives an interpretation of the MMSE estimator of a Gaus-
sian bridge given its measurements as the solution to an optimization prob-
lem. This problem is very close to the periodic representer theorem (Theo-
rem B.3.4) for a quadratic cost function. However, (B.4.12) differs from (B.3.7)
because the regularization also penalizes null-space frequencies.

• If the null space NL is trivial, then

fRT = s̃MMSE (B.4.14)

for λ = σ2
0 . This means that Theorem B.3.4 (smoothing approach) and B.4.4

(statistical approach) correspond to the same reconstruction method. This
equivalence is well-known for stationary processes on R in the case of time-
domain sampling measurements [88]. Our results extend this to the periodic
setting and to the case of generalized linear measurements.

• If the null space is nontrivial, then Theorem B.3.4 and Proposition B.4.5 yield
different reconstructions. In particular, this implies that one cannot interpret
the optimizer fRT in Theorem B.3.4 as the MMSE estimator of a Gaussian
bridge. Yet, the solutions get closer and closer as γ0 → 0. In Section B.5, we
investigate more deeply this situation.

B.5 Quality of the Estimators on Simulations

We consider s̃γ,λ(t|y) =
∑M
m=1 dmϕm(t) as the linear estimator of s given y, where

ϕm = hγ ∗νm, d = (G+λI)−1y, and G is defined in Proposition B.3.5. To simplify
notations, we shall omit y when considering s̃γ,λ(·|y) = s̃γ,λ. Each pair (λ, γ) gives
an estimator. In particular, if s is a Gaussian bridge, then s̃MMSE = s̃γ0,σ2

0
, accord-

ing to Theorem B.4.4. The mean-square error (MSE) of s̃γ,λ over N experiments
is computed as MSE = 1

N

∑N
n=1 ‖sn −

(
s̃γ,λ

)
n
‖2L2

, where the sn are independent
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realizations of s that yield a new noisy measurement yn and
(
s̃γ,λ

)
n

= s̃γ,λ(·|yn) is
the estimator based on yn. We define the normalized mean-square error (NMSE)
by

NMSE =
MSE

1
N

∑N
n=1 ‖sn‖2L2

≈
E[‖s− s̃γ,λ‖2L2

]

E[‖s‖2L2
]

. (B.5.1)

In this section, we first detail the generation of Gaussian bridges (Section B.5.1). We
then investigate the role of the parameters λ (Section B.5.2) and γ2 (Section B.5.3)
on the quality of the estimator s̃γ,λ. We primarily focus on time-domain sampling
measurements with 〈ν, s〉 = (s(t1), . . . , s(tM ))T, where the tm are in T.

B.5.1 Generation of Gaussian Bridges

We first fix the operator L with null space NL of dimension N0 and γ0 > 0. Then,
we generate (2Ncoef + 1) Fourier coefficients {ŵ[k]}k∈[−Ncoef ...Ncoef ] of a Gaussian
white noise according to Definition B.4.1. Finally, we compute the Gaussian bridge
s as

s(t) =
∑
k∈KL

|k|≤Ncoef

ŵ[k]

L̂[k]
ek(t) +

N0∑
n=1

ŵ[kn]

γ0
ekn(t). (B.5.2)

Since N0 < ∞, (B.5.2) provides a mere approximation of the Gaussian bridge.
However, the approximation error can be made arbitrarily small by taking Ncoef

large enough. In Figure B.2, we generate s ∼ GB(D2 + 4π2I, γ2
0) for four values of

γ2
0 . For small values of γ2

0 , the null-space component dominates, which corresponds
in this case to the frequency |k| = 1. When γ2

0 increases, the null-space component
has a weaker influence.

B.5.2 Influence of λ

We evaluate the influence of the parameter λ for the case of the invertible operator
L = D + I. In this case we have that ProjNL

= 0 (since NL = {0}), which
simplifies (B.4.3). Hence, the parameter γ2

0 is immaterial and we denote by s̃λ the
estimator associated to λ > 0. We consider s ∼ GB(D + I) and σ2

0 = 10−2.
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0.2 0.4 0.6 0.8
t

-1

1

s

(a) γ20 = 100.

0.2 0.4 0.6 0.8
t

-0.10

-0.05

0.05

s

(b) γ20 = 102.

0.2 0.4 0.6 0.8
t

-0.04

-0.02

0.02

s

(c) γ20 = 103.

0.2 0.4 0.6 0.8
t

-0.02

-0.01

0.01

s

(d) γ20 = 106.

Figure B.2: Illustration of s ∼ GB(D2 + 4π2I, γ2
0) for different values of γ2

0 .

