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Abstract

Using Monte Carlo simulations for a semi-infinite medium representing
a skeletal muscle tissue, it is demonstrated that the zero- and first-order
moments of the power spectrum for a representative pixel of a full-field laser–
Doppler imager behave differently from classical laser–Doppler flowmetry. In
particular, the zero-order moment has a very low sensitivity to tissue blood
volume changes, and it becomes completely insensitive if the probability for a
photon to interact with a moving red blood cell is above 0.05. It is shown that
the loss in sensitivity is due to the strong forward scatter of the propagating
photons in biological tissues (i.e., anisotropy factor g = 0.9). The first-order
moment is linearly related to the root mean square of the red blood cell velocity
(the Brownian component), and there is also a positive relationship with tissue
blood volume. The most common physiological interpretation of the first-order
moment is as tissue blood volume times expectation of the blood velocity (in
probabilistic terms). In this sense, the use of the first-order moment appears
to be a reasonable approach for qualitative real-time blood flow monitoring,
but it does not allow us to obtain information on blood velocity or volume
independently. Finally, it is shown that the spatial and temporal resolution
trade-off imposed by the CMOS detectors, used in full-field laser–Doppler
hardware, may lead to measurements that vary oppositely with the underlying
physiological quantities. Further improvements on detectors’ sampling rate
will overcome this limitation.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

During the past decades, non-invasive laser–Doppler and laser speckle based imaging
techniques (Briers 2001, 2007, Vennemann et al 2007) have attracted large interest of
many research laboratories and of the medical community in particular. The development of
the charge-coupled device (CCD) and complementary metal-oxide-semiconductor (CMOS)
digital technology has allowed us to conceive real-time tissue blood perfusion imagers. These
imagers do not necessitate direct contact with the tissue under investigation (ideal for the
surgical environment), are non-invasive and can be utilized on humans. In particular, fast
sampling rate CMOS sensors (Fossum 1997, Hoffman et al 2005) seem to have the greatest
potential for the conception of a new class of full-field laser–Doppler imagers (FFLDI), and
some prototypes have already been proposed (Serov et al 2002, 2005, Serov and Lasser 2005).

While the sensitivity and sampling speed of FFLDI can expect to gain from ongoing
technological developments, there are still open theoretical questions to resolve. The analytical
models and the numerical simulations for ‘classical’ laser–Doppler hardware may intuitively
be reduced to a short-distance source–detector configuration problem (Briers 2001). However,
the FFLDI illuminates the whole observed tissue region with a very large spot of light. This
can be seen as an infinite number of source–detector couples with the photons simultaneously
interacting in a complex manner over all possible paths (for schematic representations of
‘classical’ laser–Doppler and FFLDI see figure 1). Consequently, there is no guarantee
that classical algorithms to extract blood volume and flow information (e.g. analysis of the
moments of the power spectrum, Bonner and Nossal 1981) actually still work with FFLDI.
Analytical modeling of FFLDI using light transport and the laser–Doppler theory becomes
too complex, if not impossible. This complexity may be explained by the fact that a given
FFLDI detector pixel captures photons that simultaneously originate from sources located
over a wide range of distances, going from very short (e.g. 1 mm) to very large (e.g. 20 mm).
On one hand, the presence of short photon paths, due to the particular values of the scattering
and absorption coefficients in biological tissues, makes it theoretically impossible to use
the diffusion approximation of the radiative transport equation to facilitate the calculations.
On the other hand, photons that traveled large distances do not allow for the single scattering
approximation because they may interact many times with the moving particles before reaching
the detector. These difficulties prevent us from deriving an explicit analytical model that would
allow us to investigate the behavior of FFLDI signals as the tissue’s physiological parameters
vary. Therefore, the use of numerical simulations is probably the most efficient strategy to
approach the problem.

In an attempt to clarify some of the highlighted problems, the aim of the present work is
to (1) numerically simulate general FFLDI working on a tissue phantom with known optical
and physiological parameters, (2) study the relationship existing between the moments of the
obtained power spectra and the physiological parameters, such as the tissue blood volume or
the blood velocity and (3) investigate the influence of the technical constraints imposed by the
CMOS sensors on the obtained measurements and compare them with the theoretical exact
values. The results not only contribute to a better understanding of FFLDI, but can also serve
as guidelines to the experimentalist.

2. Material and methods

2.1. Virtual tissue phantom and blood perfusion imager

The tissue phantom was represented by a homogeneous 2500 × 2500 × 2500 mm3 cube.
Considering the huge amount of time necessary to make the simulations (see e.g. the legend
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Figure 1. (A) Representation of a ‘classical’ laser–Doppler source–detector geometry (not to
scale) where the light source (red point; gray in the non-electronic version of the manuscript)
is close to the detection region (black square). One photon path is reported as an example.
(B) Representation of a full-field laser–Doppler geometry (not to scale) where the light source is
a large circular region. Two representative photon paths (red and green) starting from different
points within the source and reaching the detector (black square) are reported.

of figure 11), we were obliged to restrict the choice of the optical parameters. The absorption
coefficient (μa), the reduced scattering coefficient (μ′

s), the refractive index (n) and the
wavelength were set to 0.025 mm−1, 0.5 mm−1, 1.4 and 800 nm, respectively, for all the
simulations. These parameters are representative of human skeletal muscle (Zaccanti et al
1995, Torricelli et al 2004, Couvoisier 2006) in the case of blood perfusion monitoring of a
flap during surgical soft tissue reconstruction. The refractive index for the air was set to 1.
The anisotropy parameter (g) was set to 0 or 0.9 (Liebert et al 2006, 2007), depending on the
simulation (see below).

