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ABSTRACT

We propose new soft-prior approach for incorporating struc-

tural a priori in FDOT reconstruction. The technique is a

non-linear regularization scheme based on the penalization of

the (2, 1)-mixed norm. We solve the numerical reconstruction

problem with an iterative thresholding-type algorithm. We

present simulation results that demonstrate an improvement

both in resolution and fluorophore concentration estimation,

compared to prior-free approaches.

1. INTRODUCTION

Fluorescence diffuse optical tomography (FDOT) is a non-

invasive technique used for localizing and quantifying fluo-

rophore inclusions distributed inside a turbid medium; small

animals, and human body parts ultimately. Measurements

of fluorescence are obtained from a series of source-detector

pairs placed on the boundary of the medium. The source-

detector pairs probe the specimen under investigation using

near-infrared light whose wavelength is chosen to be in the

excitation spectrum of the fluorophore that is to be imaged.

Reconstruction is then performed based on a model for the

propagation of light; the forward model. Owing to the high

scattering that affects light in turbid medium, the technique

suffers from poor spatial resolution and intensity recovery.

In mathematical terms, the reconstruction problem is said ill-

posed. Despite these significant drawbacks, FDOT gives ac-

cess to unique functional information, and is therefore of great

interest for biological studies.

A lot of efforts have been devoted to improving the res-

olution of fluorescence tomography. Proposed strategies

encompass the use temporal or frequency measurements

rather than stationary measurements, the optimization of the

acquisition setup, the use of multiple wavelength for the

probing light, and the design of sophisticated reconstruction

algorithms incorporating regularization constraints. On the

instrumentation side, hybrid systems that combine FDOT

with high-resolution modalities such as CT or MRI have been

developed. In parallel, a new generation of reconstruction al-

gorithms for FDOT has emerged in order to take advantage of

the structural information provided by these other modalities.
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The typical work flow of these algorithms is the following.

They assume that the investigated specimen is imaged both

with a FDOT setup, and the high-resolution modality. From

the high-resolution image, a segmentation is produced, that

outlines the relevant structures of the specimen; in the case of

a small animal, these could be organs, bones, and other tissue.

On the one hand, it is possible to employ the segmentation

to improve the accuracy of the forward model, thereby en-

hancing the reconstruction [1]. On the other hand, the struc-

tural a priori can also serve for regularizing the reconstruc-

tion. In hard-prior approaches, the a priori is used to define

admissible and forbidden reconstruction regions. Some au-

thors go further and define a parametric model, based on in-

dicator functions of the admissible regions. In a soft-prior

approach, the reconstructed imaged is not constrained to fol-

low precisely the regions defined in the a priori. Rather, the

structure is used to guide the reconstruction. Along this line,

some work was done on edge preserving regularization [2],

bayesian models [3], and space-varying quadratic regulariza-

tion [4].

The contribution of this paper is a novel soft-prior scheme

for incorporating structural a priori in FDOT reconstruction.

Our algorithm employs a non-linear regularization based on

the penalization of mixed norms. The use of such regularizers

gives rise to a challenging non-smooth optimization problem.

In order to solve it, we designed a special-purpose iterative

scheme that is a combination of the TwIST method developed

by Figueiredo et al. [5], and of an adapted version of Cham-

bolle’s algorithm for total-variation (TV) denoising [6]. The

advantage of our approach, over other soft-prior approaches,

is to benefit from the performance improvement of non-linear

regularization, while enabling the incorporation of a priori
knowledge. We also show that the more conventional TV reg-

ularizer is a particular case of our approach.

2. STRUCTURE GUIDED REGULARIZATION

We assume that our reconstruction algorithm is given as input

a labeling of the pixels, and the FDOT measurements. The la-

beling corresponds to the structural information : every pixel

is labelled with the name of the region to which it belongs.

Notice that the user is free to choose the labeling. For in-

stance, one could keep the regions of the segmentation. Al-

ternatively, one could label every pixel with the same name,
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which would correspond to a situation without structural a
priori. Another choice would be to regroup two regions of

the segmentation under a single label; that could be the case

if one wants to designate the two lungs, or the two kidneys of

a mouse for instance.

We want to design an algorithm that selects among the

possible regions, the ones where the fluorophore has most

probably accumulated. Inside the active regions, regulariza-

tion is done in a more conventional way. One way to achieve

that is to use a regularization strategy that favors solutions

with high values in a few significant groups, and low val-

ues elsewhere. To that end, we consider the (2, 1)-mixed

norm. Let us assume that we have a labeling in n groups.

Let xi be the vector of pixel values in the group of label

i, for i = 1..n (each pixel is associated to a single group).

Then, the entire image is given by the compound vector

xT = (xT
1 , . . . ,xT

n )T . We will also employ the notation

x = (xi)1�i�n. The (2, 1)-mixed norm of x is defined by

‖x‖2,1 =
n∑

i=1

‖xi‖2 =
n∑

i=1

⎛
⎝ mi∑

j=1

x2
ij

⎞
⎠

1/2

(1)

where we noted xi = (xi1, . . . , ximi
) and mi is the size of

xi.