Time-Domain Sampling Measurements

We generated N = 500 realizations of s. From each one, we extracted M = 30
noisy measurements. We then computed 30 estimators {

(
s̃λ
)
n
}λ∈L1

, where L1 is
the set of values obtained by uniform sampling of the interval [0.001, 0.03]. The
plot of the NMSE (approximated according to (B.5.1)) as a function of λ is given in
Figure B.3 (a). The minimum error is obtained for λ ' 0.01, which corresponds to
σ2

0 . This result validates the theory presented in Theorem B.4.4. Actually, when λ
is small, the estimator interpolates the noisy measurements while, for a large λ, the
estimator tends to oversmooth the curve. The MMSE estimator makes an optimal
tradeoff between fitting the data and smoothing the curve. These observations
about λ retain their validity for other operators, including noninvertible ones.
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Fourier-Domain Sampling Measurements

We consider complex exponential measurement functionals, inducing
〈ν, s〉 = (ŝ[k1], . . . , ŝ[kM ])T, where the km are in Z. We define Nν = {km}m=1...M ,
such that (−km) ∈ Nν for every km ∈ Nν . We consider the measurements
ν = (ek1 , . . . , ekM ). Note that these measurement functionals are complex, which
calls for a slight adaptation of the framework presented so far4. The noise
ε = (ε1, . . . , εM ) is then also complex and satisfies the properties:

• εm = <(εm) + j =(εm);

• εm1 = εm2 , km1 = −km2 ;

• <(εm), =(εm) ∼ N (0,
σ2
0

2 ), ∀km 6= 0;

• εm ∈ R and εm ∼ N (0, σ2
0), km = 0;

• <(εm), =(εm) and εm1 , km1 = 0, are independent.

This means that E[|εm|2] = σ2
0 for every m.

We repeated the experiment done with the time-domain sampling using exactly
the same procedure and parameters, and Nν = {−2,−1, 0, 1, 2}. The experimental
curve of the evolution of the NMSE with λ is given in Figure B.3 (b). Again, the
minimum is obtained for λ ' 0.01 = σ2

0 . We now want to compare this curve to
the theoretical one.

For the Fourier-sampling case, we were also able to derive the corresponding
closed-form formulas for the NMSE (B.5.1).

Proposition B.5.1. Let s be a Gaussian bridge associated with an invertible oper-
ator L, and ym = ŝ[km] + εm, m = 1 . . .M , with km ∈ Nν the sampled frequencies
and ε a complex Gaussian noise with variance σ2

0 as above. Then, the MSE of the
estimator s̃λ = s̃λ(·|y) is given by

E
[
‖s− s̃λ‖2L2

]
=

M∑
m=1

ĥ[km](λ2 + ĥ[km]σ2
0)

(ĥ[km] + λ)2
+
∑
k/∈Nν

ĥ[k], (B.5.3)

where h is the reproducing kernel of HL.
4One could equivalently consider cosine and sine measurements, to the cost of heavier formulas.
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(a) Time-domain sampling. (b) Fourier-domain sampling.

Figure B.3: Evolution of the NMSE in terms of λ for s ∼ GB(D + I) for time and
Fourier-domain sampling measurements.

The proof is given in Appendix B.8.10. Note that ĥ[k] = 1/|L̂[k]|2 is real-valued
and strictly positive for every k. From (B.5.3), we also recover the property that
the optimum is reached for λ = σ2

0 since each of the M terms that appear in the
first sum is minimized for this value of λ.

The theoretical curve for Nν = {−2,−1, 0, 1, 2} is given in Figure B.3 (b) and
is in good agreement with the experimental curve. We explain the slight variation
(0.15% for the L2-norm over λ ∈ [0.001, 0.03]) by the fact that (B.5.1) is only an
estimation of the theoretical NMSE.

B.5.3 Influence of γ2

In this section, we only consider noninvertible operators since invertibility has al-
ready been addressed in Section B.4.4 (see (B.4.14)). In order to evaluate the
specific influence of γ, we set λ = σ2

0 . Hence, s̃γ,σ2
0

= s̃γ . We generated N = 500
realizations of a Gaussian bridge s, and from each one, we extracted M = 30 noisy
measurements. We repeated this for several operators L and values of γ2

0 and σ2
0 .

For each case, we compared s̃MMSE to s̃γ→0, s̃γ→∞, and fRT in (B.3.8), seen here
as an additional estimator. The corresponding NMSEs (see (B.5.1)) are given in
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Table B.2. We make four observations.

1. In each case, the best result is obtained with s̃MMSE, as expected. We see,
moreover, that

lim
γ→0

E[‖s− s̃γ‖2L2
] ' E[‖s− fRT‖2L2

].

This is in line with the fact that the functional (B.3.7) to minimize in Theo-
rem B.3.4 corresponds to (B.4.12) with γ = 0.

2. For small values of γ2
0 (i.e., 10−3 or 100), we see that

E[‖s− fRT‖2L2
] ' E[‖s− s̃MMSE‖2L2

].

This means that the performances of s̃MMSE and fRT are very similar. This is
illustrated in Figure B.4 (a), where s̃MMSE and fRT do coincide. Meanwhile,
we see that

lim
γ→∞

E[‖s− s̃γ‖2L2
]� E[‖s− s̃MMSE‖2L2

].

This is also illustrated in Figure B.4 (a) for L = D. The reconstruction for
γ → +∞ significantly fails to recover the original signal s, as the correspond-
ing estimator tends to have zero-mean.

