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ABSTRACT

We introduce a new primal-dual reconstruction algorithm for fluores-
cence and bioluminescence tomography. As often in optical tomog-
raphy, image reconstruction is performed by optimizing a multi-term
convex cost function. Current reconstruction methods employed in
the field are usually limited to cost functions with a smooth data fi-
delity term; quadratic in general. In addition, the use of a composite
regularization term (a sum of multiple terms) requires a substantial
adaptation of these methods. Typically one would have to solve a
subproblem via a primal-dual method at each iteration. The primal-
dual scheme presented here is designed to handle directly cost func-
tions composed of multiple, possibly non-smooth, terms. This al-
lows more freedom for the design of tailored cost functions leading
to enhanced reconstructions. We illustrate the method on two cases.
First, we use a cost function composed of �1 fidelity and regular-
ization terms. We compare to the reconstructions obtained with the
quadratic fidelity counterpart. Second, we employ a cost function
composed of three terms : �1 for data fidelity, total-variation plus
(2,1)-mixed norms for regularization.

Index Terms— Bioluminescence tomography, Fluorescence to-
mography, Image Reconstruction, Optimization

1. INTRODUCTION

In bioluminescence and fluorescence tomography, the spatial dis-
tribution of a luminescing dye buried inside tissue is reconstructed
from boundary light measurements [1]. Due to the high scattering
and absorption characterizing living tissue, the propagation of light
in tissue is well described by a diffusion process. The imaging kernel
therefore contains a smoothing component, which leads to a severely
ill-conditioned inverse problem. As a consequence the achievable
resolution and quantification remain low compared to other modal-
ities employed in biomedical imaging. On the bright side, optical
tomography has a high sensitivity and yields functional information
which is unattainable with other modalities.

Assuming that the optical coefficients (absorption and scatter-
ing) of the investigated medium are known, the problem to solve is
linear in the dye concentration. Employing a matrix formalism we
have the following model of the measurement setup :

y = Hx + b, (1)

with y : the measurements, H : the system-matrix that accounts
for the physical model (diffusion approximation in our case), x the
unknown image (dye concentration) represented in some basis, and
b the measurement noise. Note that we described an additive noise
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model here for simplicity of the presentation. However, a poisson
noise model is more appropriate for optical tomography.

Typically, problem (1) is underdetermined and the matrix H has
a very high condition number. This is the discrete counterpart of
the fact that the imaging problem is ill-posed. Consequently, a di-
rect inversion of system (1) would amplify the noise and result in a
meaningless image. The most widespread approach to deal with this
problem is to compute the image as the minimizer of a cost function
of the form :

J(x) = d(y,Hx) + λ g(x) (2)

In this equation, d(y,Hx) is the data fidelity term. d is a function
measuring the distance between y and Hx, whose role is to ensure
agreement between the estimated image and the measurements. g
is the regularization term used to penalize unwanted features, and
incorporate a-priori knowledge to the solution. The presence of g
prevents dramatic amplification of the noise. λ is a tradeoff parame-
ter that has to be set according to the noise level.

The efficiency of a reconstruction scheme obtained in this frame-
work depends on two main factors. First, the choice of appropriate
functions for d and g that will ensure the accuracy of the computed
images. Second, the ability to optimize the function J(x) in a rapid
and accurate manner for problem sizes ranging from 103 to 105 vari-
ables. To date, the most efficient algorithms employed in the field for
non-smooth optimization are TwIST [2, 3], NESTA [4] and FISTA
[5]. A common feature of these methods is that one of the terms in
the cost function is required to be a smooth function; the data-term is
taken to be quadratic in general. Their iterations revolve around two
key ingredients : the gradient of the smooth term, and the computa-
tion of the proximal map associated to the other term. In the case of a
composite regularization term, the computation of the proximal map
is involved. One would typically have to use a primal-dual method,
which adds to the complexity of the overall scheme. The case of
total-variation (TV) regularization is a relevant instance of that point.
For TV, the proximal map is computed via an iterative primal-dual
method [6]. More generally, finding an efficient method to compute
the proximal map can become a research problem in itself. Still, even
when the proximal map is available, the above methods are unable
to deal with cost functions composed of only non-smooth terms.

