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Bayesian Inversion for Nonlinear Imaging
Models Using Deep Generative Priors

Pakshal Bohra”, Thanh-an Pham *?, Jonathan Dong

Abstract—Most modern imaging systems incorporate a compu-
tational pipeline to infer the image of interest from acquired mea-
surements. The Bayesian approach to solve such ill-posed inverse
problems involves the characterization of the posterior distribution
of the image. It depends on the model of the imaging system and on
prior knowledge on the image of interest. In this work, we present a
Bayesian reconstruction framework for nonlinear imaging models
where we specify the prior knowledge on the image through a
deep generative model. We develop a tractable posterior-sampling
scheme based on the Metropolis-adjusted Langevin algorithm for
the class of nonlinear inverse problems where the forward model
has a neural-network-like structure. This class includes most prac-
tical imaging modalities. We introduce the notion of augmented
deep generative priors in order to suitably handle the recovery of
quantitative images. We illustrate the advantages of our framework
by applying it to two nonlinear imaging modalities—phase retrieval
and optical diffraction tomography.

Index Terms—Bayesian inference, nonlinear inverse problems,
phase retrieval, optical diffraction tomography, deep learning,
neural networks, generative models, generative adversarial
networks.

1. INTRODUCTION

N PRACTICAL imaging systems, the object of interest
I s € RE is observed indirectly by performing a series of
measurements y € C* . Mathematically, this process is often
modeled as

y = H(s) + n, (1)

where H : RX — C™ is an operator that describes the physics
of the imaging system and n € C* is an additive noise. The
operator H can be linear or nonlinear, depending on the imaging
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modality. For example, in magnetic resonance imaging, one
captures noisy samples of the Fourier transform of the signal.
The task at hand is then to reconstruct the signal s from the
obtained measurements y. Typically, such inverse problems are
ill-posed, in the sense that there exist a multitude of signals
which produce identical measurements. Thus, one cannot rely
on direct inversion techniques to obtain relevant solutions.

A. Variational Methods

In variational methods, the solution to the inverse problem is
specified as the minimizer of a cost functional

s =argmin (F (y,H(s)) + 7R(s)),

seRK

2

where the data-fidelity term E : CM x CM — R, forces the
solution to be consistent with the measurements, the regu-
larization R : R — R imposes some prior constraints on
the solution, and 7 € R is a tunable hyperparameter. Typical
candidates for these terms are F(y, H(s)) = ||y — H(s)||3 and
R(s) = ||[Ls||2 [11,[21, 3], [41, [5], [6], [7] with p € [1,2]. Here,
L is a linear transformation such as the discrete version of the
wavelet transform or the gradient operator, which takes part in
the regularization. For instance, total-variation (TV) regulariza-
tion [3] uses the ¢;-norm along with the gradient operator, which
promotes solutions with sparse derivatives. It is widely used for
compressed sensing and extreme imaging applications where
the data is scarce [7]. The resulting optimization problems are
typically solved by iterative algorithms such as gradient descent,
the fast iterative shrinkage-thresholding algorithm (FISTA) [8],
[9], [10], or the alternating-direction method of multipliers
(ADMM) [11].

B. Bayesian Inference

In the Bayesian approach to image reconstruction [12], [13],
[14], [15], the signal s is modeled as the realization of a random
vector with a suitable probability density function (pdf) pg that
captures our prior knowledge about the signal. The idea here is
to characterize the posterior distribution

3

which depends on the statistics of the noise py and on the prior
distribution ps, and to make inferences based on it.

The posterior distribution can be used for the derivation of
several point estimators for the signal s. One such example
is the maximum a posteriori estimator, which is the mode of

pspy (sly) o< pn (y — H(s)) ps(s),
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the posterior distribution and leads to an optimization problem
thatresembles (2), with E(y, H(s)) « (—log(px(y — H(s))))
and R(s) x (—log(ps(s))), thus linking the variational and
Bayesian approaches [16], [17], [18], [19]. Another example
is the minimum mean-square error (MMSE) estimator which
turns out to be the posterior mean [19].

Besides the derivation of point estimators, the Bayesian
framework allows one to quantify the uncertainty of the re-
constructed image. This feature offers an interesting perspec-
tive for computational imaging as most practical reconstruction
schemes, including the variational ones, do not provide any
assessment of reliability.

In general, inference tasks entail the estimation of expected
values with respect to the posterior distribution. Typically, these
are high-dimensional integrals that cannot be evaluated analyti-
cally. Thus, one relies on Markov chain Monte Carlo (MCMC)
methods to efficiently draw samples from the posterior and then
use them to approximate the integrals [20], [21], [22], [23].

C. Deep-Learning-Based Methods

Over the past few years, researchers have started to de-
ploy deep-learning-based methods to solve inverse problems
in imaging. The learning-based methods have been found to
outperform the traditional model-based ones. Broadly speaking,
their underlying principle is to utilize large amounts of training
data to improve the reconstruction quality, as opposed to the
specification of prior information about the image of interest
in the form of mathematical models, as in the variational and
Bayesian approaches described earlier.

