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Abstract—We present a statistical framework to benchmark the
performance of reconstruction algorithms for linear inverse prob-
lems, in particular, neural-network-based methods that require
large quantities of training data. We generate synthetic signals
as realizations of sparse stochastic processes, which makes them
ideally matched to variational sparsity-promoting techniques. We
derive Gibbs sampling schemes to compute the minimum mean-
square error estimators for processes with Laplace, Student’s t,
and Bernoulli-Laplace innovations. These allow our framework to
provide quantitative measures of the degree of optimality (in the
mean-square-error sense) for any given reconstruction method.
We showcase our framework by benchmarking the performance
of some well-known variational methods and convolutional neural
network architectures that perform direct nonlinear reconstruc-
tions in the context of deconvolution and Fourier sampling. Our
experimental results support the understanding that, while these
neural networks outperform the variational methods and achieve
near-optimal results in many settings, their performance deterio-
rates severely for signals associated with heavy-tailed distributions.

Index Terms—Inverse problems, minimum mean-square error,
convolutional neural networks, sparse stochastic processes.

I. INTRODUCTION

INVERSE problems are often encountered in biomedical
imaging [1], particularly in modalities such as computed

tomography (CT), magnetic resonance imaging (MRI), or de-
convolution microscopy. Their goal is to reconstruct an unknown
signal from its measurements. Often, these are hard to solve due
to their ill-posedness, which implies that the underlying signal
cannot be determined uniquely by the acquired measurements,
unless one introduces some form of regularization. Therefore,
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prior knowledge about the signal of interest is required for the
resolution of such problems.

A. Model-Based Methods

Model-based methods rely on the mathematical modeling of
the signal of interest to counteract the ill-posedness of the inverse
problem. We organize them in two categories.

The first category is composed of linear reconstruction meth-
ods (e.g., filtered back-projection), which are fast, well under-
stood, and come with performance and stability guarantees [2],
[3]. From a variational standpoint, they can be interpreted as
minimizers of a cost functional that consists of a quadratic data
term to ensure consistency with the measurements, along with an
additive quadratic (Tikhonov) regularization term that imposes
some smoothness on the solution. Interestingly, these methods
can also be derived from a statistical perspective as optimal linear
reconstructors under the Gaussian hypothesis [4].

The second category is composed of methods that exploit
sparsity—the property that a signal admits a concise representa-
tion in some transform domain (e.g., wavelets) [5], [6], [7], [8].
This powerful concept supports the theory of compressed sens-
ing, which gives conditions under which the reconstruction of an
image from a limited set of measurements is feasible [9], [10],
[11] and stable [12], [13]. To obtain a sparse reconstruction, one
typically uses �1-norm regularization and solves the correspond-
ing convex optimization problem using iterative algorithms such
as the fast iterative shrinkage-thresholding algorithm (FISTA)
[14] or the alternating direction method of multipliers (ADMM)
[15]. In practice, sparsity-promoting regularizers such as total
variation (TV) [16] generally improve the quality of the image.
From a statistical point of view, many of these sparsity-based
methods can be interpreted as maximum a posteriori (MAP)
estimators for some specific choices of stochastic models for
the signal of interest [17].

B. Learning-Based Methods

Neural-network-based methods that make use of prior infor-
mation learned from a large collection of training data are now
the focus of much of the current research in image reconstruction
[18], [19]. They shine in extreme imaging scenarios where one
wishes to achieve more with fewer data, for instance when oper-
ating with short integration times, which leads to an abundance
of noise, or when collecting fewer measurements to reduce either
the acquisition duration and/or the radiation exposure [20]. Here,
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we focus on two classes of neural-network-based methods and
classify them as the counterparts of the model-based ones.

The first successful applications of deep convolutional neural
networks (CNNs) in imaging build upon the classical linear-
reconstruction algorithms, training a CNN to correct for re-
construction artifacts in extreme imaging conditions [20], [21],
[22], [23], [24]. Unrolling methods [25], [26], [27], [28], [29],
[30] also fall into this class of direct, nonlinear reconstructions.
Examples of successful applications include MRI, CT, optical
imaging, and ultrasound. Their gain over the state-of-the-art is
impressive and comparable in magnitude to the one afforded by
a decade of refinement of the sparsity-promoting techniques.

The second class includes methods that attempt to reconstruct
an image that is consistent with the measurements by replacing
the proximal operator that is typically involved in the iterative
sparsity-promoting methods by an appropriate denoising CNN,
which then plays the role of the regularizer. They come in a
variety of flavors, including plug-and-play (PnP) [31], [32], [33],
[34], regularization-by-denoising (RED) [35], [36], [37], and
projected-gradient-descent [38], [39] methods.

Despite their remarkable performance, CNN-based imag-
ing methods have limitations that currently hinder their fur-
ther development. Unlike the model-based methods, which are
backed by sound mathematics, the development of CNN-based
approaches is empirical. Expressivity is obtained through the
composition of simple units, but the working of the whole
is hard to comprehend and the architectural options are over-
whelming (e.g., depth, number of channels, size of the filters).
In practice, one usually proceeds by trial and error using the
training, validation, and testing errors as quantitative criteria.
Further, the training of CNNs is poorly understood and often
difficult because of the underlying over-parameterization: get-
ting a stochastic optimization algorithm to perform properly for
a specific application typically requires a lot of adjustments and
experimentation.

Beside the strain that this empirical approach exerts on de-
velopers, the performance greatly depends on the quality, car-
dinality, and representability of the training dataset, while the
outcome is not necessarily transposable to other applications.
The bottleneck with biomedical imaging is often a limited access
to large, representative datasets. This is mostly because of legal
issues in medical imaging and because of the lack of standard-
ized protocols in biomicroscopy. Another issue is the chicken-
and-egg nature of the training process because the desired image
(the physical object that corresponds to the measurements) is
not known precisely—in practice, the goldstandard is an image
produced by a state-of-the-art model-based method with high-
density/low-noise measurements. This is adequate for develop-
ing methods for compressed sensing, but not otherwise. This
explains why the works that demonstrate the superiority of the
CNN-based approaches over the more traditional model-based
methods for image reconstruction have used limited benchmarks
so far.

