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Abstract

This paper introduces the concept of shape signals, i.e.,

series of shapes which have a natural temporal or spatial

ordering, as well as a variational formulation for the reg-

ularization of these signals. The proposed formulation can

be seen as the shape-valued generalization of the Rudin-

Osher-Fatemi (ROF) functional for intensity images. We

derive a variant of the classical finite-dimensional represen-

tation of Kendall, but our framework is generic in the sense

that it can be combined with any shape space. This repre-

sentation allows for the explicit computation of geodesics

and thus facilitates the efficient numerical treatment of the

variational formulation by means of the cyclic proximal

point algorithm. Similar to the ROF-functional, we demon-

strate experimentally that ℓ1-type penalties both for data

fidelity term and regularizer perform best in regularizing

shape signals. Finally, we show applications of our method

to shape signals obtained from synthetic, photometric, and

medical data sets.

1. Introduction

In this paper we wish to introduce the concept of shape

signals, i.e., collections of shapes which appear in a spatial

or temporal context. An obvious example is object tracking

in video sequences where all shapes have a natural tempo-

ral ordering, cf. Fig. 1. Another example is organ segmen-

tation from tomographic imaging modalities such as com-

puted tomography or magnetic resonance imaging, where a

three-dimensional organ can be segmented by obtaining its

two-dimensional outlines from all containing slices. In both

scenarios it is possible to arrange the obtained shapes in a

one dimensional grid with (often) equidistant spacing. The

resulting shape signal is a mapping from a discrete index,

which corresponds to a time stamp or a slice number for

instance, to some shape space.

Figure 1: Regularization of Shape Signals: Objects seg-

mented from video data enjoy a natural temporal ordering

and thus form a shape signal. First row: Three frames

of the ”parachute” sequence from [28] segmented with the

method proposed by [18]. Second row: Regularized shapes

obtained with our method. Third and fourth row: Shape

signal of the original segmentations (third row) and regu-

larized shape signal (fourth row). Only a few shapes of this

sequence are shown for better visibility. Shapes correspond-

ing to the selected frames are highlighted in red.

1.1. Motivation

The idea of introducing shape signals is inspired by the

observation of Rahman et al. [19], who noticed that many

signals in science and engineering are actually manifold-

valued signals as well as some recent efforts of total vari-

ation (TV) regularization of such data, cf. Lellmann et al.

[14] and Weinmann et al. [29]. A typical example is pose

tracking data, e.g., acquired with an optical tracking sys-

tem, which can be represented as a series of rigid transfor-

mation matrices acquired at equally spaced points in time.

While these approaches focus, however, on rather low di-

mensional manifolds, e.g. SE(3) which is useful for reg-

ularizing pose data, we would like to go beyond these ap-

plications and consider shapes and shape spaces which are

high-dimensional by nature – typical polygonal shape rep-
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resentations used in this paper comprise hundreds of bound-

ary points. In general, there a two main approaches for ob-

taining a suitable shape representation or shape space:

1. The continuous approach: A shape can for instance

be considered as an element of the manifold of simple

closed smooth and unparametrized curves in R
2 or as

an element of the orbifold of immersions from S1 to

R
2 modulo all diffeomorphisms of S1, cf. Michor and

Mumford [17] or Bauer et al. [2].

2. The discrete approach: A shape can be interpreted as

a simple and closed n-gon in R
2 or the complex plane

C, cf. Kendall [13].

In this paper, we focus on the discrete approach – in par-

ticular the one of Kendall [13] – for mainly two reasons:

Firstly, algorithms for processing manifold-valued data, re-

quire the implementation of the exponential as well as the

inverse exponential mapping of the respective manifold, cf.

Sec. 3. These mappings can be implemented very effi-

ciently in the case of Kendall shapes. Secondly, Kendall

shapes are only invariant w.r.t. translations, rotations, and

global scalings. Although a lot of research has been carried

out in regard to shape representations which are invariant

to large classes of transformations, e.g., affine transforma-

tions, we will demonstrate in Sec. 5.2 that ensuring too

many invariance properties is not always desired in the con-

text of shape regularization. The observation that too many

invariances can be disadvantageous is not at all obvious and

it even motivated us to propose so-called oriented Kendall

shapes which are only invariant w.r.t. translations and scal-

ings, cf. Sec. 4.3.

