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a b s t r a c t

Computerized analysis of digital pathology images offers the potential of improving clinical care (e.g.

automated diagnosis) and catalyzing research (e.g. discovering disease subtypes). There are two key chal-

lenges thwarting computerized analysis of digital pathology images: first, whole slide pathology images

are massive, making computerized analysis inefficient, and second, diverse tissue regions in whole slide

images that are not directly relevant to the disease may mislead computerized diagnosis algorithms. We

propose a method to overcome both of these challenges that utilizes a coarse-to-fine analysis of the lo-

calized characteristics in pathology images. An initial surveying stage analyzes the diversity of coarse

regions in the whole slide image. This includes extraction of spatially localized features of shape, color

and texture from tiled regions covering the slide. Dimensionality reduction of the features assesses the

image diversity in the tiled regions and clustering creates representative groups. A second stage pro-

vides a detailed analysis of a single representative tile from each group. An Elastic Net classifier produces

a diagnostic decision value for each representative tile. A weighted voting scheme aggregates the deci-

sion values from these tiles to obtain a diagnosis at the whole slide level. We evaluated our method

by automatically classifying 302 brain cancer cases into two possible diagnoses (glioblastoma multiforme

(N = 182) versus lower grade glioma (N = 120)) with an accuracy of 93.1 % (p << 0.001). We also evalu-

ated our method in the dataset provided for the 2014 MICCAI Pathology Classification Challenge, in which

our method, trained and tested using 5-fold cross validation, produced a classification accuracy of 100%

(p << 0.001). Our method showed high stability and robustness to parameter variation, with accuracy

varying between 95.5% and 100% when evaluated for a wide range of parameters. Our approach may be

useful to automatically differentiate between the two cancer subtypes.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Gliomas account for 28% of primary brain tumors and tumors

of the central nervous system, and make up 80% of malignant

brain tumors, affecting Americans at a rate of 5.83 per 100,000

in 2007–2011 (Ostrom et al., 2014). Of those, glioblastoma mul-

tiforme (GBM, WHO grade 4) represents 54.7%, and lower grade

gliomas (LGG, astrocytomas, oligodendrogliomas, and oligoastrocy-

tomas, WHO grade 2 and 3) represent 24.2% of the gliomas. The

prognosis for GBM is dire with a 1-year survival at 36.5%, with
� “This paper was recommended for publication by Nicholas Ayache”.
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nly 5.0% surviving 5-years, whereas the 5-year survival for LGG is

uch higher at 51.4%. Not only does prognosis differ for patients,

ut the choice of therapy differs as well (Khasraw and Lassman,

010). Many LGG subtypes have curative treatments, but only pal-

iative treatments exist for GBM (Preusser et al., 2011). Thus it is

f critical importance to differentiate GBM from LGG when mak-

ng decisions on patient treatment options.

The primary way of differentiating GBM from LGG is through

istopathology. The primary distinguishing features of GBM in-

lude vascular thrombosis, microvascular proliferation, and necro-

is (Cavenee et al., 2007). However, these features are not always

lear, and they can be difficult to find and recognize in whole slide

mages, likely accounting for the high inter-reader variability ob-

erved between pathologists (Coons et al., 1997).

Three common subtypes of LGG are astrocytomas, oligoden-

rogliomas, and oligoastrocytomas. Astrocytomas develop from the

tar-shaped astrocytes (Fig. 1a). While astrocytomas have some
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Fig. 1. Sample images of lower grade gliomas showing (a) a grade 3 anaplastic as-

trocytoma and (b) a grade 2 oligodendroglioma. Note the parinuclear halos in (b),

seen as a decrease in the pink eosin stain surrounding the nuclei. (For interpreta-

tion of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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olecular commonalities, there is no unifying histopathological

henotype, rather multiple subtypes exist, each with their own

dentifying set of features. Oligodendrogliomas develop from the

ranching oligodendrocytes (Fig. 1b). Like the oligodendrocytes

hey derive from, oligodendrogliomas have a perinuclear halo, giv-

ng the tumor cells a “fried egg” appearance. Oligoastrocytomas tu-

ors have a mixed population with some cells showing a more

strocytoma like phenotype and others appearing more like oligo-

endroglioma cells. Lower grade gliomas, as defined by The Can-

er Genome Atlas (TCGA), comprise grade 2 and 3 gliomas, where

rade 2 tumors show only cytological atypia and grade 3 tumors

lso show anaplasia and mitotic activity.

Glioblastoma multiforme is a grade 4 astrocytic tumor. As the

escriptor “multiforme” in the name suggests, GBM varies in ap-

earance. While all tumors are highly cellular with high degrees of

naplasia and mitotic activity, some tumors have nuclei that are

ighly polymorphic, containing many giant multinucleated cells,

hereas others are monotonous. While astrocytic features are eas-

ly identified in some tumors, they are difficult to distinguish in

thers due to extreme anaplasia. The primary distinguishing fea-

ures of GBM include vascular thrombosis, microvascular prolif-

ration, and necrosis (particularly pseudopalisading necrosis) (Fig.

). The remarkable regional heterogeneity of the tumors makes

hem challenging to diagnose if these distinguishing features are

ot present in regions of the pathology image analyzed.

We believe that computer aided diagnosis applied to digital

athology images can help make the histopathological designation

f glioma subtypes clearer by providing reproducible and exhaus-

ive image analysis (Hamilton et al., 2014). In addition, adoption of

uch computerized methods may improve the pathologists’ work-

ow, and reduce in inter-reader variability. Moreover, in order to

evelop computer aided diagnosis systems for pathology, it is im-

ortant not only to analyze the data present in the entire WSI,

ut also be able to filter out the important signal (i.e., relevant re-

ions in the WSI) from the background. In this paper we describe

completely automated method for classifying whole slide digi-

al pathology images of brain tumors into the GBM and LGG di-

gnostic categories. It allows for the analysis of the whole tumor

hrough a coarse profiling stage while reducing the noise present

n the sample by selecting a smaller number of representative re-

ions. The final step consists of weighted region voting, which al-

ows image regions with strong signal to outweigh signals arising

rom less relevant (i.e., non-signal containing) regions present in

he slide.