C. Contribution

In this work, we present an objective environment to bench-
mark the performance of reconstruction algorithms for linear

inverse problems. Our proposed framework offers quantitative
measures of the degree of optimality (in the mean-square-error
sense) for any given reconstruction method. Further, it provides
access to large amounts of training data, which enables the
benchmarking of CNN-based approaches.

We synthesize ground-truth signals and then simulate the
measurement process (e.g., convolution for deconvolution mi-
croscopy, Fourier sampling for MRI) in the presence of noise.
Specifically, we consider a statistical framework where the un-
derlying signals are realizations of 1D sparse stochastic pro-
cesses (SSPs) [40]. The motivation there is that these pro-
cesses are ideally matched to model-based methods, the most
prominent of which can be interpreted as their MAP estima-
tors [41]. Since the true statistical distribution of the signal is
known exactly in our framework, the minimum-mean-square-
error (MMSE) estimator is indeed optimal in the mean-square-
error (MSE) sense. Therefore, we are able to provide statistical
guarantees of optimality by specifying an upper limit on the
reconstruction performance.

Our framework also provides training data for CNN-based
approaches. Indeed, we can produce any desired number of
training pairs for a given reconstruction task and some chosen
stochastic signal model, which allows for an informed com-
parison of network architectures. Thus, the availability of the
goldstandard (MMSE estimator) and training data make our
benchmark a good ground for the tuning of CNN architectures
and for the identification of the best designs in a tightly con-
trolled environment.

The MAP estimates of SSPs are solutions of optimization
problems that resemble the ones used in model-based meth-
ods, and can be computed efficiently. However, it has been
observed that these MAP estimators are suboptimal in the MSE
sense [41], [42], except in the Gaussian scenario where the
MAP and MMSE estimators (generalized Wiener filter) coincide
[4]. In this work, we focus on non-Gaussian signal models.
In principle, the MMSE estimator involves the calculation of
high-dimensional integrals, which are not numerically tractable
in general. Thus, we develop efficient Gibbs-sampling-based
algorithms to compute the MMSE estimator for specific classes
of SSPs, with innovations following the Laplace, Student’s t, and
Bernoulli-Laplace distributions. To the best of our knowledge,
no such working solution for generic linear inverse problems
with SSPs has been presented in the literature.

Finally, we present experimental results that illustrate the
usefulness of our framework. Specifically, we benchmark the
performance of some well-known model-based methods and
CNNs that perform direct nonlinear reconstructions, in the con-
text of deconvolution and Fourier sampling for first-order SSPs.
The CNNs that we consider are optimized by minimizing the
MSE loss for training datasets. On one hand, when the innova-
tions follow a Bernoulli-Laplace distribution, we observe that
CNNs (with sufficient capacity and training data) outperform
the sparsity-promoting methods, which are well-suited to these
piecewise-constant signals. In fact, some of these CNNs achieve
near-optimal MSE performance. On the other hand, our experi-
ments with Student’s t innovations indicate regimes where CNNs
fail to reconstruct the signals well. More specifically, we observe
that, when the tails of the Student’s t distribution are made
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heavier (i.e., when we move towards a Cauchy distribution),
CNNs perform rather poorly.

D. Roadmap

In Section II, we describe a continuous-domain model for
the measurement process along with a way to discretize it. In
Section III, we introduce Lévy processes as stochastic models
for our signals and we derive the probability distribution for
samples of such processes. We then discuss MAP and MMSE
estimation in Section IV before we develop Gibbs samplers
for Lévy processes associated with Laplace, Student’s t, and
Bernoulli-Laplace distributions in Section V. Finally, we present
experimental results in Section VI.

II. MEASUREMENT MODEL

In the proposed framework, we consider the recovery of a
continuous-domain signal s : R → R from a finite number M
of measurements y = (ym)Mm=1.

A. Continuous-Domain Measurement Model

We model the measurements y = (ym)Mm=1 as

ym =

∫
R

s(t)νm(t) dt+ n[m], (1)

where (νm)Mm=1 are linear functionals that describe the physics
of the acquisition process and n[·] is an additive white Gaussian
noise (AWGN) with variance σ2

n. By choosing appropriate func-
tionals (νm)Mm=1, we can study a variety of linear inverse prob-
lems such as denoising, deconvolution, inpainting, and Fourier
sampling.

B. Discrete Measurement Model

We need to discretize (1) to obtain a computationally feasible
model for the measurements. To that end, we consider a finite
region of interest Ω = (0, T ) of the signal and approximate it
with

sh(t) =

K∑
k=1

s(kh)sinc

(
t

h
− k

)
, (2)

where h is the sampling step and K = (
⌊
T
h

⌋− 1). When h is
small enough, sh is a good approximation of swithin the interval
Ω [43]. On introducing (2) into (1), we get that

y = Hs+ n, (3)

where s = (s(kh))Kk=1 ∈ R
K contains equidistant samples of

the signal, H : RK → R
M is the discrete system matrix with

[H]m,k =

∫
R

sinc

(
t

h
− k

)
νm(t) dt, (4)

and n ∈ R
M is the noise.

Thus, for any signal samples s ∈ R
K , we can simulate noisy

measurements using (3). Next, we derive the discrete system
matrices for deconvolution and Fourier sampling. Hereafter, we
assume for simplicity that h = 1.

C. Deconvolution

In deconvolution, the measurements are acquired by sam-
pling the result of the convolution between the signal and the
point-spread function (PSF) ψ of the acquisition system, which
we model by letting the measurement functionals be νm =
ψ(m− ·). We assume that the cutoff frequency of ψ is ω0 ≤ π,
as this allows us to sample (s ∗ ψ) on an integer grid without
aliasing effects. In this case, The entries of the resulting system
matrix H are given by

[H]m,k =

∫
R

sinc(t− k)ψ(m− t) dt

= ψ(m− k). (5)

Here, H is a discrete convolution matrix whose entries are
samples of the bandlimited PSF ψ.

