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Continuous-Domain Signal Reconstruction Using
Lp-Norm Regularization
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Abstract—We focus on the generalized-interpolation problem.
There, one reconstructs continuous-domain signals that honor dis-
crete data constraints. This problem is infinite-dimensional and
ill-posed. We make it well-posed by imposing that the solution
balances data fidelity and some Lp-norm regularization. More
specifically, we consider p ≥ 1 and the multi-order derivative
regularization operatorL = DN0 . We reformulate the regularized
problem exactly as a finite-dimensional one by restricting the search
space to a suitable space of polynomial splines with knots on a
uniform grid. Our splines are represented in a B-spline basis, which
results in a well-conditioned discretization. For a sufficiently fine
grid, our search space contains functions that are arbitrarily close
to the solution of the underlying problem where our constraint that
the solution must live in a spline space would have been lifted. This
remarkable property is due to the approximation power of splines.
We use the alternating-direction method of multipliers along with
a multiresolution strategy to compute our solution. We present
numerical results for spatial and Fourier interpolation. Through
our experiments, we investigate features induced by the Lp-
norm regularization, namely, sparsity, regularity, and oscillatory
behavior.

Index Terms—Interpolation, regularization, Lp-norm, splines.

I. INTRODUCTION

R EGULARIZATION techniques are commonly used for
the resolution of ill-posed problems. When these prob-

lems are formulated as optimization tasks, a standard way of
applying regularization is to introduce a penalty term in the cost
functional, which penalizes solutions with undesirable proper-
ties. For example, �2-regularization [1], [2] and, more recently,
�p-regularization [3]–[7] has been widely used to reconstruct
discrete-domain signals from their measurements.

In this work, we focus on problems where the object of interest
f is defined over a continuum. In such cases, a natural candidate
for the regularization term is ‖L{f}‖, where the choice of the
operator L and the norm ‖ · ‖ allows us to incorporate prior
knowledge about f . Continuous-domain regularization schemes
such as Tikhonov [1], [8], [9], which uses the L2-norm ‖ · ‖L2

,
and generalized total variation (gTV) [10], which involves the
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Fig. 1. Interpolation of data points symbolized by crosses. The solid line
represents an arbitrary solution. For the other two cases, it is regularization
that dictates how the points are connected.

use of theM-norm ‖ · ‖M (an extension of the L1-norm), have
been intensively studied and their behavior is well-documented.
To see the effect of these schemes, we consider the interpolation
problem shown in Fig. 1. The objective there is to construct a
continuously defined function that passes through the given data
points exactly. However, as shown in the figure, it is possible to
construct infinitely many valid solutions. In this problem, we
regularize the solution by imposing a minimum-norm require-
ment of the form ‖L{f}‖. This enables us to obtain solutions
with certain desired properties. It is well-known that Tikhonov
(or L2) regularization tends to produce smooth solutions while
gTV regularization promotes sparsity. These characteristics can
be seen in Fig. 1. For example, when we impose gTV reg-
ularization with L = D (the derivative operator), we obtain a
piecewise-constant solution whose derivative is sparse.

The purpose of this paper is to study the effect of continuous-
domain Lp-norm regularization for a general p ≥ 1 and a
multi-order derivative operator L = DN0 . To that end, we con-
sider the generalized interpolation problem with Lp-norm reg-
ularization. Generalized interpolation is an extension of inter-
polation. Specifically, given certain measurement functionals
(ν1, . . ., νM ) and a value (or measurement) ym corresponding to
each functional, we aim at constructing a continuously defined
function that explains the measurements exactly. We formulate
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this problem as

min
f
‖DN0{f}‖Lp

s.t. 〈νm, f〉 = ym, m = 1, 2, . . .,M, (1)

where ‖·‖Lp
denotes the Lp-norm.

A. Why Generalized Interpolation?

The reconstruction of a signal f from a finite number of linear
measurements y ∈ R

M is a standard problem. Its ill-posedness
is counteracted by regularization. Since the measurements are
usually noisy, it is often formulated as the unconstrained opti-
mization task

S = arg min
f∈X

(E (y,ν(f)) + λR(f)) , (2)

where X is a suitable function space, the operator ν :
f �→ ν(f) = (〈ν1, f〉, . . . , 〈νM , f〉) describes the measurement
model,E : RM × R

M → R is a data-fidelity term which forces
the solution to be consistent with the given measurements and
R is the regularization. It can be shown1 that, if E is strictly
convex and R is convex, then all the solutions f ∗ ∈ S generate
the same measurement vector z0 = ν(f ∗) ∈ R

M . This property
allows us to characterize the solution set S as

S = arg min
f∈X

R(f) s.t. ν(f) = z0. (3)

By understanding the effect of the regularization term R(f) in
(3), we can understand its effect for a much broader class of
problems such as (2).

B. Related Work

The Lp-regularized interpolation problem and its variants,
with p ≥ 1 and L = DN0 , have been studied in [11]–[16] in
the context of approximation theory and splines. These works
are theoretical, for the most part. They discuss the existence of
a solution, conditions of optimality, and provide the functional
form of theN0th derivative of the solution. A specific instance of
minimizing the Lp-norm of the second derivative of polynomial
spline interpolants has been looked at in [17] and [18]. To
the best of our knowledge, however, there exists no work that
numerically solves the general continuous-domain problem (1)
and demonstrates the effect of Lp-norm regularization.