The paper’s organization is as follows. Section 2, Background,

iscusses the strengths and weaknesses of related work. Section 3,

aterials and methods, describes the dataset and preprocessing in
ection 3.1, the feature collection and selection of profiled regions

n Section 3.2, and the modeling and weighted voting in Section

.3. Section 4, Results, describes the results, in terms of prediction

ccuracy in Section 4.1, investigates the different feature groups

mportance in Section 4.2, the impact of representative regions on

nal WSI decision in Section 4.3, and model stability in Section 4.4.

inally, Section 5, Discussion and conclusions, describes our inter-

retation of the success of the model and its implications for the

uture of computer aided diagnosis of digital pathology images.

. Background

While computer aided diagnosis has become common in radi-

logy (Doi, 2007), there have been challenges in realizing similar

uccesses in pathology. Only a fraction of pathology practices dig-

tize their slides (Onega et al., 2014). Even if digital images were

ore widely available, there are two key challenges to computer-

zed analysis of whole-slide pathology images (WSI). First, pathol-

gy images are large with each image consisting of around 1010

ixels, and processing this large amount of information can be

omputationally expensive. Second, large portions of pathology im-

ges contain non-tumor tissue, which is not necessarily relevant to

he diagnosis. Signals arising from substantial tissue regions not di-

ectly relevant to the diagnosis may mislead computerized diagno-

is algorithms. Two approaches have been undertaken to attempt

o overcome these obstacles, subsetting the image and tiling the

mage.

.1. Image subsetting methods

Subsetting the image is the most common approach, where one

elects a small region of the image for processing, simultaneously

educing the image size and potentially extraneous tissue present

n the image. Even before WSI was practical, researchers captured

single frame of an entire slide using a standard microscope cre-

ting a subset of the image for computational analysis (Adiga et

l., 2006; Aiad et al., 2009; Altunbay et al., 2010; Baak et al., 1981;

rook et al., 2007; Esgiar et al., 2002, 2002; Farjam et al., 2007; Fa-

ima et al., 2014; Glotsos et al., 2008; Gunduz et al., 2004; Gupta

t al., 2001; Hall et al., 2008; Huang and Lai, 2010; Huang and

ee, 2009; Jafari-Khouzani and Soltanian-Zadeh, 2003; Kong et al.,

007; Land et al., 2008; Lessmann et al., 2007; Meng et al., 2010;

zolek et al., 2014; Qureshi et al., 2008, 2007; Sboner et al., 2003;

chnorrenberg et al., 1997; Sudbø et al., 2000; Tahir and Bouri-

ane, 2006; Tasoulis et al., 2003; Thiran and Macq, 1996; Tsai et

l., 2009). For many researchers doing pathology image analysis

oday, this is still the best option, either because they do not have

ccess to a WSI system, or because they can capture data not pos-

ible with a WSI system, such as confocal microscopy images.

A similar approach is to manually designate a region in the WSI

or analysis (Al-Kadi, 2010; Basavanhally et al., 2010, 2008; Doyle

t al., 2012a, 2008, 2007; Dundar et al., 2011, 2010; Qureshi et al.,

008; Sertel et al., 2010). This is the digital equivalent of the sub-

etting process described above: in both procedures, a human uses

heir knowledge and time to reduce the data available for analysis

ased on their evaluation of what is informative.

In 2014, the MICCAI Pathology Classification Grand Challenge

llowed methods to compete in the task of classifying LGG and

BM images. Three methods used manual subsetting to select re-

ions for analysis, though each method differed greatly in their

nalysis procedure. Bueno et al. (2014) used 1st and 2nd order

aralick features obtained from texton maps of the Hb, Luv, and

CT color space, and modeled them using an AdaBoost machine.

hang et al. (2014) morphologically characterized and modeled

he nuclei using a spatial pyramid matching framework. Xu et al.

2014a, 2014b) characterize each image type using convolutional
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Fig. 2. Three features distinguishing glioblastoma multiforme, (a) vascular thrombosis, (b) microvascular proliferation, and (c) pseudopalisading necrosis.
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neural networks. Since convolutional neural networks require large

amounts of training data, this method went beyond the designated

45 training data images, using additional 3076 images.

Another group has specifically applied this tactic to the prob-

lem of distinguishing lower grade gliomas from glioblastoma mul-

tiforme (Mousavi et al., 2015) in a larger dataset of 132 images.

In their method, a pathologist selects multiple regions of inter-

est from each histopathological slide. Classification identifies re-

gions of interest containing two hallmarks of GBM: microvascular

proliferation and pseudopalisading necrosis. It may be difficult to

generalize the method to other problems as the method requires

a specific tissue type to identify that defines each class (i.e. mi-

crovascular proliferation and pseudopalisading necrosis). To gener-

alize the method for new cancers, the researchers would have to

determine a new tissue type before being able to train the method

for this new application. If an appropriate tissue type is not known

for the disease, the method would not be applicable. Additionally,

for a problem like distinguishing GBM from LGG, Mousavi et al.

require selection of region of interest for analysis (e.g. pseudopal-

isading necrosis). If the target features are not present in the im-

age, a random region of interest representative of the slide is in-

put instead. This has three key disadvantages. (1) It increases the

pathologist’s workload due to the fact that in a common clinical

procedure regions of interest wouldn’t be defined. (2) The process

is inefficient as the pathologist has already decided visually if the

features are present in the slide in their selection of the region of

interest. Therefore, an additional procedure is redundant and time

consuming. (3) It can be highly biased in the pathologist’s decision

to select a targeted versus random region of interest.