The first generation of deep-learning-based methods involves
training a convolutional neural network (CNN) as a nonlinear
mapping that relates a low-quality estimate of the signal to the
desired high-quality estimate [24], [25], [26], [27], [28]. The
reconstruction pipeline then consists of using a fast classical
algorithm to yield an initial solution and then correcting for
its artifacts using the trained CNN. This category of methods
includes “unrolling” [29], [30], [31], [32], [33], [34], where
the architecture of the CNN is designed by studying iterations
of algorithms used for solving Problem (2). While the first-
generation end-to-end learning methods have achieved state-of-
the-art performances in several inverse problems, recent works
have highlighted their instability and lack of robustness [35],
[36].

The second generation of deep-learning-based methods aims
at the integration of CNNs into iterative reconstruction algo-
rithms. The plug-and-play priors (PnP) [37] and regularization-
by-denoising (RED) [38] frameworks are two successful exam-
ples that provide a way to carry out this integration. In PnP
algorithms, the proximal operator that appears in the iterations
of the proximal algorithms (FISTA, ADMM) is replaced by a
generic denoiser which imposes an implicit prior on the sig-
nal. RED, by contrast, incorporates an explicit regularization
term that is constructed with the help of the chosen denoiser.
In the learning-based variants of these frameworks, one uses
appropriately trained CNNs as the denoising routines [39], [40],
[41], [42], [43], [44], [45]. Another example of such methods
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is projected gradient descent where the projection operator is
a trained neural network that projects onto the space of de-
sired signals [46], [47], [48]. Unlike the first-generation meth-
ods, the second-generation ones enforce consistency between
the reconstructed signal and the measurements. They are also
more versatile as the CNN denoisers can be used for several
inverse problems without the need for retraining. One obstacle to
the deployment of these learning-based iterative schemes is that
the Lipschitz constant of the CNNs must be controlled in order to
ensure their convergence [49], [50], which is not straightforward
and remains an active area of research [50], [51], [52].

One can also identify a third class of deep-learning-based
methods that make use of deep generative models such as
variational autoencoders (VAE) [53] and generative adversar-
ial networks (GAN) [54]. These models include a genera-
tor network that maps a low-dimensional latent space to the
high-dimensional signal space. They are trained to capture the
statistics of the dataset and generate sample signals similar to
those in the dataset. Once such a deep generative model has
been successfully trained, its application to an inverse problem
typically consists of finding the optimal latent variable such that
the resulting signal best fits the measurements. Recent works
have focused on the design and analysis of algorithms for the
inversion of such generative models [55], [56], [57], [58], [59].

The three classes of deep-learning-based methods discussed
so far are variational in nature and provide a single reconstruction
as their output. The success of these methods has stimulated
the development of Bayesian methods that exploit the power of
neural networks. For instance, in [60], the authors propose two
frameworks for “deep Bayesian inversion” that are analogues of
the first generation end-to-end deep-learning-based methods and
require training data consisting of signals and their correspond-
ing measurements. Their first approach involves the training of a
conditional GAN to sample from the posterior distribution, while
their second approach deploys neural networks to approximate a
chosen statistical estimator. More recently, the focus has been on
the development of more modular Bayesian methods where only
the prior is modeled by neural networks. This has led to various
posterior sampling schemes for priors defined either implicitly
through denoising CNNs (such as the ones used in the PnP or
RED frameworks) [61], [62], [63] or through GANs [64], VAEs
[65], [66], and score-based generative models [67], [68]. So far,
most of these works have focused on inverse problems with
linear or linearized forward models.

A current frontier in imaging is the inversion of nonlinear
models, which arise in several applications, two notable exam-
ples being phase retrieval and optical diffraction tomography.
Such applications could benefit greatly from the development
of neural-network-based Bayesian reconstruction methods.

D. Contributions

In this paper, we present a Bayesian framework to solve a
broad class of nonlinear inverse problems, where the prior is
represented by a trained deep generative model. Our contribu-
tions are as follows.
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® We develop a method based on the Metropolis-adjusted
Langevin algorithm (MALA) [69], [70] to sample from
the posterior distribution for the class of nonlinear inverse
problems where the forward model has a neural-network-
like structure. This class includes a wide variety of practical
imaging modalities. We show that the structure of the
forward model and the low-dimensional latent space of
the generative prior enable tractable Bayesian inference.

® We introduce the concept of augmented generative models.
This is motivated by the observation that deep generative
models are easier to train when the dataset consists of
images with the same range of pixel values. Unfortunately,
such models are not well-matched to imaging modalities
where one is interested in extracting the precise value
of objects rather than merely visualizing contrast. Our
proposed augmented models provide us with a simple but
effective way of dealing with quantitative data.

e We illustrate the advantages of the proposed reconstruc-
tion framework through numerical experiments for two
nonlinear imaging modalities: phase retrieval and optical
diffraction tomography.

The paper is organized as follows: In Section II, we discuss
the structure of the forward model for our nonlinear inverse
problems. We detail the Bayesian reconstruction framework in
Section III. There, we introduce augmented generative models
and we explain our posterior-sampling scheme. We present our
experimental results in Section I'V.

II. NONLINEAR INVERSE PROBLEMS AND FORWARD MODELS

In this section, we start by describing the class of nonlinear
inverse problems that we are interested in. We then focus on
two concrete examples—phase retrieval and optical diffraction
tomography—and detail the physical models involved.

A. Nonlinear Inverse Problems

The objective is to recover an image s € R® from its noisy
measurements y € CM given by y = N(y,) with

Yo = H(S) ) (4)

where H : R — CM is a nonlinear operator that models the
physics of the imaging system and N : CM — CM is an oper-
ator that models the corruption of the measurements by noise.
In this work, we consider the class of nonlinear forward models
H whose computational structure can be encoded by a directed
acyclic graph and thus resembles a neural network.

