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Abstract

In inverse problems, the task is to reconstruct an unknown signal from its possibly
noise-corrupted measurements. Penalized-likelihood-based estimation and Bayesian
estimation are two powerful statistical paradigms for the resolution of such prob-
lems. They allow one to exploit prior information about the signal as well as handle
the noisy measurements in a principled manner. This thesis is dedicated to the de-
velopment of novel signal-reconstruction methods within these paradigms, ranging
from those that involve classical sparsity-based signal models to those that leverage
neural networks.

In the first part of the thesis, we focus on sparse signal models in the context of
linear inverse problems for one-dimensional (1D) signals. As our first contribution,
we devise an algorithm for solving generalized-interpolation problems with Lp-norm
regularization. Through a series of experiments, we examine features induced by
this regularization, namely, sparsity, regularity, and oscillatory behaviour, which
gives us new insight about it. As our second contribution, we present a framework
based on 1D sparse stochastic processes to objectively evaluate and compare the
performance of signal-reconstruction algorithms. Specifically, we derive efficient
Gibbs sampling schemes to compute the minimum mean-square-error estimators
for these processes. This allows us to specify a quantitative measure of the degree
of optimality for any given method. Our framework also provides access to arbitrar-
ily many training data, thus enabling the benchmarking of neural-network-based
approaches.

The second part of the thesis is devoted to neural networks which have be-
come the focus of much of the current research in inverse problems as they typ-
ically outperform the classical sparsity-based methods. First, we develop an effi-
cient module for the learning of component-wise continuous piecewise-linear acti-
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vation functions in neural networks. We deploy this module to train 1-Lipschitz
denoising convolutional neural networks and learnable convex regularizers, both of
which can be used to design provably convergent iterative reconstruction meth-
ods. Next, we design a complete Bayesian inference pipeline for nonlinear inverse
problems that leverages the power of deep generative signal models to produce
high-quality reconstructions together with uncertainty maps. Finally, we propose
a neural-network-based spatiotemporal regularization scheme for dynamic Fourier
ptychography (FP), where the goal is to recover a sequence of high-resolution im-
ages from several low-resolution intensity measurements. Our approach does not
require training data and yields state-of-the-art reconstructions.

Keywords: Inverse problems, statistical inference, Bayesian inference, sparsity,
neural networks, activation functions, 1-Lipschitz, learnable regularizers, deep gen-
erative models, deep image prior.



Zusammenfassung

Bei inversen Problemen besteht die Aufgabe darin, ein unbekanntes Signal aus sei-
nen möglicherweise durch Rauschen verfälschten Messungen zu rekonstruieren. Die
Schätzung auf der Grundlage der bestraften Wahrscheinlichkeit und die Bayes’sche
Schätzung sind zwei leistungsstarke statistische Paradigmen für die Lösung solcher
Probleme. Sie ermöglichen es, vorherige Informationen über das Signal auszunutzen
und die verrauschten Messungen auf prinzipielle Weise zu handhaben. Diese Arbeit
widmet sich der Entwicklung neuartiger Signalrekonstruktionsmethoden innerhalb
dieser Paradigmen, die von solchen reichen, die klassische, auf Sparsity basierende
Signalmodelle beinhalten, bis hin zu solchen, die neuronale Netze nutzen.

Im ersten Teil der Arbeit konzentrieren wir uns auf dünn besetzte Signalm-
odelle im Kontext linearer inverser Probleme für eindimensionale (1D) Signale. Als
unseren ersten Beitrag entwickeln wir einen Algorithmus zur Lösung verallgemei-
nerter Interpolationsprobleme mit Lp-Norm-Regularisierung. Durch eine Reihe von
Experimenten untersuchen wir die Eigenschaften, die durch diese Regularisierung
hervorgerufen werden, nämlich Sparsamkeit, Regelmäßigkeit und oszillatorisches
Verhalten, was uns neue Einblicke in die Regularisierung ermöglicht. Als unseren
zweiten Beitrag stellen wir einen Rahmen vor, der auf spärlichen stochastischen 1D-
Prozessen basiert, um die Leistung von Signalrekonstruktionsalgorithmen objektiv
zu bewerten und zu vergleichen. Insbesondere leiten wir effiziente Gibbs-Sampling-
Schemata ab, um die Schätzer des minimalen mittleren quadratischen Fehlers für
diese Prozesse zu berechnen. Dadurch können wir ein quantitatives Maß für den
Grad der Optimalität einer jede beliebige Methode angeben. Unser Rahmenwerk
bietet auch Zugang zu beliebig vielen Trainingsdaten und ermöglicht so das Bench-
marking von auf neuronalen Netzen basierenden Ansätzen.

Der zweite Teil der Arbeit ist neuronalen Netzen gewidmet, die im Mittelpunkt
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der aktuellen Forschung zu inversen Problemen stehen, da sie in der Regel die klassi-
schen, auf Sparsity basierenden Methoden übertreffen. Zunächst entwickeln wir ein
effizientes Modul für das Lernen von komponentenweise kontinuierlichen, stückweise
linearen Aktivierungsfunktionen in neuronalen Netzen. Wir setzen dieses Modul ein,
um 1-Lipschitz-entrauschende Faltungs-Neuronale Netze und lernbare konvexe Re-
gularisierer zu trainieren, die beide zum Entwerfen nachweislich konvergenter itera-
tiver Rekonstruktionsmethoden verwendet werden können. Als Nächstes entwerfen
wir eine vollständige Bayes’sche Inferenzpipeline für nichtlineare inverse Probleme,
die die Leistungsfähigkeit tiefer generativer Signalmodelle nutzt, um hochwerti-
ge Rekonstruktionen zusammen mit Unsicherheitskarten zu erstellen. Schließlich
schlagen wir ein auf neuronalen Netzwerken basierendes räumlich-zeitliches Regu-
larisierungsschema für die dynamische Fourier-Ptychographie (FP) vor, bei der das
Ziel darin besteht, eine Sequenz von hochauflösenden Bildern aus mehreren niedrig-
auflösenden Intensitätsmessungen wiederherzustellen. Unser Ansatz erfordert keine
Trainingsdaten und liefert hochmoderne Rekonstruktionen.

Schlüsselwörter: Inverse Probleme, statistische Inferenz, Bayes’sche Inferenz,
Sparsity, neuronale Netze, Aktivierungsfunktionen, 1-Lipschitz, lernbare Regula-
risierer, tiefe generative Modelle, tiefe Modelle für Bildverteilungen.



Enduring means accepting. Accepting things as they are and not as
you wish them to be. And then looking ahead. And not behind.

- Rafael Nadal
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Chapter 1

Introduction

The topic of this thesis is the development of novel statistical methods for solving
ill-posed inverse problems. In this introductory chapter, we provide some context
for the thesis, followed by a summary of our contributions.

1.1 Background

What are inverse problems?

Put simply, the objective of an inverse problem is to determine from observed data,
its underlying cause. Such problems are encountered in many fields of science,
such as astrophysics, biomedical imaging, geophysics, and optics, to name a few
[1, 2, 3, 4]. There, a physical quantity of interest, which we also refer to as a
signal, is observed only indirectly by performing a series of measurements. The
measurement-acquisition process is typically assumed to be known, and the task
at hand is then to “invert” this process and recover the signal from the measured
data.

To make the above notion concrete, let us consider the example of computed
tomography (CT) [5] for medical imaging. During a CT scan, X-rays are directed
at the patient from multiple angles. As they pass through the patient’s body,
they interact with tissues and are absorbed to varying degrees depending on the
density of the tissue. The intensities of the attenuated X-rays exiting the patient

1
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thus contain some information about the tissues within the body and are recorded
by suitably-placed detectors. This acquired data (measurements) then needs to
be processed appropriately to reconstruct a three-dimensional map of the internal
structures (signal) of the patient, which can be used by healthcare personnel for
diagnostic purposes.

As evident in the example of CT, the ability to solve inverse problems is re-
markably useful as it provides one with access to physical quantities that cannot be
observed directly. Since the mid-twentieth century, aided by the rise of computers,
there has been steady progress in the development of efficient numerical methods
for solving inverse problems. This has greatly contributed to a better understand-
ing of the physical world by enabling us, for instance, to visualize the structures
of biomolecules [6, 7], body tissues [8, 5], as well as celestial objects [9]. Thus,
over time, due to its wide-ranging practical implications, the resolution of inverse
problems has become a crucial area of scientific research.