The light source of the full-field imager was a uniform laser spot of 30 mm diameter,
perpendicularly projected and centered on one of the faces of the cube. The detector was
represented by a pixel located at the center of the same face where the light source was
illuminating (see figure 1(B)). All the photons reaching the detector were taken into account
independently of the detection angle. The emission angle of the photons (before reaching the
detector) is determined by the last scattering event, and a reasonable assumption is that just
before this event the direction of the photons is already completely randomized. In particular,
the emission angle is independent of the photon’s precedent history and of the accumulated
Doppler shift. In practice, all the directions contain the same frequency information, and this
is the reason why they can be mixed. The advantage is a gain in the signal-to-noise ratio. The
position and the size of this pixel are not that critical because the size of the cube and the light
source are relatively very large. Specifically, a small shift of a few millimeters of the detector
pixel produces exactly the same numerical results for such a homogeneous sample (Binzoni
et al 2008b). This fact allows one to improve the signal-to-noise ratio of the simulations by
taking the mean value on several pixels covering in the present case a total surface of S = 6 ×
6 mm2.

2.2. Monte Carlo method and generation of the power spectrum

Simulation of photon transport into the tissue using a Monte Carlo technique is a well-
established approach. Here, we rely on a previously published implementation (Binzoni et al
2008a, 2008b), where we extended the original code with the laser–Doppler component. The
algorithm was implemented on a cluster of 8 node PC (3 GHz, Intel, Pentium 4) allowing
distributed calculations (Kirkby and Delpy 1997). Implicit photon capture variance reduction
(Wang et al 1995) and roulette termination (Sobol 1975) techniques were deployed. The final
weight of the photon packet reaching the detection region-of-interest with angular frequency
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ω and direction k̂ was W(ω, k̂). For the roulette technique, the trigger value was W < 10−4

and the photon packet had a chance 1/10 to survive with a new weight, 10W (the initial weight
was always set to W = 1). The photon packet steps were generated by means of the variable
step size method (Prahl et al 1989). The model describing the change of the photon packet
direction after each collision was represented by the Henyey–Greenstein probability density
function (Henyey and Greenstein 1941) independently of the fact that the scatterer was a
moving particle or not (Soelkner et al 1997, Kienle 2001). Reflection of the photon packets on
the boundaries was treated as an all-or-none problem by using the probability density functions
derived from the Snell–Descartes law and Fresnel’s formulae.

The laser–Doppler shift for each individual photon (packet) was computed by means of
the method published in Soelkner et al (1997) (see equation (1)). After each scattering event
it was decided if the scatterer was a moving particle by sampling a uniform random number
ξ ∈ [0, 1] and by defining the probability of having a moving particle Pmove ∈ [0, 1]. The
parameter Pmove is classically interpreted for obvious reasons as proportional to the tissue
blood volume, and we will also use this terminology. The model describing the velocity
distribution (

⇀

V , mm s−1) of the moving particles was represented by the probability density
function p(

⇀

V ) (see below). Thus, once
⇀

V was generated using the law given by p(
⇀

V ), the
laser–Doppler frequency shift (�νq , Hz) for the qth scattering event with a moving particle
was computed as (Soelkner et al 1997)

�ωq = 2π�νq = (
⇀

ks − ⇀

ki)
⇀

V q

2π
, (1)

where
⇀

ki and
⇀

ks are the wave vectors for the input and scattered light and

‖⇀

ks‖ = ‖⇀

ki‖ = 2πn

λ
(2)

with λ = 800 nm. Thus, the angular frequency of the photon packet reaching the detection
pixel, with weight W(ω, k̂) and direction k̂, was expressed as

ω = ω0 +
M∑

q=1

�ωq = ω0 + �ω, (3)

where M is the total number of scattering events with a moving particle and ω0 = 2πc/λ. The
above procedure was repeated for N = 1×106 photon packets for each of the simulations in this
work, if it is not differently specified. The ω − W(ω, k̂) couples were stored in a histogram
form, ω − Wtot(ω), where Wtot(ω) was the sum of all W(ω, k̂) having the corresponding
angular frequency falling in the interval [ω, ω + δω] with δω/2π ≈ 19.53 Hz independently
of the direction k̂. For a very high number of photons, we can think of ω as a continuous-
domain variable. Intuitively, Wtot(ω) may be seen as the ‘optical spectrum’ obtained with an
idealized spectrophotometer which would allow us to observe the optical angular frequencies
with an extremely high resolution. In practice, the FFLDI is able to detect only the ‘beating’
component which has very low angular frequencies (i.e., �ω = ω − ω0). This ‘beating’
component is usually represented as a power spectrum (S(�ω)) and was computed by using
the classical method as published by de Mul et al (1995) and previously proposed by Forrester
(1961):

S(�ω) = a

∫ ∞

0
Wtot(ω1)Wtot(ω1 + �ω) dω1, (4)

where the proportionality constant a is not known, and for this reason S(�ω) was expressed
in arbitrary units (a.u.). Thus, the last operation represented by equation (4) takes into account
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interference phenomena generated by the interaction between the different photons. It must
be noted that �ω may have negative values; however, the FFLDI is not able to detect negative
frequencies and they appear in the spectrum as positive. Thus, in practice the resulting power
spectrum, P(�ω) (a.u.), for �ω � 0 was finally obtained as

P(�ω) =
{

S(0), if �ω = 0

S(−|�ω|) + S(|�ω|) if �ω > 0.
(5)

2.3. The probability density function for the tissue blood velocity

The probability density function (p) allowing us to randomly generate the velocity (
⇀

V ) of a
moving particle (red blood cell) was defined as

p(
⇀

V ) =
∏

α∈{x,y,z}
pα(Vα), (6)

where Vx, Vy and Vz are the
⇀

V components. The probability density function for each Vα was
(Zhong et al 1998, Binzoni et al 2004, 2006)

pα(Vα) =
(

3

2
〈
V 2

Brown

〉
)1/2

1

π1/2

(
e
− 3

2〈V 2
Brown〉 (Vα−Vtrans,α)2)

, (7)

where the constant
〈
V 2

Brown

〉1/2 ∈ [0,∞) (mm s−1) represents the root mean square of the
particle velocity due to the ‘Brownian’ motion. The constants Vtrans,α ∈ (−∞,∞) (mm s−1)
represent the components of the particle’s global translational velocity (