C. Contributions

In this paper, we propose an algorithm to compute the solu-
tion to (1). Through a series of experiments, we then identify
some properties of Lp-norm regularization. Our work comple-
ments [19], [20], where the recovery of signals is defined over a
continuum, too, but without consideration of continuous-domain
regularization. Here is a list of our contributions.
� We discretize the continuous-domain problem (1) by using

a basis that consists of shifted polynomial B-splines of
degreeN0, with knots on a uniform grid. This basis leads to
an exact discretization, thus transforming our continuous-
domain problem into an equivalent finite-dimensional

1See the Appendix.

discrete one which can be solved by algorithms such as the
alternating-direction method of multipliers (ADMM) [21].

� We implement a multiresolution algorithm that progres-
sively decreases the grid size until a solution with the
desired precision is obtained. This strategy relies on the
theory of approximation. It dictates that, when the grid
size is sufficiently small, the search space spanned by
our B-spline basis contains functions that are arbitrarily
close to the solution of the full continuous-domain problem
where our constraint that the solution must live in a spline
space would have been lifted.

� We present numerical results for measurement operators
that correspond to interpolation in the spatial and Fourier
domains. In these experiments, we show the existence of a
continuum of solutions as p varies from∞ to 1. We then
examine properties of Lp-regularized solutions such as
sparsity, regularity (smoothness) and, oscillatory behavior
and overshoot, as well as the effect ofN0 on the solutions.

The paper is organized as follows: In Section II, we introduce
the continuous-domain framework and discuss some existing
theoretical results. We provide background information on poly-
nomial splines in Section III. Section IV includes the details
of our discretization scheme, along with a discussion on the
approximation power of splines. We present the multiresolution
algorithm in Section V and illustrate our numerical results in
Section VI.

II. GENERALIZED INTERPOLATION

In this section, we define and discuss the key components
of our framework: the measurement operator, the regularization
operator, the regularization norms, and the search space for the
optimization problem. We then briefly review theoretical results
available for this problem.

A. Continuous-Domain Framework

In generalized interpolation, the aim is to construct a function
f : R→ R that explains the measurements y ∈ R

M , with

ν(f) = (〈ν1, f〉, . . . , 〈νM , f〉) = y, (4)

where 〈νm, f〉 represents the action of the linear functional
νm : f �→ 〈νm, f〉 = νm(f) ∈ R. When νm and f are ordi-
nary functions defined over R, the mth measurement is given
by the Lebesgue integral 〈νm, f〉 =

∫
R
νm(x)f(x) dx. In the

pure interpolation problem, the measurement functionals are
shifted Dirac distributions νm = δ(· − xm), with the property
that 〈δ(· − xm), f〉 = f(xm).

In order to specify the regularization operator L, we intro-
duce the Schwartz space S(R) of smooth and rapidly decaying
functions defined over R. Its continuous dual is the space of
tempered distributions, denoted by S′(R). In our framework,
we focus on regularization operators of the form L = DN0 :
S′(R)→ S′(R), where D is the derivative operator extended
to S′(R) [22, Chapter 3] and N0 ≥ 1. The null space of the
operator DN0 is NDN0 = span{pn}N0

n=1, with pn(x) = xn−1.
The Green’s function of DN0 is denoted by ρDN0 ; it satisfies
the property that DN0{ρDN0 } = δ. The Green’s function is not
unique due to the existence of the null space.
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Next, we specify the the continuous-domain Lp-norm. For a
measurable function w : R→ R, the Lp-norm (1 ≤ p <∞) is
defined as

‖w‖Lp
�
(∫

R

|w(x)|p dx
) 1

p

, (5)

while the L∞-norm is defined as2

‖w‖L∞ � ess sup
x∈R

|w(x)|. (6)

Equation (5) also specifies the Lp quasi-norm for values of
p ∈ (0, 1). The Lebesgue space of functions Lp(R) = {w :
R→ R | ‖w‖Lp

<∞}, where p ∈ [1,∞], is a Banach space.
Here, we also define theM-norm used in gTV regularization,
which is closely related to L1 regularization, as

‖w‖M � sup
ϕ∈S(R),‖ϕ‖∞=1

〈w,ϕ〉 (7)

for any w ∈ S′(R). The Banach space associated with ‖·‖M
is M(R) = {w ∈ S′(R) | ‖w‖M < +∞}. The M-norm is an
extension of the L1-norm. Indeed, for any w ∈ L1(R), we have
that

‖w‖M = ‖w‖L1
. (8)

However, the Dirac impulse δ is included inM(R)with‖δ‖M =
1 but does not belong to L1(R). Thus, we have that L1(R) ⊂
M(R).

Finally, we define the search spaces for the gTV-regularized
and Lp-regularized problems as

M(N0)(R) = {f ∈ S′(R) | DN0{f} ∈ M(R)} (9)

L(N0)
p (R) = {f ∈ S′(R) | DN0{f} ∈ Lp(R)}. (10)

There, we consider all generalized functions in S′(R) for which
the regularization term is finite.

Now that we have described all the components involved in
our regularized generalized-interpolation framework, we state
the optimization problems that we consider in this work. They
are

SM = arg min
f∈M(N0)(R)

‖DN0{f}‖M s.t. ν(f) = y (11)

Sp = arg min
f∈L(N0)

p (R)

‖DN0{f}‖Lp
s.t. ν(f) = y, (12)

where N0 ≥ 1.