3. For intermediate values of γ2
0 (i.e., γ2

0 = 103 or 106 according to σ0 and the
order of the operator), the minimal NMSE is obtained for s̃MMSE only. We
also observe that

E[‖s− fRT‖2L2
] < lim

γ→∞
E[‖s− s̃γ‖2L2

].

This is illustrated in Figure B.4 (b) for L = D2 + 4π2I, γ2
0 = 106 and

σ2
0 = 10−4, where we can distinguish s̃MMSE, s̃γ→∞, and fRT.

4. For large values of γ2
0 (i.e., γ2

0 = 109), we observe that

lim
γ→∞

E[‖s− s̃γ‖2L2
] ' E[‖s− s̃MMSE‖2L2

]

and
E[‖s− fRT‖2L2

] > E[‖s− s̃MMSE‖2L2
].
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In fact, for large γ2
0 , the Gaussian bridge tends to have vanishing null-space

frequencies (with (B.5.2), we have that ŝ[kn] = ŵ[kn]/γ0 for n = 1 . . . N0).
Meanwhile, the reconstructed signal fRT is not constrained to attenuate null-
space frequencies. The null-space part in (B.3.8) is mainly responsible for a
higher error compared to s̃MMSE. This is highlighted in Figure B.4 (c).

Observations 2), 3), and 4) suggest the existence of three regimes. For further
investigation, we present in Figure B.5 the evolution of NMSE as a function of
log γ2 for L = D and γ2

0 = 100, 103, and 106. The minimal error is always obtained
for γ2 ' γ2

0 , as predicted by the theory. For the three cases, we observe two plateaus:
one for γ2 ∈ (0, v1) and the other for γ2 ∈ (v2,∞), where v1, v2 > 0. It means
that, for each value of γ2

0 , the estimators s̃γ with γ2 ∈ (0, v1) ((v2,∞), respectively)
are very similar and the reconstruction algorithms are practically indistinguishable.
The values of v1 and v2 depend on γ2

0 . When γ2
0 = 100 (106, respectively), we have

that γ2
0 ∈ (0, v1) ((v2,∞), respectively). However, γ2

0 = 103 ∈ [v1, v2] belongs to
none of the plateaus.

Two main conclusions can be drawn from our experiments. First, we have strong
empirical evidence that

s̃γ −→
γ→0

fRT, (B.5.4)

which we conjecture to be true for any Gaussian-bridge model. This is remarkable
because it presents the reconstruction based on the periodic representer theorem
as a limit case of the statistical approach. Second, we empirically see that, for
reasonably small values of γ2

0 , the estimators corresponding to γ2 ≤ γ2
0 are prac-

tically indistinguishable from the MMSE estimator. This is in particular valid for
the representer-theorem reconstruction, for which we then have that

fRT ≈ s̃MMSE. (B.5.5)

The variational method is theoretically suboptimal to reconstruct Gaussian bridges.
However, based on our experiments, it is reasonable to consider this method as
practically optimal for small values of γ2

0 and λ = σ2
0 .
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TABLE B.2: Comparison of NMSE for s̃γ→0, fRT, s̃MMSE, and s̃γ→∞ over N = 500
iterations. Bold: optimal result.

σ
0

=
1
0
−

1
σ
0

=
1
0
−

2

L
γ
2 0

s̃
γ
→

0
f
R
T

s̃
M

M
S
E

s̃
γ
→
∞

s̃
γ
→

0
f
R
T

s̃
M
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S
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γ
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∞
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−

3
1
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×
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−
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×
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−

6
8
.4
0
×

1
0
−
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(b) L = D2 + 4π2I, γ20 = 106, and σ2
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(c) L = D2, γ20 = 109, and σ2
0 = 10−4.

Figure B.4: Illustrations of s ∼ GB(L, γ2
0), s̃MMSE, fRT, and s̃γ→∞ for sev-

eral operators and values of γ2
0 and σ2

0 . We used M = 30 noisy measurements
y = (y1, . . . , yM ).
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(a) γ20 = 1. (b) γ20 = 103.

(c) γ20 = 106.

Figure B.5: Evolution of NMSE according to γ for s ∼ GB(D, γ2
0).
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B.6 Discussion

B.6.1 Comparison with Inverse Problems on the Real Line
It is worth noting that the periodic setting has important differences as compared
to reconstruction methods over the complete real line, which motivated and played
an important role in this chapter.

• The role of the Dirac impulse δ is played by the Dirac comb X in the periodic
setting. It is indeed the neutral element of the periodic convolution (B.2.3)
and appears in the definition of the periodic L-splines (Definition B.2.2) and
RKHS (Definition B.3.2).

• In the real-line setting, in addition to smoothness properties, functions are
also characterized by their property of decay at infinity [243]. For periodic
functions, we only consider the smoothness properties, which brings substan-
tial simplifications.

• In general, a continuous LSI operator does not preserve the asymptotic be-
havior of the input function. For instance, a test function in the space S(R) of
smooth and rapidly decaying functions is not necessarily mapped to a rapidly
decaying function. In contrast, any continuous LSI operator maps the space
of periodic test functions S(T) onto itself (see Section B.2.1). This greatly
simplifies the study of operators that act on periodic functions.