2. Related Work

We discuss related work concerning TV regularization

for manifold-valued data and comment on the connections

to two other important fields of research: active contours

and continuous shape spaces.

2.1. TV Regularization for Manifold-valued Data

From a theoretical point of view, TV minimization for

manifold-valued data has been considered by Giaquinta

and Mucci [9, 10]. Algorithms for TV regularization for

manifold-valued data have been developed by Lellmann et

al. [14] and by Weinmann et al. [29]. Applications consid-

ered in [14] are the one and two-dimensional sphere as well

as the three-dimensional group of rotations. The algorithm

in [14] is based on rewriting the problem as a labeling prob-

lem with the label space consisting of a discretization of the

manifold. Unfortunately, the label space grows rapidly with

the dimension of the manifold which makes application to

higher dimensional manifolds, such as shape spaces, hard.

In contrast to this, the algorithms described by Weinmann

et al. [29], i.e., the cyclic and the parallel proximal point

algorithm, do not require such a discretization. Further-

more, the computational times do not increase more than

linearly with the dimension of the manifold. Application

areas in [29] also include the six-dimensional space of dif-

fusion tensor data. It should be noted that there are also

some works on fitting curves on manifolds which share the

same goal but essentially consider ℓ2-regularized scenarios,

e.g., [8, 21, 24, 23].

2.2. Active Contours

The idea of active-contour-based tracking has already

been described in the seminal work of Kass et al. [12]. It

is based on the assumption that the shape of the tracked

object varies only gently between two consecutive frames.

Thus, the segmentation from one frame can be used as an

initialization for the next frame, which greatly benefits the

non-convexity of active contours. Since the original work

of Kass et al. a lot of improvements have been proposed

which help to make this method more robust w.r.t. large

deformations, occlusions, background clutter, etc. As it

is beyond the scope of this paper to discuss all of them

we refer the interested reader to the exhaustive overview

of Cremers et al. [7]. However, we would like to men-

tion the recent works on Sobolev-type active contours, cf.

Charpiat et al. [6] and Sundaramoorthi et al. [26, 27, 25],

which have in common that they either implicitly or explic-

itly rely on shape metrics, i.e., some notion of distance be-

tween shapes, in order to constrain the segmentation. As

a consequence, we wish to emphasize that the proposed

method assumes that a shape signal has already been ob-

tained and it can thus be combined with any method for

segmentation-based tracking or video segmentation. Fur-

thermore, even if active-contour-based segmentation meth-

ods are augmented by sophisticated shape metrics, the reg-

ularity of the obtained segmentation is not comparable to

the one obtained by our approach. The most obvious rea-

son for this fact is that segmentation-based tracking is an

unidirectional process where previous segmentations can-

not be regularized by subsequent ones. We will actually see

in Sec. 5.4 that our method nicely complements Sobolev-

type active contours by further regularizing their results.

There are of course many more approaches for

segmentation-based tracking and video segmentation, es-

pecially those which are based on graphical models. The

reason why we only consider approaches related to active

contours as related is that this area of research is closely re-

lated to the one of shape spaces and shape metrics which

are an essential prerequisite for the proposed framework.

2.3. Continuous Shape Spaces and Metrics

Shape spaces and shape metrics have a long history in

computer vision as well as medical image analysis. Es-
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pecially in the area of continuous approaches, e.g. met-

rics for the space of immersions from S1 to R
2 modulo

all diffeomorphisms of S1, a tremendous progress has been

achieved in the last decade. Noteworthy examples are the

paper of Michor and Mumford on the deficiency of the L2

metric [16], the one of Younes et al. on explicit geodesics

[30], the one of Srivastava et al. on the square root velocity

transform [22], and finally the one of Bauer et al. [1] on

reparametrization invariant metrics. An exhaustive discus-

sion of all works in this area is beyond the scope of this work

and we thus refer the interested reader to the excellent recent

overviews of Michor and Mumford [17] as well as Bauer et

al. [2]. However, we would like to emphasize that the pro-

posed framework can be combined with any shape space

as long as there exists the possibly of computing geodesics

between to shapes.