We note that ‖x‖2,1 has the following form. It is a l1
norm with respect to the group norms ‖xi‖2, i = 1..n, and

a l2 norm with respect to xi. Since the penalization of the l1
norm has a sparsifying effect, one can expect that penalization

of ‖x‖2,1 selects a few significant xi and sets the other to 0.

Based on this property, we propose to use the following cost

function for reconstructing the FDOT image :

J(x) =
1
2
‖y − Ax‖2

2 +
λ

2
‖x‖2,1 (2)

In the above, y is the vector of measurements, A is the for-

ward model matrix, and λ is a parameter used to balance the

tradeoff between data fidelity and penalization of unwanted

features. Implicit in this formulation is the choice of the

groups (the labeling).

The functional J(x) penalizes the magnitude of ‖x‖2,1.

When considering xi alone, this amounts to penalizing ‖xi‖2
2,

which corresponds to the simplest form of quadratic regular-

ization. It is known however that the use of quadratic penalty

terms of the form ‖Bxi‖2
2 is sometimes more adapted, and

justified by bayesian statical models. In practice, the choice

B = ∇ often produces good results. In the present setup, we

remark that using B = ∇ is likely to lead to an image that has

a few regions with high a gradient and that is constant (most

likely 0) in the others. Intuitively we would obtain an image

with smoother transitions between regions than with B = I.

From now on we focus on the generalized cost function:

J(x) =
1
2
‖y − Ax‖2

2 +
λ

2
‖Lx‖2,1 (3)

where L is suitable a linear operator.

3. RECONSTRUCTION ALGORITHM

The image is computed as the minimizer of the cost function

(3). We notice that J(x) is not differentiable at the points

where one of the xi is null. Therefore, one cannot employ

conventional techniques to optimize it. Another issue is the

large number of unknowns that have to be computed : in the

order of 105 for small three-dimensional problems. The for-

mulation (3) falls in a general class of optimization problems

that has received a lot of attention recently. In our application,

we decided to specialize the TwIST method of Figueiredo et

al. [5] to the case of a mixed norm regularizer. Algorithm 1

presents the resulting method.

Algorithm 1 TwIST

Input : x(0), λ, proxλΨ()
Parameters : α, β
x(1) = proxλΨ

(
x(0) + AT (y − Ax(0))

)
k = 1
repeat

x(k+1) = (1 − α)x(k) + (α − β)x(k−1)

+ β proxλΨ

(
x(k) + AT (y − Ax(k))

)
k = k + 1

until (k � maxit) or stopping criterion

Note : in the above algorithm we noted λΨ(x) = λ‖Lx‖2,1.

We notice that every iteration of TwIST requires the com-

putation of the proximity operator proxλΨ. The proximity

operator of the function λΨ(x) = λ‖Lx‖2,1 is the function

defined by

proxλΨ(x) = arg min
y∈RN

1
2
‖x − y‖2

2 + λ‖Ly‖2,1. (4)

When L is a surjective linear operator, one can prove that

proxΨ(x) = x − PK(x), (5)

where K = {LT z; ‖zi‖2 � 1, ∀ i = 1..n}, and PK is the

orthogonal projection on K.

In general, the projection PK does not have a closed form

and one has to use an iterative algorithm to compute it. How-

ever, in some particular cases (that are relevant in practice),

we have an analytical expression. Let us first consider the

case L = I. We obtain K = {z; ‖zi‖2 � 1, ∀ i = 1..n},

and PK(x) = ((xi/ max(1, ‖xi‖2))1�i�n. This yields

proxΨ(x) = (xi max (0, 1 − 1/‖xi‖2))1�i�n. Another

case of interest is L = diag((w1eT
1 , . . . , wneT

n )T ), where

wi > 0 and ei is the vector of all ones of size mi, for

i = 1..n. This situation corresponds to a weighting of

the different groups in the mixed norm. In that case we

obtain K = {z; ‖zi‖2 � wi, ∀ i = 1..n}, and there-

fore PK(x) = (wixi/ max(wi, ‖xi‖2))1�i�n, which yields

proxΨ(x) = (xi max(0, 1 − wi/‖xi‖2))1�i�n.
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Table 1. Proximity operators for regularizers based on mixed

norms

Regularizer Ψ(x) Proximity operator proxΨ(x)
‖x‖2,1 (xi max (0, 1 − 1/‖xi‖2))1�i�n

‖Wx‖2,1 (xi max(0, 1 − wi/‖xi‖2))1�i�n

‖Lx‖2,1
no analytical expression for a general

L, use Algorithm 2

Note : W is a diagonal weighting matrix in which the weights

are identical within a group.

