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ABSTRACT
We study a variant of the interpolation problem where the
continuously defined solution is regularized by minimiz-
ing the Lp-norm of its second-order derivative. For this
continuous-domain problem, we propose an exact discretiza-
tion scheme that restricts the search space to quadratic splines
with knots on an uniform grid. This leads to a discrete finite-
dimensional problem that is computationally tractable. An-
other benefit of our spline search space is that, when the grid
is sufficiently fine, it contains functions that are arbitrarily
close to the solutions of the underlying unrestricted prob-
lem. We implement an iteratively reweighted algorithm with
a grid-refinement strategy that computes the solution within
a prescribed accuracy. Finally, we present experimental re-
sults that illustrate characteristics, such as sparsity, of the
Lp-regularized interpolants.

Index Terms— Interpolation, regularization, Lp-norm,
splines

1. INTRODUCTION

Interpolation is the task of constructing a continuously-
defined function that passes through a given set of data points.
It is a fundamental operation in signal and image processing
that finds use in a variety of other applications [1–3] where a
continuous representation of the discrete data is required.

An elegant way of performing interpolation is to formu-
late it as the continuous-domain optimization problem

min
s∈X

‖L{s}‖Y s.t. s(xm) = ym, m = 1, 2, . . . ,M, (1)

where X , Y are suitable function spaces, L : X → Y is
the regularization operator, ‖ · ‖Y is the norm associated with
the space Y , and (xm, ym)Mm=1 are the data points. For in-
stance, the choice of the regularization ‖D2{s}‖2L2

, where D2

is the second-order derivative operator, leads to the widely
used cubic-spline1 interpolants [4]. On the other hand, the
sparsity-promoting generalized total-variation (gTV) regular-
ization ‖D2{s}‖M (where the M-norm is an extension of
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1A polynomial spline of degree N0 is a piecewise polynomial of degree
N0. It is defined such that its first (N0 − 1) derivatives are continuous. The
points where the pieces are joined are called knots.
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Fig. 1: Cubic-spline and linear-spline interpolation. Note that
the knots of the linear spline solution are adaptive and fewer
than the number of data points.

the L1-norm) results in sparse piecewise-linear solutions with
few knots [5,6]. We illustrate these two interpolation schemes
in Figure 1.

In this paper, we focus on Lp-regularized interpolation for
a general p ∈ (0, 2] and the second-order derivative operator
i.e., we consider the term ‖D2{s}‖pLp

in (1). For p ≥ 1, this
problem has been studied in [7, 8]. The work in [7] consid-
ers an infinite-dimensional search space of functions which
have a second derivative with a finite Lp-norm and addresses
theoretical questions such as existence and partial character-
ization of the solution. On the contrary, a finite-dimensional
search space of cubic splines with knots at the data points
is considered in [8]. We are interested in the former case
which is more general, as well as the cases with p < 1 which
have not been studied so far. Here, our aim is to develop an
algorithm that numerically computes these interpolants and
to investigate their characteristic features. To the best of our
knowledge, there exists no numerical method for solving such
problems, except for the special case of p = 2.

We first introduce our interpolation framework by defin-
ing the continuous-domain Lp-norm and the search space
for the optimization task. Next, we present a spline-based
exact discretization scheme that allows us to transform
the continuous-domain problem into an equivalent finite-
dimensional discrete one. We then describe an algorithm
based on the iteratively reweighted least squares (IRLS)
method [9–12], that computes the solution within a pre-
scribed accuracy. Finally, we illustrate some characteristics
of Lp-regularized interpolants in our experimental results.
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2. INTERPOLATION PROBLEM

We consider the problem of constructing a 1D signal s : R→
R that honors the constraints s(xm) = ym. We assume that
the sampling points (xm)Mm=1 lie in the interval [0, T ] and that
they are distinct.

We now specify the continuous-domain Lp-norm which
we use in the regularization term. For a measurable function
w : R→ R, the Lp-norm (0 < p <∞) is defined as2

‖w‖Lp
,
(∫

R
|w(x)|p dx

)1/p
. (2)

TheM-norm used in gTV-regularization [6] is a generaliza-
tion of the L1-norm. In fact, for any function w with a finite
L1-norm, we have that ‖w‖M = ‖w‖L1 . The major differ-
ence between the two is that the Dirac impulse, which is not
included in the space of functions with a finite L1-norm, has
a unitM-norm (‖δ‖M = 1).