D. Fourier Sampling

In Fourier sampling, the measurements are acquired by sam-
pling the Fourier transform of the signal at arbitrary frequencies
{ωm}Mm=1. Accordingly, the measurement functionals are the
complex exponentials νm = e−jωm·. Assuming that |ωm| ≤ π,
we get that

[H]m,k =

∫
R

sinc(t− k)e−jωmt dt

= e−jωmk. (6)

Here, H is a discrete Fourier-like matrix, except that the fre-
quencies ωm do not necessarily lie on an uniform grid.

III. STOCHASTIC SIGNAL MODEL

In this section, we describe a continuous-domain stochastic
model for the signal. We also derive the probability distribution
for the discrete signal vector s = (s(k))Kk=1.

A. Lévy Processes

In our framework, the underlying signals are realizations of a
well-known class of first-order sparse stochastic processes: the
Lévy processes [40], [44].

Definition 1 (Lévy process): A stochastic process s = {s(t) :
t ∈ R

+} is a Lévy process if
1) s(0) = 0 almost surely;
2) (independent increments) for any N ∈ N \ {0, 1} and

0 ≤ t1 < t2 · · · < tN <∞, the increments (s(t2)−
s(t1)), (s(t3)− s(t2)), . . . , (s(tN )− s(tN−1)) are mutu-
ally independent;

3) (stationary increments) for any given step h, the increment
process uh = {s(t)− s(t− h) : t ∈ R

+} is stationary;
4) (stochastic continuity) for any ε > 0 and t ≥ 0

lim
h→0

Pr{|s(t+ h)− s(t)| > ε} = 0.

Lévy processes are closely linked to infinitely divisible (id)
distributions.

Definition 2 (Infinite divisibility): A random variableX is in-
finitely divisible if, for anyN ∈ N \ {0}, there exist independent
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and identically distributed (i.i.d.) random variablesX1, . . . , XN

such that X = X1 + · · ·+XN .
For any Lévy process s, the random variable s(t) for some

t > 0 is infinitely divisible. Moreover, its probability density
function (pdf) is given by

ps(t)(x) =

∫
R

(∫
R

ps(1)(y)e
jωy dy

)t

e−jωx dω

2π
. (7)

Conversely, for any id distribution with pdf pid, it is possible
to construct a Lévy process s such that ps(1) = pid. Thus, there
is a one-to-one correspondence between Lévy processes and id
distributions [44].

Among all id distributions, the pdf of the Gaussian distribution
exhibits the fastest rate of decay at infinity. In this sense, we
refer to the non-Gaussian, heavier-tailed members (e.g., Laplace,
Bernoulli-Laplace, Student’s t, symmetric-alpha-stable) of the
class of id distributions as sparse [45]. Indeed, some of these
sparse distributions have a mass at the origin in their proba-
bility distribution (e.g., Bernoulli-Laplace) and some of them
are strongly compressible (e.g., Student’s t, symmetric-alpha-
stable) [46].

The stochastic model of Lévy processes allows us to consider
a variety of signals with different types of sparsity. In our frame-
work, we focus on the subclass of Lévy processes associated
with the Gaussian, Laplace, Bernoulli-Laplace and Student’s t
distributions. Some realizations of these processes are shown in
Fig. 1.

B. Discrete Stochastic Model

Now, we derive the pdf of the random vector s = (s(k))Kk=1,
which contains uniform samples of a Lévy process. Consider
the stationary increment process u(t) = {s(t)− s(t− 1) : t ∈
R

+} whose first-order pdf pu is the same as ps(1) and so is
infinitely divisible. Its samplesu = (u(k))Kk=1 can be expressed
as

u = Ds, (8)

where D is a finite-difference matrix of the form

D =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0
. . .

. . .

0 0 · · · −1 1

⎤⎥⎥⎥⎥⎥⎥⎦. (9)

Using (8) and the fact that the increments are independent, we
obtain the pdf of the discrete signal as

ps(s) =
K∏

k=1

pu ([Ds]k) . (10)

Note that (8) can also be written as

[s]k =

k∑
n=1

[u]n, k = 1, . . . ,K, (11)

Fig. 1. Realizations of different Lévy processes as characterized by the
corresponding infinitely divisible pdfs.

which gives us a direct way to generate samples of Lévy
processes.

C. Extensions

In this work, we have considered inverse problems involving
1D signals that are modelled as realizations of Lévy processes
with increments that follow the Gaussian, Laplace, Bernoulli-
Laplace and Student’s t distributions. Our framework can fur-
ther be extended in a straightforward manner to include the
more general signal model of continuous-domain first-order
autoregressive processes [40, Chapter 7] driven by white noises
associated with the aforementioned distributions. These AR(1)
processes yield a discrete stochastic model that is similar to the
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one described in (10). There, the application of a suitable trans-
formation matrix to the discrete signal vector, which contains
equidistant samples of the process, decouples it and generates
a random vector (called the innovation or generalized incre-
ments) with i.i.d. entries. Thus, the MMSE estimation methods
presented in Section V can be readily adapted for such AR(1)
processes.

We can also directly extend the proposed framework to handle
multidimensional signals for the particular stochastic model
of continuous-domain AR Lévy sheets [47, Chapter 3], [40]
associated with the Gaussian, Laplace, Bernoulli-Laplace and
Student’s t distributions. These are higher-dimensional gen-
eralizations (based on separable whitening operators) of the
corresponding AR(1) processes and they result in desirable
discrete models of the form (10). Unfortunately, the vectorized
discrete signal for other (“non-separable”) higher-dimensional
stochastic processes described in [40] cannot be fully decoupled
by applying a linear transformation. This makes the task of
designing schemes to compute their MMSE estimators very
challenging. An alternate way of extending our framework could
be to define a new class of continuous-domain multidimensional
stochastic models using the spline-operator-based framework of
[48]. However, this approach would require substantial devel-
opment of novel mathematical ideas and is thus not discussed
further in this article.