An alternative method for subsetting the data uses automatic

segmentation to identify regions of interest in the image for analy-

sis. Since these methods are automatic, they are not subjective and

do not require a time commitment from an individual with pathol-

ogy expertise. This method has most commonly been applied to

assigning a Gleason grade to prostate cancer samples (Doyle et al.,

2012b; Monaco et al., 2008; Monaco et al., 2010; Naik et al., 2008,

2007; Sparks and Madabhushi, 2013) though it has found applica-

tions in other cancers as well (Petushi et al., 2006). The Gleason

scoring system is particularly well suited to this type of analysis

because the system characterizes how ordered the glands are in

a prostate tumor. In other applications where the task is not so

rigidly defined, determining a target for segmentation may be a

limiting factor in the method’s applicability.

All of these approaches to subsetting WSI share a common lim-

itation; a human must decide what data is valuable for analysis.

This limits the analysis’ ability to discover signal in previously un-

appreciated regions of the slide.

2.2. Image tiling methods

A second approach to tackling the challenges to computer-

ized analysis of WSI uses tiling to break the image into small,
anageable pieces (Kong et al., 2013, 2009; Ruiz et al., 2007;

ertel et al., 2009), analyzing each image piece, as opposed to just

xamining a few selected regions. However this increase in data

eans an increase in computation complexity. In order to char-

cterize the oligodendroglioma versus astrocytoma components of

17 GBM samples, Kong et al. (2013) segmented and classified over

00 million nuclei. Based on this high computational complexity, it

s easy to understand why Ruiz et al. (2007) focused their work on

sing a GPU to reduce the execution time of their stromal classi-

cation in neuroblastoma. An alternative approach to reduce com-

utational load while still examining the entire WSI is to reduce

he image resolution. For their stromal classification in neurob-

astoma, Sertel et al. (2009) used a multi-resolution approach to

lassify their slides, starting with low resolution and continuing to

ith higher one in the case of a weak classifier decision.

While these approaches have managed to leverage the vast

uantities of information available in the WSI, there is room for

mprovement in determining the final decision. Both stromal clas-

ification and oligodendroglioma versus astrocytoma characteriza-

ions classify the slide based on the area occupied by a particular

issue type. The methods classify individual tiles as the clinically

elevant tissue type, and then classify the entire image by deter-

ining the dominant tissue type in the slide. This appears to work

ell for diseases where the tissue is homogeneous, and all affected

issue shares a common appearance distinct from phenotypes seen

n alternative diagnoses. However, these approaches are unsuitable

or diseases where a local feature determines the diagnosis for the

lide or where the disease is heterogeneous, such as in the LGG

ersus GBM classification. In these cases, the majority of the tissue

ay be more similar to the incorrect classification, but a small re-

ion of the slide containing a key disease feature (e.g., pseudopal-

sading necrosis) determines the diagnosis. Additionally, many of

hem do not perform well in images containing a large amount of

xtraneous tissue, as this tissue can bias their classification.

. Materials and methods

Fig. 3 depicts an overview of our image processing pipeline,

hich is further detailed in Sections 3.2 and 3.3. The pipeline uses

“coarse-to-fine” approach, where “coarse profiling” assesses im-

ge content diversity, followed by “fine profiling” to produce in the

nal evaluation. First, the pipeline tiles input WSIs and coarsely

haracterizes them by extracting shape, color, and texture features

i.e., “coarse features”) from each tile. It clusters all tiles contained

ithin an individual image and identifies tiles nearest the cluster

enter to select a representative subset of tiles while fostering their

iversity. In a second step, the pipeline carries out a deeper char-

cterization of the representative tiles by extracting a more com-

rehensive set of image features from them (i.e., “fine features”).

his two-stage approach avoids having to extract all features from

ll tiles and the corresponding intractable computational load. An

lastic Net classifier (Zou and Hastie, 2005) provides a decision
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Fig. 3. Pipeline for pathology analysis. Images show a scaled down representative whole-slide image with boxes representing tiles. Unique colors represent clusters. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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alue for each tile. A weighted voting scheme aggregates these de-

ision values to obtain a global decision at the whole-image level.

.1. Dataset and preprocessing

.1.1. Dataset description

Whole slide, diagnostic images were obtained from The Can-

er Genome Atlas (TCGA). All slides were stained with hematoxylin

nd eosin. TCGA data derives from multiple institutions and is col-

ected over many years, so results found in these data are expected

o hold for other studies. Each slide had been scanned at multi-

le resolutions ranging from 2.5 to 40×, with all images containing

maximum resolution scan of at least 20×. For slides where the

aximum resolution was 40×, bicubic interpolation (Hou and An-

rews, 1978) resized the images to 20×. The ground truth is that

esignated by The Cancer Genome Atlas based on patient records.

Two datasets each evaluated of different aspects of the method.

he first dataset comprised 45 images from 2014 MICCAI Pathology

lassification Grand Challenge. This dataset allowed for direct com-

arison of the method to existing methods that were evaluated in

hat challenge. These 45 images included two types of brain can-

er: 23 images of glioblastoma multiforme (GBM) and 22 images of

ower grade glioma (LGG). For the second dataset all 604 images

364 GBM, 240 LGG) from TCGA, which had a complete comple-

ent of pathology and molecular data were selected to evaluate

erformance of our method in a larger dataset. No more than one

hole slide image came from a single patient.

.1.2. Tiling the images

WSI tiling created 1024 × 1024 pixel images at 20× resolu-

ion. This is the same size and resolution used for tissue microar-

ays, on which a trained pathologist can use to make informed

pinions about a whole tumor. Tiles were adjacent to one another

overing the entire tissue region of the slide. Many tiles contain

ery little tissue, as tissue generally occupies only a small por-

ion of the glass slide. Tiles of the slide containing a minimum

f 0.237 mm2 tissue area were used for further analysis. A tis-

ue area of 0.237 mm2 comprises 90% of the tile, making tiles

ith this amount of tissue unlikely to have many artifacts derived

rom the background glass slide. The following procedure distin-

uished tissue from background: (1) convert the lowest resolution

can of the image to grayscale. (2) Apply automatic contrast en-

ancement (Divakar, 2009). (3) Take the 8-bit depth complement.