3. Regularization of Shape Signals

In this section we will describe a general framework for

regularizing shape signals, which is similar to the one pro-

posed by Rudin, Osher, and Fatemi in [20] as well as the

one considered by Weinmann et al. [29] and Lellmann et

al. [14]. It is important to notice that this formulation does

not depend on the particular choice of the shape space.

3.1. Notation

Let M denote a suitable Riemannian shape manifold,

which does not need to be specified for the moment. For an

element a ∈ M we denote the tangent space at a by TaM.

We further denote the exponential map at a by

exp
a
:

{

TaM →M,

v 7→ exp
a
(v)

(1)

and the inverse exponential map at a by

log
a
:

{

M → TaM,

b 7→ v = log
a
(b)

(2)

where log
a
(b) is the tangent vector in TaM such that

exp
a
(log

a
(b)) = b. (3)

A natural distance between two points a,b ∈M is given by

the length of the geodesic joining a and b. This is precisely

the length of the tangent vector log
a
(b):

d(a,b) = ‖log
a
(b)‖

a
, (4)

where ‖ · ‖a is the length induced by the Riemannian metric

in the tangent space of a. The index a indicates that the

metric may depend on a, which is the case for Sobolev-type

metrics for instance, cf. [6, 27, 26, 25, 1]. In general, it

is hard to find explicit formulas for computing geodesics

in case of such metrics. However, we use an embedded

representation, cf. Sec. 4, which helps us to circumvent

related problems.

3.2. Problem Formulation

A shape(-valued) signal with k ∈ N entries is a vector

f = (f1, . . . , fk) ∈ Mk. We assume that f is given, e.g.,

as a result of a segmentation algorithm, and we wish to find

another signal x such that the functional

E(x) = D(x, f) + αR(x), α > 0, (5)

is minimal. While D(x, f) is a data fidelity term which pe-

nalizes the deviation from the original signal f , R(x) is a

regularizer penalizing large variations or jumps in x. As a

data fidelity term, we consider

D(x, f) =

k
∑

i=1

(h ◦ d)(xi, fi), (6)

where h is one of the following functions: h(s) = s which

leads to an ℓ1-type penalization, h(s) = s2/2 which leads

to an ℓ2-type penalization, and

h(s) =

{

s2, s < 1/
√
2,√

2s− 1/2, otherwise,
(7)

which yields the manifold-valued equivalent of the well-

known Huber-norm [11] – a differentiable compromise be-

tween the ℓ1-norm and the ℓ2-norm. Similar to D we con-

sider the regularizer

R(x) =

k−1
∑

i=1

(h ◦ d)(xi,xi+1). (8)

As d(xi,xi+1) can be considered as a manifold-valued for-

ward difference, R can be interpreted as a first order ap-

proximation of the classical Tikhonov regularizer, in case

of h(s) = s2/2, or the total variation, in case of h(s) = s,

respectively. In case of (7), R can be regarded as a shape-

valued differentiable approximation of the total variation

regularizer, which can be used to avoid the staircasing prob-

lem associated with total variation denoising, cf. Chambolle

and Pock [5].

3.3. Numerical Solution

Minimizing the functional in (5) can be achieved by a

cyclic proximal point algorithm, cf. Alg. 1. As demon-

strated by Weinmann et al. in [29], this algorithm is par-

ticularly suited for manifold-valued total variation regular-

ized problems, because all proximal mappings can be im-

plemented via computing points on geodesics, i.e.,

[a,b]t = exp
a
(t log

a
(b)), (9)
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Algorithm 1: Cyclic proximal point algorithm for

solving the functional (5).

input : Signal f , parameter α, number of steps l
output: Signal x (solution of (5))

x← f ;

for j ← 1 to l do

//compute rel. parameter;

λj ← CompLambda(j)

//proximal mapping of D;

for i← 1 to k do

t← GeoLengthData(λj ,xi,fi)

xi ← [xi, fi]t;

end

//proximal mapping of R;

for i← 1 to k − 1 do

t← GeoLengthData(λj ,α,xi,xi+1)

x̂i ← [xi,xi+1]t;
x̂i+1 ← [xi+1,xi]t;
xi ← x̂i;

xi+1 ← x̂i+1;

end

end

for a,b ∈ M and an appropriately chosen t ∈ [0, 1]. For

a detailed derivation as well as an analysis of this algorithm

we refer the reader to [29].