• The null space of a continuous LSI operator can differ for the two cases.
In particular, when acting on periodic functions, the null space of the nth
derivative Dn is reduced to constant functions for every n ≥ 1. This is crucial
due to the role of the null space in Theorems B.3.4 and B.4.4.

• In Proposition B.3.3, we give a necessary and sufficient condition for a con-
tinuous LSI operator of finite-dimensional null space to specify a RKHS in
the sense of Definition B.3.2. This is significantly more complicated over the
real line, for which only partial results are known [222].

• We have seen that it is not always possible to find a periodic solution s to the
equation Ls = w, where w is a periodic Gaussian white noise. This lead us
to modify the stochastic differential equation (see (B.4.5)) and to introduce
the family of Gaussian bridges.
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• In Theorem B.4.4, we give the MMSE estimator of the complete process s,
not only for the estimation of s(t0) at a fixed time t0. In the non-periodic
setting, however, solutions of stochastic differential equations are generally
not square-integrable. For instance, if s is a nontrivial stationary Gaussian
process, then

E[‖s‖2L2(R)] =
∑
k∈Z

E[‖1[k,k+1) · s‖2L2(R)]

(i)
=
∑
k∈Z

E[‖1[0,1) · s‖2L2(R)] =∞, (B.6.1)

where 1[a,b) is the indicator function on [a, b) and (i) exploits stationarity.
Another example is the Brownian motion, whose supremum over [0, t] grows
faster than tp for any p < 1/2 (almost surely) when t goes to infinity [244],
hence being of infinite energy. As a consequence, it is irrelevant to consider
the MMSE estimator of the complete process and one ought to, for instance,
restrict to MMSE estimators of local values s(t0) of the process.

B.6.2 Comparison with TV Regularization
A tendency in the field of signal reconstruction is to rely on sparsity-promoting
regularization, motivated by the fact that many real-world signals are sparse in
some adequate transform domain [230,245,246].

The vast majority of works focuses on the finite-dimensional setting via `1-type
regularization. However, some authors have recently promoted the reconstruction
of infinite-dimensional sparse signals [203,247]. The adaptation of discrete `1 meth-
ods to the continuous domain is based on the total-variation (TV) regularization
norm, for which it is possible to derive representer theorems (see [222, Theorem
1]). A comparison between Tikhonov and TV variational techniques is proposed
by Gupta et al. [223] for non-periodic signals. In brief, at identical measurements
and regularization operator L, Tikhonov regularization favors smooth solutions re-
stricted to a finite-dimensional space, while TV regularization allows for adaptive
and more compressible solutions. In [223, Table I], it was shown on simulations
that Tikhonov methods perform better on fractal-type signals, while TV methods
are better suited to sparse signals. We expect similar behaviors for the periodic
setting.
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At the heart of the present chapter is the connection between L2-regularization
and the statistical formalism of MMSE estimation of Gaussian processes. A the-
oretical link between deterministic and stochastic frameworks is much harder to
provide for sparsity-inducing priors. There is strong empirical evidence that sparse
stochastic models are intimately linked to TV-based methods [230], but the extent
to which such estimators approach the MMSE solution is still unknown.

B.7 Conclusion
We have presented two approaches for the reconstruction of periodic continuous-
domain signals from their corrupted discrete measurements. The first approach is
based on optimization theory and culminates with the specification of a periodic
representer theorem (Theorem B.3.4). In the second approach, a signal is mod-
eled as a stationary periodic random process and the reconstruction problem is
transformed into an estimation problem. Theorem B.4.4 then gives the optimal
estimator (in the mean-square sense) for Gaussian bridges.

We have also provided theoretical and experimental comparisons of the two
approaches and identified two main findings. First, for invertible operators, the
statistical and variational approaches are equivalent and correspond to an identical
reconstruction scheme. For noninvertible operators, however, this equivalence is not
valid anymore, but the variational method corresponds to the statistical reconstruc-
tion when the parameter γ vanishes. More importantly, for small values of γ2

0 , the
variational method is practically equivalent to the optimal statistical reconstruc-
tion. This demonstrates the efficiency of the representer theorem for reconstructing
Gaussian bridges, even for noninvertible operators.
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B.8 Appendices

B.8.1 Proof of Proposition B.2.1

The main argument is very classical in the non-periodic setting. We detail it for
the sake of completeness and adapt it to the periodic case.

Let p be a function ofNL. As L is shift-invariant, p(· − t0) ∈ NL for every t0 ∈ T.
Moreover, NL is closed in S ′(T) (as any finite-dimensional linear subspace), thus the
first derivative p′ = p(1) of p is inNL as the limit of the function 1

t0
(p(·−t0)−p) ∈ NL

when t0 → 0. We propagate this property to all the derivatives of p.
We now have that NL is a finite-dimensional space of dimension N0 and

p(k) ∈ NL, ∀k ∈ [1 . . . N0]. Hence, the family of (N0 + 1) functions p, p(1), . . . , p(N0)

satisfies an equation of the form aN0
p(N0) + · · · + a0p = 0, where ak ∈ C and

(a0, . . . , aN0) 6= 0. This implies that p, as solution of a differential equation with
constant coefficients, is a sum of functions of the form q(t)eµt with q a polynomial
and µ ∈ C.