4) Perform hysteresis thresholding with an experimentally-chosen

igh threshold of 100 and a low threshold of 50.
.1.3. Unmixing the stains

In order to better represent the biological information of a sam-

le, the hematoxylin and eosin stains were separated from the

riginal image using the color deconvolution method used in Cell-

rofiler (Kamentsky et al., 2011). This method for color deconvo-

ution uses pseudo inverse matrices as described by Ruifrok and

ohnson (Ruifrok and Johnston, 2001). The RGB values used for

ematoxylin were [0.644, 0.717, 0.267] and for eosin were [0.093,

.954, 0.283]. To obtain the hematoxylin and eosin stain values we

nd

xp

(
ln

(
RGBi, j

)[0.644, 0.171, 0.267
0.093, 0.954, 0.283

]+T
)

= HEi, j

here RGBi,j are the red, green, and blue channel values for pixel

,j and HEi,j are the deconvoluted hematoxylin and eosin values

or pixel i,j. The symbol +T indicates the transpose of the pseudo-

nverse of the matrix. Since hematoxylin binds to nucleotides and

osin to proteins, unmixing the stains allows the method to better

robe the roles of these biologically important molecules.

.1.4. Tissue and nuclei segmentation

The process described in Section 3.1.2 identified tissue regions

n the image tiles. A method we derived from Gurcan (Gurcan

t al., 2006) was used to segment the nuclei. In the original

ethod, the red channel of the RGB image was complemented and

ransformed using morphological top-hat reconstruction (Meyer,

979). Nuclei are segmented from this transformed image using

ysteresis thresholding, and clumps of nuclei are split using wa-

ershedding. In our modification of their work, the hematoxylin

tain was transformed using morphological top-hat reconstruction

Meyer, 1979). An iterative series of hysteresis thresholds defined

andidate nuclei. The upper threshold ranged from 150 to 50 and

he lower threshold was 0.2× the upper threshold with each iter-

tion, reducing the upper threshold by 5 intensity units. At each

teration, objects meeting size specifications (30–200 pixels) were

dentified as nuclei. This allows for the identification of a large va-

iety of nuclei with different staining properties.

.2. Tile-based local image characterization

In order to profile the entire tumor and to sample image diver-

ity, the whole slide image is coarsely profiled, and similar regions

re clustered together. The tile deemed most representative of each
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Fig. 4. Sample image showing the results of the image processing pipeline. Unique

colors represent clusters. Black boxes represent tiles chosen for “fine” profiling. Im-

ages at the bottom show the tiles selected from each cluster, with the color on the

border of the tiles indicating the cluster from the image. Numbers at the bottom

are the decision values the tiles received after machine learning analysis with posi-

tive values indicating a correct decision and negative values indicating an incorrect

one. The strong positive values from some tiles (e.g., 2.656 in the orange tile) are

able to overcome weak incorrect decisions from others (e.g., −0.309 in the red tile).

Additionally, the small decision value for the bleeding artifact in the blue tile in the

bottom left, demonstrates the pipeline’s ability to minimize the impact of artifacts

on the final decision.

Fig. 5. Second order Riesz filterbank at a fixed scale.
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cluster receives a more through characterization for tissue model-

ing. Using this strategy ensures that the many varied regions of the

tumor are represented in the model. Since both GBM and LGG have

heterogeneous phenotypes, sampling the image in this way can aid

in classification. Fig. 4 shows a sample image with clusters as well

at the representative tiles and decision values from the model.

3.2.1. “Coarse” feature extraction

Extracting fine features for all tiles may highly increase the

computational load. As a first step, coarse feature collection and

profiling are computed on all tiles to select a subset of tiles that

may serve as representatives of the WSI. Since pathology images

may contain a variety of tissue types and other features of in-

terest, the coarse analysis procedure enables the best represen-

tation of the tissue diversity in the WSI. Examining cell nuclei is

one of the primary ways that pathologists establish diagnoses in

pathology images. Therefore, segmenting cell nuclei and collecting

features which characterize them is fundamental to quantitative

digital pathology image analysis (Gil and Wu, 2003). For this first

pass, a simple threshold on the hematoxylin stain segments the

nuclei rather than using the iterative hysteresis thresholding de-

scribed in Section 3.1.4 to save computational time. Then fea-

tures were extracted from the whole tissue segmentation, from

the nuclear segmentation, and from the non-nuclear regions, in-

dependently for both the hematoxylin and eosin stains. Specifi-

cally, shape, color (Gurcan et al., 2009), Haralick texture features

(Haralick et al., 1973), and second order unaligned Riesz features

(Depeursinge et al., 2014) were extracted from each tile. The Riesz

features correspond qualitatively to a multi-scale Hessian filter-
ank (Fig. 5) and can describe local organizations of image direc-

ions (i.e., for a fixed scale) that are specific to a given texture

attern (i.e., from single oligodendroglial cell appearances to tis-

ue organization like pseudopalisadation). Haralick features were

omputed from a one pixel displacement, symmetric gray level co-

ccurrence matrix at 0 and 90 degrees. The 96-feature set com-

rised 15 shape, 12 color, 26 Haralick, and 36 Riesz features. There

ere 38 features derived from the hematoxylin stain and 38 fea-

ures from the eosin stain. There were 13 features derived from

he nuclei, 2 from the cytoplasm (regions designated as tissue, but

ot nuclei), and 81 from the tissue as a whole. On average, it

akes ∼6.2 s to calculate coarse features from 1024 × 1024 pixel

ile.

.2.2. PCA and clustering to regroup similar tiles

After collecting the features from the “coarse analysis”, princi-

al component analysis (PCA) reduced the substantial number of

coarse” features, decreasing computational complexity of the clas-

ification algorithm. The first few components of the PCA, which

re the components with the largest eigenvalues (i.e., capturing

ost of the variance in the data), serve as a basis for the infor-

ation description. Three PCA components represented each tile.