B. Theoretical Results

Before the discussion of theoretical results, we need to make
some assumptions.

Assumption 1: In the following statements, the symbol X
represents the search spaceM(N0)(R) or L(N0)

p (R), depending
on the problem at hand.

2The essential supremum is a generalization of the supremum in Lebesgue’s
theory of integration. For a measurable function w : R→ R, it is the smallest
value a ∈ R such that w(x) ≤ a almost everywhere (i.e., everywhere except on
a set of measure zero). The essential supremum is equivalent to the supremum
for continuous functions.

i) The measurement operator ν is weak∗-continuous on X .
ii) For the given measurements y ∈ R

M and measurement
operator ν, there exists at least one function f0 ∈ X such
that ν(f0) = y.

iii) The intersection of the null spaces of ν and DN0 is {0}.
Assumption (1.i) implies that the measurement functionals

satisfy νm ∈ Y for m = 1, . . .,M , where the predual space
Y is such that X = Y′. In practice, this imposes a minimum
degree of regularity and decay on {νm}Mm=1. Assumption (1.ii)
states a feasibility condition and is needed to ensure that the
generalized interpolation problem is well-defined. If (1.i) holds
and the νm are linearly independent, then (1.ii) is satisfied for
any y ∈ R

M . Assumption (1.iii) ensures that the problem is
well-posed over the null space of the regularization operator,
where the penalization is immaterial. This can be checked by
verifying that the matrix P with entries [P]m,n = 〈νm, pn〉 is
full-rank.

For the gTV-regularized and L2-regularized problems, there
exist representer theorems that provide a parametric character-
ization of the possible range of solutions. In the case of L2

regularization, the solution is unique, smooth, and lies in a
finite-dimensional subspace that depends on the measurement
and regularization operators [9]. The gTV problem can have
infinitely many solutions, but the extreme points of the solution
set SM are known to be splines whose type depends on the
regularization operator only [10]. These splines have adaptive
knots which are fewer than the number of measurements. On
applying the operator DN0 to these extreme points, we recover
Dirac impulses at the knot locations, which implies a sparse
N0th order derivative. We refer to such solutions as the sparse
solutions of the gTV problem.

Beside providing insights about the nature of the solutions,
the representer theorems also play a role in the design of
numerical methods to solve these problems. The parametric
forms of the solution provided by the theorems are used for
the discretization of the continuous-domain problems, leading
to finite-dimensional optimization tasks which can be solved
using standard optimization algorithms. A detailed comparison
of L2 versus gTV regularization can be found in [9]. The reader
can refer to [9], [23] for the algorithms.

In this work, our main focus is on (12) with a general p ≥ 1.
This kind of a problem has been addressed in [11] for the case of
pure interpolation, when the measurement functionals are Dirac
impulses. Here, we state the result from [11] in a form that is
compatible with our framework. When p ∈ (1,∞), there exists a
unique solution f0 to the Lp-regularized interpolation problem.
It satisfies

DN0{f0} = |v0|q−1
‖v0‖q−2Lq

sgn(v0), (13)

where 1
p +

1
q = 1 and

v0(x) =

M∑
m=1

amρDN0 (x− xm) +

N0∑
n=1

bnpn(x) (14)
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is a polynomial spline with knots at the data points {xm}Mm=1,
and where {am}Mm=1 and {bn}N0

n=1 are suitable sets of coef-
ficients. On setting p = 2, we recover the result given in [9].
Equations (13)–(14) show that theN0th derivative of the solution
to our continuous-domain problem lies in a finite-dimensional
manifold. The solution itself can then be obtained by taking
an N0-fold integral, subject to adequate boundary conditions.
However, for p �= 2, we have a nonlinear mapping in (13). This
makes it difficult to interpret other effects of regularization on
the solution. Moreover, due to this nonlinear mapping, these
solutions do not readily lend themselves to a discretization
scheme, unlike in the gTV and L2 cases. Therefore, we propose
a spline-based discretization scheme to numerically solve the
Lp-regularized generalized-interpolation problem for p ≥ 1.

III. POLYNOMIAL SPLINES

Polynomial splines of degree N0 form an essential compo-
nent of our discretization scheme. They are piecewise-defined
functions where each piece is a polynomial of degreeN0. These
pieces are connected in a manner such that the first (N0 − 1)
derivatives of the function are continuous. The points where the
pieces are connected are called knots. A cardinal polynomial
spline of degree N0 has its knots on the integer grid and can be
expressed uniquely in the form of a B-spline expansion [24]

f(x) =
∑
k∈Z

c[k]βN0
+ (x− k), (15)

where βN0
+ (x) is the causal B-spline of degreeN0 and (c[k])k∈Z

are the expansion coefficients. The causal B-spline of degree 0
is defined as:

β0
+(x) =

{
1, if 0 ≤ x < 1

0, otherwise,
(16)

while the causal B-spline of degreeN0 is obtained by the (N0 +
1)-fold convolution of β0

+(x) given by

βN0
+ (x) = (β0

+ ∗ β0
+ ∗ . . . ∗ β0

+)︸ ︷︷ ︸
N0 convolutions

(x). (17)

We are interested in polynomial splines with knots located on a
uniform grid of size h (in other words, the knots lie in hZ). Such
a spline of degree N0 admits the B-spline expansion

fh(x) =
∑
k∈Z

ch[k]β
N0

h (x− kh), (18)

where βN0

h (x) = βN0
+ (xh ) is the causal scaled B-spline of degree

N0. It is uniquely specified by its coefficients ch = (ch[k])k∈Z.
We illustrate in Fig. 2 that βN0

h (x) is compactly supported in
[0, (N0 + 1)h]. In fact, the B-spline βN0

h (x) is the polynomial
spline of degree N0, with knots in hZ, that has the shortest
support [25].