The Jacobian matrix of H at any point x = (21,...,2x) €
R is defined as
5= [H(X)] 72— [H(x))
Ju(x) = : : S
g M@ g2 H)y

Gradient-based MCMC methods (see Section III for a specific
example) involve the computation of quantities such as J g (x)r
for some vectors x € R¥, r € CM, and this can be a potential
bottleneck. The neural-network-like structure of H allows us to
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Fig. 1. The forward model for phase retrieval (6) expressed as a one-layer
fully-connected neural network with linear weights A and quadratic activation
functions.

compute these efficiently using the error backpropagation algo-
rithm. This, in turn, makes Bayesian inference computationally
feasible.

The class of nonlinear inverse problems that fit this description
is very broad and adaptable to most existing imaging modalities.
In principle, it covers all possible inverse problems, in particular,
the linear case is trivially covered. More generally, if sufficient
data is available, one can indeed train a neural network to mimic
the physics of our forward model. Next, we look at two particular
problems that nicely fall within our predefined class.

B. Phase Retrieval

Phase retrieval [71], [72] is a nonlinear inverse problem
that is ubiquitous in computational imaging. It consists in the
recovery of a signal from its intensity-only measurements and
is a central issue in optics [73], [74], astronomy [75], [76], and
computational microscopy [77], [78], [79], [80].

In the phase-retrieval problem that we consider in this paper,
the noise-free measurements are modeled as

yo = Hp(s) = |As|?, (6)

where A : RE — CM is either the Fourier matrix [73], [80],
[81] or some realization of a random matrix with independent
and identically distributed (i.i.d.) elements [72], [82], [83], and
where |- |? is a component-wise operator. As shown in Fig.
1, the forward model in (6) can be expressed as a one-layer
fully-connected neural network with fixed linear weights A and
quadratic activation functions.

C. Optical Diffraction Tomography

In optical diffraction tomography (ODT), the aim is to recover
the refractive-index (RI) map of a sample from complex-valued
measurements of the scattered fields generated when the sample
is probed by a series of tilted incident fields [84]. According
to the scalar-diffraction theory, the propagation of the incident
fields through the sample is governed by the wave equation.
While pioneering works relied on linear models to approximate
this propagation [84], [85], recent works have significantly
improved the quality of RI reconstruction by using more ac-
curate nonlinear models that account for multiple scattering
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Fig. 2. Optical diffraction tomography. A sample of refractive index ny, +

s(r) is immersed in a medium of index ny, and illuminated by an incident plane
wave (wave vector k). The interaction of the wave with the object produces
scattered waves, which are recorded at the detector plane.

[86]. Here, we look at one such nonlinear model called the
beam-propagation method (BPM).

Helmholtz Equation: We consider a sample with a real-valued
spatially varying refractive index that is immersed in a medium
with constant refractive index ny,, as shown in Fig. 2. The RI
distribution in the region of interest Q2 = [0, L] x [0, L,] is
represented as n(r) = ny, + s(r), where r = (z, z) and s(r)
is the RI contrast. The sample is illuminated with an incident
plane wave u™"(r) of free-space wavelength A, whose direction
of propagation is specified by the wave vector k. The total field
u(r) that results from the interaction between the sample and
the incident wave is then recorded at the positions {r,,}M_,
in the detector plane I' to yield the complex measurements
y € CM'_ The interplay between the total field u(r) at any point
in space and the refractive index contrast dn(r) is described by
the Helmholtz equation

V2u(r) + k2n?(r)u(r) =0, (7

where kg = 2Z.

Beam Propagation Method: For computational purposes, the
region of interest € is subdivided into an (Ny x N,) array of
pixels with sampling steps d, and d, along the first and second
dimension, respectively. The corresponding samples of the RI
contrast s(r) and total field u(r) are stored in the vectors' s €
R and u € CK, respectively, where K = N, NN, Further, let
si € R¥x and u;, € C™x represent the above quantities when
restricted to the slice z = kd,.

BPM computes the total field u in a slice-by-slice manner
along the z-axis. For a given incident wave 1™ (r) that is propa-
gated over a region larger than €2, we set the initial conditions as
u_i(s) = (u"(idy, —6,)) =1 € CNx. The total field over Q is

ISince the total field u(r) depends on the RI contrast s(r), we also refer to
its discretized version as u(s).
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Fig. 3. The computational structure for BPM resembles a neural network.

then computed via a series of diffraction and refraction steps

Ux(s) = uy_1(s) * h’ (diffraction) (8)

prop

ui(s) = ui(s) © pr(s) (refraction), (9)

where k =0,1,..., (N, — 1), and the symbols * and ® stand
for convolution and pointwise multiplication, respectively. The
convolution kernel hggop € CNx for the diffraction step is char-
acterized in the Fourier domain as

F (b} (wwy) = (V7).

where F denotes the discrete Fourier transform and w,, € R™Vx
is the frequency variable. The subsequent refraction step in-
volves a pointwise multiplication with the phase mask

pi(s) = ekodssk,

(10)

an

Finally, we define an operator R : C™x — CM’ that propagates
uy,-1(s) to the detector plane I and restricts it to the sensor
positions to give us the measurements y € C*'. Thus, for a
given incident wave u™", our noise-free nonlinear BPM forward
model is of the form

Yo = Hepm(s;u™) = R (un,-1(s)) .