⇀

V trans). This function
is very general because, in addition to the typical case of the ‘Brownian motion’, it also allows
us to describe tissues where the blood flow may be strongly directional, such as for the skeletal
muscle where vessels run along the direction of the muscle cells. For a better explanation of
this point see the ‘Discussion’ section. The probability density function (pn) for ‖ ⇀

V ‖ may be
derived from equations (6) and (7) by following the procedure of Zhong et al (1998) which
gives

pn(‖
⇀

V ‖) =
(

3

2
〈
V 2

Brown

〉
)1/2 ‖ ⇀

V ‖
√

π‖ ⇀

V trans‖

{
exp

[
− 3

2
〈
V 2

Brown

〉 (‖ ⇀

V ‖ − ‖ ⇀

V trans‖)2

]

− exp

[
− 3

2
〈
V 2

Brown

〉 (‖ ⇀

V ‖ + ‖ ⇀

V trans‖)2

] }
, (8)

where ‖‖ is the �2 norm of the vector.
The method originally proposed by Witt (1977) has been used to simulate the random event

for which the variable Vα falls with the probability pα(Vα) dVα in the interval [Vα, Vα + dVα].
For the present purpose, it was also necessary to take into account the fact that in real
tissues, the velocity Vα covers a finite range of possible values, i.e., Vα ∈ (Vα,min, Vα,max)

and Vα,min < Vα,max ∈ (−∞,∞). As a consequence, the relation between the cumulative
distribution function (right-hand side of equation (9)) and ξα was expressed as

ξα =
∫ Vα

Vα,min
pα(V ′

α) dV ′
α∫ Vα,max

Vα,min
pα(V ′

α) dV ′
α

, (9)

which holds for each coordinate α independently. The denominator appearing in equation (9)
is the normalization factor for a given Vα,min and Vα,max. In practice, the cumulative distribution
function of pα(Vα) allows us to build a look-up table that provides a one-to-one correspondence
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Figure 2. Probability density function (px(Vx)) for the x-component (Vx) of the velocity vector
⇀

V computed by means of equation (10). A total of 1 × 106 realizations for ξx ∈ [0, 1] uniformly
distributed random variable were used for the bar graphs. The three different sets of parameters
〈V 2

Brown〉1/2 and Vtrans,x utilized to define the three different examples for px(Vx) are directly
reported on the corresponding panels.

between a uniformly distributed random number ξα ∈ [0, 1] and a realization of Vα . Direct
numerical integration of equations (7) and (9) may become numerically instable for some
particular

〈
V 2

Brown

〉1/2
and Vtrans,α values. Thus, the following analytical form directly derived

from equations (7) and (9) is preferable for the Monte Carlo simulations:

ξα =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

erfc
( Vα,min−Vtrans,α

(2〈V 2
Brown〉/3)1/2

) − erfc
( Vα−Vtrans,α

(2〈V 2
Brown〉/3)1/2

)
erfc

( Vα,min−Vtrans,α

(2〈V 2
Brown〉/3)1/2

) − erfc
( Vα,max−Vtrans,α

(2〈V 2
Brown〉/3)1/2

)
1

2
; if

(〈
V 2

Brown

〉 = 0
) ∧ (Vα = Vtrans,α),

(10)

where erfc is the complementary error function. It must be noted that the Matlab language
used to implement the code utilizes the IEEE arithmetic representation, and thus it allows
us to correctly manage the presence of infinities and 0/0 terms. In figure 2 are shown some
representative velocity distributions that are possible to obtain by means of the look-up table
derived from equation (10).

2.4. Derivation of the perfusion/speed related parameters from the power spectrum

The classical approach utilized to extract physiological information from P(�ω), especially
if one needs a real-time treatment (Serov and Lasser 2005), is to compute the zero- (〈ω0〉) and
the first-order (〈ω1〉) moments (Bonner and Nossal 1981), which are defined as

〈ωp〉 =
∫ ∞

0
ωpP (�ω) d(�ω), p ∈ {0, 1}. (11)
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The DC spike (no Doppler shift) is not taken into account for the moment calculation, as is
the case for real-world laser–Doppler instrumentation. For a simple source–detector laser–
Doppler flowmetry setup, 〈ω0〉 is proportional to the (moving) tissue blood volume with a
reasonable approximation, whereas 〈ω1〉 is proportional to the tissue blood flow. It remains to
be demonstrated that this rule also holds for FFLDI, and this is one of the aims of this work.
Note that here the words ‘flow’ or ‘perfusion’ are used with an equivalent meaning. Probably,
for the case

〈
V 2

Brown

〉1/2 = 0, it would be better to speak about ‘flow’, but for
⇀

V trans = 0, the
term ‘perfusion’ might be better adapted. In any case, this choice has strictly no consequence
for the present results or for their interpretation.

2.5. Simulations settings for the full field laser–Doppler imager configuration

To cover a reasonable number of physiological situations, the power spectra were generated
for all the possible combinations of the following parameters: (1) g = 0, Pmove ∈
{0.025, 0.05, 0.075, 0.1, 0.125, 0.15}, 〈

V 2
Brown

〉1/2 ∈ {0, 1, 2, 3, 4}, Vtrans,x ∈ {0, 1, 2, 3, 4} and

(2) g = 0.9, Pmove ∈ {0.025, 0.05, 0.075, 0.1, 0.125, 0.15}, 〈
V 2

Brown

〉1/2 ∈ {1, 2, 3, 4} and
Vtrans,x ∈ {0, 1, 2, 3, 4}. The fixed parameters were Vx,min = −10, Vx,max = 10, Vtrans,y = 0

and Vtrans,z = 0. Obviously, the combination
〈
V 2

Brown

〉1/2 = Vtrans,x = 0 was not used
because this would mean no blood speed and thus by definition no laser–Doppler signal.
The particular choice of the

⇀

V trans direction along the positive x-axis direction implies that
the bulk translational movement of the blood is parallel to the phantom surface where the
laser light source is projected. The chosen Pmove values cover the typical range of the skeletal
muscle (Kienle 2001).