Next, we state the optimization tasks corresponding to our
regularized interpolation problems. They are

SM = argmin
s∈M(2)(R)

‖D2{s}‖M s.t. s(xm) = ym, ∀m (3)

Sp = argmin
s∈L(2)

p (R)
‖D2{s}‖pLp

s.t. s(xm) = ym, ∀m, (4)

where the spacesM(2)(R) = {s : ‖D2{s}‖M < +∞} and
L
(2)
p (R) = {s : ‖D2{s}‖Lp

< +∞} are the largest ones for
which the regularization term is finite.

It is well known that the L2 problem has a unique cubic-
spline solution with knots at the data points [4, 13]. Mean-
while, the gTV solution is not necessarily unique. The ex-
treme points of SM are linear splines with a few adaptive
knots [6]. The application of D2 to the extreme points of SM
uncovers Dirac impulses at the knot locations, thus demon-
strating the sparsity-promoting effect of gTV-regularization.
Henceforth, we refer to these extreme points as the sparse so-
lutions of the gTV problem.

For p > 1, the Lp solution is unique. However, except
for p = 2, it does not have a “simple” parametric form. As
shown in [7], the second derivative of this solution is a nonlin-
ear transformation of a linear spline. It is difficult to identify
features of Lp-regularized interpolants from this partial char-
acterization. Unlike the gTV and L2 cases, the form of the
solution here does not aid its numerical computation. There-
fore, in this paper, we devise a spline-based algorithm to com-
pute these solutions, as well as the more difficult scenario with
p < 1.

2This definition corresponds to a quasinorm for p < 1.

3. DISCRETIZATION SCHEME

3.1. Search Space

We propose to discretize the continuous-domain problem (4)
by restricting the search space to quadratic splines with knots
on a uniform grid of size h > 0. Such splines can be uniquely
expressed in the corresponding B-spline3 basis [15]. This al-
lows us to define the new search space

Sp,h(R) =
{∑

k∈Z
c[k]β2

h(· − kh) : c ∗ (1,−2, 1) ∈ `p(Z)
}
,

(5)
where β2

h(x) is the causal scaled quadratic B-spline given by

β2
h(x) =


x2/2h2, 0 ≤ x < h

(−2x2 + 6xh− 3h2)/2h2, h ≤ x < 2h

(3h− x)2/2h2, 2h ≤ x < 3h

0, otherwise.

The second derivative of β2
h(x) is piecewise constant. It is

given by

D2{β2
h}(x) =


1/h2, 0 ≤ x < h

−2/h2, h ≤ x < 2h

1/h2, 2h ≤ x < 3h

0, otherwise.

(6)

A key property of Sp,h(R) is that it leads to an exact dis-
cretization. Further, the B-spline representation of Sp,h(R)
ensures a well-conditioned discretization. This is because
B-splines are compactly supported and form a Riesz basis
[16]. Moreover, for p > 1, results in approximation the-
ory [17] state that, when h is sufficiently small, Sp,h(R) is
rich enough to contain functions that are arbitrarily close to
the solution of the unrestricted continuous-domain problem
(4).

3.2. Finite-Dimensional Problem

We now consider Problem (4) within the spline search space
Sp,h(R). Since the sampling points satisfy xm ∈ [0, T ], only
a finite number of coefficients in (c[k])k∈Z affect the con-
straints s(xm) = ym. Let K = {kmin, . . . , kmax} denote the
set of their indices with |K| = N . We only need to optimize
over theseN coefficients. The remaining ones can be set such
that they incur a vanishing regularization cost, leading to a so-
lution that extends as a linear function outside of the interval
[0, T ]. Based on Property (6), we reformulate Problem (4)
restricted to Sp,h(R) as the finite-dimensional problem

min
c∈RN

‖Lc‖p`p s.t. Hc = y, (7)

3The quadratic causal B-spline with scaling factor h is the quadratic
spline with knots in hZ that has the shortest support [14]. It is supported
in [0, 3h].
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where y = (y1, . . . , yM ), the matrix H : RN → RM is

H =

 β
2
h(x1 − kminh) · · · β2

h(x1 − kmaxh)
...

...
β2
h(xM − kminh) · · · β2

h(xM − kmaxh)

 , (8)

and the regularization matrix L : RN → RN−2 is

L =
1

h2−
1
p


1 −2 1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 1 −2 1

 . (9)

The new formulation is exact. There are no discretization
errors introduced in this step. Therefore, the solution to the
finite problem (7) is the exact solution to the continuous-
domain problem (4) when restricted to Sp,h(R). Further, if
h is small enough, then the computed solution will be very
close to the solution of the unrestricted problem (4).