In Fig. 3, we show the implementation of Hy,p, as a directed
acyclic graph.

Complete Forward Model: We assume that the sample is illu-

minated with Q incident plane waves {uy } 4e(1,...,o} and that the

12)

corresponding measurements are {y, € cM /}qe{l,...,Q}- These
measurements are related to the RI contrast s of the sample
through the BPM forward model in (12). We define a stacked
measurement vector asy = (y1,...,yq) € RM (M = QM’).
This allows us to rewrite the complete forward model in the form
of (4), where the operator H consists of the application of Hppm
with all the illuminations and the concatenation of the outputs
into a single vector.

III. BAYESIAN RECONSTRUCTION FRAMEWORK

We now present our reconstruction framework that is based
on Bayesian statistics for solving the generic nonlinear inverse
problem described in Section II-A. The image s is assumed
to be a realization of a random vector with pdf ps and the
statistical model for measurement noise is included within the
likelihood function py|s, which is the conditional distribution

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 26,2023 at 09:36:09 UTC from IEEE Xplore. Restrictions apply.



BOHRA et al.: BAYESIAN INVERSION FOR NONLINEAR IMAGING MODELS USING DEEP GENERATIVE PRIORS

of the measurements given the image. The quantity of interest
here is the posterior distribution pgy as it provides a complete
statistical characterization of the problem at hand. Using Bayes’
rule, we then write pg|y as

pS\Y(S|Y) _ f pY|s(Y|S)pS(S) (13)

rx Py(s(yls)ps(s) ds’

In this section, we first characterize the likelihood function
Py|s- We then discuss the prior distribution ps, which, in our
framework, is defined through a deep generative model, followed
by the posterior distribution pg|y. Finally, we detail a MCMC
scheme to generate samples from the posterior distribution. This
allows us to perform inference by computing point estimates and
the uncertainties associated with them.

A. Likelihood Function

In our framework, we assume that the operator N : yg —
N(yo) in (4) samples the noisy measurement vector y from a
conditional distribution pyy, according to

Y ~ Pyly, (lyo = H(s)), (14)

where py|y, models the statistics of the noise in the imaging
system. Since our forward models H are deterministic, the
quantity py|s (a.k.a. the likelihood function) is given by

pys(y1s) = pyiv, (ylyo = H(s)). (15)

In many imaging systems, there exist multiple independent
sources of noise. It is therefore reasonable to assume an additive
white-Gaussian-noise (AWGN) model, as dictated by the central
limit theorem. There, the distribution pyy, is

_ 2
Pyiva (¥lyo) o exp ( _ ”yyo”2> (16)

202

where o is the standard deviation of the Gaussian noise.
Another model that is commonly used is the shot- or Poisson-
noise model. In this case, we have that

([yolm) ™
([y]m)!

M

Pyivo(Ylyo) = [

m=1

exp (—=[yolm), (17

where y € NM|

B. Prior Distribution

The choice of the distribution pg reflects our prior knowledge
about the image of interest. This information is crucial for the
resolution of the inverse problem, especially when it is ill-posed.
In classical Bayesian methods, pg is chosen from a family
of distributions with closed-form analytical expressions such
that it fits the characteristics of the image and also allows for
efficient inference. Popular examples include the Gaussian and
Markovian models. In our framework, we instead propose to
leverage the power of neural networks to define a data-driven
prior distribution.
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We assume that we have access to a dataset that contains
sample images from the true (but unknown) probability distri-
bution pimage Of our image of interest. The idea then is to ap-
proximate pimage With pg as defined by a deep generative model.
More specifically, we consider generative models consisting
of a generator network G : R? — R¥ (d < K) that maps a
low-dimensional latent space to the high-dimensional image
space. This network takes a vector z € R?, which is sampled
from some distribution pyz (typically a Gaussian or uniform dis-
tribution), and outputs a sample image G(z). Thus, the generator
network G and the distribution pyz implicitly characterize pg
and provide us with a way to directly sample from it. If this
model is properly trained, the resulting ps is close t0 pimage and
the generated images are statistically similar to the ones in the
dataset.

In our experiments (see Section IV), we use the well-known
Wasserstein GANs (WGANS) [87] for our data-driven prior. We
provide a brief description of WGANSs in the supplementary
material.

Augmented Deep Generative Priors: The training of deep
generative models such as GANs requires large amounts of data
and is achallenging task in general. Over the past few years, there
have been several proposals for performance improvements
that have led to the development of better training schemes
and network architectures. Most existing works use normalized
datasets, where each image has the same range of pixel values.
However, this is not suitable if we wish to use such models as
priors in quantitative imaging (e.g., ODT). In these modalities, it
is important to recover the actual values of the object (image) as
compared to only the contrast. Thus, we require our generative
model to be able to output images with different ranges of pixel
values.