2.6. Simulations settings for a ‘classical’ laser–Doppler flowmeter

As explained in the ‘Introduction’ section, one of the aims of the present work was to investigate
if the algorithms (equation (11)) used in ‘classical’ LDF can also be successfully applied to
FFLDI. To facilitate the reading of the manuscript and the comparison between the two
situations, a series of Monte Carlo simulations have also been performed for the ‘classical’
LDF configuration on the same cubic phantom. Considering that this is a well-known matter,
these results will be presented only in the ‘Discussion’ section. For ‘classical’ LDF, it is
understood as a simple point source–detector configuration (see figure 1A). The cylindrical
symmetry of the problem typically allows us to treat the problem as a point source and an
annular detector (75 μm width). The interoptode spacing (0.5 mm) was defined as the distance
between the source and the middle point of the annular detector. The number of photon packets
was N = 3 × 106. All the remaining optical and physiological parameters were the same as
for the FFLDI simulations.

3. Results

In figure 3(A) are reported the 〈ω0〉 values obtained from P(�ω) as a function of a pure
translational velocity (i.e., 〈V 2

Brown〉 = 0) for the red blood cells. The different markers
correspond to different tissue blood volumes (Pmove) and the photon scattering events were
considered to be isotropic (g = 0). As in the case for classical laser–Doppler instrumentation,
we observe that as a first approximation 〈ω0〉 (classically related to the tissue blood volume)
is independent of Vtrans,x , but that it increases non-linearly when Pmove increases. To provide
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Figure 3. (A) Zero-order moment, 〈ω0〉, of the FFLDI power spectrum of one representative
pixel, P(�ω), as a function of a pure translational velocity, Vtrans, for the red blood cells. The
⇀

V components were Vtrans,y = Vtrans,z = 0 and Vtrans,x = Vtrans. The different markers represent
different tissue blood ‘volumes’ Pmove, expressed as a probability value (see text). (B) Mean 〈ω0〉
values taken over all possible Vtrans,x as a function of Pmove. The vertical bars are the standard
deviations.

better evidence of this phenomenon, we presented in figure 3(B) the mean 〈ω0〉 values, taken
over all Vtrans,x , as a function of Pmove.

In figure 4(A) are shown the 〈ω1〉 values of P(�ω) as a function of a pure translational
velocity (i.e. 〈V 2

Brown〉 = 0) for the red blood cells. The P(�ω) data used to compute 〈ω1〉
were the same as for figure 3, and the different markers correspond to different Pmove. Again
similar to classical laser–Doppler instrumentation, it may be seen that 〈ω1〉 (classically related
to the tissue blood flow) increases linearly with increasing Vtrans,x . Increasing Pmove increases
the slope of the Vtrans,x − 〈ω1〉 relationship. In figure 4(B), we reported the 〈ω1〉/〈ω0〉 values
as a function of Vtrans,x (data from figures 3(A) and 4(A)). Classically, the ratio 〈ω1〉/〈ω0〉
should be related to the blood velocity only. In this case, it can be seen that the ratio does not
fully eliminate the dependence on Pmove; however, the remaining Pmove dependence appears to
become less important for small Vtrans,x values.

In figures 5 and 6 are shown the 〈ω0〉 and 〈ω1〉 values for a velocity distribution of the red
blood cell components described by equation (7). In this case both

〈
V 2

Brown

〉
and Vtrans,x may

be non-nil. It may be seen that the behavior of 〈ω0〉 and 〈ω1〉 is similar to the one appearing
in figures 3 and 4. Also in this case, the ratio 〈ω1〉/〈ω0〉 does not completely eliminate the
dependence on Pmove (results not shown because the behavior is similar to figure 4(B)).
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Figure 4. (A) First-order moment, 〈ω1〉, of the FFLDI power spectrum of one representative pixel,
P(�ω), as a function of a pure translational velocity, Vtrans, for the red blood cells. The P(�ω)

used to obtain 〈ω1〉 were the same as for figure 2. The
⇀

V components were Vtrans,y = Vtrans,z = 0
and Vtrans,x = Vtrans. The different markers represent different tissue blood ‘volumes’ Pmove,
expressed as a probability value (see text). (B) 〈ω1〉/〈ω0〉 values as a function of Vtrans. The 〈ω1〉
and 〈ω0〉 data have been taken from figures 2(A) and 3(A).

Most interesting, we also studied the same simulations as in figures 5 and 6, but for
g = 0.9. Note that g = 0.9 is representative of the anisotropy parameter of a real biological
tissue. Surprisingly enough, figure 7 shows that in this case the Pmove dependence of 〈ω0〉 is
strongly decreased, i.e., there is no influence for large Pmove values. In practice, this means
that in a real biological tissue, 〈ω0〉 is not very sensitive to blood volume changes. However,
figure 8 reveals that the velocity sensitivity is still present and that 〈ω1〉 increases linearly as a
function of

〈
V 2

Brown

〉1/2
for a given Vtrans,x and Pmove. The Pmove dependence of 〈ω1〉 is also still

present, and this allows us to interpret 〈ω1〉 as a flow parameter as is the case for the classical
laser–Doppler instrumentation.

4. Discussion

In this work, we simulated an ideal FFLDI device by using the Monte Carlo method to
describe photon transport into biological tissues and their interaction with moving red blood
cells. Presently, no theoretical developments exist for the specific case of FFLDI. Therefore,
the proposed simulations try to cover a relatively large spectrum of examples: the case g = 0 is
rather useful to the study of analytical methods, while the case g = 0.9 is much closer to ‘real’
biological tissues. The sampling rate of the instrument was chosen to cover the frequencies
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Figure 5. Zero-order moment, 〈ω0〉, of the FFLDI power spectrum of one representative pixel,
P(�ω), as a function of 〈V 2

Brown〉1/2 and Vtrans. The
⇀

V components were Vtrans,y = Vtrans,z = 0 and
Vtrans,x = Vtrans. The different markers represent different tissue blood ‘volumes’ Pmove, expressed
as a probability value (see text). The abscissa and ordinate scales are the same for all the graphs.

typically spanned by a real laser–Doppler (bandwidth of 40 KHz). Moreover, a case that takes
into account current technological limitations of CMOS detectors was also considered.