Finally, since we deal with 1-periodic functions, this constrains q to be a constant
function and µ = 2πjk with k ∈ Z. This concludes the proof.

B.8.2 Proof of Proposition B.3.1

The linearity, Hermitian symmetry, and non-negativity are easily obtained. We
only need to verify that ‖f‖HL = 〈f, f〉

1
2

HL
= 0⇔ f = 0. For this, we observe that

〈f, f〉HL
= 0⇔

ˆ 1

0

|Lf(t)|2dt+ γ2
N0∑
n=1

|f̂ [kn]|2 = 0

⇔
∑
k∈KL

∣∣f̂ [k]
∣∣2 ∣∣L̂[k]

∣∣2︸ ︷︷ ︸
6=0

+γ2
N0∑
n=1

|f̂ [kn]|2 = 0, (B.8.1)

which implies that f̂ [k] = 0 for all k ∈ Z. Hence, 〈f, f〉HL = 0⇔ f = 0.
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B.8.3 Proof of Proposition B.3.3
For the proof, we set A =

∑
k∈KL

1

|L̂[k]|2
. The Hilbert space HL is a RKHS if and only

if X ∈ H′L or, equivalently, if there exists C > 0 such that

∀f ∈ S(T), |〈X, f〉| ≤ C‖f‖HL
. (B.8.2)

Assume that A < +∞. Let c be the sequence such that c[k] = 1/L̂[k] if k ∈ KL

and c[k] = 1/γ otherwise. Using the Cauchy-Schwarz inequality, we have, for every
f ∈ S(T), that

〈X, f〉2 =
(∑

f̂ [k]
)2

≤
(∑

|c[k]|2
)(∑∣∣∣∣ f̂ [k]

c[k]

∣∣∣∣2)
= (N0/γ

2 +A)‖f‖2HL
. (B.8.3)

Hence, (B.8.2) is satisfied for C = (N0/γ
2 +A)1/2 > 0. For the converse, we define

fm ∈ S(T) such that

f̂m[k] =

{
0, if |k| > m or k = kn, n ∈ [1 . . . N0]

1

|L̂[k]|2
, otherwise.

Then, we readily observe that lim
m→+∞

|〈X,fm〉|
‖fm‖HL

=
√
A. Therefore, as soon as

A = +∞, 〈X, f〉/‖f‖HL is not bounded in S(T) and HL is not a RKHS.
The reproducing kernel is characterized by the relation f(τ) = 〈h(·, τ), f〉HL

for every f ∈ HL. Let R be the operator, often called the Riesz map, such that
〈Rg, f〉HL

= 〈g, f〉 for any f ∈ HL and g ∈ H′L. Then, h(·, τ) = R{X(· − τ)}.
Moreover, we have that 〈Rek, em〉HL

= δ[k −m]. In addition,

〈Rek, em〉HL
= 〈LRek,Lem〉+ γ2

N0∑
n=1

R̂ek[kn]êm[kn]

= 〈Rek,L∗Lem〉+ γ2
N0∑
n=1

R̂ek[kn]δ[m− kn]

= |L̂[m]|2R̂ek[m] + γ2
N0∑
n=1

R̂ek[kn]δ[m− kn]. (B.8.4)
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Hence, R is characterized for k,m ∈ Z by the relation

|L̂[m]|2R̂ek[m] + γ2
N0∑
n=1

R̂ek[kn]δ[m− kn] = δ[k −m]. (B.8.5)

For k ∈ KL, we deduce from (B.8.5) that R̂ek[m] = 1/|L̂[k]|2 if m = k and 0

otherwise. We also deduce that, for k = kn, R̂ekn [m] = 1/γ2 if m = kn and 0

otherwise. Thus, R is shift-invariant (R̂ek[m] = 0 for every m 6= k), meaning that
h(t, τ) depends only on (t− τ). Moreover, the Fourier multiplier of R, which is also
the discrete Fourier transform of hγ(t) = h(t, 0), is R̂[k] = 1/|L̂[k]|2 if k ∈ KL and
1/γ2 if k = kn. This is equivalent to (B.3.6) and concludes the proof.

B.8.4 Proof of Theorem B.3.4

To prove Theorem B.3.4, we first show that the optimization problem (B.3.7) has a
unique solution by convex-optimization arguments. Then, we connect this solution
to the abstract representer theorem (see for instance [248, Theorem 16.1]) to deduce
the form of the solution. We start with some preliminary results for the first part.

Lemma B.8.1. Under the condition of Theorem B.3.4, the functional
φ : HL → R+ defined by φ(f) = F (y, 〈ν, f〉) + λ‖Lf‖2L2

is strictly convex and
coercive, meaning that φ(f)→∞ when ‖f‖HL →∞.