Polynomial splines are closely linked to derivative operators
of the form DN0 (N0 ≥ 1). The operator DN0 is associated with
the scaled B-spline of degree (N0 − 1) according to

DN0{βN0−1
h }(x) = 1

hN0−1
∑
k∈Z

dN0
[k]δ(x− kh). (19)

Fig. 2. Causal B-splines βN0
h

(x) with scaling factor h.

The sequence (dN0
[k])k∈Z is characterized by its z-transform

dN0
(z) = (1− z−1)N0 (20)

and is supported in {0, . . . , N0}. In Table I, we provide the
explicit forms of βN0−1

h (x) and (dN0
[k])k∈Z for N0 = 1, 2, 3.

IV. DISCRETIZATION SCHEME

A. Search Space

We discretize the continuous-domain problem (12) by restrict-
ing the search space to a suitable space of polynomial splines,
defined as

LN0

p,h(R) =

{∑
k∈Z

c[k]βN0

h (· − kh) : c ∈ �N0
p (Z)

}
, (21)

where βN0

h is the scaled B-spline of degreeN0, h > 0 is the grid
size, and

�N0
p (Z) = {(c[k])k∈Z : (dN0

∗ c) ∈ �p(Z)} . (22)

The choice of the search space LN0

p,h(R) is guided by its ex-
act discretization property which we discuss in Section IV-B.
Moreover, the approximation power of splines ensures that,
when h is sufficiently small, the search space LN0

p,h(R) contains
functions that are arbitrarily close to the solution of the unre-
stricted continuous-domain problem (12). We present a detailed
argument for this in Section IV-D. The fact that LN0

p,h(R) is
represented in a B-spline basis is another advantage. B-splines
are compactly supported and form a Riesz basis [26], thus
resulting in a well-conditioned discretization.

B. Exact Discretization

The exact discretization property of the function space
LN0

p,h(R) stems from Proposition 1.

Proposition 1: For any function f ∈ LN0

p,h(R) with p ∈
(0,∞], we have that

‖DN0{f}‖Lp
=
∥∥∥ 1

hN0−1/p (dN0
∗ c)

∥∥∥
�p
. (23)
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TABLE I
THE OPERATOR DN0 AND THE SCALED B-SPLINE βN0−1

h
(x) AND SEQUENCE (dN0

[k])k∈Z ASSOCIATED WITH IT

Proof: A scaled B-spline of degree N0 can be expressed as

βN0

h (x) =
1

h
(βN0−1
h ∗ β0

h)(x). (24)

Using (19) and (24), we deduce that

DN0{βN0

h }(x) =
1

hN0

∑
k∈Z

dN0
[k]β0

h(x− kh). (25)

Therefore, for any f ∈ LN0

p,h(R) it stands that

DN0{f}(x) = 1

hN0

∑
k∈Z

(dN0
∗ c)[k]β0

h(x− kh). (26)

Equation (26) implies that DN0{f} is a piecewise-constant
function. For p ∈ (0,∞), the following holds:

‖DN0{f}‖Lp
=

(∫
R

∣∣∣ 1

hN0

∑
k∈Z

(dN0
∗ c)[k]β0

h(x− kh)
∣∣∣p dx

) 1
p

=

(∑
k∈Z

h
∣∣∣ 1

hN0
(dN0

∗ c)[k]
∣∣∣p
) 1

p

=

∥∥∥∥ 1

hN0−1/p (dN0
∗ c)

∥∥∥∥
�p

. (27)

For the case p =∞, we have that

‖DN0{f}‖L∞ = ess sup
x∈R

∣∣∣ 1

hN0

∑
k∈Z

(dN0
∗ c)[k]β0

h(x− kh)
∣∣∣

= sup
k∈Z

∣∣∣ 1

hN0
(dN0

∗ c)[k]
∣∣∣

=

∥∥∥∥ 1

hN0
(dN0

∗ c)
∥∥∥∥
�∞

. (28)

�
On plugging the parametric form (21) of any function f ∈

LN0

p,h(R) into Problem (12) and using Proposition 1, we obtain
the equivalent discrete problem

Sp,h = arg min
c∈�N0

p (Z)

∥∥∥∥ 1

hN0−1/p (dN0
∗ c)

∥∥∥∥
�p

s.t.
∑
k∈Z

c[k]ν(βN0

h (· − kh)) = y (29)

The important thing to note here is that Problem (29) is ex-
actly equivalent to the continuous-domain problem (12) re-
stricted to the search space LN0

p,h(R). In other words, by solving
the above discrete problem, we effectively find a solution to
the restricted continuous-domain problem, which is given by∑
k∈Z c

∗[k]βN0

h (· − kh) with c∗ ∈ Sp,h. As indicated by Propo-
sition 1, this discretization scheme is also valid for Lp quasi-
norm regularization with p ∈ (0, 1). However, these values of p
correspond to non-convex problems.