The contribution of this work is to introduce a new primal-dual
algorithm for image reconstruction in the context of optical tomog-
raphy. The proposed algorithm is specifically designed to deal with
composite cost functions whose terms are possibly non-smooth. The
primal-dual structure of the cost function is exposed and directly
exploited. The scheme belongs to the class of splitting methods.
By the adjonction of dual variables, the initial optimization prob-
lem (called the primal problem), is split into several coupled sub-
problems (the dual problems). The algorithm is then an iterative
procedure that alternates between the primal and the dual problems.
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Splitting methods are well-known in optimization and were consid-
ered in image processing in the particular case of a splitting in two
terms. The present work is an extension to multiple terms of a two-
terms splitting-method initially proposed by Chan et al. in [7], and
revisited by Chambolle and Pock in [8].

The paper is organized as follows. In Section 2 we provide
an abstract description proposed algorithm. Then, in Section 3 we
present some simulation results in which we applied the method to
bioluminescence tomography. Finally, we conclude the paper.

2. METHODS

We place ourselves in the framework described in the introduction.
Our reconstruction problem is to minimize a cost function J(x) :
R

n → R, in order to compute the image x� ∈ R
n. The function

J(x) is assumed to be the sum of an arbitrary number of convex
functions. For simplicity of exposition we will limit ourselves to
a sum of three terms, but our arguments can be straightforwardly
extended to more. Therefore we consider

J(x) = f(x) + g(x) + h(x). (3)

Note that we didn’t specify the role of the terms (regularization or
data fidelity). They are equivalent as far as the formulation is con-
cerned. We will assume that the functions f, g and h are l.s.c., so
that we can write

f(x) = sup
z∈Rn

〈x, z〉 − f∗(x), (4)

where f∗ is the conjugate function of f . We refer the reader to [9]
for details on conjugate functions. A similar manipulation can be
done on g and h. Using this tool, we can write the primal problem

min
x∈Rn

f(x) + g(x) + h(x), (5)

in the primal-dual form

min
x∈Rn

max
(z1,z2)∈Rn×Rn

f(x) + 〈x, z1〉 − g∗(z1) + 〈x, z2〉 − h∗(z2),

(6)

In the above expression, x is the primal variable, and the zi are the
dual variables. Because the functions g∗ and h∗ are convex, the
min-max problem (6) is a saddle point problem. Our algorithm will
compute a saddle point (x�, z�

1, z
�
2), therefore yielding the solution

x� of the primal problem.

A saddle point (x�, z�
1, z

�
2) of problem (6) satisfies

x� = arg min
x

f(x) + 〈x, z�
1〉 − g∗(z�

1) + 〈x, z�
2〉 − h∗(z�

2)

z�
1 = arg max

z1

f(x�) + 〈x�, z1〉 − g∗(z1) + 〈x�, z�
2〉 − h∗(z�

2)

z�
2 = arg max

z2

f(x�) + 〈x�, z�
1〉 − g∗(z�

1) + 〈x�, z2〉 − h∗(z2)

Now we introduce the proximal map, which will be a building
block of our method. The proximal map proxγφ of a convex function
φ, is the function defined by

proxγφ(u) = arg min
v∈Rn

1

2
‖u − v‖2

2 + γφ(v) (7)

Using the proximal map, we have the following characterization of

a minimizer u� of the convex function φ :

0 ∈ ∂φ(u�) ⇔ ∀γ > 0, u� = proxγφ(u�). (8)

Based on characterization (8), we can express the saddle point
(x�, z�

1, z
�
2) as a fixed point in the following way :

x� = proxγ1f (x� − γ1(z
�
1 + z�

2)),

z�
1 = proxγ2g∗(z�

1 + γ2x
�),

z�
2 = proxγ3h∗(z�

2 + γ3x
�).

This suggests to apply a fixed point iteration to the previous system,
and that will be our algorithm. The procedure is described in Algo-
rithm 1.

Algorithm 1 Primal-dual algorithm for composite functions

Input : x̄0, z0
1, z

0
2 ∈ R

n, k = 0,

Parameters : γ1, γ2, γ3 > 0, θ ∈ R

repeat
xk+1 = proxγ1f (x̄k − γ1(z

k
1 + zk

2))

zk+1
1 = proxγ2g∗(zk

1 + γ2x
k+1)

zk+1
2 = proxγ3h∗(zk

2 + γ3x
k+1)

x̄k+1 = xk+1 + θ(xk+1 − xk)
k = k + 1

until (k � maxit) or stopping criterion

Note 1 : The algorithm is described for a sum three functions f, g
and h but extends directly to more.