We would like to emphasize that this algorithm can

be instantiated for any shape space by providing im-

plementations of the corresponding exponential mapping

and its inverse. The functions GeoLengthData, and

GeoLengthReg calculate how far to move on the

geodesic under consideration; GeoLengthData does so

for the data term whereas GeoLengthReg does so for the

regularizer, cf. Tab. 1. The function CompLambda pro-

vides a square-summable (but not summable) sequence of

relaxation parameters, cf. [29]. In all our experiments we

have chosen

λj = 3j−(0.95+ 1

2
j−0.18), j = 1, . . . , l, (10)

where l ∈ N is the number of iteration steps.

4. Shape Representations

As mentioned before, we decided to use the shape repre-

sentation introduced by Kendall [13], because the exponen-

tial as well as the inverse exponential mapping can be im-

plemented very efficiently. In the following we will briefly

GeoLengthData

ℓ2 λ/(1 + λ)
ℓ1 min(λ/d, 1)

Huber

{

2λ/(1 + 2λ), d < (1 + 2λ)/
√
2,

min(
√
2λ/d, 1), else.

GeoLengthReg

ℓ2 λα/(1 + 2αλ)
ℓ1 min(λ/d, 1

2 )

Huber

{

2λ/(1 + 4λ), d < (1 + 4λ)/
√
2,

min(
√
2λ/d, 1

2 ), else.

Table 1: Geodesic Path Lengths: Depending on the

chosen penalization the functions GeoLengthData and

GeoLengthReg return different geodesic path lengths.

The length of the geodesic, cf. (4), is denoted by d.

fix our notation for this section, review the classical rep-

resentation proposed by Kendall [13], and derive a non-

rotation invariant analogue of it. We will see in Sec. 5 that

this novel representation has some advantages over the clas-

sical representation – at least for certain applications.

4.1. Notation

We consider polygonal discretizations of simple planar

shapes, i.e., two-dimensional closed curves which do not

intersect themselves. The result of such a discretization is a

simple n-gon which can be represented by a complex vector

z = (z1, . . . , zn) ∈ C
n, (11)

where each entry zi encodes the coordinates of one bound-

ary point with its real and imaginary part. We will assume

that this representation is already normalized w.r.t. transla-

tion, i.e.
n
∑

i=1

zi = 0 ∈ C. (12)

In order to position the regularized shapes correctly, this

mean value (translation vector) has to be stored for all

shapes in the signal before the signal can be regularized us-

ing the presented framework.

It is also possible to define a real-valued representation

of z via identifying C
n with R

2n, i.e.,

x = (x1
1, x

2
1, x

1
2, x

2
2, . . . , x

1
n, x

2
n) ∈ R

2n, (13)

where

x1
i = ℜ(zi) and x2

i = ℑ(zi). (14)

Similar to the complex case, we will assume that x is al-

ready normalized w.r.t. translation.

2078



4.2. Classical Kendall Shapes

We will briefly recall the original representation of

Kendall [13]. For a concise description of this representa-

tion we recommend the recent paper of Fletcher on geodesic

regression [8], which also forms the basis for the following

derivations.

Kendall employs the complex shape representation in a

particularly elegant way. The first step is to notice that by

normalizing z w.r.t. to translation we restrict all shapes to

the (n− 1)-dimensional subspace

Vn−1 = {z ∈ C
n :

n
∑

i=1

zi = 0} ⊂ C
n, (15)

which can itself be identified with C
n−1. Roughly speak-

ing, by normalizing w.r.t. translation we are removing one

complex degree of freedom. Next, we notice that a shape z ∈
Vn−1 can be scaled by a factor s > 0 and rotated by an angle

θ ∈ [0, 2π) by multiplying all complex components zi with

the complex number w = s exp(iθ) = s cos(θ)+ is sin(θ).
Consequently, all shapes z which are equivalent w.r.t. trans-

lation, rotation, and scaling lie on the complex line

Lz = {w · z : w ∈ C\{0}}. (16)