Interestingly, the function space LN0

1,h(R) can also be used for
discretizing the gTV problem (11), which then also happens to
be equivalent to the p = 1 case.

Proposition 2: For any function f ∈ LN0

1,h(R), we have that

‖DN0{f}‖M = ‖DN0{f}‖L1
. (30)

Proof: Equation (26) implies that DN0{f} is piecewise-
constant. Moreover, since (dN0

∗ c) ∈ �1(Z), we conclude that
DN0{f} ∈ L1(R). The relationship between theM-norm and
L1-norm (8) leads to (30). �

By restricting the search space in (11) to LN0

1,h(R) and using
Propositions 1 and 2, we obtain the discrete problem (29) with
p = 1.

The salient and novel aspect of our method is the exact dis-
cretization of the continuous-domain problem. To the best of our
knowledge, there is no prior work that discretizesLp-regularized
continuous-domain problems, with a general p, exactly. As men-
tioned earlier, the cases ofp = 2 and gTV have also been handled
in [9], [23]. However, those discretization schemes have been
specifically derived from representer theorems for L2 and gTV
regularization, and unlike the method proposed in this paper, are
not applicable for other values of p.

C. Finite-Dimensional Problem

In practice, we assume that the measurement functionals νm
are supported over a finite interval IT = [0, T ]. Consequently,
a finite number of B-spline expansion coefficients are now
involved in the constraint term in (29). We denote the set of
the indices of these coefficients by K = {kmin, . . . , kmax}; the
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cardinality of this set is |K| = N . We now state Proposition 3,
which has been adapted from Lemma 3 in [23].

Proposition 3: If the measurement functionals {νm}Mm=1

are supported in IT , then a solution c∗ ∈ Sp,h of Problem
(29) is uniquely determined by the N coefficients c∗|K =
(c∗[kmin], . . . , c

∗[kmax]).
This result ensures that we only need to optimize over the

N B-spline coefficients that affect the constraint (or data) term
in (29). As described in [23], the expansion coefficients outside
the interval of interest IT can be set in a way such that all the
regularization terms that they affect are nullified. This allows us
to write the infinite-dimensional convolution in (29) as a matrix
multiplication, leading to the finite-dimensional optimization
problem

Sp,h = arg min
c∈RN

‖Lc‖�p s.t. Hc = y, (31)

where the system matrix H : RN → R
M is

H =

⎡
⎢⎢⎢⎣

...
...

ν(βN0

h (· − kminh)) · · · ν(βN0

h (· − kmaxh))
...

...

⎤
⎥⎥⎥⎦ ,

(32)
and the regularization matrix L : RN → R

N−N0 is

L =
1

hN0− 1
p

⎡
⎢⎢⎢⎢⎣
dN0

[N0] · · · dN0
[0] 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 dN0

[N0] · · · dN0
[0]

⎤
⎥⎥⎥⎥⎦ .
(33)

The solutions c∗ ∈ Sp,h and c∗ ∈ Sp,h are related in the fol-
lowing manner: c∗ = c∗|K = (c∗[kmin], . . . , c

∗[kmax]). Proposi-
tion 3 implies that the solution to Problem (29) can be uniquely
determined from c∗. Thus, we conclude that Problem (31) is
equivalent to the continuous-domain problem (12) ((11), re-
spectively) restricted to the search space LN0

p,h(R) (LN0

1,h(R),
respectively), in the sense that the continuous-domain solution
can be fully described by c∗.

D. Effect of the Grid Size

So far, we have seen that the solutions to our continuous-
domain problems, when restricted to LN0

p,h(R), can be obtained
by simply solving the finite problem (31). Now, we look at the
influence of the grid size h on these solutions. We define a linear
projection operator for the function space LN0

p,h(R) as

P
L

N0
p,h

{f}(x) =
∑
k∈Z

〈
f,

1

h
β̃N0

( .
h
− k

)〉
βN0
+

(x
h
− k

)
,

(34)
where β̃N0 is a (generalized) function such that〈

βN0
+ (· − p), β̃N0(· − q)〉 = δ(p− q). (35)

The operator defined in (34) is a valid projection operator since it
is idempotent. This can be shown by using the biorthonormality
condition (35).

We now state Theorem 4, adapted from [27], which bounds
the Lp-norm of the error between a function f ∈ L(N0)

p (R) (the
search space of the unrestricted continuous-domain problem, as
defined in (9)) and its projection onto LN0

p,h(R).
Theorem 4: Let P

L
N0
p,h

be a linear projection operator for

LN0

p,h(R), as defined in (34). When p ∈ (1,∞), the error of

approximation for any f ∈ L(N0)
p (R) is∥∥∥f − PLN0

p,h

{f}
∥∥∥
Lp

= O(hN0). (36)

For a small-enough grid size h, the error of approximation
for any f ∈ L(N0)

p (R) will be negligible. Therefore, our re-
stricted search space LN0

p,h(R) will contain functions (projec-
tions) which are arbitrarily close to the solution of the unre-
stricted continuous-domain problem. Finally, to compute the
solution to the restricted continuous-domain problem, we only
need to solve the finite problem (31).

V. MULTIRESOLUTION ALGORITHM

In this section, we discuss a multiresolution algorithm that
computes a solution with the desired precision by gradually
making the grid finer.