-means clustering defined similar tiles based on the reduced-

eature collection. The K-Means++ algorithm (Arthur and Vassil-

itskii, 2007) allowed for more stable clustering. K-Means++ out-

erforms classic k-means with random selection of initial seeds.

t results in much more stable clustering by reducing the distance

rom the points to the nearest cluster center in O(log(k)) time. Ten

lusters represented various groups of similar tiles. For each clus-

er, a single representative tile whose values were the closest to

he centroid of the cluster were selected to use in the “fine anal-

sis” (Section 3.2.3). Selecting tiles after the clustering procedure

nsures that diverse tissue elements in the slide are included in

odeling.

.2.3. “Fine” feature extraction

For the more detailed “fine” analysis, all the feature types col-

ected in the “coarse” analysis (Section 3.2.1) are collected from

he representative tiles, with a few changes that increased fea-

ure quality at the cost of computational time. Most notably, the

eatures derive from the more detailed nuclear segmentation de-

cribed in Section 3.1.4. Skeleton features for the nuclei were com-

uted along with the other shape feature to better define nuclear

orphology (Zhao and Daut, 1991). Additionally, aligned second-

rder Riesz features with six dyadic scales are computed to char-

cterize texture in the fine analysis, rather than using the un-

ligned features used in the coarse analysis (Depeursinge et al.,

014). Alignment of the Riesz wavelets allows for rotation invari-

nce, and avoids imposing arbitrary directionality on the tissue

nalysis. As in Section 3.2.1, features derive from within the nu-

lei segmentation, in the cytoplasm segmentation (regions desig-

ated tissue but not nuclear), and from the tissue as a whole, as

ell as from both the hematoxylin and eosin stain. A total of 227

eatures are extracted, comprising 19 shapes, 15 colors, 78 Haral-

cks, and 108 Riesz features. There were 101 features derived from

he hematoxylin stain and 101 from the eosin stain. Eighty-one
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Table 1

Accuracies of the classification methods for the same group of 45

whole slide pathology images. While all methods perform well,

only the method proposed here had 100% accuracy.

Method Accuracy (%)

Barker et al. 100

Bueno et al. (2014) 98.1

Chang and Parvin (2014) 85.83

Xu et al. (2014a, 2014b) 97.8
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eatures derived from the nuclei, 64 from the cytoplasm (regions

esignated as tissue, but not nuclei), and 83 from the tissue as a

hole. On average it takes ∼185.2 s to calculate fine features from

1024 × 1024 pixel tile.

.3. Whole slide classification using Elastic Net classification

nd weighted voting

The Elastic Net linear regression model (Zou and Hastie, 2005)

s used to generate the predicted diagnosis from our data. Elastic

et combines the l1 and l2 penalties from the LASSO and ridge

egression model. More specifically, Elastic Net seeks to minimize,

arg min
(β0,β)∈Rp+1

[
1

2
N

N∑
i=1

(
yi − hβ0,β(xi)

)2 + λPα(β)

]

here

α

(
β
)

= (1 − α)
1

2
β2

l2
+ αβl1

nd

≤ α ≤ 1.

β0 is the intercept for the linear regression model, β repre-

ents the feature weights, xi is the feature vector for image i, yi is

he outcome for image i, N the number of training examples, and

β 0,β(xi) is the generalized linear regression hypothesis function.

s in other regression models, λ is penalizing the feature coeffi-

ients β. Additionally, Elastic Net includes the parameter α, which

alances between the l1 and l2 penalties.

All of the features from the tiles selected in Section 3.2.3 are

ormalized, and each tile becomes an independent instance. The

lmnet implementation (Friedman et al., 2010) of a binomial Elas-

ic Net logistic regression machine with an α value of 0.5 was used

o model the data. A five-fold cross-validation on the training set

as used to select the λ parameter with the lowest mean cross-

alidated error.

In order to estimate the generalized classification performance

sing all images, a 5-fold cross-validation is used. For each itera-

ion of 5-fold cross-validation, we define our training set T for test

mages j − j + n such that

= {xi,c, yi,c} for i = 1, . . . , j − 1, j + n + 1, . . . I and c = 1, . . . ,C

here xi ,c is the feature vector for image i, n is the number of

mages required for 5-fold cross validation, cluster c and yi,c is

he ground truth for image i, cluster c, I is the number of images

nd C the number of clusters. Note that in this method of cross-

alidation, the feature vectors for all clusters from an image are ei-

her left out or included in each fold to avoid training and testing

he model with tiles belonging to the same image. 5-fold cross-

alidation produced a total of 5 models and classified the entire

ataset.

In order to get the final, aggregated, decision value for a whole

mage i, we compute the value ŷ.

ˆ =
C∑

c=1

hβ0,β(xi,c)

An appropriate threshold, t̂ for the final LGG-versus-GBM clas-

ification is selected from the training set such that:

ˆ = argmax
t

[sensitivity(t, ŷi) + speci f icity(t, ŷi)]

for i = 1, . . . , j − 1, j+n+1, . . . I.

Final class designation for the test image j was made as ŷ j > t̂ .
. Results

.1. Classification accuracy

.1.1. Comparison with MICCAI challenge results

The predicted classes of the test images matched the ground

ruth in all 45 tissue slices, out-performing the methods from the

014 MICCAI Pathology Classification challenge (Table 1). All other

ethods used in this comparison included a manual step where

egions of the slide were selected for analysis. Since this method

as able to out-perform the others, it indicates strong potential

or the tile selection methods employed.

.1.2. Classification of a larger data set

In order to test the robustness of our method, we applied it

o the larger dataset of 604 images from TCGA. Half of the WSIs

ere chosen randomly as a test set, while the remaining half of

he cases were used as a training set. The classification accuracy of

ur method was 93.1%. A one sided binomial test with a no infor-

ation rate of 0.6 determined this accuracy was highly unlikely to

e accounted for by chance (p << 0.001). This result supports the

obustness of our method and suggests that the high accuracy of

ur method seen in the MICCAI challenge was not due to sample

ias (Fig. 6). Additionally, the ROC curve showed high performance,

ith an AUC 0.96.