While performing our experiments, we observed that the
training of high-quality WGANSs on unnormalized datasets was
non-trivial. We propose a simple effective workaround, which
simplifies the training and allows us to build models that generate
images with different ranges. We define an augmented genera-
tive model Gy, : R¥*! — RX (d <« K) that consists of a (stan-
dard) generative network G : R? — R trained on anormalized
dataset and a deterministic function i : R — R. Here, the latent
vector z = (z1, z2) € R?*! has two independent components
71 € R%and 2, € R that are sampled from pz, and pyz,, respec-
tively. The output image is given by Gy (z) = h(z2)G(z;).Fora
generated image Gy, (z) € R¥ theterm G(z;) € R” represents
its details or contrast, and the term h(z2) represents its scaling
factor. Since G is now required to only produce images with the
same range, we can rely on existing GANs to obtain high-quality
models. Moreover, the distribution of the scaling factor can be
easily controlled by carefully choosing the distribution pyz, and
the function h.

C. Posterior Distribution

Now that we are equipped with the likelihood function py/g
and the prior distribution pg, we look at the posterior dis-
tribution pgjy of the image. Since our prior distribution pg
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is defined by a pre-trained augmented deep generative model
Gp, : R™ = R,z Gy (2) with pz(2) = pz, (21)pz, (22)
for any z = (21, 22) € R4, our pgjy is given by the push-
forward of the posterior distribution pzjy of the latent vector
through the mapping Gy,. The distribution pzy can be written
as

pry (zly) = pyz(y|z)pz(2)
Z‘Y Jras1 Py (z(Y]2)pz(2) dz’

where py|z(y|z) = pyjs(yls = Gn(2)).

A Bayesian inverse problem is said to be well-posed in
some metric on the space of probability measures if its solution
(the posterior distribution) exists, is unique, and is continuous
with respect to the measurements for the chosen metric [88].
Depending on the metric, the well-posedness of the Bayesian
inverse problem ensures continuity of posterior expectations of
appropriate quantities of interest. Based on the work in [88], we
can show that for the AWGN model, our Bayesian problem is
well-posed in the Prokhorov, total-variation and Hellinger dis-
tances. Moreover, our problem is well-posed in the Wasserstein
distance if py, satisfies a finite-moment-like condition. By using a
result from [66], we can also show the existence of the moments
of our posterior distribution under mild conditions on pz and Gy,.
We provide the details regarding these properties in Appendix
A.

D. Sampling From the Posterior Distribution

The proposed framework allows one to draw samples in the
low-dimensional latent space instead of the high-dimensional
image space directly. Specifically, if we generate a sample z
from pyy, then the image § = G(Z) is a sample from pgy.

In this work, we use the Metropolis-adjusted Langevin algo-
rithm (MALA) [69], [70], which is a MCMC method, to sample
from pz;y. Given a sample z;, MALA generates Z;11 in two
steps. In the first step, we construct a proposal z;; for the new
sample according to

Ziy1 = Z + NV log pzy (Zely) + /2n€,

where ¢ is drawn from the standard multivariate Gaussian dis-
tribution and n € R is a fixed step-size. In the second step,
the proposal z; 1 is either accepted or rejected, the acceptance
probability being

. { pZ\Y(Et+1|Y)QY(Zt‘zt+1) }
a=min« 1, — — )
PZ\Y(Zt|Y)Qy(Zt+1\Zt)

(18)

19)

where ¢y (Z|z) = exp(—ﬁ |z —z — nVzlogpyy (zly)|3). If
the proposal is accepted, then we set z;, 1 = Z;11; otherwise,
Z;+1 = Z;. One advantage of MALA is that it uses the gradient
of the (log) target distribution to construct more probable pro-
posals. In doing so, it explores the target distribution faster than
some other MCMC methods such as the well-known random
walk Metropolis-Hastings algorithm [89].

The major computational bottleneck in MALA is the com-
putation of the gradient term V, log pzy as it involves terms
such as J{f(x1)r1 and J& (x2)ry, where x; € R, r; € CM,
x5 € R4 andry, € RE. Forinstance, if we assume an AWGN
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model with variance o2 and that py, is the standard mutivariate
Gaussian distribution, then pzy can be written as

_y —H{Gn(=)}5 IIZII§>
202 2 )’
(20)
where C' is the normalization factor. In this case, the gradient
term is

1
Pzw(zb’) = 6GXP (

V. long\Y(Zb’)

_ I8, @Gy —H{G@)Y)

o2

Since Gy, is a neural network and H has a neural-network-like
structure, we then compute V', log pyy efficiently using an error
backpropagation algorithm.

Once we have obtained the samples {z;}{_; from pyy, we
transform them to get the samples {G,(Z;)}{_, from pgy and
use them to perform inference. Specifically, we approximate any
integral of the form [ f(s)pgy (sly) ds, where f : R — R
is a real-valued function, by its empirical estimate Er(f) =
Ll £(Gu@).

In practice, we discard some of the samples generated at the
beginning of the chain to correct for their bias. This “burn-in”
period can often be shortened by choosing a suitable starting
point for the chain. We propose to initialize MALA with

Zinit = arg min [|sinic — G, (2)][3, (22)
d+1

zeRd+
where sipi; is a low-quality estimate obtained by using some fast
classical reconstruction algorithm.

IV. RESULTS AND DISCUSSION

In this section, we show the benefits of our neural-network-
based Bayesian reconstruction framework by applying it to both
phase retrieval and optical diffraction tomography.