Why is it challenging to solve inverse problems?

In several applications, the inverse problem one faces is ill-posed in the sense that
there exist a multitude of plausible signals that can explain the measured data.
For example, in sparse-view CT [10], X-ray measurements are acquired only from
a few angles to reduce the patient’s radiation exposure. Consequently, they do
not contain enough information to uniquely determine the underlying signal (the
anatomy of the patient). Thus, for such ill-posed problems, one cannot rely on the
direct inversion of the measurement-acquisition process to obtain relevant solutions.
Further, in practice, the collected measurements are generally noisy, which adds to
the difficulty of the reconstruction task.

How can we solve inverse problems?

The resolution of an ill-posed inverse problem hinges on the use of prior knowledge
about the signal of interest. In this thesis, we focus on two well-known statistical
paradigms for solving such problems, which allow one to exploit additional informa-
tion about the signal as well as handle the noise in the measurements in a principled
manner.

1. Penalized-Likelihood-Based Estimation: In penalized-likelihood-based estima-
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tion, the signal is treated as a fixed or deterministic quantity. The cornerstone
of this paradigm is the maximum penalized-likelihood (MPL) estimator1,
where the estimate of the signal is (equivalently) specified as the minimizer
of a cost functional that consists of a data-fidelity term and a penalty (or
regularization) term. The data-fidelity term is derived from a suitably chosen
statistical model for the noise in the measurements. It promotes solutions
that yield a high likelihood (probability) of observing the measured data, and
thus ensures consistency with the measurements. On the other hand, the
regularization term imposes some constraints on the solution by penalizing
undesirable properties. This cost functional is typically minimized with the
help of iterative optimization algorithms.

2. Bayesian Estimation: In Bayesian estimation, the signal is assumed to be a
realization of a random quantity (for example, a random vector or process)
with an appropriate probability distribution that reflects our prior knowledge
about it. The idea there is to characterize the posterior distribution of the
signal using statistical models for the measurement noise and signal, and to
make inferences based on it. The posterior distribution can be used for the
derivation of several point estimators. One such example is the maximum a
posteriori (MAP) estimator, which is the mode of the posterior distribution
and leads to an optimization problem that resembles the one seen in MPL
estimation. Another example is the minimum mean-square-error (MMSE)
estimator which turns out to be the posterior mean. Besides the derivation of
such point estimators, the Bayesian framework allows one to quantify the un-
certainty about the signal. In general, inference tasks entail the computation
of expected values with respect to the posterior distribution. Typically, these
are high-dimensional integrals that cannot be evaluated analytically. Thus,
one relies on sampling algorithms to draw samples from the posterior and
then use them to approximate the integrals.

There is a fundamental difference between these paradigms in terms of what the
signal model—the regularization term in penalized-likelihood-based estimation and
the prior probability distribution in Bayesian estimation—represents. So, although
a given MPL estimator can also be interpreted as a MAP estimator for a specific

1In literature, this is also known as the penalized maximum-likelihood estimator or the regu-
larized maximum-likelihood estimator.
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choice of the prior distribution, the two signal models do not necessarily reflect the
same information about the underlying signal. Thus, one must be careful while
making such interpretations as they can often be misleading [11, 12]. In Chapter 2,
we provide a detailed description of the two paradigms, including a discussion about
the above-mentioned important distinction.

Practically speaking, the choice of the signal model is mainly driven by the
consideration that it should capture the characteristics of the signal of interest
while allowing for the deployment of an efficient reconstruction algorithm. For both
paradigms, the process of designing such models has undergone a similar transition
over time.

Classical Signal Models

Early approaches for solving ill-posed inverse problems were based on quadratic
(Tikhonov) regularization terms [13, 14] and Gaussian random processes [15, 16].
Such models impose some smoothness on the estimate of the signal. Their main
advantage is that they yield methods that are generally fast, well-understood, and
come with performance and stability guarantees. However, during the 1990s, these
methods were found to be outperformed by those that take into account sparsity—
the property that a signal admits a concise representation in some transform domain
(e.g., wavelets) [17].

In MPL estimation, one typically uses an ℓ1-norm penalty to obtain sparse re-
constructions [18, 19, 20]. The corresponding optimization problem is non-smooth
and is thus solved with the help of sophisticated iterative algorithms [21, 22, 23, 24].
A popular example of such models that is widely used in practice is the total-
variation regularizer [25, 26], which promotes solutions with sparse gradients. Be-
sides the convex ℓ1-norm penalty, there has also been some interest in investigating
non-convex sparsity-promoting penalties such as the ones based on ℓp-quasinorms
(p < 1) [27] and relaxations of the ℓ0-pseudonorm [28, 29].

Within the Bayesian paradigm, a standard way of enforcing sparsity is to model
the elements of the signal (e.g., pixels, voxels) or its transform-domain coefficients
as independent and identically distributed (i.i.d.) random variables with a suitable
probability distribution, such as one that exhibits a mass at zero (e.g., Bernoulli-
Gaussian-Mixtures [30, 31, 32, 33]) or one that is heavy-tailed (e.g., Student’s t [34,
35], horseshoe [36]). The resulting posterior distribution is then sampled using an
efficient sampling algorithm tailored to the chosen prior distribution.
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Neural-Network-Based Signal Models

Over the past few years, researchers have started to deploy neural-network-based
methods to solve inverse problems [37, 38]. Such methods have been shown to yield
significantly better reconstructions than sparsity-promoting techniques. Broadly
speaking, their underlying principle is to utilize large amounts of training data to
improve the reconstruction quality, as opposed to the specification of prior infor-
mation about the signal in the form of “hand-crafted” mathematical models, as in
the classical approaches discussed above.

Neural networks (NNs) are powerful learning architectures that are typically
constructed via the composition of simple basic modules—linear (or affine) map-
pings and nonlinear transformations (also called activation functions) [39, 40]. The
first successful applications of NNs in signal recovery involve training the network
as a nonlinear mapping that relates a low-quality estimate of the signal to the de-
sired high-quality estimate [41, 42, 43]. The reconstruction pipeline then consists
of using a fast classical algorithm to obtain an initial solution and then correcting
for its artifacts using the trained network. This category of methods includes un-
rolling [44, 45, 46, 47, 48, 49], where the architecture of the network is designed by
studying iterations of algorithms used for computing the MPL estimator. There
also exist analogues of such approaches that involve training the network to approx-
imate a Bayesian estimator or even directly generate samples from the posterior
distribution [50]. While these end-to-end learning methods have achieved state-of-
the-art performances in several inverse problems, they suffer from the limitation of
not being “flexible”. The networks in such methods are trained on large datasets
consisting of signals and their measurements and are thus highly sensitive to the
corresponding measurement-acquisition setup. In this thesis, we will instead mainly
focus on more versatile or “universal” NN-based methods, where a network that has
been pretrained to model only the prior knowledge about the signal (in a generic
way that does not depend on the inverse problem at hand) is applied within the
penalized-likelihood-based estimation or Bayesian estimation paradigm.

The plug-and-play priors (PnP) [51] and regularization-by-denoising (RED) [52,
53] frameworks are two successful examples of integrating NNs into the penalized-
likelihood-based estimation paradigm. In PnP (RED) methods, the idea is to
replace the proximal (gradient) operator of the regularization term that appears
in the iterations of the proximal (gradient) algorithms used for MPL estimation
by an off-the-shelf denoiser (the residual of an off-the-shelf denoiser). Generally,
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this denoiser only plays the role of an implicit regularizer, that is, there is no ex-
plicit penalty term associated with it. Nonetheless, the fixed-point convergence of
such iterative schemes can be ensured if the denoiser belongs to a suitable class
of 1-Lipschitz operators [54, 55]. Learning-based variants of these frameworks
involve the use of a denoiser that is constructed from an appropriately trained
NN [56, 57, 58, 59, 60, 61, 62]. However, in order to ensure convergence, the net-
work must be constrained such that the denoiser belongs to the desired class of
1-Lipschitz operators. This is a challenging task and remains an active area of
research [55, 63]. More recently, gradient-step NN denoisers have been used to
devise PnP and RED methods that actually minimize an explicit global cost func-
tional [64, 65, 66]. Outside of these frameworks, NNs have also been deployed for
designing an explicit learnable general-purpose regularization term [67]. There also
exists another class of methods that involves deep generative models such as varia-
tional autoencoders (VAEs) [68] and generative adversarial networks (GANs) [69].
These models include a generator network that maps a low-dimensional latent space
to the high-dimensional signal space. They are trained on a dataset of signals such
that they capture its statistics and generate sample signals similar to those in the
dataset. Once such a deep generative model has been successfully trained, its appli-
cation to an inverse problem consists of finding a signal in the range of the generator
that is consistent with the given measurements. One way of performing this task is
to formulate a suitable estimator in the latent space [70, 71, 72]. Most of the NN-
based signal models described above can also be utilized in the context of Bayesian
estimation. Specifically, efficient customized posterior sampling schemes have been
developed for prior probability distributions encoded by denoising NNs (such as the
ones used in the PnP or RED frameworks) [73, 74, 75], GANs [76], VAEs [77, 78],
score-based generative models [79, 80], and energy-based generative models [81].