Proof. Strict convexity: φ is convex as a sum of two convex functions. For the
strict convexity, we fix µ ∈ (0, 1) and f, g ∈ HL. It is then sufficient to show that
the equality

φ(µf + (1− µ)g) = µφ(f) + (1− µ)φ(g) (B.8.6)

implies that f = g. The functions F (y,ν{·}) and ‖L·‖L2
are convex, there-

fore (B.8.6) together with the linearity of both ν and L implies the two relations

F (y, µν(f) + (1− µ)ν(g)) = µF (y, ν(f)) + (1− µ)F (y, ν(g))

‖µLf + (1− µ)Lg‖2L2
= µ‖Lf‖2L2

+ (1− µ)‖Lg‖2L2
. (B.8.7)

Now, taking advantage of the strict convexity of F (y, ·) and ‖·‖2L2
, we deduce that

ν(f) = ν(g) and Lf = Lg. This means, in particular, that (f − g) is in the
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intersection of the null spaces of ν and L, assumed to be trivial. Finally, f = g as
expected.

Coercivity: The measurement functional ν is linear and continuous, hence there
exists A > 0 such that ‖〈ν, f〉|2 ≤ A‖f‖2HL

for any f ∈ HL. Moreover, since ν is
injective and linear when restricted to the finite-dimensional null space NL, there
exists B > 0 such that ‖〈ν, p〉‖2 ≥ B‖p‖2HL

for any p ∈ NL. Any f ∈ HL can be
decomposed uniquely as

f =
∑
k∈KL

f̂ [k]ek +

N0∑
n=1

f̂ [kn]ekn = g + p. (B.8.8)

In that case, we easily see that ‖g‖HL
= ‖Lf‖L2

. In particular, we deduce that

‖f‖2HL
= ‖g‖2HL

+ ‖p‖2HL
≤ ‖Lf‖2L2

+
1

B
‖〈ν, p〉‖2

≤ ‖Lf‖2L2
+

1

B
(‖〈ν, f〉‖+ ‖〈ν, g〉‖)2

≤ ‖Lf‖2L2
+

1

B

(
‖〈ν, f〉‖+A1/2‖Lf‖L2

)2

≤ C
(
‖Lf‖2L2

+ ‖〈ν, f〉‖2
)

(B.8.9)

for C > 0 large enough. Now, consider a sequence of functions fm ∈ HL such that
‖f‖HL

→∞. We want to show that, for m large enough, φ(fm) is arbitrarily large.
Due to (B.8.9), for m large enough, ‖Lfm‖L2

or ‖〈ν, fm〉‖ are arbitrarily large. The
former implies obviously that φ(fm) can be made as large as we want. It is also
true for the latter because φ(fm) ≥ F (y, 〈ν, fm〉) and F is coercive. This means
that φ(fm) goes to infinity when m→∞, hence φ is coercive.

As φ is a strictly convex and coercive functional (Lemma B.8.1), the optimiza-
tion problem (B.3.7) has the unique solution fRT. We denote z0 = 〈ν, fRT〉. The
function fRT can be uniquely decomposed as

fRT =
∑
k∈KL

f̂RT[k]ek +

N0∑
n=1

f̂RT[kn]ekn = gRT + pRT. (B.8.10)

We recall the abstract representer theorem. This result can be found in [223,
Theorem 8] with a formulation close to ours.
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Proposition B.8.2. Let H be a Hilbert space, ν = (ν1, . . . , νM ) be a vector of M
linear and continuous measurement functionals over H, and y0 ∈ RM . There exists
a unique minimizer of the optimization problem

min
f∈H
‖f‖H s.t. ν = y0, (B.8.11)

which is of the form fopt =
M∑
m=1

amRνm, where am ∈ R and R : H′ → H is the

Riesz map of H.

We consider the Hilbert space H̃L = {f ∈ HL, ProjNL
{f} = 0}, on which ‖Lf‖L2

is a Hilbertian norm. The linear measurements νm are in the dual space H̃′L, once
restricted as linear functionals on H̃L. The interpolation constraint is chosen as
y0 = z0 − ν(pRT). Applying Proposition B.8.2 to this case, we deduce that there
exists a unique minimizer

hopt = arg min
h∈H̃L,ν(h)=y0

‖Lh‖L2 (B.8.12)

which is of the form hopt =
∑M
m=1 amRνm, R being the Riesz map between H̃′L

and H̃L. In our case, the function Rνm is given by Rνm =
∑
k∈KL

ν̂m[k]

|L̂[k]|2
ek. In

particular, one easily sees from the expression of ϕm that it satisfies

Rνm = ϕm − γ2ProjNL
{νm}. (B.8.13)

Moreover, we have that hopt = gRT. Indeed, gRT is clearly among the functions
h over which one minimizes and one cannot have that ‖Lhopt‖L2 < ‖LgRT‖L2

(otherwise, the function f = hopt + pRT would be a minimizer of (B.3.7) different
from fRT, which is impossible). Putting things together, we get that

fRT = gRT + pRT =

M∑
m=1

amRνm + pRT

=

M∑
m=1

amϕm − γ2
M∑
m=1

amProjNL
{νm}+ pRT. (B.8.14)
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Since (−γ2
∑M
m=1 amProjNL

{νm}+pRT) is in the null space of L, it can be developed
as
∑N0

n=1 bnekn , giving (B.3.8).
The last ingredient is to remark that am satisfies PTa = 0. This comes from

the fact that, by construction,
∑
amRνm ∈ H̃′L and, by applying the Riesz map,∑

amνm ∈ H̃L, meaning that the projection of this element into the null space is
zero. This is precisely equivalent with the expected condition.