In other words, Lz is the equivalence class of all shapes

which are equivalent w.r.t. rigid transformations and scal-

ings. The set of all these equivalence classes can now be

identified with the complex projective space CPn−2 or,

more intuitively, the complex unit sphere Sn−2
C

(with an-

tipodal points identified). This means that by enforcing ro-

tation and scale invariance we are removing another com-

plex degree of freedom. As a consequence, the exponential

mapping and the inverse exponential mapping are given by

the respective mappings of Sn−2
C

, i.e.,

expz(v) = cos(φ) · z + ‖z‖ sin(φ)
φ

· v, φ = ‖v‖ (17)

and

logz(y) = φ · y −Πz(y)

‖y −Πz(y)‖
, φ = arccos(

|〈z, y〉|
‖z‖ ‖y‖ ), (18)

where Πz(y) = z · 〈z, y〉 / ‖z‖2 denotes the projection of

y onto z. It is important to notice that 〈·, ·〉 denotes the

complex scalar product, i.e.,

〈z, y〉 =
n
∑

i=1

ziyi, (19)

where · denotes the complex conjugation, and ‖ · ‖ is the

norm induced by the complex scalar product.

(a) (b) (c)

Figure 2: Pure Rotational Perturbation: Perturbed shape

signal (a), regularized signal using the classical Kendall

shape space (b), and regularized signal using the oriented

Kendall shape space (c).

4.3. Oriented Kendall Shapes

Based on the considerations from Sec. 4.2, we derive a

shape representation which is not rotationally invariant. We

term this representation oriented Kendall shapes. At first,

we notice that by normalizing x w.r.t. translation, cf. (13),

we are removing two real degrees of freedom. Thus, the

shape representation is restricted to the real subspace

V2n−2 = {x ∈ R
2n :

2n
∑

i=1

xi = 0} ⊂ R
2n. (20)

Next, we notice that a shape x ∈ V2n−2 can be scaled by

multiplying all real components xi with a real number s 6=
0. Consequently, all shapes x which are equivalent w.r.t.

translation and scaling lie on the real line

Lx = {s · x : s ∈ R\{0}}. (21)

In other words, Lx is the equivalence class of all shapes

which are equivalent w.r.t. translations and scalings. The set

of all these equivalence classes can now be identified with

the real projective space RP 2n−3 or, more intuitively, the

real unit sphere S2n−3
R

(again with antipodal points iden-

tified). This means that by enforcing scale invariance we

are removing another real degree of freedom. As a conse-

quence, the exponential mapping and the inverse exponen-

tial mapping are given by the respective mappings of Sn−3
R

,

i.e., formulas (17) and (18) but this time with the real-valued

scalar product 〈x, y〉 as well as its induced norm. To put it in

a nutshell: By simply exchanging the scalar product for the

computation of the exponential and the inverse exponential

mappings we can switch between a rotationally invariant

and a non-rotationally invariant representation. Moreover,

all mappings can be implemented very efficiently as they

only require basic linear algebra subroutines (BLAS).

5. Experiments and Discussion

In order to demonstrate the potential of our method we

performed experiments using synthetic shape signals as

well as shape signals obtained from real imaging data.
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D: Huber, R: ℓ2 D: ℓ1, R: ℓ2 D: ℓ2, R: ℓ2

D: Huber, R: Huber D: ℓ1, R: Huber D: ℓ2, R: Huber

D: Huber, R: ℓ1 D: ℓ1, R: ℓ1 D: ℓ2, R: ℓ1

Figure 3: Comparison of Different Shape Spaces and Penalties: The red shape was perturbed by a rotation and barely

visible deformation of one coordinate. All experiments with the classical Kendall shape space are on the left of each pair, i.e.,

columns 1, 3, 5, and all experiments with the proposed shape space are shown on the right of each pair, i.e., columns 2, 4, and

6. Note that the proposed shape space in conjunction with an ℓ1 penalty for the regularizer performs best in reconstructing

the original shape signal.

5.1. Experimental Setup and Parameter Choice

All experiments have been performed on a Mac Book

Pro Retina (2013) with an Intel Core i7-4850HQ CPU (2,30

GHz), 16GB of RAM, and Windows 7. The algorithm was

implemented in C++, compiled with the Visual Studio 2012

compiler, and controlled via MATLAB mex-functions. If

not specified differently, we used 1000 iterations per ex-

periment. The maximum processing time for all of the

presented experiments was significantly below 2 seconds

demonstrating the performance of our method. Thus, our

algorithm can easily be used in an interactive scenario. We

found that the parameter n was easy to adjust and in general

we preferred a conservative strategy of choosing rather too

many than too few discretization points – typical values for

n where between 100 and 360.