.2. Importance of the feature groups

.2.1. Impact of fine features

The impact of the fine features in the final classification was

ested. Instead of using the fine features from the selected tiles,

he same coarse features used for PCA and clustering were applied.

his modified version of the pipeline classified the 604 previously

escribed tumor samples as described in Section 4.1.2. Using only

oarse features decreased the classification accuracy from 93.1% to

8.4%. Both the Net Reclassification Improvement (NRI = 0.100,

= 1.12e − 3) and the Integrated Discrimination Improvement

IDI = 0.100, 1.17e − 3) suggest improvement in the model when

dding the fine features (Pencina et al., 2008), justifying the com-

utational time.

.2.2. Use of available feature space

The feature space diversity was well exploited, where shape,

olor, Haralick, and Riesz features, as well as features from the

uclei and the cytoplasm, and both the hematoxylin and eosin

tain were selected by every model built in the cross-validation.

ne hundred and ninety-one features represented the data in

ll five folds of cross-validation including 22 shape, 10 color, 70

aralick, 89 Riesz (Fig. 7). As would be expected based on cur-

ent histopathological convention where the nuclei are the pri-

ary focus, the hematoxylin stain and nuclear-derived features

ere well represented in the models with 88 hematoxylin and 76

uclear features. More surprisingly, eosin and cytoplasm features

ere nearly as well represented with 81 eosin and 49 cytoplasm

eatures, demonstrating the model’s ability to discover previously
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Fig. 6. Accuracies LGG/GBM classification in a larger dataset. (a) A confusion matrix summarizing the dataset classification results. (b) ROC curve demonstrating that the

values generated by the model match the predicted classes.

Fig. 7. Histogram distribution of features used in Elastic Net models, showing the

number of models in which features of a given class appear. The number of features

is normalized based on the total number of features represented for each class. Bar

patterns represent the feature class. Most features for each class appears in all, or

nearly all models, as would be expected if they have diagnostic value.
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unappreciated signal. Additionally, it was observed that the major-

ity of the features appeared in all models indicating stability with

respect to the training set.

4.2.3. Contribution of Riesz texture features

The contribution of the Riesz texture features to the accuracy

of the model was tested using two experiments. The pipeline clas-

sified the 604 TCGA images that were divided as described in

Section 4.1.2 two ways: (1) excluding the Riesz features and (2)

using only the Riesz features.

Classifying the images without using Riesz features reduced

the accuracy to 90.4% (NRI = 0.067, p = 1.56e − 2; IDI = 0.067,

p = 1.60e − 2) from the original pipeline. Using the Riesz features

alone reduced the accuracy to 90.0% (NRI = 0.058, p = 1.95e − 2;

IDI = 0.058, p = 1.62e − 2). In order to evaluate if the
etter fit was simply a product of increasing the number of fea-

ures, two models were compared using the Rao’s efficient score

est. This test determines if adding features to a model reduces

he deviance residuals in the model. The test requires the mod-

ls to be nested, so features for the models were selected as fol-

ows. The patient samples were divided and trained an Elastic Net

odel as previously described. Features included in the model

ere recorded. This was done three times, once using all features,

nce excluding the Riesz features, and once including only the

iesz features producing three following feature sets:

= xa1, xa2, xa3, . . . , ra1, ra2, ra3 . . .

= xb1, xb2, xb3, . . .

= rc1, rc2, rc3, . . .

here A is the set of features used in the model including all fea-

ures, B is the set of features used in the model excluding the Riesz

eatures, C is the set of features used in the model including only

he Riesz features, xni is the ith non-Riesz feature in feature set N,

nd rni is the ith Riesz feature in feature set N. Four binomial gen-

ral logistic regression models (f) were made on the testing data

uch that:

OS = f (xb1, xb2, xb3, . . .)

PR = f (xb1, xb2, xb3, . . . . . . ra1, ra2, ra3 . . .)

OR = f (rc1, rc2, rc3, . . .)

PS = f (xa1, xa2, xa3, . . . , rc1, rc2, rc3, . . .)

The test found that adding both the Riesz features to the stan-

ard features (Rao(MOS, MPR) << 0.001) and adding the standard

eatures to the Riesz features (Rao(MOR, MPS) << 0.001) reduced

he residuals in the model. Combining the Riesz and traditional

uantitative histopathology features gives a higher accuracy and

educed residuals compared to either models with only one of

hese feature sets, indicating that the two feature sets are com-

lementary rather than redundant, demonstrating the synergy be-

ween the feature sets.
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Fig. 8. Histogram of the number of tiles correctly classified for the WSI overall, the

WSI that were correctly classified, and the WSI that were incorrectly classified. For

example, in the data set as a whole, we see that ∼58% of the images had all 10

tiles classified correctly, among the WSI that were correctly classified, ∼62% had all

10 tiles classified correctly, and as would be expected, among the WSI that were

incorrectly correctly classified, none had all 10 tiles classified correctly.
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.3. Analysis of tile classification

In addition to the classification of the WSI, we also tested how

ell the classification of the individual representative tiles and

hat of the WSI classification are correlated. In more than half the

ases, all tiles were correctly classified (Fig. 8), indicating that the

ethod is capable of finding signal in nearly all regions of the tu-

or. Even when tiles were incorrectly classified, in most cases, the

ipeline was capable of making the correct decision (whole WSI

lassification) based on the correct classification of the other tiles.

n two cases, the method made the correct decision for the WSI

ased on a strong correct decision for a single tile. On the other

and, when a WSI was incorrectly classified, fewer than half of the

iles were classified correctly, meaning that taking a simple major-

ty would not have improved the classification of any images. This

emonstrates the importance of the final weighted voting to detect

trong signal in the data and make correct classifications.