It must be noted that only one phase function has been chosen to describe the tissue
and that the model can certainly be further improved by including specific functions for the
blood and the surrounding tissue. For example, specific phase functions have been derived for
in vitro blood samples (see e.g. Hammer et al 1998, Friebel et al 2006). However, it is unclear
what is the effect of the red blood cell confinement into the geometrical network of capillaries,
arterioles and so on. In fact, inside the vessels the red blood cells may be aligned one after
the other; e.g. they may touch each other to form unique elongated shapes. The effect of
these and other geometrical constraints on the phase function has not yet been clarified, and
should be studied in future. Therefore, we opted for one ‘mean’ phase function, describing in
a reasonable manner a biological tissue.

4.1. Probability density function for the tissue blood velocity

Our simulation model relies on a phenomenological probability density function for
⇀

V .
Actually, the definition of a suitable analytical representation of p(

⇀

V ) for a biological tissue
(equations (6) and (7)) is a difficult task that should take into account several criteria. As
is well known, the geometry of the microvascular tree strongly depends on the tissue type
(i.e. muscle, brain, fat, etc) and its high complexity allows one to treat parameters such
as

⇀

V in a stochastic manner. In this sense, the probability density function for
⇀

V may
potentially have different analytical representations depending on the investigated body region.
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Figure 6. First-order moment, 〈ω1〉, of the FFLDI power spectrum of one representative pixel,
P(�ω), as a function of 〈V 2

Brown〉1/2 and Vtrans. The
⇀

V components were Vtrans,y = Vtrans,z = 0 and
Vtrans,x = Vtrans. The different markers represent different tissue blood ‘volumes’ Pmove, expressed
as a probability value (see text). The abscissa and ordinate scales are the same for all the graphs.

Moreover, a microvascular tree is not an amorphous structure, but it continuously modulates
its blood flow/speed through the humoral/neural control of the vascular smooth muscles and
precapillary sphincters (Popel and Johnson 2005). The opening and closing of anastomotic
microvessels and the modulation of the vascular smooth muscles tone modify the blood velocity
and in particular the geometry of the vascular tree. To know whether or not p(

⇀

V ) remains
mathematically the same function during these physiologically induced geometrical changes
is not an easy experimental task. Nevertheless, the hypothesis that p(

⇀

V ) maintains the same
analytical form even during blood-flow variations is usually accepted (Bonner and Nossal
1981, Zhong et al 1998, Kienle 2001). In fact, this appears to be a reasonable assumption if
the number of microvessels in the observed tissue volume is large. This is also the assumption
we made here.

The question remains how to define the analytical expression of p(
⇀

V ). To the best of our
knowledge, there are no published data for the in vivo probability density functions for Vx, Vy

and Vz corresponding to microvascular networks. Data have been reported only for the blood
‘speed’ (‖ ⇀

V ‖) distribution for different tissues (Klitzman and Johnson 1982, Sarelius 1986,
Ellsworth et al 1988). Even if an explicit mathematical model was not proposed by these
authors, all the experimental measurements show a ‘bell shaped’ distribution, independent of
the tissue type, that may reasonably be described by a function such as pn(‖

⇀

V ‖) (equation (8)).
As pn(‖

⇀

V ‖) is derived from p(
⇀

V ), these experimental data may indirectly motivate the choice
of the latter (equation (8)). The large number of measurements (e.g., on large tissue volumes)
and the central limit theorem may support the assumption of a Gaussian model such as
pn(‖

⇀

V ‖).
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Figure 7. Zero-order moment, 〈ω0〉, of the FFLDI power spectrum of one representative pixel,
P(�ω), as a function of 〈V 2

Brown〉1/2 and Vtrans. The
⇀

V components were Vtrans,y = Vtrans,z = 0
and Vtrans,x = Vtrans. The different markers represent different tissue blood ‘volumes’ Pmove,
expressed as a probability value (see text). The abscissa and ordinate scales are the same for all
the graphs. This simulation corresponds to the one in figure 4, however, for the case g = 0.9 that
better describes a ‘real’ biological tissue.

Next to the experimental data, many numerical simulations have taken into account
different complexity levels of the microvascular blood flow control, and were based on real
microvascular geometries (Ellsworth et al 1988, Goldman and Popel 1999, 2000, 2001,
Ji et al 2006, Tsoukias et al 2007). With regard to the distribution of ‖ ⇀

V ‖, these simulations
have reproduced results similar to the experimental data, and thus further motivating the
specific choice of p(

⇀

V ) (equation (8)).
From another point of view, probably one of the most cited contributions related to the

laser–Doppler flowmetry is the seminal paper of Bonner and Nossal (1981). Even if this
work does not directly deal with imaging, the derived theoretical results (see section 2.4) have
been largely utilized as a backbone algorithm of the majority of the laser–Doppler imagers
(Serov et al 2002, 2005, Serov and Lasser 2005), though the experimental conditions did
not satisfy the assumptions of the original paper (e.g., for the FFLDI geometry). While
the Bonner and Nossal (1981) approach seems to generate reasonable data, no methodical
studies were performed allowing us to demonstrate the validity and the limits of this approach.
The important point here is that the ‖ ⇀

V ‖ distribution used in the Bonner and Nossal (1981)
theoretical derivations corresponds exactly to pn(‖

⇀

V ‖) (equation (8) with
⇀

V trans = 0). For
this reason, the use of pn(‖

⇀

V ‖) in the Monte Carlo simulations has also the great advantage
of being compatible with the Bonner and Nossal approach when it comes to the definition of
the tissue phantom. Based on physiological reasons, Zhong et al (1998) have first shown the
necessity of using a more general function than that proposed by Bonner and Nossal (1981).
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Figure 8. First-order moment, 〈ω1〉, of the FFLDI power spectrum of one representative pixel,
P(�ω), as a function of 〈V 2

Brown〉1/2 and Vtrans. The
⇀

V components were Vtrans,y = Vtrans,z = 0
and Vtrans,x = Vtrans. The different symbols represent different tissue blood ‘volumes’ Pmove,
expressed as a probability value (see text). The abscissa and ordinate scales are the same for all
the graphs. This simulation corresponds to the one in figure 5, however, for the case g = 0.9 that
better describes a ‘real’ biological tissue.