5.2. Synthetic Experiments

We performed a series of synthetic experiments in order

to demonstrate the strengths and weaknesses of the classi-

cal as well the oriented Kendall shapes in the context of

our framework. Therefore, we generated an artificial shape

signal consisting of 20 copies of the same shape. We set

α = 5.0 and discretized all shapes with 100 equally spaced

boundary points. Next we perturbed the 10-th shape and

regularized the signal with different parameter choices. As

expected, the classical Kendall shape space is ”blind” w.r.t.

a pure rotational perturbation which is shown in Fig. 2.

In this experiment we used ℓ1 penalties, but the classical

Kendall shape space would not behave differently in case of

another penalty. In contrast to this, the original signal can

be recovered by the proposed shape space. Next, we per-

turbed the 10-th shape not only by a rotation, but also by a

tiny and barely visible deformation of less than 2% of the

first coordinate. In Fig. 3 all results of this experiment are

displayed.

From these results, we draw the following conclusions.

Firstly, although the deformational perturbation is barely

visible and changes the shape rather insignificantly, the met-

ric of the classical Kendall shape space regards the per-

turbed shape as being different to the other ones. As a con-

sequence, our algorithm falsely modifies the neighboring

shapes. Secondly, also the metric of the proposed shape

space regards the perturbed shape as being different. How-

ever, the regularized shapes come significantly closer to the

original signal in case of the oriented shape space. Thirdly,
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Figure 4: Video Segmentation Example: We segmented 48 frames of the ”monkey” sequence from the SegTrack database

of Tsai et al. [28]. First row: Five frames with the segmentations obtained with the method of Papazoglou and Ferrari [18].

Second row: The same frames with segmentations regularized with our algorithm. Third row: Shape signal consisting of

the original segmentations, where only every third shape is displayed for better visibility. The shapes corresponding to the

frames in the upper two rows are highlighted in red. Fourth row: Regularized shape signal with the same shapes highlighted.

the total variation regularization performs best and almost

independently of the data term at reconstructing the origi-

nal signal. One might for sure argue that in case of a purely

rigid object motions the original Kendall shape space might

yield better results, because it does not try to correct a ro-

tation by a deformation as it is done by the proposed shape

space. However, the experiment in Fig. 3 shows the algo-

rithm for obtaining the shape signal has to be very accurate.

Moreover, the rigid body motion has to be perfectly paral-

lel to the image plane and the intrinsic camera calibration

needs to be very accurate, too. We strongly believe that

these assumptions do hardly apply in practice. As a conse-

quence, we recommend to use the proposed shape space in

connection with a total variation regularization for the regu-

larization of shape signals, in particular if they are obtained

from projective imaging modalities such as video cameras.

5.3. Video Segmentation

A natural application of our method is the processing of

shape signals obtained from video segmentation algorithms,

especially in case of low resolution and low quality video

data. Thus, we applied the recently proposed video seg-

mentation algorithm of Papazoglou and Ferrari [18] to the

”monkey”’ sequence, cf. Fig. 4, of the SegTrack database1

of Tsai et al. [28]. We selected this sequence, because it

is of low quality, suffers from clearly visible compression

artifacts, and the motion of the segmented monkey is very

complex. We used the algorithm of Papazoglou and Ferrari

with the standard preferences and in combination with the

1cpl.cc.gatech.edu/projects/SegTrack/

method of Brox and Malik [4] for optical flow estimation as

well as the Turbopixels of Levinshtein et al. [15] for super-

pixel generation. Then, we extracted shape contours with

200 equally spaced boundary points per segmented frame

and processed this signal with our algorithm. We used an

ℓ1 penalty both for the data term and the regularizer and

chose a moderate regularization, i.e., α = 1.0. Processing

48 frames of this sequence took 0.53 seconds.