A. Augmented WGANs

In our first experiment, we highlight the importance of the
proposed augmented generative models. We consider the task
of training WGAN models on synthetic datasets consisting of
(128 x 128) images, where each image contains a constant-
valued disc and its background pixels are zero-valued. The
coordinates (z,y) of the center of the disc, its radius 7 (in
pixels), and its constant-intensity value v follow the uniform dis-
tributions U(10,115), U(101115), U[8,35]’ and U(O,O.Q]’ respectively.
The aforementioned parameters implicitly define the probability
distribution pgae, that we wish to approximate using WGANS.

We qualitatively compare the performance of two models.
The first model is a WGAN trained on 50,000 images sampled
from pga.. In this case, the distribution py for the latent variable
is chosen to be the standard multivariate Gaussian distribution.
The second model is an augmented WGAN, where the WGAN
component is trained on a normalized dataset with 50,000 im-
ages. Thus, we first sample 50,000 images from pg,, and we
then normalize each of them such that the value of the disc is
one. The distributions pz, and pz, are chosen to be standard
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Fig. 4.

Gaussian distributions as well, and the function h is

0.2 ® _t2

(23)

This choice of h and pz, ensures that the scaling factor of the
augmented WGAN follows the uniform distribution U .2)- For
both the models, we use the generator and critic network archi-
tectures described in the supplementary material. The WGAN is
trained for 2500 epochs while the augmented WGAN is trained
for 1250 epochs using RMSProp optimizers with a learning rate
of 5 x 1075 and a batch size of 64. The parameters Agp and
Neritie (refer to the supplementary material) are set as 10 and 5,
respectively.

In Fig. 4, we present typical samples generated by the two
models. We observe that the augmented WGAN, unlike the
WGAN, is able to produce sharp constant-valued discs.

Samples generated by trained models.

B. Phase Retrieval

Next, we look at the phase-retrieval problem. We present two
examples where the ground-truth images are taken from the
MNIST [90] and Fashion-MNIST [91] testing datasets. In both
cases, the measurements y € NM are simulated according to
(6) with a Poisson-noise model, where A is one realization of
a random matrix with i.i.d. entries from a zero-mean Gaussian
distribution with variance 0% .

1) MNIST: The MNIST dataset contains (28 x 28) images
of handwritten digits. The ground-truth image (Fig. 5) is first
normalized to have values in the range [0,1] and is then multi-
plied by a factor o which is picked uniformly at random from
(0,0.5].

In this case, the WGAN component of our augmented model
Gy, is trained on the normalized MNIST training dataset which
contains 50,000 images with values in the range [0,1]. The
distributions pz, and pyz, are standard Gaussian distributions
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Initial reconstruction
SNR: 3.10 dB

Ground-truth image

Posterior mean
SNR: 16.03 dB

Fig. 5.

Initial reconstruction

SNR: 8.81 dB

Ground-truth image

Posterior mean
SNR: 15.09 dB

Fig. 6.

and the function A is
0.5 x t2

== ez dt. 24
Var | &4

The architectures for the generator and critic networks can be
found in the supplementary material. The WGAN is trained for
2000 epochs using ADAM optimizers [92] with alearning rate of
2 x 10~%, hyperparameters (31, 32) = (0.5,0.999), and a batch
size of 64. The parameters Agp and nege are set as 10 and 5,
respectively.

2) Fashion-MNIST: The Fashion-MNIST dataset consists of
(28 x 28) grayscale images of different fashion products. Our
ground-truth image from this dataset is shown in Fig. 6.

h(z)

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 8, 2022

TV reconstruction
SNR: 3.16 dB

0.4

Posterior standard deviation

0.030
0.025
0.020
0.015
0.010
0.005

0.000

Reconstructions for phase retrieval (oversampling ratio M /K = 0.1).

TV reconstruction
SNR: 10.25 dB

Posterior standard deviation

Reconstructions for phase retrieval (oversampling ratio M /K = 0.15).

Here, the WGAN for our augmented deep generative prior
is trained on the normalized Fashion-MNIST training dataset.
It contains 60,000 images whose values lie in the range [0,1].
The distributions pz, and pz, are taken as standard Gaussian
distributions while the function £ is

h(z) = j%/x o7 dt. (25)

We provide the architectures for the generator and critic net-
works in the supplementary material. The WGAN is trained
for 2250 epochs using ADAM optimizers with a learning rate of
2 x 104, hyperparameters (31, 32) = (0.5,0.999), and a batch
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Initial reconstruction
SNR: 1.48 dB

Ground-truth image

Posterior mean
SNR: 18.88 dB

Fig. 7.

size of 64. The parameters Agp and nee are set as 10 and 5,
respectively.

3) Methods: Asdiscussed in Section III-D, we draw samples
from the posterior distribution using MALA. The estimate sjyj;
that we use for initializing the chain is taken to be the solution
of a variational problem with Tikhonov regularization, as in

M
s = angmin (D (= vl e (145,
seRX m=1
+[As], ) + 71Vl + i) 2o
There, V : RE — R%>*2 is the gradient operator, || - || p.q 18 the

(¢p, £,)-mixed norm defined as

Il 2 (X (

7 € R is the regularization parameter and the functional 7
given by

U

>

u=1

%

>

v=1

q/p\ 1/q
([x]u,,,)P> ) vx € RV, (27)

0,
+00,

K
s e RY

) (28)
otherwise

i+(s) =
enforces the non-negativity constraint on the solution. The data-
fidelity term in (26) corresponds to the negative log-likelihood
under the Poisson-noise model. We solve the problem in (26) us-
ing a projected-gradient-descent algorithm. The regularization
parameter 7 so that it minimizes the mean-square error (MSE)
with respect to the ground-truth is chosen via grid search.
After discarding the first 7}, samples (burn-in period), we
collect the next 1" samples for performing inference. We com-
pute the posterior mean which corresponds to the minimum
mean-square error (MMSE) estimate. Further, to quantify the
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TV reconstruction
SNR: 9.00 dB

Posterior standard deviation

0.0175
0.0150
0.0125
0.0100
0.0075
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0.0025

0.0000

Reconstructions for ODT (v = 0.07).

uncertainty associated with our estimation, we also compute the
pixel-wise standard-deviation map.