.4. Model stability with respect to parameter variation

.4.1. Stability with respect to clustering parameters

The stability of the model with respect to the number of clus-

ers and the number of PCA components used to select representa-

ive tiles was tested. All combinations of 5, 10, 15, and 20 clusters

nd 3, 4, 6, 8, 10, or 12 principal components have been examined.

he accuracy of the classification remained stable and yielded ac-

uracies between 95.5% and 100% (Fig. 8a). Additionally, when we

xamined the decision values used to assign the classification, we

ound that the mean decision values per number of clusters gen-

rated by the Elastic Net model was also similar across all com-

inations of parameters, with the sole exception of the 5 cluster

odels (Fig. 8b). This suggests that with only 5 clusters, the tissue

iversity is not adequately sampled. In the instances of misclas-

ified images, the magnitude of the decision value was well be-

ow the mean, indicating a lack of confidence in the assignment.

his demonstrates that the model provided reproducible predic-

ions with respect to the parameters used in tile selection.
.4.2. Stability with respect to machine learning parameters

To test the model stability with respect to the parameters in

he Elastic Net model, we evaluated the accuracy of the prediction

hen varying the logistic regression penalty value λ, and α, which

ontrols the balance between the l1 and l2 penalty. λ was eval-

ated at 100 different values ranging from 6e − 5 to 0.6 with a

ogarithmically-spaced interval between adjacent test values and α
or five values (0.0, 0.3, 0.5, 0.7, 1.0) (Fig. 9a). The accuracy of the

redictions with respect to λ was stable over four orders of mag-

itude for all α values, only degrading at the extreme high end

f the range when only a very small number of features were in-

luded in the model. The accuracy of predictions with respect to

remained stable at 100% when evaluated at the λ with the min-

mum cross validated mean square error. To evaluate the impact

hat α had on the model at a specific λ value, we looked at the

istances of the final decision values from the threshold to esti-

ate of the certainty of the predictions (Fig. 9b). The distance dis-

ribution was very similar for all α. Together our results indicate

hat the model can provide fairly robust classification predictions.

. Discussion and conclusions

We have developed a novel, automated method for classifying

igital pathology images of brain tumors that recognizes GBM ver-

us LGG. Our method is unique in combining three components: (i)

oarse profiling of regions within the image to sample tissue diver-

ity (Section 3.2.1), (ii) identifying representative regions automati-

ally in WSI (Section 3.2.2), and (iii) allowing all the representative

egions to independently impact the final diagnosis (Section 3.3).

e believe that all aspects of our proposed model are unique and

ontribute strongly to the high accuracy we achieved. The model

howed low sensitivity to parameters related to the number of

lusters, PCA components (Fig. 9), thus provided reproducible pre-

ictions with respect to the parameters used in tile selection. The

arameters of the Elastic Net model also provided robust classifi-

ation (Fig. 10). Even with substantial changes to those parameters

he accuracy of the classification remained high at 95.5–100%. We

elieve that obtaining the appropriate and full representation of

he image characteristics is one of the reasons for the high stabil-

ty of our method.

LGG-versus-GBM classification is not a trivial task. Both LGG

nd GBM are diverse diseases known for their varied appearance

n pathology samples. In many cases, a single small region of the

lide with a few distinguishing features gives the pathologist the

bility to diagnose a sample. For this reason, it is not surprising

hat in the 2014 MICCAI Pathology Classification challenge, all of

ur competitors manually selected a smaller region of the slide

or classification (Bueno et al., 2014; Chang and Parvin, 2014; Xu

t al. 2014a, 2014b). Our model obtained 100% classification ac-

uracy and was able to exceed other competitors performance in

ddition to the advantage of being fully automatic (Table 1), indi-

ating that its ability to select regions for analysis may outperform

hat of a human being. An extended dataset that contains 604 im-

ges was also analyzed producing a classification accuracy of 93.1%.

ne other group attempted classification of a larger cohort of TCGA

mages (51 GBM, 87 LGG, Mousavi et al., 2015). Their classification

ccuracy was much lower at 84.7%, suggesting that automated clas-

ification task is not trivial. While out method shows a decrease in

ccuracy our results in the larger dataset are still very good and

otentially promising as an aid in clinical practice.

A variety of prior works have used computational feature ex-

raction from images for classification, but many of these meth-

ds selected smaller areas of the tumor for processing (Alexe

t al., 2009; Adiga et al., 2006; Aiad et al., 2009; Al-Kadi, 2010;

ltunbay et al., 2010; Baak et al., 1981; Basavanhally et al., 2010,

008; Brook et al., 2007; Doyle et al., 2012a, 2012b, 2008, 2007;
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Fig. 9. Impact of tile selection parameters on model stability. (a) The accuracy of the models with differing numbers of clusters and principal components derived from the

coarse features used for tile selection. (b) Mean decision value distribution for each tissue slice over all combinations of tile selection methods. Greater values indicate a

stronger prediction, positive values indicate an accurate prediction and negative values indicate an inaccurate one. As both accuracy and decision values remain consistent

over a wide range of parameter values, indicating that the model is robust to variation in the parameters guiding tile selection.

Fig. 10. The effect of the Elastic Net model parameters on classification predictions. (a) The impact of lambda and alpha on accuracy over five orders of magnitude for lambda

and five different alpha values. (b) Distance distributions of the decision values from the classification threshold for alpha values (0.0, 0.3, 0.5, 0.7, 1.0). Greater values indicate

a stronger prediction, positive values indicate an accurate prediction and negative values indicate an inaccurate prediction. There were no inaccurate predictions for any alpha

value at lambda min. Accuracy of the model is stable over much of the parameter range, with lower accuracy only occurring where lambda forces few to no features to be

included in the model.
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Dundar et al., 2011, 2010; Esgiar et al., 2002; Farjam et al., 2007;

Fatima et al., 2014; Glotsos et al., 2008; Gunduz et al., 2004; Gupta

et al., 2001; Hall et al., 2008; Huang and Lai, 2010; Huang and

Lee, 2009; Jafari-Khouzani and Soltanian-Zadeh, 2003; Monaco and

Tomaszewski, 2008; Kong et al., 2007; Kwak et al., 2011; Land et

al., 2008; Lessmann et al., 2007; Meng et al., 2010; Monaco et

al., 2010; Naik et al., 2008, 2007; Ozolek et al., 2014; Petushi et

al., 2006; Qureshi et al., 2008, 2007; Sboner et al., 2003; Schnor-

renberg et al., 1997; Sertel et al., 2010; Sparks and Madabhushi,

2013; Sudbø et al., 2000; Tabesh and Teverovskiy, 2006; Tabesh et

al., 2007, 2005; Tahir and Bouridane, 2006; Tasoulis et al., 2003;