Note 2 : It is assumed that the proximal maps can be computed in

an efficient way.

We see that this algorithm requires only the proximal maps of the
different terms of the sum. The functions do not need to be smooth,
although the proximal could also be computed for smooth functions.
The most favorable case for this algorithm is when the proximal
maps have a closed form. Also note that thanks to Moreau’s de-
composition theorem [10], it is equivalent to have the proximal map
of f or f∗.

Let us emphasize the difference with the well-established meth-
ods such as ISTA, FISTA, or NESTA. Assuming that f is smooth,
one could choose to apply these algorithms to optimize J . By doing
so, one would face the problem of computing the proximal map of
the sum g +h. It is very unlikely that this map has a closed form ex-
pression and therefore it would need to be computed otherwise. The
best way to compute this map would probably be to employ a sad-
dle point formulation similar to (6). On the contrary, the proposed
method directly exposes the primal-dual nature of the problem, and
works both on the primal and dual variables in the main iteration.

3. EXPERIMENTS

In this section we apply the proposed method to bioluminescence to-
mography (BLT) image reconstruction. We simulate a BLT system
composed of a homogeneous scattering and absorbing slab of dimen-
sions 20mm x 50mm. The light propagation model is the diffusion
approximation [11], with optical coefficients set as follows : absorp-
tion μa = 0.02mm−1 , and reduced scattering μ′

s = 1.5mm−1.
We use a reconstruction grid with pixel size 1mm. Poisson noise
was added to the noise-free simulated measurements m using the
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Table 1. Quantification error in experiment 1.

Noise Level (%) error for �1-�1 (%) error for �2-�1(%)

15 37 11

10 29 40

5 20.5 37.5

1 5.5 37.5

formula m̂ = P(σm)/σ to control the noise level. Otherwise men-
tioned, we set the noise level to 5%.

3.1. Experiment 1

In this experiment we illustrate the method on a �1-�1 cost function

J(x) = ‖y − Hx‖1 + λ‖x‖1. (9)

The �1-norm is used both in the data term and in the regularization
term. �1-norm regression is known to lead to more robust estimation
than �2-norm regression. For this reason, one might consider to use
such a data term. Regarding the �1 regularization term, its effect is to
favor sparse solutions; i.e. signals that are well approximated by few
coefficients. This functional is therefore well-suited to reconstruct
images of localized features.

We use the following saddle point problem

min
x∈Rn

max
z∈Rn

λ‖x‖1 + 〈Hx − y, z〉 − χS(z), (10)

where χS = (‖ · ‖1)
∗ is the characteristic function of the set S =

{z ∈ R
n; ‖z‖∞ � 1} (taking values 0 or +∞). The resulting

algorithm is presented in Algorithm 2.

Algorithm 2 Primal-dual algorithm for the �1-�1 cost function

Input : x̄0, z0 ∈ R
n, k = 0,

Parameters : γ1, γ2 > 0, θ ∈ ] − 1, 1]
repeat

xk+1 = Tγ1λ(x̄k − γ1H
T zk)

zk+1 = ΠS(zk + γ2(Hxk+1 − y))
x̄k+1 = xk+1 + θ(xk+1 − xk)
k = k + 1

until (k � maxit) or stopping criterion

Note 1 : We used the fact that proxγ‖·‖1
(x) is the coordinate-

wise operation Tγ(x) = sign(x)max(0, |x| − γ) called soft-

thresholding.

Note 2 : We also used the fact that proxγχS
(x) = ΠS, the euclidean

projection on the set S, which reduces to clipping in that case.