B.8.5 Proof of Proposition B.3.5

We compute (B.3.7) for F the quadratic cost function. We have that
fRT =

∑M
m=1 amϕm +

∑N0

n=1 bnekn , as given by (B.3.8). It then suffices to find
the optimal vectors a and b. We therefore rewrite (B.3.7) in terms of these two
vectors.

From simple computations, we have, with the notations of Proposition B.3.5,
that 〈ν,

∑N0

n=1 bnekn〉 = Pb and 〈ν,
∑M
m=1 amϕm〉 = Ga, where we used for the

latter that Gm1,m2
= 〈νm1

, hγ ∗ νm2
〉 = 〈νm1

, ϕm2
〉. Hence,

‖y − 〈ν, f〉‖2 = ‖y −Ga−Pb‖2. (B.8.15)

From the definition of hγ in (B.3.6), we see that (L∗Lhγ) ∗ f = f for every f whose
Fourier coefficients f̂ [kn] do vanish for every n = 1 . . . N0. Now, the relation
P

T
a = 0 in Theorem B.3.4 shows precisely that

∑M
n=1 amνm satisfies this prop-

erty. In particular, we deduce that

L∗L

{
M∑
m=1

amϕm

}
= (L∗Lhγ) ∗

M∑
m=1

amνm =

M∑
m=1

amνm. (B.8.16)

As a consequence, we have that

‖LfRT‖2L2
= 〈L∗L

M∑
m1=1

am1
ϕm1

,

M∑
m2=1

am2
ϕm2
〉

=

M∑
m1=1

M∑
m2=1

am1
Gm1,m2

am2
= (Ga)Ta. (B.8.17)
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Finally, one has that

‖y − 〈ν, fRT〉‖2 + λ‖LfRT‖2L2
= ‖y −Ga−Pb‖2 + λ(Ga)Ta. (B.8.18)

By computing the partial derivatives, we find that the vectors a and b are given
by (B.3.9).

B.8.6 Proof of Proposition B.3.6

Since νm = X(· − tm), the form of the solution (B.3.8) is

fRT(t) =
M∑
m=1

amhγ(t− tm) +
N0∑
n=1

bnekn(t). We have moreover that PTa = 0, where

[P]m,n = ej2πkntm . From (B.3.6), we then deduce that

L∗L{hγ}(t) =
∑
k∈KL

|L̂[k]|2 ek(t)

|L̂[k]|2
=

(
X(t) − ProjNL

{X}(t)
)
. By linearity, we

get that

L∗L{fRT}(t) =

M∑
m=1

amL∗L{hγ}(t− tm)

=

M∑
m=1

amX(t− tm)−
M∑
m=1

amProjNL
{X(· − tm)}(t)

=

M∑
m=1

amX(t− tm)−
N0∑
n=1

M∑
m=1

ame−j2πktmekn

=

M∑
m=1

amX(t− tm)−
N0∑
n=1

[P
T
a]nekn (B.8.19)

=

M∑
m=1

amX(t− tm), (B.8.20)

where we used that [P]m,n = e−j2πktm in (B.8.19) and that P
T
a = PTa = 0

in (B.8.20). Finally, fRT is a periodic (L∗L)-spline with weights am and knots tm.
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B.8.7 Proof of Proposition B.4.3
We start from

s =
∑
k∈KL

ŵ[k]

L̂[k]
ek +

N0∑
n=1

ŵ[kn]

γ0
ekn . (B.8.21)

Our goal is to compute rs(t, τ) = E[s(t)s(τ)]. We do so by replacing s(t) and s(τ)
with (B.8.21). We develop the product and use the relations
E[ŵ[k]ŵ[`]] = E[ŵ[k]2] = 0, E[|ŵ[k]|2] = 1 for every k, ` ∈ Z, k 6= ` to deduce
that

rs(t, τ) =

(∑
k∈KL

ek(t)e−k(τ)

|L̂[k]|2
+

1

γ2
0

N0∑
n=1

ekn(t)e−kn(τ)

)
. (B.8.22)

Since ek(t)e−k(τ) = ek(t−τ), we have shown that rs(t, τ) = hγ(t− τ), as expected.
Then, we obtain (B.4.7) by injecting (B.4.6) into (B.4.2). Finally, we obtain (B.4.8)
by particularizing (B.4.7) with νm = ek.

B.8.8 Proof of Theorem B.4.4
We fix a time t0 ∈ T. We first obtain the MMSE estimator for s(t0) (estimation of s
at time t0). (Note that s(t0) = 〈s,X(· − t0)〉 is well defined because X(·−t0) ∈ HL

by assumption).

The linear MMSE estimator of s(t0) based on y is of the form s̃t0 =
M∑
m=1

umym.