A. Solving the Finite Problem for a Fixed Grid Size

We first discuss the algorithm that we use to solve finite-
dimensional problems of the form (31). As constrained-
optimization problems are typically harder to solve numerically
compared to their unconstrained counterparts, to make the op-
timization easier we consider the unconstrained version of (31)
given by

S ′p,h = arg min
c∈RN

(‖y −Hc‖22 + λψp(‖Lc‖�p)
)

(37)

where λ ∈ R
+ is the regularization parameter and the function

ψp : R
+ → R

+ is defined as

ψp(x) =

{
xp if p ∈ [1,∞),
x if p =∞, (38)

Sinceψp is monotonic overR+, the solution(s) to the constrained
problem (31) can be obtained from (37) in the limit by taking
λ→ 0. Thus, we propose to solve our finite-dimensional prob-
lem (31) by solving (37) with a very small value of λ.

The case p = 2 is special since then the optimization problem
(37) is quadratic and can be solved directly without the need
for an iterative algorithm. The unique solution in this scenario
can be obtained by solving the linear system of equations
(HTH+ λLTL)c∗ = HTy, which is obtained by setting to
zero the gradient with respect to c of the cost functional in (37).
This can be done by various methods, including direct matrix
inversion.

For the values of p ∈ [1,∞] \ {2}, we use the well-known
ADMM [21] to solve Problem (37). The update rules for ADMM
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Fig. 3. Lookup tables for the proximal operators of | · |p.

in our case are

ck+1 =
(
HTH+

ρ

2
LTL

)−1 (
HTy +

ρ

2
LT (zk − uk)

)
(39)

zk+1 = prox˜λψp(‖·‖�p )
(Lck+1 + uk) (40)

uk+1 = uk + Lck+1 − zk+1, (41)

where c and z are the primal variables,u is the dual variable, ρ >
0 is the augmented-Lagrangian parameter and λ̃ = λ/ρ. The
proximal operator of a function g is defined as [28]

proxg(x) = arg min
u

(
1

2
‖u− x‖22 + g(u)

)
. (42)

For p = {1,∞}, the proximal operators involved in (40) have
the closed-form expressions

prox˜λ‖·‖�1
(x) = sgn(x)⊗max(|x| − λ̃, 0) (43)

prox˜λ‖·‖�∞
(x) = x− λ̃proj‖·‖�1≤1(x/λ̃), (44)

where the operators sgn(·) and max(·) are applied component-
wise,⊗ denotes component-wise multiplication, and the projec-
tion operator is

proj‖·‖�1≤1(x) = arg min
u:‖u‖�1≤1

‖u− x‖22. (45)

This projector is computed as explained in [29]. Thus, the
proximal operators can be computed efficiently for these two
cases.

In general, we do not have a closed form expression for the
proximal operator when p ∈ (1,∞). The additive separability
of the function ψp(‖ · ‖�p) can be used to observe that

[prox˜λψp(‖·‖�p )
(x)]m = prox˜λ|·|p([x]m). (46)

Now, we only need to compute the proximal operator for the 1D
function λ̃| · |p : R→ R, which we do with the help of lookup
tables (LUTs). We provide in Fig. 3 a few examples of LUTs.
An efficient implementation is achieved by exploiting properties
of prox˜λ|·|p(·) such as antisymmetry and monotonicity.

Algorithm 1: Multiresolution Algorithm.
1: Input: p, T , y, ν, N0, λ, hinit, ε.
2: Output: c∗

3: Initialization: c = 0, t = 0, rel_error = ε + 1,
prev_cost = +∞

4: while rel_error > ε do
5: h = hinit/2

t

6: Update H, L
7: if p = 2 then
8: c = (HTH+ λLTL)−1HTy
9: else

10: c ← ADMM(c↑2; p, y, H, L, λ)
11: rel_error = |cost(c) − prev_cost| / prev_cost
12: prev_cost = cost(c)
13: t ← t + 1
14: if p = 1 then
15: yλ = Hc
16: c∗ = Simplex(yλ, H, L)
17: else
18: c∗ = c

So far, we have seen that ADMM can be used to compute the
unique solution to (37) when p ∈ (1,∞). When p = {1,∞},
ADMM gives us one out of the possibly many solutions. In order
to obtain a sparse solution for p = 1, we follow the procedure
proposed in [9]. The solution c∗ ∈ S ′p,h obtained via ADMM
is used to generate the measurements yλ = Hc∗. Using these
“denoised” measurements, Problem (37) is then recast as a linear
program which we solve using the simplex algorithm [30]. The
simplex algorithm guarantees that we reach an extreme point of
S ′1,h, which is sparse.

B. Grid Refinement

We begin with a coarse grid hinit and make it finer gradually
until a further decrease of the grid size does not affect the solution
much. At each iteration t ∈W, we pick a grid size ht = hinit/2

t,
splitting the grid from the previous iteration in half. We then
solve the corresponding finite problem.

For this sequence of grid sizes, we observe that the search
spaces are embedded likeLN0

p,ht
(R) ⊂ LN0

p,ht+1
(R). This ensures

that, by splitting the grid in half, we obtain a refined solution
that is at least as good in terms of the cost function. Finally, we
keep making the grid finer until the relative decrease in cost is
less than some desired tolerance level ε. Another advantage of
this embedding property is that the solution from the previous
grid can be used as initialization for ADMM, which tends to
improve the speed of convergence. This algorithm is adapted
from the work in [23].