For a more general L, we employ a numerical algorithm to

compute the projection. The algorithm we use is an extension

of the method proposed by Chambolle for TV regularization

[6]. We re-interprete TV regularization as being a particular

case of (2, 1)-mixed norm regularization with L =
( ∇x

∇y

)
,

and a labelling in which entries corresponding to ∇x and ∇y

at each pixel share the same label. Based on this, we propose

Algorithm 2, which is extension to an arbitrary surjective lin-

ear operator L and an arbitrary labeling. As a consequence,

we can also perform TV regularization by setting the appro-

priate labels. The results of this section on proximity opera-

tors are summarized in Table 1.

Algorithm 2 Adapted Chambolle’s Algorithm

Input : x, λ,L
Parameters : τ
Set z(0)

k = 1
repeat

for i = 1 : n do
z(k+1)

i =
z
(k)
i −τ(L(LT z(k)−x/λ))

i

1+τ|(L(LT z(k)−x/λ))
i
|

k = k + 1
end for

until (k � maxit) or stopping criterion

Note : n is the number of groups.

4. RESULTS

We compared the images obtained with various algorithms

on simulated data. The measurements were simulated using

another forward model than the one employed in the recon-

struction algorithm. In addition, the simulated measurements

were corrupted with 5% additive gaussian white noise. The

simulated geometry is depicted in Figure 1-(f). It is a disk of

radius 12.5mm, in two dimensions. The disk is partitioned

into seven different regions (including the background repre-

sented in white). The regions are represented using grey lev-

els on the figure. We embedded four fluorophore inclusions

in the medium, each with unit concentration. The inclusions

are tagged by the dashed circles. We have one inclusion in a

large region, two inclusions located in a tighter regions, and

one inclusion corresponding exactly to a region.

The reconstruction algorithms employed in this study

were all based on a variational approach. Specifically the

image was computed as the minimizer of a functional of the

form :

x̂ = arg min
x∈RN

1
2
‖y − Ax‖2

2 +
λ

2
Ψ(x) (6)

In the experiments we employed :

• Tikhonov regularization, with the gradient as regular-

ization operator; Ψ(x) = ‖∇x‖2
2.

• l1 regularization; Ψ(x) = ‖x‖1.

• TV regularization; Ψ(x) =
∑N

i=1

√
(dx)2i + (dy)2i ,

with (dx)i, (dy)i the two components of the gradient

at pixel i.

• Weighted mixed norms with groups given by the label-

ing depicted in Figure 1-(f); Ψ(x) = ‖Wx‖2,1, where

W is a weighting matrix.

• Weighted mixed norms with gradient as regularization

operator and groups given by the labeling depicted

in Figure 1-(f); Ψ(x) = ‖W∇x‖2,1, where W is a

weighting matrix.

The weighting matrix was chosen to give a weight of two in

the background, and one everywhere else. Notice that all the

above regularizations can be handled using the algorithm of

Section 3. Tikhonov corresponds to a single label for every

pixel. l1 corresponds to one label per pixel. Finally, TV is

obtained by assigning the same label to the two components

of the gradient at each pixel.

The reconstructions are presented Figure 1. In each case,

the regularization parameter λ was optimized by inspection.

First of all, notice that the fluorophore is poorly quantified by

Tikhonov and TV, whereas l1 and mixed norm based tech-

niques are able to estimate the concentration more accurately.

This is explained by the fact that Tikhonov and TV produce

estimates that are more spread over the domain. Second, we

observe that all methods recover correctly the position of the

inclusions. The resolution however is grealty improved when

structural a priori is included in the reconstruction. Indeed,

only the techniques using the a priori are able to resolve all

the inclusions. The behavior of the mixed norm regularization

is as expected : the algorithm sets high values in a few groups

and penalizes the other groups. Overall, the best results are

achieved by the mixed norm and the gradient as regulariza-

tion operator. With that type of regularization we obtain a

smooth, and accurately resolved image.
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Fig. 1. Results of reconstruction for different regularizations : (a) Tkihonov, (b) TV, (c) L1 : ‖x‖1, (d) Weighted mixed norms

‖Wx‖2,1, (e) Weighted mixed norm ‖Lx‖2,1 with L = W∇. Figure (e) shows the labeling in grey levels, and the fluorophore

inclusions in dashed circles.

Lastly, we can comment on the correspondence between

labeled regions and inclusions. Not surprisingly, the algo-

rithm performs best when there is a good correspondence be-

tween regions and inclusions. That is what we observe on

the three inclusions on the top left of the domain that are

perfectly reconstructed as opposed to bottom left inclusion.

Note that the results for the bottom left are similar to what

was obtained with Tikhonov regularization. The behaviour

of the algorithm can thus be interpreted in the following way.

When there is good correspondence between structure and in-

clusions, we are in a similar situation than algorithms that use

a parametric model with indicator functions, and we obtain

very accurate results. When the correspondence is weak, the

a priori is used to a lower extent and we have the results of

a Tikhonov regularization. In that way, the proposed strategy

enables to get the best of both worlds.
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