We compare the performance of our GAN-based posterior-
mean estimator with that of the TV-regularized method [3]

M
STv = arg min < Z (_ [ylm log ([|As|*],,)
seRK m=1

+ [Asmm) + 7||Vs|l21 + i+(s) (29)

TV regularization is known to promote piecewise-constant solu-
tions and is well-matched to our test images. We solve (29) using
FISTA [10] initialized with s;,;. The regularization parameter 7
is tuned for optimal MSE performance with the help of a grid
search.

4) Results: To illustrate the advantage of our neural-
network-based prior, we consider extreme imaging settings
where the number of measurements M is very small. For the
first case (Fig. 5), we have that o = 0.36, M/K = 0.1,03 =
10,7 = 107°,T}, = 8 x 10°, and T = 12 x 10°. The param-
eters for the second case (Fig. 6) are M/K = 0.15, ai =
0.5,7=1.75x10"% T, =17.5 x 10°, and T = 5 x 10°.

InFigures 5 and 6, we see that the GAN-based posterior-mean
estimator outperforms the TV-regularized method considerably.
Here, the very low oversampling ratios severely affect the per-
formance of TV regularization, even though it is a good fit
for the underlying images. By contrast, despite the scarcity
of measurements, our estimator remarkably yields excellent
results. This highlights the potential of learning-based priors for
highly ill-posed problems. Finally, we observe that, as one would
expect, the standard-deviation maps indicate higher uncertainty
at the edges for the posterior-mean estimator.
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Initial reconstruction

Posterior mean

Fig. 8.

C. Optical Diffraction Tomography

We consider both simulated and real data for our ODT exper-
iments.

1) Simulated data: In our simulated setup, the test image
(Fig. 7) that represents the RI contrast is a random sample
from the dataset described in Section IV-A: a disc with constant
intensity v.

The measurements are simulated using the BPM of Sec-
tion II-C with an AWGN model of variance o2 = 0.05. We
set the sampling steps to 6x = dy = 0.1um, the medium RI to
np = 1.52, and the wavelength to A = 0.406m. Weuse () = 20
incident tilted plane waves with angles that are uniformly spaced
in the range [—7/12, 7/12].

For this setting, we use the augmented WGAN prior of
Section IV-A in our reconstruction framework.

2) Real Data: In our experiment with real data, the sample
is a 2D cross-section of two non-overlapping fibres immersed
in oil (ny, = 1.525) [93]. The RI contrast of the sample is
negative. A standard Mach-Zehnder interferometer relying on
off-axis digital holography (A = 0.450pm) is used to collect
measurements from () = 59 views in the range [—7 /6, 7/6].

We crop the acquired data such that the measurement vector
for each view is of length M’ = 256. We take the discretized
region of interest to be of the size (256 x 256) and we set the
sampling steps for BPM (used for reconstruction) to dx = dy =
0.1257m. We assume an AWGN model of variance o2 = 0.15
for the measurements.

Here, the WGAN for our prior is trained on a synthetic dataset
containing 100,000 images of size (256 x 256), where each
image consists of two non-overlapping discs with a constant
intensity of one and a zero-valued background. The coordinates
of the centers of the two discs are sampled from U0 235y and
their radii are sampled from Uj o 50] subject to the constraint that

Posterior standard deviation
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TV reconstruction
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r—0.04
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r 0.025

- 0.020

0.015

0.010

0.005

0.000

Reconstructions for ODT (real data).

they do not overlap. The distributions pz, and pz, are standard
Gaussian distributions and the function £ is taken to be

0.1 ® 2 dt
e e .
V2T J -

The architectures for the generator and critic networks are de-
tailed in the supplementary material. The WGAN is trained for
500 epochs using RMSProp optimizers with a learning rate of
5 x 107° and a batch size of 128. The parameters Agp and Nerigic
are set as 10 and 5, respectively.

3) Methods: For both settings, the estimate sj,;; for MALA
is obtained by the application of a filtered backpropagation
algorithm that uses the Rytov approximation [85] to model the
scattering. We collect 7" samples from the posterior distribution
using MALA with a step-size 7 and burn-in period 73,, and use
them to compute the posterior mean and pixel-wise standard-
deviation map.

We compare our estimator with the TV-based method

Q
STy = arg min (Z lyq — Hopm(s; U?)HS
seRK

q=1

h(z) = (30)

+ ’7'||VS||271 + I(S)), 31
where Z(s) = i (s) for the simulated data and Z(s) = i_(s) for
the real data. This is a state-of-the-art method for ODT and is
commonly used in practice [7], [94]. Moreover, it is well-suited
for the constant-valued discs in our samples. The problem in
(31) is solved using FISTA initialized with sjy;. The regular-
ization parameter 7 is tuned for optimal MSE performance in
the simulated-data setting via a grid search, while it is tuned
manually in the real-data setting.