In Algorithm 1, c↑2 corresponds to the coefficients cmodified
to match a grid that is twice as fine as that of c. The routine
ADMM(c↑2; p, y, H, L, λ) runs ADMM on Problem (37) with
c↑2 as the initialization while the routine Simplex(yλ, H, L)
runs the simplex algorithm on the linear program obtained from
Problem (37) by using the denoised measurements yλ.
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Fig. 4. Unique gTV solution (L = D2). The simplex and ADMM solutions are coincident.

Fig. 5. Multiple gTV solutions (L = D2).

VI. NUMERICAL EXPERIMENTS

We now present numerical results that allow us to identify
certain properties ofLp-norm regularization and thus understand
its effect. We have implemented our multiresolution algorithm
using GlobalBioIm [31], a MATLAB library designed for solv-
ing inverse problems.

A. Setup

In our experiments, we have considered two types of mea-
surement functionals.
� Dirac Impulses: In this setting, the given measurement op-

erator takes the form ν(f) = (〈δ(· − x1), f〉, . . . , 〈δ(· −
xM ), f〉) = (f(x1), . . . , f(xM )), where the points
{xm}Mm=1 lie within the interval IT . This operator
corresponds to the standard interpolation problem that
was discussed in Section I. We ensure that the points
{xm}Mm=1 are pairwise distinct and that M ≥ N0, so that
the operator ν satisfies the condition NDN0 ∩ Nν = {0}.

� Dephased Cosines: In this case, the measurement function-
als are ν1 = 1[0,T ] and νm = cos(ωmx+ θm)× 1[0,T ] for
m = {2, 3, . . . ,M}. This operator corresponds to a variant
of the Fourier interpolation problem which is relevant to
magnetic resonance imaging. In order to construct such
an operator and the corresponding measurements for our

experiments, we first generated a function s and picked a
threshold frequency ωmax such that the spectrum of s had
little energy above ωmax. The frequencies ωm were then
drawn uniformly at random from (0, ωmax]while the phases
θm were drawn uniformly at random from [0, π). This
operator ν was applied to s to generate the measurements
that we use in the experiments involving dephased cosines.

The regularization parameter was set to λ = 10−10 in the first
two experiments and λ = 10−15 in the last two experiments. For
all examples that we present in this section, the grid tolerance
was set to ε = 10−3. In each example, we compute the solution
for several values of p ∈ [1,∞].

B. Results

1) Continuum of Solutions & Sparsity: We first present two
examples (Figs. 4 and 5) to talk about the behavior of the solution
as the value of p is changed. In these examples, the measurement
functionals are Dirac impulses (interpolation problem) and the
regularization operator is L = D2. Both examples show that, as
we vary p from∞ to 1 (note that p = 1 corresponds to the gTV
case), the solutions gradually move towards the (or one of the)
gTV solution(s). For the example in Fig. 4, the computed gTV
solutions with and without applying the simplex are the same
and resemble a linear spline with two knots, in agreement with
[10]. It can be shown that this particular sparse solution is the

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 09,2020 at 15:06:39 UTC from IEEE Xplore.  Restrictions apply. 



BOHRA AND UNSER: CONTINUOUS-DOMAIN SIGNAL RECONSTRUCTION USING Lp-NORM REGULARIZATION 4551

Fig. 6. Dephased-cosine measurement functionals (L = D, M = 15). For p = 1, the simplex and ADMM solutions are coincident.

unique solution to the gTV problem. In this case, we see that
the solution for p = 1.001 is close to the unique sparse gTV
solution.

By contrast, the configuration of the data points in Fig. 5 is
such that the gTV problem has multiple solutions. This can be
seen in the plots as the solution obtained by running the simplex
after ADMM is sparse (linear spline with three knots), while the
solution obtained via ADMM only is non-sparse. Interestingly
in this case, the solution for p = 1.001 is close to a non-sparse
gTV solution. Based on the above observations and additional
experiments of the same nature, we make several claims.
� There exists a continuum of solutions when p is varied from
∞ to 1.

� When the gTV problem has a unique solution, the contin-
uum converges to that unique sparse solution as p→ 1.

� When the gTV problem has multiple solutions, the contin-
uum converges to one of its non-sparse solutions as p→ 1.

We discuss two implications of our claims. Firstly, the exis-
tence of a continuum implies that one can use Lp-norm regular-
ization with p ∈ (1,∞), to “interpolate” between the properties
of the gTV and L∞ solutions. One such property is regularity or
smoothness. In Figs. 4 and 5, we observe that the smoothness
of the solution reduces as p decreases. Secondly, we conclude
that Lp-norm regularization with a small p can be used as a
sparsity-promoting prior in settings where the gTV solution is
guaranteed to be unique. This is in line with the use of discrete
�p-norm regularization, with a small p, in compressed-sensing
frameworks.

As further illustration, we also provide an example with the
dephased-cosine measurement functionals. In this case, the reg-
ularization operator was L = D, leading to a piecewise-constant
gTV solution in Fig. 6. The continuum of solutions and change
in regularity, as p is varied from∞ to 1, is evident in this figure.