IV. BAYESIAN INFERENCE

So far, we have introduced the signal and measurement models
that allow us to generate our ground-truth signals and simulate
their noisy measurements for a certain acquisition setup. Next,
we focus on statistical estimators for the reconstruction problem
at hand, which is to recover the signal s from the measurements
y.

In Bayesian inference, the goal is to characterize the posterior
distribution ps|y and derive estimators based on it. Using Bayes’
rule and (10), we get

ps|y(s|y) =
py|s(y|s)ps(s)∫

RK py|s(y|s)ps(s) ds

∝ exp

(
− ‖y −Hs‖22

2σ2
n

) K∏
k=1

pu ([Ds]k) . (12)

A. Maximum a Posteriori Estimator

The MAP estimator calculates the mode of the posterior
distribution ps|y and is given by

ŝMAP(y) = arg max
s∈RK

ps|y(s|y)

= arg min
s∈RK

(
1

2σ2
n

‖y −Hs‖22 +
K∑

k=1

Φu ([Ds]k)

)
,

(13)

where Φu(x) = − log(pu(x)). The cost functional in (13) con-
sists of a quadratic data-fidelity term and a penalty term that
encodes the prior signal model. The optimization task in (13)

resembles the one formulated in the variational model-based
methods. For instance, if pu is a Gaussian pdf, then the penalty
term is proportional to ‖Ds‖22, which is a classical Tikhonov
regularizer [2]. However, if pu is a Laplace pdf, then we have a
sparsity-promoting �1-norm penalty term ‖Ds‖1, which corre-
sponds to the popular TV regularizer [16].

These MAP estimators can be computed efficiently with the
help of iterative algorithms such as gradient descent, FISTA [14],
and ADMM [15].

B. Minimum Mean-Square Error Estimator

The MMSE estimator is given by

ŝMMSE(y) = arg min
ŝ∈RK

(∫
RK

‖s− ŝ‖22 ps|y(s|y) ds
)

=

∫
RK

s ps|y(s|y) ds, (14)

which is the mean of the posterior distribution ps|y. For a fixed
stochastic model, the MMSE estimator is the optimal recon-
structor in the MSE sense and thus serves as the goldstandard in
our benchmarking framework.

In the Gaussian case, the MMSE estimator is known to
coincide with the MAP estimator and is straightforward to
calculate [1], [4]. However, in the non-Gaussian case, we need
to numerically evaluate the high-dimensional integral in (14),
which is computationally challenging.

V. MMSE ESTIMATORS FOR SPARSE LÉVY PROCESSES

In this section, we present efficient methods to compute the
MMSE estimator for sparse Lévy processes with increments that
follow the Laplace, Student’s t, and Bernoulli-Laplace distribu-
tions, which constitutes a key contribution of this article.

A. Markov Chain Monte Carlo Methods

The MMSE estimator ŝMMSE involves the calculation of the
integral (14). The high dimensionality of this integral makes its
approximation by simple techniques such as uniform-grid-based
Riemann sums infeasible. Instead, one can use Markov Chain
Monte Carlo (MCMC) methods [49], [50], [51], [52] for the
numerical approximation of (14) in a tractable manner.

MCMC methods are designed for generating random sam-
ples from nontrivial high-dimensional probability distributions.
Broadly speaking, the idea in MCMC is to design a Markov
chain such that the distribution that one wishes to draw samples
from is its stationary distribution. The desired samples can be
obtained by simulating the Markov chain and recording its states
after convergence.

In order to compute the integral in (14), we first generate
samples {s(q)}Qq=1 from ps|y using an MCMC method. We then

approximate ŝMMSE by the empirical mean ŝQ = 1
Q

∑Q
q=1 s

(q).
Although the collected samples are correlated, the Markov chain
central limit theorem [53] guarantees that ŝQ is a good approx-
imation of ŝMMSE for a large-enough Q.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on June 27,2023 at 12:14:53 UTC from IEEE Xplore.  Restrictions apply. 



2048 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

Algorithm 1: Gibbs Sampling.
1: Input: Q (number of samples), B (burn-in period)
2: Initialization: (x̃(0), ỹ(0))
3: for q = 1, . . . , B +Q do
4: Generate x̃(q) ∼ px|y(x|ỹ(q−1))

5: Generate ỹ(q) ∼ py|x(y|x̃(q))
6: end for
7: Output: {(x(q), y(q))}Qq=1 = {(x̃(q+B), ỹ(q+B))}Qq=1

B. Gibbs Sampling

In this work, we propose to use the MCMC method called
Gibbs sampling [54], [55] to generate samples {u(q)}Qq=1 from
the posterior distribution pu|y. These can then be transformed

in accordance with (11) to obtain samples {D−1u(q)}Qq=1 from
ps|y. We now give the gist of this algorithm.

Let x and y be two random variables. Consider the task of
generating samples from their joint distribution px,y . Gibbs sam-
pling is advantageous whenever it is computationally difficult to
sample from the joint distribution directly but the conditional
distributions px|y and py|x are easy to sample from. The steps
involved in this method are presented in Algorithm 1. They yield
a Markov chain whose stationary distribution is indeed px,y [55].
In practice, one discards some of the initial samples (burn-in
period) to allow the chain to converge. Moreover, quantities
(expectation integrals) based on the marginal distributions px
and py can be computed from the individual samples {x(q)}Qq=1

and {y(q)}Qq=1, respectively.
Next, we present Gibbs sampling schemes for Lévy processes

with Laplace, Student’s t, and Bernoulli-Laplace increments.
Our strategy is to introduce an auxiliary vector w and perform
Gibbs sampling for the joint distribution pu,w|y [56], [57]. The
key is to choose w such that the conditional distributions pu|w,y

and pw|u,y can be sampled from in an efficient manner.
Hereafter, we assume that the noise variance σ2

n and the
parameters of the signal model are known.

C. Laplace Increments

For Lévy processes with Laplace increments, we adapt the
approach that was developed in [58].