So far, we have only discussed NN-based methods that require training data.
Remarkably, it is also possible to define a signal model using an untrained NN. In
such methods [82, 83, 84], the signal of interest is represented as the output of a
network corresponding to some fixed input. The parameters of the network are
then estimated such that the generated signal is in agreement with the acquired
measurements. This is typically done by minimizing an appropriate data-fidelity
term. In some scenarios, such schemes are deployed with early stopping as deep
networks have the capacity to fit noise. Alternately, one can consider MPL es-
timation or Bayesian estimation for the network parameters with simple models
such as ℓ2-norm regularization or Gaussian priors [84]. The success of these meth-
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Figure 1.1: Roadmap of the thesis.

ods involving untrained NNs is attributed to the implicit signal model imposed
by the architecture of the network, which favours natural-looking signals (“good”
solutions) over noisy ones (“bad” solutions).
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1.2 Contributions

This thesis is dedicated to the development of new signal-reconstruction methods
within the penalized-likelihood-based estimation and Bayesian estimation paradigms,
ranging from those that involve sparsity-based models to those that leverage neural
networks. The roadmap of the thesis is shown in Figure 1.1. Next, we present a
summary of our contributions along with a list of the relevant publications.

Part I: The World of Sparsity

In the first part of the thesis, we visit the world of sparsity in the context of linear
inverse problems for one-dimensional (1D) signals.

Continuous-Domain Lp-Norm Regularization (Chapter 3)

Most real-world inverse problems are concerned with the recovery of a continuous-
domain signal. The typical pipeline for tackling such problems first involves for-
mulating them in terms of a discrete representation of the underlying signal. Prior
information about the signal is then introduced through a model for its discrete
representation. Alternately, one can also directly specify the estimation task and
signal model in the continuum (provided that a solution can be computed analyti-
cally or numerically). In this chapter, we seek to understand the effect of one such
model for 1D signals—continuous-domain Lp-norm regularization for p ≥ 1 and
with a multi-order derivative regularization operator DN0 . To that end, we develop
a numerical method to solve the Lp-regularized generalized-interpolation problem.
Through a series of experiments, we then identify properties of this regularization.

Specifically, we formulate our reconstruction problem as the task of finding a 1D
continuous-domain signal that minimizes the Lp-norm regularization term subject
to some strict data constraints (generalized-interpolation problem). We cast this
problem exactly as a finite-dimensional one by restricting the search space to a
suitable space of polynomial splines with knots on a uniform grid. Our splines are
represented in a B-spline basis, which results in a well-conditioned discretization.
For a sufficiently fine grid, our search space contains functions that are arbitrar-
ily close to the solution of the underlying problem where our constraint that the
solution must live in a spline space would have been lifted. This remarkable prop-
erty is due to the approximation power of splines. We use the alternating-direction



1.2 Contributions 9

method of multipliers along with a multiresolution strategy to compute our solu-
tion. Through our numerical experiments for spatial and Fourier interpolation, we
examine features induced by Lp-norm regularization, namely, sparsity, regularity
(smoothness) and, oscillatory behaviour and overshoot.

Related publication

P. Bohra and M. Unser, “Continuous-Domain Signal Reconstruction Using Lp-Norm Reg-

ularization”, IEEE Transactions on Signal Processing, vol. 68, pp. 4543-4554, 2020.

Sparse Stochastic Processes (Chapter 4)

We present a benchmarking environment based on sparse stochastic processes to
objectively evaluate and compare the performance of reconstruction algorithms for
linear inverse problems involving 1D signals. Our framework offers quantitative
measures of the degree of optimality (in the mean-square-error sense) for any given
reconstruction method. Since it is based on stochastic modelling, it provides access
to unlimited amounts of data, which enables the proper benchmarking of NN-based
approaches without having to worry about the representativity of the training data.

In our framework, we generate synthetic signals as realizations of 1D sparse
stochastic processes. We derive Gibbs sampling schemes to compute the minimum
mean-square error estimators for processes with Laplace, Student’s t, and Bernoulli-
Laplace innovations. These allow us to provide statistical guarantees of optimality
by specifying an upper limit on the reconstruction performance. We showcase our
framework by benchmarking the performance of some well-known classical MPL es-
timators (such as the total-variation-regularized method) and convolutional neural
network architectures that perform direct nonlinear reconstructions in the context
of deconvolution and Fourier sampling. Our experimental results support the un-
derstanding that, while these neural networks outperform the sparsity-based MPL
estimators and achieve near-optimal results in many settings, their performance
deteriorates severely for signals associated with heavy-tailed distributions.

Related publication

P. Bohra, P. del Aguila Pla, J. -F. Giovannelli, and M. Unser, “A Statistical Framework

To Investigate the Optimality of Signal-Reconstruction Methods”, IEEE Transactions on

Signal Processing, vol. 71, pp. 2043-2055, 2023.
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Part II: The Neural Network Revolution

The second part of the thesis is driven by the neural network revolution in the field
of inverse problems. In particular, we investigate the integration of neural networks
into the penalized-likelihood-based estimation and Bayesian estimation paradigms
for image reconstruction.

Convergent Iterative Image-Reconstruction Methods (Chapter 5)

In this chapter, we first present an efficient module for learning continuous piecewise-
linear activation functions in neural networks. We then deploy this module to train
1-Lipschitz denoising convolutional neural networks and learnable convex regular-
izers, both of which can be used to design provably convergent iterative image-
reconstruction methods. The details of these contributions are provided in what
follows.

1. Learning Activation Functions in Neural Networks
We develop an efficient computational solution to train neural networks with
free-form component-wise activation functions. To make the problem well-
posed, we augment the cost functional of the neural network by adding an
appropriate shape regularization: the sum of the second-order total-variations
of the trainable nonlinearities. The representer theorem for neural networks
tells us that the optimal activation functions are adaptive piecewise-linear
splines, which allows us to recast the problem as a parametric optimization.
The challenging point is that the corresponding basis functions (ReLUs) are
poorly conditioned and that the determination of their number and posi-
tioning is also part of the problem. We circumvent the difficulty by using an
equivalent B-spline basis to encode the activation functions and by expressing
the regularization as an ℓ1-penalty. This results in the specification of para-
metric activation function modules that can be implemented and optimized
efficiently on standard development platforms. We present experimental re-
sults that demonstrate the benefit of our approach.

2. Lipschitz-Constrained Neural Networks for Plug-and-Play Reconstruction
Within the PnP framework, one can use denoisers based on 1-Lipschitz NNs to
design convergent iterative reconstruction schemes. Since Lipschitz-constrained
ReLU networks have provable disadvantages, we instead consider the use of
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learnable 1-Lipschitz linear spline activation functions. We propose an effi-
cient method that utilizes our B-spline module to train these neural networks.
Our numerical experiments, which include denoising and CT and MRI recon-
struction, show that our trained networks compare favorably with existing
1-Lipschitz neural architectures.

3. A Neural-Network-Based Convex Regularizer
Finally, we present a framework to learn a regularization term that is the
sum of convex-ridge functions. We use a one-hidden-layer neural network
with learnable increasing linear spline activation functions, which are again
implemented using our B-spline module, to parametrize the gradient of the
regularizer. This network is trained within a few minutes as a multistep
Gaussian denoiser. Through numerical experiments for denoising and CT
and MRI reconstruction, we show that our method outperforms others that
offer similar reliability guarantees.