2) Gibbs-Like Oscillations: In the interpolation of step-like
functions using splines, Gibbs-like oscillations are observed at
the discontinuities [17], [32], [33]. We use the step and staircase
functions (Fig. 7) to investigate this effect in our Lp-regularized
problem. In these cases, we observe that the solutions exhibit
an oscillatory behavior (with an overshoot at the discontinuity)
which decreases as p goes from∞ to 1. Moreover, as p becomes

smaller, the oscillatory effect of the discontinuity becomes more
localized. We claim that
� Lp-norm regularization with a smaller p results in weaker

Gibbs-like oscillations at the edges.
We would like to point out that the above claims exclude the

special case of spatial interpolation withL = D. Here, all values
of p ∈ (1,∞) generate the same solution, which is a linear spline
with knots at the data points. This can be inferred from the
theoretical result stated in Section II.

3) Effect of N0: We now discuss the influence of the operator
L = DN0 which is the second component of our regularization
term. In Fig. 8, we present an example where we fix p = 1.5 and
compute the solutions for different values of N0. Our general
observation is that
� For any p ∈ [1,∞], the solution becomes smoother and

exhibits more oscillations as N0 increases.
4) Comparison With Shannon’s Sinc Interpolation: Consider

a standard interpolation problem with uniformly spaced points

xm = mΔ, m = 1, 2, . . .,M, (47)

where Δ > 0 is the spacing between any two consecutive points
xm, and measurements {ym}Mm=1. In this case, the well-known
sinc interpolant is given by

fsinc(x) =
M∑
m=1

ym sinc

(
x−mΔ

Δ

)
. (48)

Remarkably, the variational formulation (12) of the above inter-
polation problem includes Shannon’s sinc interpolation scheme
as a special case corresponding to p = 2 and N0 →∞ [34].

In many applications such as image scaling and image reg-
istration, smoother interpolating functions are desirable since
they are well-behaved with well-defined multi-order derivatives.
While fsinc(x) is a highly regular function, unfortunately it also
exhibits strong Gibbs-like oscillations at sharp transitions. On
the other hand, as observed in the previous experiments, by
controlling the values of p and N0, Lp-regularized solutions
can be made to achieve a balance between smoothness and
oscillatory behaviour.
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Fig. 7. Illustration of Gibbs-like oscillations (L = D2). For p = 1, the simplex and ADMM solutions are coincident.

Fig. 8. Effect of the regularization operator DN0 for a fixed p = 1.5.

To illustrate this advantage of our framework, we consider
interpolation of the data points from Fig. 8. We compute the
maximum overshoot (which is related to the extent of the oscil-
lations) of the sinc interpolant and theLp-regularized interpolant
for several values of p and N0, and we plot the results in Fig. 9.
For ease of comparison, we indicate the maximum overshoot for
sinc interpolation, which is quite high, as a horizontal dashed

Fig. 9. Maximum overshoot values for interpolation of the data points from
Fig. 8.

line. The plots for the Lp-regularized solutions show that N0

and p (more so when N0 is small) can be varied to control the
overshoots or oscillations, and balance them with the desired
smoothness.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 09,2020 at 15:06:39 UTC from IEEE Xplore.  Restrictions apply. 



BOHRA AND UNSER: CONTINUOUS-DOMAIN SIGNAL RECONSTRUCTION USING Lp-NORM REGULARIZATION 4553

VII. CONCLUSION

We have implemented a multiresolution algorithm to solve nu-
merically the generalized-interpolation problem with Lp-norm
regularization, along with its unconstrained variants. We have
shown that an appropriate grid-based B-spline basis can be
used to exactly discretize the (restricted) continuous-domain
problem. Based on previous results from approximation theory
and splines, we have argued that as the grid size goes to zero, the
computed solution approaches the solution of the unrestricted
continuous-domain problem. With the help of numerical results
in the context of spatial and Fourier interpolation, we have
established the existence of a continuum of solutions as p goes
from ∞ to 1. Finally, we have made insightful observations
about properties of theLp-regularized solutions such as sparsity,
regularity, and Gibbs-like oscillations.

APPENDIX

Consider the unconstrained optimization problem in (2):

S = arg min
f∈X

⎛
⎜⎝E (y,ν(f)) + λR(f)︸ ︷︷ ︸

J(f)

⎞
⎟⎠ . (49)

Here, we show that if E is strictly convex andR is convex, then
all the solutions f ∗ ∈ S generate the same measurement vector
z0 = ν(f ∗). The proof is adapted from [35] and is based on
standard arguments in convex analysis.

Let f ∗1 , f
∗
2 ∈ S be two solutions of (49) such that they produce

different measurements i.e., ν(f ∗1) �= ν(f ∗2). Let the minimum
value of the objective function be J∗ = J(f ∗1) = J(f ∗2). For a
candidate function fc = αf ∗1 + (1− α)f ∗2 , with α ∈ (0, 1), we
have

J(fc) = E (y,ν (αf ∗1 + (1− α)f ∗2)) + λR (αf ∗1 + (1− α)f ∗2)

<

⎛
⎝α

⎛
⎝E (y,ν(f ∗1)) + λR(f ∗1)︸ ︷︷ ︸

J∗

⎞
⎠

+ (1− α)E(y,ν(f ∗2)) + λR(f ∗2)︸ ︷︷ ︸
J∗

⎞
⎠ = J∗. (50)

The above strict inequality is due to the fact thatE is strictly con-
vex andR is convex. The relation J(fc) < J∗ is a contradiction
and thus ν(f ∗1) = ν(f ∗2) = z0.
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