Teverovskiy et al., 2004; Thiran and Macq, 1996; Tsai et al., 2009;

Xu et al. 2014a, 2014b; Yang et al., 2009). These approaches also

limit the analysis to regions of the image already known to con-

tain signal and therefore limit the potential of discovering new
ignal in previously unappreciated regions of the tissue sample.

owever, since our method is completely agnostic to any prede-

ned tissue structures, it is free to discover signal that had been

reviously overlooked. Additionally, many previous methods re-

uire human intervention, introducing subjectivity, as a human

ust select a region to be characterized. This subjective step may

ntroduce inter-reader variability, as seen in traditional pathology

Coons et al., 1997). Since our method is completely automatic, the

otential for this type of variability is greatly reduced.

Hierarchical analysis of WSI where an analysis with a reduced

omputational load proceeds a more computationally intensive one

as been effective in the past (Sertel et al., 2009). In our analysis,

e leverage this by using the coarse features to select representa-

ive regions, allowing the model to include information from the

ntirety of the slide, which average 2 GB. This novel use of coarse
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nalysis eliminates the need for information about the regions of

he slide containing tumor versus normal tissue, or the high com-

utational complexity to analyze the whole image as in the meth-

ds discussed above. The proposed method overcomes these issues

y being completely naive to pathological designations and can

ork without input from a pathologist or requiring automated tu-

or segmentation, while still requiring modest computational re-

ources. The information provided by the coarse features can then

e used to appropriately select regions for fine feature analysis, in-

reasing the accuracy of the model (Section 4.2.1).

Extracting features separately from the hematoxylin and the

osin stains allows the features to better represent biological com-

lexity. Many other methods collect features from either the origi-

al RGB image, a converted image to other non-biologically based

olor spaces (e.g., Lab or HSL), or from a grayscale version of that

ame image (Al-Kadi, 2010; Basavanhally et al., 2010; Dundar et

l., 2011, 2010; Esgiar et al., 2002; Farjam et al., 2007; Glotsos

t al., 2008; Huang and Lee, 2009; Jafari-Khouzani and Soltanian-

adeh, 2003; Kong et al., 2009; Ozolek et al., 2014; Petushi et al.,

006; Qureshi et al., 2008; Ruiz et al., 2007; Schnorrenberg et al.,

997; Tabesh et al., 2005; Tabesh and Teverovskiy, 2006; Tahir and

ouridane, 2006; Thiran and Macq, 1996; Tuzel et al., 2007; Wang

t al., 2010; Wetzel et al., 1999; Weyn et al., 1998; Xu et al. 2014a,

014b). Since hematoxylin binds to nucleic acids and eosin binds

o protein, unmixing the stains allows the feature extraction to

irectly probe the state of these important biological molecules,

hereas features from the mixed image may either miss this signal

r be unable to probe them independently.

The breadth of quantitative features we extract from the images

layed an additional role in the model’s accuracy. Though many

f our features are commonly used in pathology image analysis,

o our knowledge, the Riesz features are novel in the context of

athology; indeed, these features comprised more than a third of

he features used in every model (Fig. 7). The multi-scale nature of

iesz wavelets allows examination of the tissue at multiple spatial

cales, from individual nuclei to multicellular structures. The direc-

ional components of the Riesz features can also be oriented to lo-

ally maximize the response of the first filter at the most granular

cale, which has the desirable effect of normalizing all image direc-

ions among instances (Depeursinge et al., 2014). Since pathology

as no universal orientation, this allows us to directly compare fea-

ures from slide to slide without imposing an arbitrary directional-

ty. The Riesz features are complementary to the more traditional

athology features, and when used together, the model has higher

ccuracy than using either feature set alone (Section 4.2.3).

Allowing all the representative tiles to independently impact

he final decision adds flexibility to the model, making it poten-

ially capable of dealing with diverse pathology image data. The

nitial clustering produces some clusters that are very relevant to

he diagnosis and others that are less relevant. By allowing inde-

endent evaluation all the clusters, relevant clusters receive a large

ecision value and a heavier weight in the final vote, making a

tronger impact on the final decision (Fig. 4). This enables a strong

onsensus for the entire tissue, even if the tumor represents only

small portion of the tissue; the impact of the relevant area is

ot diluted by the effect of the less important tissue surround-

ng it. While other methods (Kong et al., 2013,2009; Ruiz et al.,

007; Sertel et al., 2009) have used tiling, they make their final

ecision based on the proportion of tiles assigned to a particular

isease type. These previous methods have been limited to identi-

ying diseases defined by their preponderance of particular tissue

ypes, as they are unable to evaluate diseases where local features

re key in determining a diagnosis. They frequently must discard

ases having a variety of tissue types, such as samples with large

uantities of normal tissue. Our approach is not too dissimilar from

hat used by a pathologist in evaluating WSI, though our method is
eneficial since in practice, it may be difficult for the human

o systematically and consistently scrutinize every tissue region

ithin each slide. We believe this contributed to the method’s high

ccuracy (Section 4.1).

Our work has some limitations. One limitation is that even

hough our two-stage, coarse-to-fine profiling significantly reduces

omputational time, it is still slower than would be desired for

ny real-time application. This could be improved by implement-

ng in a language such as C++ or running on more powerful com-

uter hardware. Another limitation is that we have only evaluated

his method in the context of whole slide images. Other types of

athology images, such as tissue microarrays, are much smaller

nd a pathologist has already selected the tumor region that they

eel is representative. In this context, the coarse-to-fine profiling

ay not add as much value as in a whole slide image.

The method’s ability to capture biological information in diverse

atasets has strong potential in digital pathology, not only in dis-

ase diagnosis, also in other clinical applications, such as survival

nd analysis of drug treatment response. In addition, we believe

ur approach is likely generalizable and applicable to other dis-

ases besides brain tumors.
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