Related publications

P. Bohra, J. Campos, H. Gupta, S. Aziznejad and M. Unser, “Learning Activation Func-

tions in Deep (Spline) Neural Networks”, IEEE Open Journal of Signal Processing, vol.

1, pp. 295-309, 2020.

P. Bohra, D. Perdios, A. Goujon, S. Emery and M. Unser, “Learning Lipschitz-Controlled

Activation Functions in Neural Networks for Plug-And-Play Image Reconstruction Meth-

ods”, NeurIPS 2021 Workshop on Deep Learning and Inverse Problems.

S. Ducotterd, A. Goujon, P. Bohra, D. Perdios, S. Neumayer, and M. Unser, “Improv-

ing Lipschitz-Constrained Neural Networks by Learning Activation Functions”, Journal

of Machine Learning Research, vol. 25, no. 65, pp. 1–30, 2024.

A. Goujon, S. Neumayer, P. Bohra, S. Ducotterd, and M. Unser, “A Neural-Network-

Based Convex Regularizer for Inverse Problems”, IEEE Transactions on Computational

Imaging, vol. 9, pp. 781-795, 2023.

Deep Generative Priors for Nonlinear Inverse Problems (Chapter 6)

In this chapter, we develop a Bayesian inference pipeline that leverages the power
of deep generative models as image priors to produce high quality reconstructions
together with uncertainty maps. To the best of our knowledge, this is one of the first
deployments of such techniques for the resolution of nonlinear inverse problems.
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Specifically, we present a Bayesian reconstruction framework for nonlinear in-
verse problems where we specify the prior information about the image through
a deep latent variable generative model such as a GAN or VAE. We develop a
tractable posterior-sampling scheme based on the Metropolis-adjusted Langevin
algorithm for the class of nonlinear inverse problems where the forward model has
a neural-network-like structure. This class includes most practical imaging modal-
ities. We also introduce the notion of augmented deep generative priors in order to
suitably handle the recovery of quantitative images. We illustrate the advantages of
our framework by applying it to two nonlinear imaging modalities—phase retrieval
and optical diffraction tomography.

Related publication

P. Bohra, T. -a. Pham, J. Dong, and M. Unser, “Bayesian Inversion for Nonlinear Imaging

Models Using Deep Generative Priors”, IEEE Transactions on Computational Imaging,

vol. 8, pp. 1237-1249, 2022.

Deep Spatiotemporal Regularization for Dynamic Fourier Ptychography
(Chapter 7)

In our last contribution, we explore the use of an untrained neural network as an
implicit regularizer in the context of Fourier ptychography (FP). This modality
involves the acquisition of several low-resolution intensity images of a sample un-
der varying illumination angles. They are then combined into a high-resolution
complex-valued image by solving a phase-retrieval problem. The objective in dy-
namic FP is to obtain a sequence of high-resolution images of a moving sample.
There, the application of standard frame-by-frame reconstruction methods limits
the temporal resolution due to the large number of measurements that must be
acquired for each frame. We instead propose a neural-network-based reconstruc-
tion framework for dynamic FP, which achieves high temporal resolution without
compromising the spatial resolution. It does not require training data and also
recovers the pupil function of the microscope.

Specifically, in our framework, each image in the sequence is represented as
the output of a shared deep convolutional network fed with an input vector that
lies on a one-dimensional manifold that encodes time. The parameters of the net-
work and the pupil function of the microscope, which is represented using Zernike
polynomials, are then estimated by optimizing a likelihood-based criterion. Here,
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the architecture of the network and the constraints on the input vectors impose
a spatiotemporal regularization on the sequence of images. Through numerical
experiments, we show that our framework drastically improves the quality of re-
construction over standard frame-by-frame methods and thus paves the way for
high-quality ultrafast FP.

Related publication

P. Bohra, T. -a. Pham, Y. Long, J. Yoo, and M. Unser, “Dynamic Fourier Ptychography

With Deep Spatiotemporal Priors”, Inverse Problems, vol. 39, no. 6, paper no. 064005,

2023.
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Chapter 2

Resolution of Inverse
Problems: An Overview

In this chapter, we set the scene for the thesis by presenting a mathematical for-
mulation of inverse problems and by briefly describing two statistical reconstruc-
tion paradigms—penalized-likelihood-based estimation and Bayesian estimation—
for their resolution.

2.1 Inverse Problems

2.1.1 Continuous-Domain Formulation

The goal in an inverse problem is to recover an unknown signal s0 from a collection
of its possibly noisy measurements y ∈ RM . Since most real-world signals are analog
in nature, we consider the signal of interest s0 : Rd → R to be a d-dimensional
continuous-domain function. We model the measurements as

y = N
(
ν(s0)

)
, (2.1)

where ν : s 7→ ν(s) ∈ RM is the (linear or nonlinear) forward operator that de-
scribes the physics of the acquisition process and N : RM → RM is an operator that
models the corruption of measurements by noise. Here, we have assumed that the

15
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signal and measurements are real-valued in order to simplify the exposition. How-
ever, the inverse problem formulation and reconstruction methods presented in this
chapter can be easily extended to handle complex-valued signals and measurements.

2.1.2 Discretization

The first step towards solving an inverse problem is the discretization of the signal
s0 and the forward operator ν as this allows us to perform computations digitally.
We can then write the discrete measurement model as

y = N
(
H(s0)

)
, (2.2)

where s0 ∈ RK is the finite-dimensional discrete representation of s0 (the typical
choice is a vector containing samples of s0 within some region of interest) and
H1 : RK → RM is the discrete counterpart of ν. Ideally, the discretization of
ν is performed such that H only yields a small discretization error (if any), that
is, ν(s0) ≈ H(s0), while being computation-friendly, that is, it can be evaluated
efficiently in terms of computation time and memory. We will present some concrete
examples of discretization schemes in Chapters 3, 4 and 7. For the remainder of
this chapter, it is assumed that s0 and ν have been discretized appropriately.

2.1.3 Ill-Posedness

So, the task at hand now is to recover s0 from y by “inverting” the measurement
model in (2.2). Besides the presence of noise in the measurements, which can al-
ready make the reconstruction task difficult, most practical inverse problems are
ill-posed in the sense that the same set of measurements can be generated by mul-
tiple signals. Therefore, prior knowledge about the signal of interest is required for
the resolution of such problems.

2.2 Statistical Reconstruction Paradigms

Next, we describe two well-known statistical reconstruction paradigms for solving
ill-posed inverse problems. They enable one to incorporate prior information about

1When H is a linear operator, by abuse of notation, we will also use the symbol H to denote
its matrix representation. Thus, in such cases, the quantity H(s) will be written as Hs.
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the signal and handle the noise in the measurements in a systematic way.

2.2.1 Penalized-Likelihood-Based Estimation

In this paradigm, the signal of interest s0 is treated as a fixed or deterministic
quantity. The main idea here is to specify the reconstructed signal as the solution
of an optimization problem that balances a data-fidelity term, which is based on a
statistical model for the noisy measurements, and a penalty (regularization) term,
which imposes some favourable properties on it.

Likelihood Function

In order to account for the nonideality of the measurement-acquisition setup, we
consider a statistical model that relates the noisy measurements y and the signal
s0. Specifically, we assume that the operator N in (2.2) generates y as a realization
of a random vector Y that is distributed according to

Y ∼ pnoise

(
· ; ϕ = H(s0)

)
, (2.3)

where the probability density function (pdf) pnoise models the statistics of the noise
in the acquisition system and ϕ denotes (some of) its parameters.