This was done by introducing the notion of ‘bulk’ movement for the blood cells. Thus, to take
into account this model improvement, in this work also the original condition

⇀

V trans = 0 for
pn(‖

⇀

V ‖) has been relaxed.
Of course, if one would like to consider very large vessels, it would probably be necessary

to include them explicitly in the geometrical model as small ‘tubes’. However, in this case we
would no longer be in the condition of having a ‘uniform’ semi-infinite medium, and this was
not the aim of this work. In the case of tissues such as the skin, intermediary solutions may
be found for example by explicitly distinguishing a finite number of well-defined speed and
vessel sizes included in the same investigated tissue volume (Fredriksson et al 2008).

In conclusion, the current form of p(
⇀

V ) is probably the only one that allows us to obtain
explicit analytical solutions in the standard laser–Doppler flowmetry (Binzoni et al 2004, 2006)
and that at the same time is reasonably compatible with the underlying muscle physiology. The
derivation of new analytical models for FFLDI with more complex geometries will probably
be based on a similar choice, and remains a topic for future research.

4.2. Physiological interpretation of the zero- and first-order moments

The most intriguing result of this work is probably the observation that FFLDI has no or very
poor sensitivity to tissue blood volume variations (figure 7). While classical laser–Doppler
flowmeters (LDF) can easily follow Pmove changes through the monitoring of 〈ω0〉, this is not
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Figure 9. Fraction of photons that reach the photodetector and that are Doppler shifted, for the
FFLDI geometry, as a function of the blood ‘volume’ (Pmove), expressed as a probability value (see
section 2.2). The vertical bars represent standard deviations.

valid anymore for FFLDI (except for very low Pmove values, see below). The reason of this
behavior appears to be due to the fact that biological tissues strongly forward scatter the light.
Indeed, the sensitivity of 〈ω0〉 to Pmove variations is readily regained if the anisotropy parameter
g is reduced to zero (figure 5). One must not forget that a high tissue blood concentration
and a low μ′

s (long photon path lengths before detection) might cause virtually all photons
to become Doppler shifted. Serov et al (2000) have demonstrated (at a 1, 2 mm interoptode
distance) that skin measurements already display a fraction of Doppler shifted photons of
about 0.5 for the arm and 0.7 for the finger (fiber separation: 1.2 mm). In our case, as it should
be for the FFLDI configuration, figure 9 shows that this fraction is higher and that the curve
tends to saturate for increasing Pmove values. This could also explain the low sensitivity of
FFLDI for a large Pmove.

In practice, FFLDI can only follow global tissue blood flow changes by monitoring
〈ω1〉. This means that

⇀

V cannot be extracted from the total flow, as it is usually done in
classical LDF by the ratio 〈ω1〉/〈ω0〉. In other words, it is not possible to decide if a flow
variation is due to a change in the tissue blood volume (Pmove), velocity (

⇀

V ) or a combination
of both. Moreover,

⇀

V depends itself on two factors,
〈
V 2

Brown

〉1/2
and

⇀

V trans, and this further
complicates the physiological interpretation of 〈ω1〉. One possible solution to this problem
could be to develop an analytical model that exploits the complete information of P(�ω) to
obtain Pmove,

〈
V 2

Brown

〉1/2
and

⇀

V trans, as has been done in the laser–Doppler flowmetry before
(Boas 1996, Binzoni et al 2006). As explained in the ‘Introduction’ section, the derivation
of an analytical model depends on our capability to describe the photon migration into the
tissue simultaneously for very short and very large source–detector distances. For the sake of
completeness, in figure 10, we show an example where the optical spectrum, Wtot(ω), is split
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Figure 10. The colored image represents the intensities values of the optical spectrum, Wω,r (ω, r),
decomposed as a function of the distance, r, existing between the position of the starting point of
each photon packet and the respective detection point. The function Wtot(ω) is the sum of all the
lines of the 2D image, and Wr(r) is the sum of all the columns. The ω − ω0 and r scales also
hold for the 2D image. The parameters for the simulation were g = 0.9, 〈V 2

Brown〉1/2 = 1 mm s−1,
Vtrans,y = Vtrans,z = 0 mm s−1, Vtrans,x = 1 mm s−1, Pmove = 0.075.

as a function of r (mm), the distance between the positions of the entrance and detection points
of a photon packet. The resulting 2D histogram Wω,r(ω, r) is shown in figure 10, where the
colors represent the different intensities of Wω,r(ω, r). The graphs appearing near the axis are
the marginalized histograms of Wtot(ω, r):

Wtot(ω) =
∫ ∞

0
Wω,r(ω, r) dr (12)

and

Wr(r) =
∫ ∞

0
Wω,r(ω, r) dω. (13)

The significance of Wr(r) is that the major fraction of the photons reaching the detection pixel
entered the tissue at a distance larger than ∼2 mm. This is not very far, but it could justify
an approximation of the radiative transport equation allowing us to facilitate the analytical
derivations. The specific behavior of Wr(r) as a function of r is mainly influenced by the
anisotropy factor g; i.e., low g values will fill the photon lack in the range 0–2 mm (not shown),
a situation that is not present in a real biological tissue. It is important to emphasize that the
behavior Wr(r) in figure 10 does not indicate that the information content of the signal (the
tissue blood flow) is dominated by tissue regions far from the detection point (>2 mm). In fact,
we have previously demonstrated (Binzoni et al 2008a) that blood volume and/or velocity
information mainly originates from a region situated just under the detection point in the case
of an FFLDI source–detector geometry. This might also explains why FFLDI allows us to
obtain a coherent image of the tissue blood perfusion occurring under the tissue surface. It is
in this sense that 〈ω0〉 and 〈ω1〉 must be interpreted.