The pdf for the Laplace distribution is

pu(u) =
b

2
exp (−b|u|) , (15)

where b is the scale parameter. The density in (15) can be
expressed as a scale mixture of normal distributions [59], as

pu(u) =

∫
R

pu|w(u|w)pw(w) dw, (16)

where

pu|w(u|w) = 1√
2πw

exp

(
− u2

2w

)
(17)

is the Gaussian pdf and

pw(w) =
b2

2
exp

(
− b2w

2

)
1+(w) (18)

is a mixing exponential pdf1 withλ = 2/b2. This property allows
us to define an auxiliary random vector w ∈ R

K with i.i.d.
entries following the distribution pw in (18), such that

pu|w(u|w) =

K∏
k=1

pu|w ([u]k|[w]k) , (19)

where pu|w is shown in (17).
Due to the chain rule of probability (or the general product

rule), the full joint distribution py,u,w can be written as

py,u,w(y,u,w) = py|u,w(y|u,w)pu,w(u,w)

= py|u(y|u)pu|w(u|w)pw(w). (20)

Consequently, the distribution pu,w|y takes the form

pu,w|y(u,w|y) ∝ exp

(
− 1

2σ2
n

‖y −Au‖22
)

×
K∏

k=1

[w]
− 1

2

k exp

(
− [u]2k

2[w]k

)

×
K∏

k=1

b2

2
exp

(
− b2[w]k

2

)
1+ ([w]k) ,

(21)

where A := HD−1.
Based on (21), the conditional distribution pu|w,y is then

obtained as

pu|w,y(u|w,y) ∝ exp

(
− 1

2

(
1

σ2
n

‖y −Au‖22

+ uTCL(w)u

))
, (22)

where CL(w) is a diagonal matrix with elements ([w]−1
k )Kk=1.

Specifically, pu|w,y is a multivariate Gaussian pdf with mean
u = σ−2

n (σ−2
n ATA+CL(w))−1ATy and covariance matrix

R = (σ−2
n ATA+CL(w))−1. There exist several methods for

the efficient generation of samples from a multivariate Gaussian
density [60], [61], [62], [63].

The conditional distribution pw|u,y is

pw|u,y(w|u,y) ∝
K∏

k=1

pw|u,y ([w]k|[u]k,y) , (23)

where

pw|u,y (w|u,y) ∝ exp

(
− 1

2

(
u2

w
+ b2w

))
× w− 1

2 1+(w) (24)

1The pdf of the exponential distribution is

pexp(x) = (1/λ)e−x/λ1+(x),

where λ > 0 is the scale parameter.
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belongs to the family of generalized inverse Gaussian distribu-
tions2 with λ1 = b2, λ2 = u2 and a = 0.5. We use the method
proposed in [64] to draw samples from the pdf in (24).

To summarize, at each iteration q of the constructed blocked
Gibbs sampler, we generate u(q) ∼ pu|w,y(u|w(q−1),y) and
[w(q)]k ∼ pw|u,y(w|[u(q)]k,y) for all k ∈ {1, . . . ,K}. The col-
lected samples {u(q)}q follow the desired distribution pu|y.

D. Student’s t Increments

The case of Student’s t increments can be handled by adapting
the method shown in [65], which is in fact similar to the one we
described for Laplace increments.

The Student’s t pdf is given by

pu(u) =
Γ(α+1

2 )

Γ
(
α
2

) 1√
π(1 + u2)

α+1
2

, (25)

where α is the number of degrees of freedom and controls the
tail of the distribution, and whereΓ denotes the gamma function.
It can also be expressed as

pu(u) =

∫
R

pu|w(u|w)pw(w) dw, (26)

where

pu|w(u|w) =
√
w

2π
exp

(
− wu2

2

)
(27)

is a Gaussian pdf and

pw(w) =
(0.5)

α
2

Γ(α2 )
w

α
2 −1 exp

(
−w

2

)
1+(w) (28)

is the pdf of a gamma3 distribution. Again, we introduce an
auxiliary vector w ∈ R

K whose i.i.d. entries follow pw defined
in (28). It is such that

pu|w(u|w) =
K∏

k=1

pu|w ([u]k|[w]k) , (29)

where pu|w is defined in (27).
Here, the distribution pu,w|y is given by

pu,w|y(u,w|y) ∝ exp

(
− 1

2σ2
n

‖y −Au‖22
)

×
K∏

k=1

[w]
1
2

k exp

(
− [w]k[u]

2
k

2

)

2The pdf of the generalized inverse Gaussian distribution is

pgig(x) =
(λ1/λ2)

a/2

2Ka(
√
λ1λ2)

xa−1e−(λ1x+λ2/x)/21+(x),

where Ka is the modified Bessel function of the second kind, λ1 > 0, λ2 > 0,
and a ∈ R.

3The pdf of the gamma distribution is

pgam(x) =
1

λλ12 Γ(λ1)
xλ1−1e−x/λ21+(x),

where λ1 > 0 and λ2 > 0 are the shape and scale parameters, respectively.

×
K∏

k=1

[w]
α
2 −1

k exp

(
− [w]k

2

)
1+ ([w]k) ,

(30)

where A := HD−1.
Now, the conditional distribution pu|w,y(u|w,y) turns out to

be

pu|w,y(u|w,y) ∝ exp

(
− 1

2

(
1

σ2
n

‖y −Au‖22

+ uTCT(w)u

))
, (31)

where CT(w) is a diagonal matrix with entries ([w]k)
K
k=1.

Similar to the Laplace case, pu|w,y is a multivariate Gaussian
density with mean u = σ−2

n (σ−2
n ATA+CT(w))−1ATy and

covariance matrix R = (σ−2
n ATA+CT(w))−1.

The distribution pw|u,y is again separable and takes the form

pw|u,y(w|u,y) ∝
K∏

k=1

pw|u,y ([w]k|[u]k,y) , (32)

where

pw|u,y (w|u,y) ∝ exp

(
− (1 + u)2w

2

)
× w

α−1
2 1+(w). (33)

is a gamma distribution withλ1 = α+1
2 and λ2 = 2

(1+u)2 , which
can easily be sampled from.