Many practical setups involve multiple independent sources of noise. Thus, it is
reasonable to assume an additive white-Gaussian-noise (AWGN) model, as dictated
by the central limit theorem. For an AWGN model with variance σ2, we can write
(2.2) as

y = H(s0) + n, (2.4)

where n ∈ RM is a realization of a Gaussian random vector consisting of i.i.d.entries
with zero mean and variance σ2. In this case, the pdf pnoise is given by

pnoise(· ; ϕ) = pGaussian(· ; ϕ) =
1

(2πσ2)M/2
exp

(
− ∥ · − ϕ∥22

2σ2

)
. (2.5)

Another model that is commonly used in practice is the shot- or Poisson-noise
model. In this case, we have that

pnoise(· ; ϕ) = pPoisson(· ; ϕ) =

M∏
m=1

([ϕ]m)[·]m

([·]m)!
exp

(
− [ϕ]m

)
. (2.6)
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Based on the statistical model for the noisy measurements in (2.3), the likelihood
function is defined as

L(· ; y) := pnoise

(
y ; ϕ = H(·)

)
. (2.7)

Maximum-Penalized-Likelihood Estimator

The maximum-penalized-likelihood (MPL) estimator for the signal is an extension
of the classical maximum-likelihood (ML) estimator. It is specified as

s∗MPL(y) ∈ argmax
s∈RK

(
log
(
L(s;y)

)
− τR(s)

)
∈ argmin

s∈RK

(
− log

(
pnoise

(
y;ϕ = H(s)

))
︸ ︷︷ ︸

D
(
y, H(s)

) + τR(s)
)
, (2.8)

where the data-fidelity term D : RM × RM → R+ ensures consistency with the
measurements by promoting solutions that yield a high likelihood of observing the
measured data, the penalty (or regularization) termR : RK → R+ reflects our prior
knowledge on the signal by penalizing solutions with undesirable properties, and
τ ∈ R+ is a tunable hyperparameter that controls the strength of the regularization.

Remark 2.1. The family of MPL estimators constitutes a subclass of the so-called
“variational” methods that are well-known in the inverse problems community. In a
generic variational reconstruction method, the data-fidelity term is not necessarily
derived from a statistical model for the noise.

The cost functional in (2.8) is typically minimized in an iterative manner us-
ing gradient or proximal methods [85, 86]. Here, we present two simple exam-
ples of these methods—the gradient-descent (GD) and forward-backward splitting
(FBS) [87] algorithms—that are applicable when the data-fidelity term D is differ-
entiable. The vanilla GD algorithm can be used to compute the solution when the
regularization term R is also differentiable. The iterations for GD are given by

sk+1 = sk − γ
(
∇D

(
y,H(sk)

)
+ τ∇R(sk)

)
, (2.9)

where γ > 0 is a suitably chosen step-size. On the other hand, when R is non-
differentiable, one can solve the optimization task with the help of a proximal
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method such as FBS. At each iteration in FBS, the estimate is updated as

sk+1 = proxγτR

(
sk − γ∇D

(
y,H(sk)

))
, (2.10)

where γ > 0 is an appropriate step-size and the proximal operator of a function
g : RK → R is defined as

proxg(·) = argmin
u∈RK

(1
2
∥ · − u∥22 + g(u)

)
. (2.11)

Note that, in general, the convergence of these routines to a global minimum is
guaranteed only when D and R are convex functions. When the cost functional
in (2.8) is non-convex, we only expect the deployed optimization algorithm to find
one of the stationary points.

2.2.2 Bayesian Estimation

In the Bayesian paradigm, the signal s0 is assumed to be a realization of a random
vector S with a probability distribution pS that captures our prior knowledge about
it. The idea here is to make inferences about the signal based on its posterior
distribution, which is characterized using a statistical model for the measurement
noise and pS.

Likelihood Function

We model the noisy data measured by the acquisition system as a random vector
Y that is related to the random vector S via the conditional distribution

pY|S(· | s) = pnoise

(
· ; ϕ = H(s)

)
, (2.12)

where s ∈ RK and, similar to what we have in the penalized-likelihood-based esti-
mation paradigm, pnoise is a pdf that accounts for noise in the acquisition system
and ϕ denotes some or all of its parameters (please see Equations (2.5) and (2.6)
for examples of pnoise). Under this statistical model, the observed measurements
y can be interpreted as a realization of the random vector Y|S = s0. Here, the
likelihood function is given by

L(· | y) = pY|S(y | ·) = pnoise

(
y ; ϕ = H(·)

)
. (2.13)
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Note that this function is equal to the one shown in (2.7); it has just been specified
under a different formalism.

Posterior Distribution

In Bayesian estimation, the quantity of interest is the posterior distribution of the
random vector S|Y = y as it provides a complete statistical characterization of the
inverse problem. Using Bayes’ theorem, its pdf is written as

pS|Y(·|y) =
pY|S(y|·)pS(·)∫

RK pY|S(y|s̃)pS(s̃)ds̃
. (2.14)

The posterior distribution pS|Y(·|y) can be used for the derivation of various point
estimators for the signal s0. Two examples of such estimators that are commonly
used in practice are the maximum a posteriori (MAP) estimator and the minimum
mean-square-error (MMSE) estimator. The MAP estimator calculates the mode of
pS|Y(·|y) and is given by

s∗MAP(y) = argmax
s∈RK

pS|Y(s|y)

= argmax
s∈RK

(
log
(
pY|S(y|s)

)
+ log

(
pS(s)

))
= argmin

s∈RK

(
− log

(
pnoise

(
y;ϕ = H(s)

))
− log

(
pS(s)

))
. (2.15)

The primary reason for the popularity of MAP estimators is that they can be
computed efficiently using the iterative gradient or proximal algorithms mentioned
earlier. It is noteworthy that the optimization problem in (2.15) closely resembles
the one formulated in MPL estimation (see Equation (2.8)). We will discuss this
link between MPL and MAP estimation in detail later in Section 2.2.4. On the
other hand, the MMSE estimator is given by

s∗MMSE(y) = argmin
s∈RK

(∫
RK

∥s̃− s∥22 pS|Y(s̃|y)ds̃
)

=

∫
RK

s̃ pS|Y(s̃|y)ds̃, (2.16)
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which is the mean of the posterior distribution pS|Y(·|y). In general, computing
the MMSE estimator is challenging as it requires one to numerically evaluate the
high-dimensional integral in (2.16).

Besides the derivation of point estimators, the Bayesian paradigm allows one
to perform advanced inferences such as uncertainty quantification (for example,
computing higher-order moments of pS|Y(·|y) or specifying credible regions that
indicate where most of the mass of the posterior distribution is concentrated) and
model selection. Typically, performing such inferences poses the same challenge as
in MMSE estimation as it involves calculating integrals of the form

If (y) =

∫
RK

f(s̃)pS|Y(s̃|y)ds̃, (2.17)

where f : RK → R is a real-valued function.
The high dimensionality of the integral in (2.17) (of which (2.16) is a special

case) makes its approximation by simple techniques such as uniform-grid-based
Riemann sums infeasible. Instead, one can rely on stochastic simulation techniques
such as Markov Chain Monte Carlo (MCMC) methods [88, 89, 90, 91] for the
numerical approximation of (2.17) in a tractable manner. MCMC methods are de-
signed for generating random samples from nontrivial high-dimensional probability
distributions. Broadly speaking, the idea in MCMC is to construct a Markov chain
such that the distribution that one wishes to draw samples from is its stationary
distribution. The desired samples can be obtained by simulating the Markov chain
and recording its states after a sufficient period of time (assuming the chain con-
verges theoretically [92]). Thus, in order to compute the integral in (2.17), one first

generates samples {s(q)}Qq=1 from pS|Y(·|y) using an MCMC method and then ap-

proximates If (y) by its empirical estimate 1
Q

∑Q
q=1 f(s

(q)). Later in the thesis, we

will detail two MCMC algorithms—Gibbs sampling (Chapter 4) and the Metropolis
Adjusted Langevin algorithm (Chapter 6).

2.2.3 Signal Models

We now discuss some signal models—the regularization term in penalized-likelihood-
based estimation and the prior probability distribution in Bayesian estimation—
that have been proposed in the literature, ranging from classical ones to recent
neural-network-based ones.
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Classical Models

Tikhonov regularization of the form R(s) = ∥Ls∥22 [13, 14], where L is a linear
transformation such as the discrete version of the gradient operator, is one of the
classical choices for the penalty term in (2.8). It imposes a constraint on the en-
ergy of the transformed signal Ls and thus promotes solutions with some degree
of smoothness. In particular, the use of such a quadratic penalty has been exten-
sively studied for linear inverse problems with an AWGN model. There, it leads to
solutions of the form

s∗MPL,ℓ2(y) =
(
HTH+ σ2τLTL

)−1
HTy, (2.18)

where σ is the standard deviation of the Gaussian noise, thereby yielding linear
reconstruction methods that are fast, well-understood, and equipped with stability
guarantees with respect to perturbations in the measurements.