The gTV problem (3) is discretized in a similar manner
by using the search space S1,h(R). This leads to the finite
problem (7) with p = 1.

4. ALGORITHM

In this section, we discuss an algorithm that computes the so-
lution to our interpolation problem. We begin with a grid size
h0. At each iteration t, we consider a finer grid with size ht =
ht−1/2 and solve the resulting optimization task (7). The em-
bedding property of the search spaces Sp,ht−1

(R) ⊂ Sp,ht
(R)

guarantees that J ∗ht
≤ J ∗ht−1

, where J ∗h is the optimal cost
corresponding to Problem (7). Thus, the solution can only
improve in terms of the cost function. We stop this process
when the relative decrease in cost is less than a prescribed ac-
curacy. The embedded search spaces also allow us to use the
solution from the previous grid as initialization for the cur-
rent one, leading to faster convergence. This multiresolution
strategy has been adapted from [18].

Since unconstrained optimization problems are usually
easier to solve compared to their constrained counterparts,
at each grid size ht we find the solution to Problem (7) by
solving4

min
c∈RN

‖y −Hc‖2`2 + λ‖Lc‖p`p (10)

with a very small value of the parameter λ. We then solve
Problem (10) using an iteratively reweighted method [9–12]
which involves computing the sequence of iterates c(q) (until
convergence) given by

c(q) = argmin
c∈RN

‖y −Hc‖2`2 + λ cTLTD(q−1)Lc, (11)

where D(q−1) is an (M×M) diagonal matrix whose elements
are |(Lc(q−1))m|p−2 form = 1, 2, . . . ,M . Thus, the weights

4The solution to (7) can be obtained from (10) in the limit λ→ 0.

in Problem (11) depend on the previous iterate c(q−1). The
solution to (11) is obtained by solving the linear system of
equations

(HTH+ λLTD(q−1)L) c(q) = HTy. (12)

This can be done using various techniques such as direct in-
version and QR or LU factorization.

For p < 2, the elements of the diagonal matrix D(q−1)

can grow unbounded. This is likely to happen especially for
the small values of p which promote the sparsity of Lc. To
prevent this from happening, we follow the procedure in [11]
and set the entries of D(q−1) as (((Lc(q−1))m)2 + ε)

p
2−1,

where ε > 0 is a hyperparameter. We also implement the
damping technique of [11]. It improves the performance of
our algorithm for the non-convex case p < 1. Our final pro-
cedure for solving Problem (7) is as follows: We begin with
some initial estimate c(0) and ε = 1. We then compute the
sequence of iterates in (11) until convergence, as controlled
by the distance between the solutions at successive iterations.
At this point, the value of ε is decreased by a factor of 10 and
the process is repeated with our new estimate as the starting
point. We terminate the algorithm when ε = 10−20.

This iteratively reweighted method (IRM) computes the
unique solution of (7) when p > 1. For p = 1, it gives us
one of the possibly many solutions and this solution is not
always sparse. Alternately, one can recast the `1-problem as a
linear program and use the simplex algorithm [19] to compute
a sparse solution. For the non-convex case p < 1, IRM can
reach a local minimum.

5. EXPERIMENTAL RESULTS

Our algorithm has been implemented in MATLAB. For all the
experiments, the regularization parameter and grid tolerance
level were set to 10−10 and 10−3, respectively. While our
method holds for all values of p > 0, we focus here on the
range p ∈ (0, 2].

We first consider the example in Figure 2. For the given
data points, it is possible to prove that the gTV solution is
unique. In fact, this unique, sparse gTV solution can be ob-
tained by simply connecting the points linearly, i.e., it is a
linear spline with only two knots. In Figure 2, the computed
gTV solutions5 (for both IRM and simplex) look like a linear
spline with two knots, in agreement with the theory. As we
vary p from 2 to 1, we see that the solutions gradually con-
verge towards the gTV solution. Note that the solution for
p = 1.001 is very close to the sparse gTV solution. Further,
we observe that choosing p = 0.5 results in a solution that
also resembles the sparse linear spline solution.