As noted before, a method based on direct fitting of P(�ω) would exploit the full
spectrum; however, this would be impractical for real-time imaging. In fact, for an image of
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Figure 11. The spectrum P(�ω) utilized to compute 〈ω0〉 and 〈ω1〉 in this figure are the same as in
figures 6 and 7. (A) Zero-order moment, 〈ω0〉, of the FFLDI power spectrum of one representative
pixel, P(�ω), as a function of the tissue blood ‘volumes’ Pmove, expressed as a probability value
(see text). The different markers represent different tissue blood ‘volumes’ Pmove and also hold
for figure (B). (B) First-order moment, 〈ω1〉, of the FFLDI power spectrum of one representative
pixel, P(�ω), as a function of the mean tissue blood ‘flow’, Pmove〈‖

⇀

V ‖〉, expressed in arbitrary
units. The parameter 〈‖⇀

V ‖〉 is computed using equation (14). The symbols colored in red have
a

⇀

V trans = 0 value. The necessary computation time on an eight-node cluster to obtain the data
appearing in this figure corresponds to 74 days.

size 256 × 256 pixels, we must be able to perform 65 536 fitting procedures in real time! For
this reason, we investigate the usefulness of a well-chosen approximation. Specifically, let us
express the tissue blood flow as the product of the blood ‘volume’ times the mean red blood
cells speed. This means that the blood flow must be proportional to Pmove〈‖

⇀

V ‖〉, where 〈 〉 is
the mean expected value. The idea is that Pmove〈‖

⇀

V ‖〉 must as a first approximation be linearly
related to 〈ω1〉 (and 〈ω1〉 is easy and fast to compute). The parameter 〈‖ ⇀

V ‖〉 is obtained from
equation (8) as

〈‖ ⇀

V ‖〉 =
∫ ∞

0
‖ ⇀

V ‖pn(‖
⇀

V ‖)d‖ ⇀

V ‖ =
√

6

3

〈
V 2

Brown

〉1/2

√
π

e
− 3

2
‖⇀V trans‖2

〈V 2
Brown〉

+

(
‖ ⇀

V trans‖ +

〈
V 2

Brown

〉
3‖ ⇀

V trans‖

)
erf

(√
6

2

‖ ⇀

V trans‖〈
V 2

Brown

〉1/2

)
. (14)

It is interesting to note that for
⇀

V trans = 0:

〈‖ ⇀

V ‖〉 = 2
√

6

3

〈
V 2

Brown

〉1/2

√
π

, (15)
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Figure 12. (A) Zero-order moment, 〈ω0〉, of the ‘classical’ LDF power spectrum as a function
of the tissue blood ‘volumes’ Pmove, expressed as a probability value (see section 2.2). The
different markers represent different tissue blood ‘volumes’ Pmove and also hold for (B). (B) First-
order moment, 〈ω1〉, of the ‘classical’ LDF power spectrum as a function of the mean tissue
blood ‘flow’, Pmove〈‖

⇀

V ‖〉, expressed in arbitrary units. The parameter 〈‖⇀

V ‖〉 is computed using
equation (14). The symbols colored in red have a

⇀

V trans = 0 value.

and in the case of the classical Bonner and Nossal (1981) laser–Doppler approximation
this is proportional to 〈ω1〉/〈ω0〉 ∝ 〈‖ ⇀

V ‖〉. By using equation (14), the data presented in
figures 7 and 8 may now be expressed in a new form. From figure 11, it clearly appears
that 〈ω0〉 is insensitive to Pmove changes, especially for values Pmove � 0.05. However,
the parameter 〈ω1〉 is linearly related to Pmove〈‖

⇀

V ‖〉 only if Pmove is not submitted to large
variations. These results are nicely compatible with in vitro measurements realized by Serov
et al (2005) with FFLDI and in ‘one-pixel detection mode’ (one-pixel detection mode allows a
high acquisition rate respecting the Shannon’s sampling theorem, see below). The red markers
in figure 11 (gray, in the non-electronic version of the manuscript) represent 〈ω1〉 values for
which

⇀

V trans = 0. It can be seen that
⇀

V trans has not a large influence on the total range of
possible mean blood ‘flows’, Pmove〈‖

⇀

V ‖〉. However, we must not forget that
⇀

V trans is of great
physiological importance because some tissues have an oriented microvascular network, as
in the muscle or the brain. In this type of tissue, a situation where

⇀

V trans = 0 corresponds to
the mean velocity 〈 ⇀

V 〉 = 0 (note that 〈‖ ⇀

V ‖〉 = 〈 ⇀

V 〉), and thus to the fact that there is no net
oxygen and/or blood flow into the tissue. The consequence is that when

⇀

V trans = 0, the tissue
is physiologically not viable.

In vivo it is practically impossible that the blood volume, for a given tissue (e.g. muscle),
changes drastically from 0.025 to 0.15, and thus we can assume that the Pmove〈‖

⇀

V ‖〉 − 〈ω1〉
relationship is linear and that 〈ω1〉 may be utilized to monitor tissue blood flow changes.
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Figure 13. Zero-order moment, 〈ω0〉, of the FFLDI power spectrum of one representative pixel,
P(�ω), as a function of 〈V 2

Brown〉1/2 and Vtrans. The
⇀

V components were Vtrans,y = Vtrans,z = 0 and
Vtrans,x = Vtrans. The different markers represent different tissue blood ‘volumes’ Pmove, expressed
as a probability value (see section 2.2). The abscissa and ordinate scales are the same for all the
graphs. The sampling rate was 7 kHz.