The Gaussian prior distribution

pS(s) =
1√

(2π)K |det(C)|
exp

(
− 1

2
(s−m)TC−1(s−m)

)
, (2.19)

where s ∈ RK , m ∈ RK is the mean of the distribution and C ∈ RK×K is the
covariance matrix of the distribution, is the Bayesian counterpart of Tikhonov
regularization. It also yields estimates of the signal that exhibit some form of
smoothness. Interestingly, for linear inverse problems with an AWGN model, the
MAP and MMSE estimates corresponding to this Gaussian prior turn out to be
equivalent. They are given by the reconstruction scheme

s∗Gaussian(y) = m+
(
HTH+ σ2C−1

)−1
HT (y −Hm), (2.20)

where σ2 is the variance of the Gaussian noise.
Another popular category of classical regularization schemes involves the use

of penalty terms based on sparsity—the property that a signal can be represented
in some transform domain (e.g., wavelets) with only a few parameters [17]—which
typically lead to better reconstructions than their quadratic counterparts. This
powerful concept of sparsity is at the heart of the theory of compressed sensing,
which gives conditions under which the recovery of a signal from a limited set of its
linear measurements is feasible [93, 94, 95, 96] and stable [97, 98]. One typically uses
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ℓ1-norm regularization of the form R(s) = ∥Ls∥1 [18, 19, 20] to enforce sparsity in
the transform domain specified by L (e.g., wavelet transform or gradient operator).
Since the ℓ1-norm is non-differentiable, the corresponding optimization problem is
often solved using proximal algorithms such as FBS and its variants [21, 23], or
the alternating direction method of multipliers (ADMM) [24]. Besides the convex
ℓ1-norm penalty, one can also use non-convex penalties based on ℓp-quasinorms
(p < 1) [27] and relaxations of the ℓ0-pseudonorm [28, 29] to obtain sparse(r)
reconstructions.

In Bayesian estimation, to enforce a sparse representation of the signal in a
linear transform domain L (e.g., wavelets), one typically models the random vector
U = LS to have i.i.d. entries with a suitable “sparse” pdf pU. Examples of such pdfs
include those with a mass at the origin (e.g., Bernoull-Gaussian-Mixtures [30, 31,
32, 33]) and those that exhibit heavy tails (e.g., Student’s t [34, 35], horseshoe [36]).
For these sparsity-based priors, the resulting posterior distribution is sampled using
tailored MCMC methods. In Chapter 4, we will study in detail prior distributions
corresponding to the family of infinitely divisible pdfs (for pU).

Neural-Network-Based Models

Neural-network-based methods, having been found to outperform the sparsity-
promoting methods discussed above, are now the focus of much of the research
in signal reconstruction [37, 38]. Broadly speaking, their principle is to exploit
prior information about the signal learned from a large collection of training data.

Neural networks (NNs) are powerful learning architectures that are typically
constructed via the composition of basic modules such as linear (or affine) map-
pings and nonlinear transformations (also called activation functions) [39, 40]. For
example, an archetypal feedforward NN fθ : RN0 → RNL with component-wise
ReLU activation functions is of the form

fθ(x) = AL ◦ · · · ◦ σℓ ◦Aℓ ◦ · · · ◦ σ1 ◦A1(x), (2.21)

where the affine layer Aℓ : RNℓ−1 → RNℓ (for ℓ = 1, . . . , L) is given by

Aℓ(x) = Wℓx+ bℓ, (2.22)

with weight matrices Wℓ ∈ RNℓ×Nℓ−1 and bias vectors bℓ ∈ RNℓ , the component-
wise activation function σℓ : RNℓ → RNℓ (for ℓ = 1, . . . , L− 1) is given by

σℓ(x) =
(
ReLU(x1), . . . ,ReLU(xNℓ

)
)
, (2.23)
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with ReLU(·) = max(0, ·), and θ := (Wℓ,bℓ)
L
ℓ=1 denotes the complete set of its

adjustable parameters. The idea behind using NNs for a specific task is to tune
their parameters with the help of a training dataset such that they exhibit the
desired behaviour.

As mentioned in the introductory chapter, NNs (in particular, convolutional
NNs or CNNs which involve linear layers parametrized via convolutional operators
with learnable kernels) have been applied in several ways for solving ill-posed in-
verse problems. The first successful applications of NNs in signal recovery build
upon (fast) classical reconstruction algorithms, training a network to correct for
their artifacts and output the desired high-quality estimates [41, 42, 43]. Unrolling
methods [44, 45, 46, 47, 48, 49], where the architecure of the network is based on
iterations of the algorithms used in MPL estimation, also fall into this class of di-
rect nonlinear reconstruction schemes. The Bayesian analogues of such approaches
involve training the network to approximate a chosen estimator or even directly gen-
erate samples from the posterior distribution [50]. While these end-to-end learning
methods have achieved state-of-the-art performances in a variety of applications
such as MRI, CT, optical imaging, and ultrasound, they are not “flexible”. More
specifically, in such methods, the networks are trained on datasets consisting of
signals and their measurements, which makes them highly sensitive to the corre-
sponding measurement-acquisition setup. In this thesis, we will mainly focus on
universal NN-based reconstruction methods, which involve using a network that
has been pretrained to capture only some prior information about the signal (in a
generic way that is independent of the inverse problem at hand) for its recovery.
Here, we discuss some schemes that belong to the above-described category.

The plug-and-play (PnP) priors [51] and regularization-by-denoising (RED)
[52, 53] frameworks are two well-known frameworks where NNs are deployed within
the penalized-likelihood-based estimation paradigm. In PnP (RED) methods, the
proximal (gradient) operator of R that appears in the iterations of the proximal
(gradient) algorithms used for MPL estimation is replaced by an off-the-shelf de-
noiser (the residual of an off-the-shelf denoiser). To give some examples, the itera-
tions for the PnP-FBS and RED-GD methods are given by

sk+1 = D
(
sk − γ∇D

(
y,H(sk)

))
(2.24)

and
sk+1 = sk − γ

(
∇D

(
y,H(sk)

)
+ τ
(
sk −D(sk)

))
, (2.25)



2.2 Statistical Reconstruction Paradigms 25

respectively, where D : RK → RK is the chosen denoiser, γ ∈ R+ is the step-size and
τ ∈ R+ is the regularization parameter. Generally speaking, such iterative schemes
do not minimize an explicit cost functional, that is, the denoiser D plays the role
of an implicit regularizer. However, convergence of the iterates to a fixed point can
still be ensured if D belongs to a suitable class of 1-Lipschitz2 operators [54, 55] (we
provide the details for PnP-FBS in Section 5.2.2 of Chapter 5). In the learning-
based variants of these frameworks, one uses denoising routines constructed from
appropriately trained NNs [56, 57, 58, 59, 60, 61, 62]. The delicate point there is
that in order to ensure convergence, the network must be constrained such that the
corresponding denoiser belongs to the desired class of 1-Lipschitz operators. This
is a challenging task and remains an active area of research [55, 63]. In Chapter 5
(Section 5.2), we will present a novel approach for designing and training powerful
1-Lipschitz denoising NNs which can then be used to develop provably convergent
iterative reconstruction methods within the PnP and RED frameworks.

More recently, gradient-step denoisers of the form D = Id −∇gθ, where the
function gθ : RK → R+ is parametrized with the help of a network, have been used
to devise PnP and RED methods that actually minimize an explicit global cost
functional [64, 65, 66] and are thus more interpretable. Outside of these frame-
works, NNs have also been deployed for directly designing an explicit learnable
general-purpose regularization term [67]. In line with this recent trend of develop-
ing interpretable convergent NN-based reconstruction algorithms, we will present
an efficient approach for learning convex regularizers R in Chapter 5 (Section 5.3).