In Figure 3, the data points are such that the gTV problem
has infinitely many solutions. We observe that the simplex
method computes a sparse solution that resembles a linear

5As stated in Section 3.2, p = 1 corresponds to the gTV problem.
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Fig. 2: Unique gTV solution

spline with two knots. At the same time, IRM produces a non-
sparse gTV solution. In this case, as we vary p from 2 to 1,
the solutions gradually converge towards the non-sparse gTV
solution. Meanwhile, the solution corresponding to p = 0.5
looks like a linear spline but with a single knot. Therefore, by
choosing p = 0.5 instead of p = 1, we are able to obtain a
sparser solution in this case.

Based on the above examples and additional experiments
of similar nature, we make a few claims.

• As p is varied from 2 to 1, there exists a continuum of
solutions.

• When the gTV problem has a unique solution, the con-
tinuum converges to that unique, sparse, linear-spline
solution as p→ 1.

• When the gTV problem has multiple solutions, the con-
tinuum converges to one of the non-sparse gTV solu-
tions as p→ 1.

• For p < 1, some of the local minima solutions approach
sparse linear splines with few knots. Moreover, in cer-
tain cases, our algorithm finds a solution that is sparser
than the computed gTV one.

The existence of a continuum of solutions implies that one
can use the value of p to obtain a tradeoff between the prop-
erties of the L2 and gTV solutions. For example, one can
control the smoothness of the interpolant by varying p.

Through this work, we are also able to draw a parallel
between the continuous-domain Lp-norm regularization and
the discrete `p-norm regularization. Based on our experi-
ments, we claim that, in settings where the gTV solution is
known to be unique, Lp-norm regularization with a small p
acts as a sparsity-promoting prior. This mirrors the behav-
ior of `p-norm regularization (with a small p) in compressed
sensing [20, 21].
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Fig. 3: Multiple gTV solutions

6. CONCLUSION

We have devised a method that solves the Lp-regularized in-
terpolation problem with a second-order derivative regular-
ization operator. Our method involves the use of quadratic
splines, with uniformly spaced knots, for an exact discretiza-
tion. We then solve the discrete problem using an iteratively
reweighted method. We rely on a grid refinement strategy to
select a small-enough grid size. Finally, through numerical
experiments, we identify some interesting properties of such
Lp-regularized interpolants.
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Güntürk, “Iteratively reweighted least squares min-
imization for sparse recovery,” Communications on
Pure and Applied Mathematics: A Journal Issued by the
Courant Institute of Mathematical Sciences, vol. 63, no.
1, pp. 1–38, 2010.

[13] H. Gupta, J. Fageot, and M. Unser, “Continuous-domain
solutions of linear inverse problems with Tikhonov ver-
sus generalized TV regularization,” IEEE Transactions
on Signal Processing, vol. 66, no. 17, pp. 4670–4684,
2018.

[14] I. J. Schoenberg, Cardinal Spline Interpolation, vol. 12,
SIAM, 1973.

[15] I. J. Schoenberg, “Contributions to the problem of ap-
proximation of equidistant data by analytic functions:
Part A— On the problem of smoothing or graduation. A
first class of analytic approximation formulae,” Quar-
terly of Applied Mathematics, vol. 4, no. 1, pp. 45–99,
1946.

[16] M. Unser and T. Blu, “Cardinal exponential splines:
Part I—Theory and filtering algorithms,” IEEE Trans-
actions on Signal Processing, vol. 53, no. 4, pp. 1425–
1438, 2005.

[17] J. J. Lei, “Lp-approximation by certain projection oper-
ators,” Journal of Mathematical Analysis and Applica-
tions, vol. 185, no. 1, pp. 1–14, 1994.

[18] T. Debarre, J. Fageot, H. Gupta, and M. Unser,
“B-Spline-based exact discretization of continuous-
domain inverse problems with generalized TV regular-
ization,” IEEE Transactions on Information Theory, pp.
1–1, 2019.

[19] G. B. Dantzig, A. Orden, and P. Wolfe, “The general-
ized simplex method for minimizing a linear form under
linear inequality restraints,” Pacific Journal of Mathe-
matics, vol. 5, no. 2, pp. 183–195, 1955.

[20] D. L. Donoho, “Compressed sensing,” IEEE Transac-
tions on Information Theory, vol. 52, no. 4, pp. 1289–
1306, 2006.

[21] R. Chartrand, “Exact reconstruction of sparse signals
via nonconvex minimization,” IEEE Signal Processing
Letters, vol. 14, no. 10, pp. 707–710, 2007.

5509

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 09,2020 at 14:41:05 UTC from IEEE Xplore.  Restrictions apply. 


		2020-03-30T09:46:39-0400
	Preflight Ticket Signature