We considered a setup with 150 detectors located on the bound-
ary. Two bioluminescent inclusions of size 1mm were simulated.
The inclusions were placed in positions (20,7) and (30,13), respec-
tively (the origin being taken on the lower left corner of the slab).
We made reconstructions with the �1-�1 algorithm described above,
as well as with a �2-�1 algorithm based on a cost function with a
quadratic data term. Reconstruction were made for different noise
levels (see Table 1), and the regularization parameter λ was opti-
mized by visual inspection for each noise level and each algorithm.
Both algorithms perform similarly in terms of localization. The two
algorithms recover the sources with a maximum delocalization of

50mm

20
m
m

(a) Phantom used in the simulation : a 50mm x 20mm
slab. Two light bioluminescent inclusion represented by the

dashed lines. Three regions are defined for the �2,1 regular-

ization : the background in white, and two square regions

enclosing the sources in grey levels.
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(b) Reconstruction with J1(x) cost function (�2-TV).
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0.1
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(c) Reconstruction with J2(x).

Fig. 1. Results for experiment 2.

1mm. The quantification accuracy of the two algorithms is dis-
played in Table 1. The metric used is the average quantification error
on the two inclusions. We see that the �1-�1 cost function performs
better in the lower noise regime. Intuitively this can be explained
by the fact that the �2-norm penalized large deviations more than the
�1-norm. Therefore one would expect �2 to perform better for large
noise levels. Still, we observe a large range of noise level where the
�1-�1 method is more efficient.

3.2. Experiment 2

In this experiment we demonstrate our algorithm on a cost function
with three non-smooth terms and compare the results with the cel-
ebrated �2-TV cost function. More specifically, the cost functions
used in this experiment are :

J1(x) =
1

2
‖y − Hx‖2

2 + λ‖x‖TV

J2(x) = ‖y − Hx‖1 + λ‖x‖TV + μ‖x‖2,1
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The refined criterion J2(x) is composed of a �1 data term, com-
plemented with TV and �2,1 regularization terms. The �2,1-norm
is defined as follows. Let x = (x1, . . . ,xp) be a compound vec-

tor, then we have ‖x‖2,1 =

pX

i=1

‖xi‖2. We can treat an image as

a compound vector by partitioning the pixels into several regional
groups and allocating them to different sub-vectors. By penalizing
the resulting �2,1-norm, we can impose a structural a-priori on the
solution (see [3] for more details). In order to apply our algorithm to
the cost function J2(x) we follow the same steps as in experiment
1. We formulate a saddle point problem that leads to the algorithm
using the method exposed in Section 2. For conciseness reasons we
do not show the entire derivation.

The experimental setup is depicted in Figure 1-a. Two biolumi-
nescent inclusions of size 5mm x 5mm are placed in the medium.
The source intensity is set to one (arbitrary units). In this experi-
ment only 28 detectors are placed on the boundary (contrary to 150
for experiment 1). We defined three regions describing the structural
a-priori that we want to impose with the �2,1-norm. These regions
are represented in Figure 1-a : the background in white, and two
regions enclosing the inclusions in grey levels. Note that the in-
clusions are composed of large constant regions, which is favorable
to a TV prior. Results obtained with J1(x) (�2-TV) and J2(x) are
displayed in Figures 1-b and 1-c, respectively. We observe a better
performance of the cost function J2(x) in terms of localization and
quantification. The reconstruction obtained with J1(x) wrongly lo-
cates the inclusions close to the detectors. The presence of the �2,1

term in J2(x) overcomes this shortcoming, while the TV term favors
piecewise-constant solutions.

4. DISCUSSION

The choice of the parameters γi (step sizes) is an issue one faces
when applying this method. In their analysis of the two-terms
splitting-method they propose, Chambolle and Pock give conditions
ensuring convergence [8]. Since our method is a generalization of
their scheme to multiple terms, it is reasonable to think that sim-
ilar conditions also exist for the proposed method. In this work
we limited ourselves to fixed parameter values, and we observed
empirically that the method would converge for parameter values
below some critical threshold. We also observed that the rate of
convergence was quite robust to parameter adjustments.

To conclude, we have proposed a new reconstruction algorithm
for optical tomography that is specifically designed to deal with cost
functions with multiple regularization terms. The method also has
the advantage of handling composite functions with non-smooth
terms only. Similarly to the state-of-the-art reconstruction algorithm
designed for non-smooth cost functions, our method requires the
evaluation of several proximal maps at each iteration. The main ad-
vantage of this scheme it to offer flexibility in the design of the cost
functions used in the reconstruction. We have shown in two biolu-
minescence tomography experiments that this additional flexibility
could profit to the reconstruction quality.
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