E. Bernoulli-Laplace Increments

In [66], Gibbs sampling schemes have been designed for a
deconvolution problem where the underlying signal is an i.i.d.
spike train that follows the Bernoulli-Gaussian distribution. Un-
fortunately, the Bernoulli-Gaussian distribution is not infinitely
divisible and so is not compatible with our framework of Lévy
processes. While there exists some work [67] on Bernoulli-
Laplace priors, according to the analysis presented in [66],
their proposed sampler would have a tendency to get stuck in
certain configurations. Thus, we build upon the method in [66]
and develop a novel Gibbs sampler for Lévy processes with
Bernoulli-Laplace increments.

The Bernoulli-Laplace pdf is

pu(u) = λδ(u) + (1− λ)
b

2
exp (−b|u|), (34)

where λ ∈ (0, 1) denotes the mass probability at the origin and
b is a scale parameter. We can represent this same density as

pu(u) =

∫
R

(
1∑

v=0

pu|v,w(u|v, w)p(v)
)
p(w) dw, (35)

where

pv(v) = (λ)1−v(1− λ)v for v ∈ {0, 1} (36)
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is a Bernoulli distribution,

pw(w) =
b2

2
exp

(
− b2w

2

)
1+(w) (37)

is an exponential pdf, and pu|v,w is defined such that

pu|v,w(u|v = 0, w) = δ(u) (38)

pu|v,w(u|v = 1, w) =
1√
2πw

exp

(
− u2

2w

)
. (39)

Based on this representation, we introduce two independent
auxiliary vectorsv ∈ R

K andw ∈ R
K . Their elements are i.i.d.

and follow the distributions pv and pw, as defined in (36) and
(37), respectively. Further, these vectors satisfy

pu|v,w(u|v,w) =

K∏
k=1

pu|v,w ([u]k|[v]k, [w]k) , (40)

where pu|v,w is defined in (38) and (39).
Here, the full joint distribution py,u,v,w is given by

py,u,v,w(y,u,v,w) = py|u,v,w(y|u,v,w)pu,v,w(u,v,w)

= py|u(y|u)pu|v,w(u|v,w)

× pv(v)pw(w). (41)

As a result, the distribution pu,v,w|y takes the form

pu,v,w|y(u,v,w|y) ∝ exp

(
− 1

2σ2
n

‖y −Au‖22
)

×
K∏

k=1

pu|v,w ([u]k|[v]k, [w]k)

×
K∏

k=1

λ1−[v]k(1− λ)[v]k

×
K∏

k=1

b2

2
exp

(
− b2[w]k

2

)
1+([w]k),

(42)

where A = HD−1.
Let us now introduce some notations. For any binary vector

q ∈ R
K , let Iq,0 and Iq,1 denote sets of indices such that

[q]k = 0 for k ∈ Iq,0 and [q]k = 1 for k ∈ Iq,1. Further, let
A(q) be the matrix constructed by taking the columns of A
corresponding to the indices in Iq,1. We then define the matrix
B(q, r) = σ2

nI+A(q)CBL(q, r)A(q)T , where r ∈ R
K is a

vector with positive entries and CBL(q, r) is a diagonal matrix
with entries ([r]k)k∈Iq,1

. Here, we also introduce the vector
q(−k) ∈ R

K−1 that contains all the entries of q except the
kth one, so that q(−k) = ([q]1, . . . , [q]k−1, [q]k+1, . . . , [q]K)T .
Lastly, for q ∈ {0, 1}, we define the vector qq

(−k) ∈ R
K such

that qq
(−k) = ([q]1, . . . , [q]k−1, q, [q]k+1, . . . , [q]K)T .

First, we look at the conditional distribution pu|v,w,y. From
(38) and (42), we deduce that any sample from pu|v,w,y takes
the value of zero at the indices in Iv,0. If we define u1 =

([u]k)k∈Iv,1
, then we get

pu1|v,w,y(u1|v,w,y) ∝ exp

(
− 1

2

(
1

σ2
n

‖y −A(v)u1‖22

+ uT
1 CBL(v,w)u1

))
. (43)

Thus, pu1|v,w,y is a multivariate Gaussian density with mean
u1 = σ−2

n (σ−2
n A(v)TA(v) +CBL(v,w))−1A(v)Ty and co-

variance matrix R = (σ−2
n A(v)TA(v) +CBL(v,w))−1.

The conditional distribution pw|u,v,y takes the form

pw|u,v,y(w|u,v,y) ∝
K∏

k=1

pw|u,v,y ([w]k|[u]k, [v]k,y) , (44)

where pw|u,v,y is given by

pw|u,v,y(w|u, v = 0,y) ∝ b2

2
exp

(
− b2w

2

)
1+(w) (45)

pw|u,v,y(w|u, v = 1,y) ∝ exp

(
− 1

2

(
u2

w
+ b2w

))
× w− 1

2 1+(w). (46)

The densities in (45) and (46) correspond to the exponential
distribution with λ = 2/b2 and the generalized inverse Gaussian
distribution with λ1 = b2, λ2 = u2, and a = 0.5.

Next, inspired by the work in [66], we consider sam-
pling from the marginalized conditional distribution of [v]k
in a sequential manner as this can allow for a more ef-
ficient exploration of configurations of v. More specifi-
cally, at each iteration q, we draw [v(q)]k from the dis-
tribution p[v]k|v(−k),w,y(v|v(q)

(−k),w
(q),u(q−1)), where v

(q)
(−k) =

([v(q)]1, . . . , [v
(q)]k−1, [v

(q−1)]k+1, . . . , [v
(q−1)]K) and k ∈

{1, . . . ,K}.
The marginalized posterior distribution pv,w|y is given by

pv,w|y(v,w|y) ∝ py|v,w(y|v,w)pv(v)pw(w), (47)

where

py|v,w(y|v,w) =

∫
RK

py|u,v,w(y|u,v,w)pu|v,w(u|v,w) du.