It can be observed that the segmentation boundaries are

significantly regularized without deviating too much from

the original segmentation. In case of very fast motions the

low frame rate of the video is sometimes causing problems,

because neighboring shapes can be very different. This

leads to a slight over-regularization which can be observed

in the second and third frame in the second row of Fig. 4

(frames 19 and 25 in the original video sequence). How-

ever, frames four and five in the second of Fig. 4 (frames

40 and 58 in the original video sequence) clearly reveal that

our method has in general no problem with concavities of

the object boundary. Furthermore, we performed a sensitiv-

ity analysis of the proposed method w.r.t. to perturbations of

the input shape signals of the ’monkey’ sequence, cf. Tab.

2. We performed 1500 runs with Gaussian noise N(0, σ)
for varying levels of σ on the input shape coordinates of the

’monkey’ sequence and evaluated the results w.r.t. the av-

erage surface distance (ASD) between the result obtained

without noise and the one computed with noise added accu-

mulated for the whole signal. These experiments show that

our method a very robust w.r.t. perturbations of the initial

shape data. Furthermore, we performed another experiment
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Figure 5: Geometry Processing Example: We applied our algorithm to a segmentation of the lumen of the abdominal part

of a human aorta. The model consists of 68 CTA slices segmented with the method of Baust et al. [3]. The original model is

shown in (a) with every second shape highlighted in blue. The regularized signal is shown in (b) with every second contour

highlighted in yellow. Our method successfully removes little cusps and concavities of the original contours, where we

colorized the original segmentation with the signed surface distance (in voxel) to the regularized model (c). Two exemplary

contours are shown in (d) and (e), where the little arrow indicates that our method is capable of removing small spurious

segmentation artifacts due to neighboring calcifications.

using the same sequence and found that α is relatively easy

to tune, because the dependency of the result (in terms of

ASD) on the choice of α is 0.00, 0.01, 2.09, 8.66, and 15.49

pixel for α = 0.01, α = 0.1, α = 1, α = 5, and α = 10,

respectively.

5.4. Geometry Processing

Besides processing signals obtained from video segmen-

tation our method is also suitable for geometry processing

applications. A typical scenario is the slice-wise segmenta-

tion of organs, e.g., vasculature acquired with computed to-

mography angiography (CTA). In order to demonstrate the

applicability to such cases, we consider the segmentation

of the abdominal part of the aorta from computed tomogra-

phy angiography, cf. Fig. 5. The contrasted lumen of the

aorta, cf. Fig. 5 (d) and (c), was segmented with the method

of Baust et al. [3]. The segmentation boundaries were dis-

cretized with 360 equally spaced points and our algorithm

regularized the whole signal consisting of 68 shapes in 1.35

seconds, where we chose α = 15.0 as well as ℓ1 penal-

ties for data term and regularizer. As it depicted in Fig. 5

(a) and (b), our algorithm successfully regularizes the seg-

mentation of the aortic lumen. Thereby, our algorithm is

particularly useful in removing little cusps and concavities

which is shown by Fig. 5 (c) where we colorized the orig-

inal segmentation with the signed surface distance between

the original and the regularized signal. These cusps corre-

spond to erroneously segmented calcifications in the aortic

wall, cf. Fig. 5 (e). Since our algorithm does, however,

not alter the segmentation in an unreasonable way, which

is shown in Fig. 5 (d) and (e), it is perfectly suited for

processing geometric models which shall later be used in

biomechanical simulations.

α σ = 0.5 σ = 1 σ = 2 σ = 5 σ = 10

0.01 0.6 1.3 2.5 6.3 12.5

0.1 0.6 1.3 2.5 6.3 12.5

1 0.4 0.8 1.5 3.5 7.3

5 0.2 0.4 1.0 3.1 7.6

10 0.2 0.3 0.7 2.1 5.3

Table 2: Sensitivity Analysis: The proposed method is very

robust w.r.t. perturbations of the input contours, cf. Sec.5.3.

All values (except for α) are in pixel.

6. Conclusion

In this paper we introduced the concept of shape sig-

nals, i.e., collections of shapes which enjoy a temporal or

spatial ordering. We also presented an algorithm for regu-

larizing such shape signals. Moreover, we derived a non-

rotationally invariant analogue of the shape space proposed

by Kendall [13] which is better suited for the considered

scenario of shape signal regularization. Finally, we demon-

strated the advantages of the proposed approach, particu-

larly in the case of total variation regularization, using syn-

thetic and real world data.
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