Because s and ε are Gaussian, the linear MMSE estimator coincides with the MMSE
estimator [86]. The orthogonality principle [Section 3.2] [86] then implies that

E[ym(s(t0)− s̃t0)] = 0, ∀m = 1 . . .M. (B.8.23)

We know from Proposition B.4.3 that E[〈s, f〉〈s, g〉] = 〈hγ0 ∗ f, g〉. We use this
relation to develop the different terms of (B.8.23). First, we have that

E[yms(t0)] = E[〈νm, s〉s(t0)] + E[εms(t0)]

= E[〈νm, s〉〈s,X(· − t0)〉] + E[εm]︸ ︷︷ ︸
0

E[s(t0)]

= (hγ0 ∗ νm)(t0). (B.8.24)
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As the estimator is of the form s̃t0 =
M∑
m=1

umym and exploiting that ε and s are

independent, we have that

E[〈νm, s〉yk] = E[〈νm, s〉〈νk, s〉] + E[〈νm, s〉εk] = 〈hγ0 ∗ νm, νk〉
E[εmyk] = E[εm〈νk, s〉] + E[εmεk] = σ2δ[m− k] (B.8.25)

We have therefore that

E[yms̃t0 ] = E[〈νm, s〉s̃t0 ] + E[εms̃t0 ]

=

M∑
k=1

ukE[〈νm, s〉yk] +

M∑
k=1

ukE[εmyk]

=

M∑
k=1

uk〈hγ0 ∗ νm, νk〉+ umσ
2
0 . (B.8.26)

We remark that 〈hγ0 ∗ νm, νk〉 = [G]m1,m2
given in (B.3.10). Injecting (B.8.24)

and (B.8.26) into (B.8.23), we have for m = 1 . . .M that
(hγ0 ∗ νm)(t0) =

∑M
k=1 uk[G]m1,m2

+ umσ
2
0 . Hence, u = (G + σ2

0I)−1c, where

c = (hγ0 ∗ ν)(t0). As s̃t0 = uTy, we finally have that s̃t0 =
M∑
m=1

dm(hγ0 ∗ νm)(t0),

where d = (d1, . . . , dM ) = (G + σ2
0I)−1y.

We have now obtained the form of the MMSE estimator s̃t0 for s(t0) at a fixed
time t0. We then deduce the MMSE estimator of the complete continuous random
process s : T→ R that minimizes E[‖s− s̃‖2L2

] among all the estimators s̃ based on
y. We fix an estimator s̃. We have that

E[‖s− s̃‖2L2
] = E[

ˆ 1

0

(s(t)− s̃(t))2dt] =

ˆ 1

0

E[(s(t)− s̃(t))2]dt

≥
ˆ 1

0

E[(s(t)− s̃t)2]dt = E[‖s− s̃MMSE‖2L2
]. (B.8.27)

Hence, the function s̃MMSE : t→ s̃t is the MMSE estimator of the complete process
s(t).
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B.8.9 Proof of Proposition B.4.5
The proof is obtained by following the arguments of Theorem B.3.4 (for existence,
unicity, and form of the solution) and Proposition B.3.5 (for the explicit formula of
the coefficients dm in (B.4.13)) with the following simplifications:
First, the existence and unicity of a solution is now direct. Indeed, the functional
to minimize is ‖y − ν(f)‖22 + λ‖f‖2HL

. It is clearly coercive and strictly convex
because ‖·‖HL

is. Second, the abstract representer theorem can now be applied
directly to the Hilbert space HL. The form of the solution is then directly deduced.
Third, the coefficients dm are found with the arguments of Appendix B.8.5, except
that there is no term for the null-space component (coefficients bn) in that case,
hence the system matrix is simpler.

B.8.10 Proof of Proposition B.5.1
We know the expression of s̃λ from Proposition B.4.5. For Fourier sampling, the ϕm
are complex exponential themselves, given by ϕm = h ∗ ekm = ĥ[km]ekm , while the
Gram matrix G is diagonal since Gm1,m2

= 〈h ∗ ekm1
, ekm2

〉 = ĥ[km1
]δ[km1

− km2
].

Hence, (B.4.13) gives that

s̃λ =

M∑
m=1

(ŝ[km] + εm)ĥ[km]

ĥ[km] + λ
ekm . (B.8.28)

After simplification, we have that

s− s̃λ =
M∑
m=1

(
λŝ[km]

ĥ[km] + λ
− ĥ[km]εm

ĥ[km] + λ

)
ekm +

∑
k/∈Nν

ŝ[k]ek. (B.8.29)

Exploiting the Fourier-domain independence, we deduce that

E
[
‖s− s̃λ‖2L2

]
=

M∑
m=1

λ2

(ĥ[km] + λ)2
E
[
|ŝ[km]|2

]
+

ĥ[km]2

(ĥ[km] + λ)2
E
[
|εm|2

]
+
∑
k/∈Nν

E
[
|ŝ[k]|2

]
. (B.8.30)

From the relations E
[
|ŝ[k]|2

]
= ĥ[k] (see (B.4.8)) and E

[
|εm|2

]
= σ2

0 , we finally
obtain (B.5.3).
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