(48)
It can be shown that (47) and (48) lead to

pv,w|y(v,w|y) ∝ |B(v,w)|− 1
2 exp

(
− 1

2
yTB(v,w)−1y

)

×
K∏

k=1

λ1−[v]k(1− λ)[v]k

×
K∏

k=1

b2

2
exp

(
− b2[w]k

2

)
1+([w]k).

(49)

From (49), we see that p[v]k|v(−k),w,y is a Bernoulli distribution
with

p[v]k|v(−k),w,y(v|v(−k),w,y)
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=

(
1 + exp

(
− 1

2

(
h
(
1− v;v(−k),w,y

)
−h (v;v(−k),w,y

))))−1

, (50)

where

h
(
v;v(−k),w,y

)
= yTB

(
vv
(−k),w

)−1
y

+ log
(∣∣B(vv

(−k),w)
∣∣)

+ 2v log

(
λ

1− λ

)
. (51)

To summarize, in each iteration q of the above-described
sampler, we generate w(q) ∼ pw|u,v,y(w|u(q−1),v(q−1),y),

[v(q)]k ∼ p[v]k|v(−k),w,y(v|v(q)
(−k),w

(q),u(q−1)) for all k and

u(q) ∼ pu|v,w,y(u|v(q),w(q),y). This particular order of up-
dates is important as it yields a partially collapsed Gibbs sampler
[68] where the stationary distribution is still pu,v,w|y.

VI. EXPERIMENTAL RESULTS

In our experiments, we benchmark the performance of some
popular signal reconstruction schemes, including a CNN-based
method, on deconvolution and Fourier sampling problems with
Lévy processes associated with the Bernoulli-Laplace and Stu-
dent’s t distributions.

A. Signal Models

We consider a signal vector s ∈ R
100 that contains samples of

a Lévy process whose increments follow the Bernoulli-Laplace
or Student’s t distribution.

1) Bernoulli-Laplace Increments: The Bernoulli-Laplace
pdf (34) is characterized by the parameters λ and b, where λ
determines the mass probability at the origin and b represents
the scale of the Laplace component. We perform experiments
for models corresponding to λ ∈ {0.6, 0.7, 0.8, 0.9}. The scale
parameter is set to b = 1 for each case.

2) Student’t t Increments: The Student’s t pdf (25) is param-
eterized by α, which controls the tails of the distribution. We
conduct experiments for α ∈ {1, 3, 5, 39}.

B. Measurement Models

We consider both deconvolution and Fourier sampling prob-
lems for each of the above-described signal models.

1) Deconvolution: As shown in Section II-C, the system
matrix H for deconvolution is a discrete convolution matrix.
Accordingly, we construct H : R100 → R

88 such that

H =

⎡⎢⎢⎢⎢⎢⎣
[h]13 · · · [h]1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 [h]13 · · · [h]1

⎤⎥⎥⎥⎥⎥⎦ , (52)

where h ∈ R
13 consists of the central samples of a truncated

Gaussian PSF with variance σ2
0 = 4.

2) Fourier Sampling: For Fourier sampling in 1D, which is
reminiscent of MRI, the forward model H resembles a discrete
Fourier matrix (see Section II-D). Thus, in order to construct
H, we first sample M ′ = 16 rows of the DFT matrix. The
first row of the DFT matrix (DC component) is always kept,
while the remaining ones are selected in a quasi-random fashion
with a denser sampling at low frequencies. We then create the
real system matrix H : R100 → R

M , where M = 2M ′ − 1, by
separating the real and imaginary parts.

In both measurement models, the AWGN variance σ2
n is

chosen such that the (average) measurement SNR is around
30 dB.

C. Reconstruction Algorithms

For each combination of the signal and measurement models,
we compare the performance of some (variational) model-based
techniques, a CNN-based scheme and the MMSE estimator. We
generate validation and test datasets, each consisting of 1,000
pairs of ground-truth signals and their noisy measurements. Fur-
ther, in order to train the CNNs, we also synthesize a repository
R containing a large number of training examples.

1) Model-Based methods: We consider the model-based
methods

ŝ�2 = arg min
s∈RK

(‖y −Hs‖22 + τ‖Ds‖22
)
, (53)

ŝ�1 = arg min
s∈RK

(‖y −Hs‖22 + τ‖Ds‖1
)
, (54)

and

ŝlog = arg min
s∈RK

(
‖y −Hs‖22 + τ

K∑
k=1

log
(
1 + ([Ds]k)

2 )) ,
(55)

where τ ∈ R+. (53), (54) and (55) resemble the MAP estimators
of Lévy processes associated with Gaussian, Laplace, and Stu-
dent’s t distributions, respectively. However, unlike the MAP
estimators, these include an adjustable hyperparameter τ . For
each of these methods, the same regularization parameter τ is
used for the entire test dataset. This particular value of τ is the
one that yields the lowest MSE for the validation dataset.

These estimators are implemented in MATLAB using Global-
BioIm [69]—a library for solving inverse problems. Specifically,
the �2 estimator is expressed in closed-form as

ŝ�2 =
(
HTH+ τDTD

)−1
HTy. (56)

The �1 and log estimators are computed iteratively using
ADMM. Since the cost functional in (55) is non-convex, we
initialize ADMM for ŝlog with ŝ�1 so that it can reach a better
local minimum.

2) CNN-Based Method: The concept here is to train a CNN
as a regressor that maps an initial low-quality reconstruction
ŝ0 to a high-quality one ŝCNN [20], [21], [22], [23], [24]. The
architecture of the CNN used in our experiments is based on the
well-known denoising network DnCNN [70] and is described in
Fig. 2 and Table I.

First, we build a training dataset of cardinality MT by taking
the firstMT examples {sm,ym}MT

m=1 from the repositoryR. We
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Fig. 2. Architecture of the CNN, where BN denotes the operation of batch
normalization.