There also exist regularization schemes that utilize deep latent variable genera-
tive models such as variational autoencoders (VAEs) [68] and generative adversarial
networks (GANs) [69]. These models consist of a generator network Gθ : Rd → RK
(d≪ K), where θ ∈ RP denotes its parameters, that maps a low-dimensional latent
space to the high-dimensional signal space. They are trained on a dataset of signals
such that they capture its statistics and generate sample signals Gθ∗(z), where θ∗

are the parameters of the network after the training is complete and z ∈ Rd is sam-
pled from a fixed simple distribution such as the uniform or Gaussian distribution,
similar to those in the dataset. The application of such a trained deep generative
model (DGM) to an inverse problem [70, 71, 72] typically involves specifying the

2An operator T: RK → RK is L-Lipschitz (with respect to the norm ∥·∥) if ∥T(x1)−T(x2)∥ ≤
L∥x1 − x2∥ for all x1,x2 ∈ RK .
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signal estimator as s∗DGM(y) = Gθ∗(z∗DGM(y)) with

z∗DGM(y) ∈ argmin
z∈Rd

D
(
y, H(Gθ∗(z))

)
. (2.26)

Here, s∗DGM(y) is an MPL estimator for the signal corresponding to the regulariza-
tion term that is an indicator function that assigns an infinite cost to any signal not
in the range of Gθ∗ . As proposed in [70], one can also include a suitable penalty
term in (2.26) to introduce a bias towards certain regions in the latent space. In this
case, although z∗DGM(y) can be viewed an MPL estimator (for the latent vector),
s∗DGM(y) no longer has such an interpretation.

Most of the NN-based models mentioned above can also be utilized within the
Bayesian estimation paradigm. In fact, efficient posterior sampling schemes have
been developed for prior probability distributions encoded by denoising NNs [73, 74,
75], GANs [76], VAEs [77, 78], score-based generative models [79, 80], and energy-
based generative models [81]. In Chapter 6, we will present a Bayesian framework
for solving nonlinear inverse problems that leverages deep latent variable models
(e.g., VAEs, GANs).

Finally, we also discuss a class of NN-based methods that remarkably do not
require any training data [82, 99, 83]. There, the main idea is to use the structure
of an untrained neural network (UNN) Gθ : Rd → RK , where θ ∈ RP denotes its
parameters, to specify a signal model. In these methods, the reconstruction is given
by s∗UNN(y) = Gθ∗

UNN(y)(zin), where

θ∗
UNN(y) ∈ argmin

θ∈RP

D
(
y, H(Gθ(zin))

)
(2.27)

and zin ∈ Rd is an input vector that is randomly initialized and then kept fixed
during the optimization of the network parameters. Similar to the case of trained
DGMs, s∗UNN(y) is an MPL estimator for the signal corresponding to the regular-
ization term that constrains it to lie in the range of the network for the fixed input
zin. In practice, if Gθ is a deep network, one typically deploys early stopping while
optimizing the criterion in (2.27) to prevent the network from fitting the noise in
the measurements. Alternately, one can also perform MPL estimation or Bayesian
estimation for the network parameters with simple models such as ℓ2-norm regu-
larization or Gaussian priors [84]. The success of these schemes involving untrained
NNs is attributed to the implicit signal model imposed by the architecture of the
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network, which favours natural-looking signals (“good” solutions) over noisy ones
(“bad” solutions). In Chapter 7, we will present an extended version of such a
method in the context of dynamic Fourier ptychography.

2.2.4 A Philosophical Note

We can see from Equations (2.8) and (2.15) that for a fixed noise model (pnoise),
an MPL estimator with the regularization term R(·) can be interpreted as a MAP
estimator corresponding to the prior distribution pS(·) ∝ exp(−R(·)). However, as
pointed out in some works such as [11, 12], one must exercise caution while making
such interpretations. The key point that we want to emphasize here is that there
is a fundamental difference between the penalized-likelihood-based estimation and
Bayesian estimation paradigms in terms of what the respective signal models (R and
pS) represent. Specifically, the goal in MPL estimation is to choose R such that the
solution to the optimization problem in (2.8) exhibits some desirable properties.
On the other hand, in Bayesian estimation, the holy grail is to specify pS such
that samples generated from this distribution resemble the signal of interest. An
important implication of this difference in philosophies is that the above-mentioned
interpretation of a given MPL estimator as some MAP estimator can be misleading
as the two signal models—R(·) and pS(·) ∝ exp(−R(·))—might not reflect the
same information about the underlying signal. For example, the regularization
term R(s) = ∥s∥1 is known to promote sparse solutions [100]. On the contrary,
samples from the multivariate Laplace distribution pS(s) ∝ exp(−∥s∥1) are not
sparse vectors.

2.3 Summary

In this chapter, we have discussed two well-known statistical reconstruction paradigms—
penalized-likelihood-based estimation and Bayesian estimation—for solving ill-posed
inverse problems. In the following chapters, we will present our contributions to
developing novel signal-reconstruction methods within these paradigms.
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Part I

The World of Sparsity
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Chapter 3

Continuous-Domain Lp-Norm
Regularization

As mentioned in Chapter 2, most real-world inverse problems are concerned with
the recovery of a continuous-domain signal. The typical pipeline for tackling such
problems first involves formulating them in terms of a discrete representation of the
underlying signal. Prior information about the signal is then introduced through a
model for its discrete representation. Alternately, one can also directly specify the
estimation task and signal model in the continuum (provided that a solution can
be computed analytically or numerically) [13, 101]. 1In this chapter, we seek to un-
derstand the effect of one such model for 1D signals—continuous-domain Lp-norm
regularization for p ≥ 1 and with a multi-order derivative regularization operator
DN0 . To that end, we develop a numerical method to solve the Lp-regularized
generalized-interpolation problem. Through a series of experiments, we then iden-
tify properties of this regularization.

1This chapter is based on our work [102].
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Figure 3.1: Interpolation of data points symbolized by crosses. The solid line
represents an arbitrary solution. For the other two cases, it is regularization that
dictates how the points are connected.

3.1 Introduction

For a 1D continuous-domain signal s, a natural candidate for the regularization
term is ∥L{s}∥, where L is a linear operator. Continuous-domain regularization
schemes such as Tikhonov [13, 103, 104], which uses the L2-norm ∥ · ∥L2 , and
generalized total variation (gTV) [105, 101], which involves the use of theM-norm
∥ · ∥M (an extension of the L1-norm), have been intensively studied and their
behavior is well-documented. To see the effect of these schemes, we consider the
interpolation problem shown in Figure 3.1. The objective there is to construct a
continuously defined function that passes through the given data points exactly.
However, as shown in the figure, it is possible to construct infinitely many valid
solutions. In this problem, we regularize the solution by imposing a minimum-
norm requirement of the form ∥L{s}∥. This enables us to obtain solutions with
certain desired properties. It is well-known that Tikhonov (or L2) regularization
tends to produce smooth solutions while gTV regularization promotes sparsity.
These characteristics can be seen in Figure 3.1. For example, when we impose gTV
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regularization with L = D (the derivative operator), we obtain a piecewise-constant
solution whose derivative is sparse.

The purpose of this chapter is to study the effect of continuous-domain Lp-norm
regularization for a general p ≥ 1 and a multi-order derivative operator L = DN0 .
To that end, we consider the generalized interpolation problem with Lp-norm reg-
ularization. Generalized interpolation is an extension of interpolation. Specifically,
given certain measurement functionals (ν1, ..., νM ) and a value (or measurement)
ym corresponding to each functional, we aim at constructing a continuously defined
function that explains the measurements exactly. We formulate this problem as

min
s
∥DN0{s}∥Lp

s.t. ⟨νm, s⟩ = ym, m = 1, 2, ...,M, (3.1)

where ∥·∥Lp denotes the Lp-norm.

3.1.1 Why Generalized Interpolation?

Consider the problem of reconstructing a signal s0 from a finite number of its noisy
linear measurements y ∈ RM . The continuous-domain MPL estimate for s0 can be
written as

S = argmin
s∈X

(
D
(
y,ν(s)

)
+ τR(s)

)
, (3.2)

where X is a suitable function space, the operator ν : s 7→ ν(s) = (⟨ν1, s⟩, . . . , ⟨νM , s⟩)
describes the measurement model, D : RM×RM → R is the data-fidelity term which
depends on the statistics of the noise and R is the regularization. It can be shown
(see Appendix 3.8) that, if D is strictly convex and R is convex, then all the so-
lutions s∗ ∈ S generate the same measurement vector z0 = ν(s∗) ∈ RM . This
property allows us to characterize the solution set S as

S = argmin
s∈X

R(s) s.t. ν(s) = z0. (3.3)

By understanding the effect of the regularization term R(s) in (3.3), we can under-
stand its effect for a much broader class of problems such as (3.2).