However, 〈ω1〉 must always be considered with care because, even if the error is small, to a
single 〈ω1〉 value always correspond a range of possible Pmove〈‖

⇀

V ‖〉 values. This situation
is probably slightly improved for some tissues that have g larger than 0.9, but this will not
eliminate the problem. In conclusion, the representation of figure 11 for 〈ω1〉 slightly improves
its physiological interpretation, but does not exclude the necessity to develop in the future new
faster and precise FFLDI algorithms. In this context, fast algorithms obtained with an approach
different from laser–Doppler (laser speckle imaging) and applicable to the FFLDI geometry
have been considered, for example, among others by Briers (2001), Durduran et al (2004),
Briers (2007). Such algorithms allow in principle to circumvent the problems created by
Shannon’s sampling theorem and the limited sampling rate of the detectors. Unfortunately,
the simulations necessary to investigate these algorithms are different from the present ones
and a direct comparison appears to be difficult, but certainly deserves future attention.

To better depict the different significance of the moments for ‘classical’ LDF and FFLDI,
figure 12 explicitly shows the results of the Monte Carlo simulations for the former. As
explained in the previous sections, figure 12 clearly confirms that in the ‘classical’ LDF,
〈ω0〉 is highly sensitive to Pmove, and this is why 〈ω0〉 is usually utilized to estimate blood
volume changes (a shorter interoptode spacing, e.g. 0.25 mm, would further improve the linear
behavior observed in figure 12(A)). However, when comparing figure 12 and 11, we clearly
see that for FFLDI this is no longer the case. Thus, in practice the algorithm developed for
‘classical’ LDF works only partially well if applied to FFLDI.
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Figure 14. First-order moment, 〈ω1〉, of the FFLDI power spectrum of one representative pixel,
P(�ω), as a function of 〈V 2

Brown〉1/2 and Vtrans. The
⇀

V components were Vtrans,y = Vtrans,z = 0 and
Vtrans,x = Vtrans. The different markers represent different tissue blood ‘volumes’ Pmove, expressed
as a probability value (see section 2.2). The abscissa and ordinate scales are the same for all the
graphs. The sampling rate was 7 kHz.

4.3. Implications for the experimentalist

Our results also have important implications for the FFLDI experimentalist. In particular, the
use of CMOS detectors for FFLDI brings along the trade-off between spatial and temporal
resolutions. Specifically, the larger the image size, the slower the sampling rate. In fact, the
high-frequency content of P(�ω) becomes stronger as

⇀

V and Pmove increase (however, the
overall behavior of the spectrum is very difficult to predict intuitively, and for this reason it is
necessary to perform simulations). A too low temporal sampling rate will miss high-frequency
components and introduce distortions in the 〈ω0〉 and 〈ω1〉 estimation. Often, the trade-off can
be tuned by the user. For this reason, it is essential to understand the effect of undersampling
on the estimated 〈ω0〉 and 〈ω1〉, and to see the consequences on the physiological interpretation
of these parameters. In figures 13 and 14, we have reported the same simulations such as those
in figures 7 and 8 but where we have used an upper cutoff of 3500 Hz on P(�ω) (equivalent
to a sampling rate of 7000 Hz), before the calculation of 〈ω0〉 and 〈ω1〉. This simulates a
possible low sampling rate of the CMOS for a large field-of-view (Serov et al 2002, 2005,
Serov and Lasser 2005). Figures 13 and 14 reveal surprising behavior: blood flow is more or
less constant when

⇀

V actually increases at a constant Pmove (figure 14). Further on, 〈ω0〉 also
leads to wrong interpretations because it decreases for increasing

⇀

V without any physiological
meaning (figure 13). Figure 15 is the equivalent of figure 11, but with the presence of the
cutoff, and explicitly shows that the linear relationship between flow and 〈ω1〉 in this case is
broken. The effect of the cutoff might even become worse for a larger g due to the deeper
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Figure 15. Equivalent figure to figure 9 where the sampling rate of the full-field imager is 7 kHz.
(A) Zero-order moment, 〈ω0〉, of the FFLDI power spectrum of one representative pixel, P(�ω),
as a function of the tissue blood ‘volumes’ Pmove, expressed as a probability value (see section 2.2).
The different symbols represent different tissue blood ‘volumes’ Pmove and also hold for (B).
(B) First-order moment, 〈ω1〉, of the FFLDI power spectrum of one representative pixel, P(�ω), as
a function of the mean tissue blood ‘flow’, Pmove〈‖

⇀

V ‖〉, expressed in arbitrary units. The parameter
〈‖⇀

V ‖〉 is computed using equation (14). The symbols colored in red have a
⇀

V trans = 0 value.

penetration of the photons at the beginning of the photon path and thus to the accumulation of
a larger Doppler shift at the detector level (a similar effect that was observed when increasing
g = 0 to g = 0.9).

5. Conclusions

The contributions of this paper were made possible using a Monte Carlo simulation for FFLDI,
which is to the best of our knowledge the first attempt in this domain that takes into account
the specific setting of full-field imaging. We have demonstrated that FFLDI is a promising
method for real-time blood flow monitoring. However, the interpretation of the zero- and
first-order moments should be handled with care, as these quantities are differently linked to
the underlying physiological parameters than in the classical laser–Doppler flowmetry. Due
to strong forward scattering in a biological tissue, the zero-order moment 〈ω0〉 in FFLDI
has poor sensitivity to blood volume changes. The first-order moment 〈ω1〉 does vary with
blood flow variations, but we cannot separate blood volume from velocity changes. We also
discussed various topics for future research, such as the development of analytical models
for spectrum fitting procedures. Finally, we showed that the (temporal) sampling rate could
strongly influence the moment estimation; e.g., a too low sampling rate could let vary 〈ω1〉
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and blood flow in opposite ways. This is an important consideration for both the hardware
designer, when setting the camera specifications, and the experimentalist, when tuning the
resolution-sampling rate trade-off.

Acknowledgments

The authors would like to thank the ‘Faculté de Médecine’ of Geneva for the Mimosa grant
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