TABLE I
CONVOLUTION LAYERS

then train the model by minimizing the MSE loss function

L(θ) = 1

MT

MT∑
m=1

‖sm − ŝCNN (θ; ŝ0(ym)) ‖22, (57)

whereθ represents the learnable parameters of the network, with
the help of the ADAM optimizer [71]. The CNN is trained for
1,000 epochs with a batch size of 256 and a weight decay of γ.
The initial learning rate is set as 10−2. For some duration of the
training (first 600 epochs for deconvolution and first 750 epochs
for Fourier sampling), it is decreased by a factor of 0.5 every
50 epochs. We choose the initial low-quality reconstruction to
be ŝ0(y) = HTy for the deconvolution problems. In the case
of Fourier sampling, ŝ0(y) is the zero-filled reconstruction.
All the CNN-based reconstruction schemes are implemented
in PyTorch.

3) Goldstandard (MMSE Estimator): Our MMSE estima-
tors are implemented in MATLAB, according to the methods
detailed in Section V. There, we set the number of samples
as Q = 8,000 and the burn-in period as B = 3,000 for sig-
nals with Bernoulli-Laplace increments. We use Q = 15,000
and B = 5,000 for signals associated with the Student’s t
distribution.

D. Results

We present our results for all the test datasets in Figs. 3, 4, 5
and 6. For the sake of clarity, instead of the MSE, we display
the “MSE optimality gap” which is the difference between the
MSE obtained by a specific method and the MSE attained by
the MMSE estimator. In these figures, the CNNs are labelled
using the tuple (F,C,L,MT , γ), where F is the filter size,
C is the number of channels, L is the number of layers, MT

is the cardinality of the training dataset and γ is the weight
decay. For the interested reader, we also provide information

Fig. 3. Deconvolution of Lévy processes with Bernoulli-Laplace increments.

Fig. 4. Fourier sampling of Lévy processes with Bernoulli-Laplace
increments.

about the computation times required by all the methods in the
supplementary material.

1) Lévy Processes with Bernoulli-Laplace Increments: Here,
we summarize our observations for both the deconvolution and
Fourier sampling experiments (Figs. 3 and 4). The sparsity-
promoting �1 estimator, which corresponds to the popular TV
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Fig. 5. Deconvolution of Lévy processes with Student’s t increments. The
figure at the bottom is a zoomed-in version of the dotted rectangular box shown
in the figure at the top.

regularization, is known to be well-suited to piecewise-constant
Lévy processes with Bernoulli-Laplace increments. As the value
of λ increases, these signals become sparser and exhibit fewer
jumps. Consequently, we observe that the �1 estimator performs
better than the �2 estimator. The log estimator also promotes
sparse solutions [72] and we see that it performs well for these

Fig. 6. Fourier sampling of Lévy processes with Student’s t increments. The
figure at the bottom is a zoomed-in version of the dotted rectangular box shown
in the figure at the top.

piecewise-constant signals. However, despite the good fit, there
is still some gap between the MSE attained by the �1 and log,
and MMSE estimators.

The performance of the CNN-based method improves as we
increase the capacity of the CNN and the amount of training
data. In fact, with sufficient capacity and training data, they
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outperform the �1 and log estimators. Remarkably, some of the
CNNs achieve a near-optimal MSE.

2) Lévy Processes With Student’s t Increments: The parame-
ter α allows us to consider a wide range of signals. As α→ ∞,
we approach the Gaussian regime. The other extreme is α = 1,
which corresponds to the super heavy-tailed (sparse) Cauchy
distribution. This scenario can be particularly challenging for
the correct setting of algorithm parameters. Due to the heavy
tails of the Cauchy distribution, the validation and test datasets
may contain signals with a vastly different range of values.
Consequently, for a given model-based method, the regulariza-
tion parameter τ that is chosen to yield the lowest MSE for
the validation dataset may differ significantly from the value
τ ∗ that achieves the lowest MSE on the test dataset. Thus, in
Figs. 5 and 6, we also include the performance of model-based
methods when their regularization parameter is tuned for optimal
MSE performance on the test dataset directly. These “boosted”
model-based methods are labelled as �∗2, �∗1 and log∗.

In Figs. 5 and 6, we can see that the �2 estimator is optimal for
a large value of α. As the value of α decreases, the performance
of the �2 estimator deteriorates and becomes worse than that
of the �1 estimator. For all the cases, the log estimator, which
corresponds to a tunable MAP estimator for the Student’s t
distribution, attains reasonable MSE values. Note that for the
deconvolution experiment involving Cauchy signals, there is a
significant gap between the MSE values obtained by the �2 and
�1 and �∗2 and �∗1 estimators, respectively. Interestingly, the log
estimator is less affected by this issue.

Finally, for both deconvolution and Fourier sampling prob-
lems, CNNs with sufficient capacity and training data perform
well up toα = 3, after which there seems to be a steep transition
and their performance drops sharply. In fact, for Cauchy signals,
we observe that the training process for these CNNs is quite
unstable—the training loss marginally decreases and seems to
converge, and the networks do not generalize to the valida-
tion (or test) datasets. We believe that this last example poses
an open challenge for designing robust neural-network-based
schemes that can handle signals following (super) heavy-tailed
distributions.

VII. CONCLUSION

We have introduced a controlled environment, based on sparse
stochastic processes (SSPs), for the objective benchmarking
of reconstruction algorithms, including CNN-based methods
that require lots of training data, in the context of linear in-
verse problems. We have developed efficient posterior sampling
schemes to compute the minimum-mean-square-error estima-
tors for specific classes of SSPs. These yield the upper limit
on reconstruction performance and allow us to provide a mea-
sure of statistical optimality. We have highlighted the abilities
of our framework by benchmarking some popular variational
methods and convolutional neural-network (CNN) architectures
for deconvolution and Fourier-sampling problems. In particular,
we have observed that, while CNNs outperform the variational
methods and achieve a near-optimal performance in terms of
mean-square error for a wide range of conditions, they can

sometimes fail too, especially for signals with heavy-tailed
innovations.
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