4) Results: The settings that we consider for our ODT exper-
iments are highly ill-posed as the incident waves only explore
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a limited range. As a result, the measurements lack informa-
tion along the horizontal axis, which leads to the so-called
missing-cone problem. For the first case (Fig. 7), we have that
v=2007,7=2x10"",T}, = 2 x 10%, and T = 8 x 10*. For
the second case (Fig. 8), we have that n =5 x 1078, T}, =
15 x 104, and T = 5 x 10,

In Figs. 7 and 8, we observe that the TV reconstructions (and
the initial ones) are elongated in the horizontal direction due to
the lack of information along this axis. However, the GAN-based
estimator is able to overcome the missing-cone problem. It yields
reconstructions whose quality is remarkable.

D. Discussion

With the help of the above-described experiments, we have
demonstrated the potential of our deep-generative-prior-based
Bayesian reconstruction framework for challenging nonlinear
inverse problems. We now mention some directions for future
work which can further improve this framework.

In the present form, our scheme lacks theoretical guarantees
for MALA to be geometrically ergodic (convergence to the
equilibrium distribution at a geometric rate). A topic of future
work could be to investigate the imposition of appropriate con-
straints on the generative model such that the resulting posterior
distribution satisfies certain smoothness and tail conditions [95]
that ensure geometric ergodicity of MALA.

The performance of our scheme heavily relies on how well
the prior models the object of interest. Thus, any progress on
the side of designing and training high-quality large-scale deep
generative models could be translated to our framework.

While the neural-network-like structure of our forward mod-
els make our approach tractable, like MCMC methods in gen-
eral, it requires a lot of computation. It could be interesting to
consider alternatives to MALA that might help in speeding up
this approach.

V. CONCLUSION

We have presented a Bayesian reconstruction framework for
nonlinear inverse problems where the prior information on the
image of interest is encoded by a deep generative model. Specif-
ically, we have designed a tractable posterior-sampling scheme
based on the Metropolis-adjusted Langevin algorithm for the
class of nonlinear inverse problems where the forward model
has a neural-network-like computational structure. This class
includes most practical imaging modalities. We have proposed
the concept of augmented generative models. They allow us
to tackle the problem of the quantitative recovery of images.
Finally, we have illustrated the benefits of our framework by
applying it to two nonlinear imaging modalities—phase retrieval
and optical diffraction tomography.

APPENDIX A
PROPERTIES OF THE POSTERIOR DISTRIBUTION

A. Well-Posedness

A Bayesian inverse problem is said to be well-posed in some
metric on the space of probability measures if the posterior
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distribution exists, is unique, and is continuous with respect
to the measurements for the chosen metric [88]. Here, we
present sufficient conditions from [88, Assumptions 3.5, 3.10
and Theorems 3.6, 3.12] that guarantee the well-posedness of
our problem in the latent space, that is, with respect to pzy as
described in Section III-C.

The following conditions are stated for py-almost every (a.e.)
z € R andeveryy € RM,

Conditions:

1) pyz(-|z) is a strictly positive pdf.

2) Jgass Ipviz(y12)[pz(z) dz’ < o

3) There exists g with [pai1 [g(2')|pz(2’) dz’ < oo such that
pyiz(y'|-) < g forally’ e RM.

4) py|z(-|z) is continuous.

5) There exists g’ with [pa.. |9'(2')|pz(2") dz’ < oo such
that [|z"[|5 pyz(y'|2") < ¢'(2"), where p € [1,00), for
pz-ae. z' € R and all y’ € RM.

If the conditions (1) — (4) hold, our Bayesian inverse problem
in the latent space is well-posed in the Prokhorov, Hellinger and
total-variation distances. In addition, if condition (5) holds, then
the problem is also well-posed in the Wasserstein p-distance.

For additive white-Gaussian-noise (AWGN) models, the
conditions (1) — (4) are satisfied for any physical forward
model H and prior distribution py. Further, if py is such that
[ 1Z'||5 pz(2') dz' < o (e.g., Gaussian distribution), condition
(5) is also satisfied [88, Corollary 5.1]. As for the Poisson-noise
models used in some of our experiments, they do not fall within
this framework of well-posedness developed in [88].

B. Existence of Moments

Based on Proposition 3.6 in [66], we also present some
conditions under which the moments of our posterior distri-
bution pgy exist. If the augmented deep generative prior Gy,
is Lipschitz-continuous and the prior distribution pz has finite
moments E,, [|z|*] for k = 1,2,..., K, then the Kth posterior
moment [, . [|s|/] exists for almost all measurements y.

The typical choice for py is the standard Gaussian distri-
bution, which has finite moments. The Lipschitz-continuity of
Gy, is guaranteed if the generative network G and the function
h are both Lipschitz-continuous and bounded. The Lipschitz
condition on the network G holds when its weights and biases
are finite-valued and it consists of Lipschitz-continuous activa-
tion functions (e.g., ReLU, sigmoid). The boundedness of G
is ensured when the activation function in the output layer is
bounded (such as the sigmoid function). These are conditions
that are satisfied by the networks used in Section IV. Further,
in our experiments, we choose the function % to be a scaled
version of the cumulative density function of the standard normal
distribution, which is Lipschitz-continuous and bounded.
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