3.1.2 Related Work

The Lp-regularized interpolation problem and its variants, with p ≥ 1 and L = DN0 ,
have been studied in [106, 107, 108, 109, 110, 111] in the context of approximation
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theory and splines. These works are theoretical, for the most part. They discuss the
existence of a solution, conditions of optimality, and provide the functional form of
the N0th derivative of the solution. A specific instance of minimizing the Lp-norm
of the second derivative of polynomial spline interpolants has been looked at in
[112] and [113]. To the best of our knowledge, however, there exists no work that
numerically solves the general continuous-domain problem (3.1) and demonstrates
the effect of Lp-norm regularization.

3.1.3 Contributions

In this chapter, we propose an algorithm to compute the solution to (3.1). Through
a series of experiments, we then identify some properties of Lp-norm regularization.
Here is a list of our contributions.

• We discretize the continuous-domain problem (3.1) by using a basis that
consists of shifted polynomial B-splines of degree N0, with knots on a uni-
form grid. This basis leads to an exact discretization, thus transforming our
continuous-domain problem into an equivalent finite-dimensional discrete one
which can be solved by algorithms such as the alternating-direction method
of multipliers (ADMM) [24].

• We implement a multiresolution algorithm that progressively decreases the
grid size until a solution with the desired precision is obtained. This strategy
relies on the theory of approximation. It dictates that, when the grid size
is sufficiently small, the search space spanned by our B-spline basis contains
functions that are arbitrarily close to the solution of the full continuous-
domain problem where our constraint that the solution must live in a spline
space would have been lifted.

• We present numerical results for measurement operators that correspond to
interpolation in the spatial and Fourier domains. In these experiments, we
show the existence of a continuum of solutions as p varies from ∞ to 1. We
then examine properties of Lp-regularized solutions such as sparsity, regularity
(smoothness) and, oscillatory behavior and overshoot, as well as the effect of
N0 on the solutions.

The chapter is organized as follows: In Section 3.2, we introduce the continuous-
domain framework and discuss some existing theoretical results. We provide back-
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ground information on polynomial splines in Section 3.3. Section 3.4 includes the
details of our discretization scheme, along with a discussion on the approxima-
tion power of splines. We present the multiresolution algorithm in Section 3.5 and
illustrate our numerical results in Section 3.6.

3.2 Generalized Interpolation

In this section, we define and discuss the key components of our framework: the
measurement operator, the regularization operator, the regularization norms, and
the search space for the optimization problem. We then briefly review theoretical
results available for this problem.

3.2.1 Continuous-Domain Framework

In generalized interpolation, the aim is to construct a function s : R → R that
explains the measurements y ∈ RM , with

ν(s) =
(
⟨ν1, s⟩, . . . , ⟨νM , s⟩

)
= y, (3.4)

where ⟨νm, s⟩ represents the action of the linear functional νm : s 7→ ⟨νm, s⟩ =
νm(s) ∈ R. When νm and s are ordinary functions defined over R, the mth mea-
surement is given by the Lebesgue integral ⟨νm, s⟩ =

∫
R νm(x)s(x)dx. In the pure

interpolation problem, the measurement functionals are shifted Dirac distributions
νm = δ(· − xm), with the property that ⟨δ(· − xm), s⟩ = s(xm).

In order to specify the regularization operator L, we introduce the Schwartz
space S(R) of smooth and rapidly decaying functions defined over R. Its continuous
dual is the space of tempered distributions, denoted by S ′(R). In our framework,
we focus on regularization operators of the form L = DN0 : S ′(R)→ S ′(R), where D
is the derivative operator extended to S ′(R) [114, Chapter 3] and N0 ≥ 1. The null
space of the operator DN0 isNDN0 = span{pn}N0

n=1, with pn(x) = xn−1. The Green’s
function of DN0 is denoted by ρDN0 ; it satisfies the property that DN0{ρDN0 } = δ.
The Green’s function is not unique due to the existence of the null space.

Next, we specify the the continuous-domain Lp-norm. For a measurable function
w : R→ R, the Lp-norm (1 ≤ p <∞) is defined as

∥w∥Lp ≜
(∫

R
|w(x)|pdx

) 1
p

, (3.5)
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while the L∞-norm is defined as2

∥w∥L∞ ≜ ess sup
x∈R

|w(x)|. (3.6)

Equation (3.5) also specifies the Lp quasinorm for values of p ∈ (0, 1). The Lebesgue
space of functions Lp(R) = {w : R → R | ∥w∥Lp

< ∞}, where p ∈ [1,∞], is a
Banach space. Here, we also define theM-norm used in gTV regularization, which
is closely related to L1 regularization, as

∥w∥M ≜ sup
φ∈S(R),∥φ∥∞=1

⟨w,φ⟩ (3.7)

for any w ∈ S ′(R). The Banach space associated with ∥·∥M is M(R) = {w ∈
S ′(R) | ∥w∥M < +∞}. TheM-norm is an extension of the L1-norm. Indeed, for
any w ∈ L1(R), we have that

∥w∥M = ∥w∥L1
. (3.8)

However, the Dirac impulse δ is included in M(R) with ∥δ∥M = 1 but does not
belong to L1(R). Thus, we have that L1(R) ⊂M(R).

Finally, we define the search spaces for the gTV-regularized and Lp-regularized
problems as

M(N0)(R) = {s ∈ S ′(R) | DN0{s} ∈ M(R)} (3.9)

L(N0)
p (R) = {s ∈ S ′(R) | DN0{s} ∈ Lp(R)}. (3.10)

Here, we consider all generalized functions in S ′(R) for which the regularization
term is finite.

Now that we have described all the components involved in our regularized
generalized-interpolation framework, we state the optimization problems that we
consider in this work. They are

SM = argmin
s∈M(N0)(R)

∥DN0{s}∥M s.t. ν(s) = y (3.11)

Sp = argmin
s∈L(N0)

p (R)
∥DN0{s}∥Lp

s.t. ν(s) = y, (3.12)

2The essential supremum is a generalization of the supremum in Lebesgue’s theory of integra-
tion. For a measurable function w : R → R, it is the smallest value a ∈ R such that w(x) ≤ a
almost everywhere (i.e., everywhere except on a set of measure zero). The essential supremum is
equivalent to the supremum for continuous functions.
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where N0 ≥ 1.

3.2.2 Theoretical Results

Before the discussion of theoretical results, we need to make some assumptions.

Assumptions 3.1. In the following statements, the symbol X represents the search

spaceM(N0)(R) or L(N0)
p (R), depending on the problem at hand.

i. The measurement operator ν is weak∗-continuous on X .

ii. For the given measurements y ∈ RM and measurement operator ν, there
exists at least one function s0 ∈ X such that ν(s0) = y.

iii. The intersection of the null spaces of ν and DN0 is {0}.
Assumption (3.1.i) implies that the measurement functionals satisfy νm ∈ Y

for m = 1, . . . ,M , where the predual space Y is such that X = Y ′. In practice,
this imposes a minimum degree of regularity and decay on {νm}Mm=1. Assumption
(3.1.ii) states a feasibility condition and is needed to ensure that the generalized
interpolation problem is well-defined. If (3.1.i) holds and the νm are linearly inde-
pendent, then (3.1.ii) is satisfied for any y ∈ RM . Assumption (3.1.iii) ensures that
the problem is well-posed over the null space of the regularization operator, where
the penalization is immaterial. This can be checked by verifying that the matrix P
with entries [P]m,n = ⟨νm, pn⟩ is full-rank.

For the gTV-regularized and L2-regularized problems, there exist representer
theorems that provide a parametric characterization of the possible range of solu-
tions. In the case of L2 regularization, the solution is unique, smooth, and lies in
a finite-dimensional subspace that depends on the measurement and regularization
operators [104]. The gTV problem can have infinitely many solutions, but the ex-
treme points of the solution set SM are known to be splines whose type depends on
the regularization operator only [101]. These splines have adaptive knots which are
fewer than the number of measurements. On applying the operator DN0 to these
extreme points, we recover Dirac impulses at the knot locations, which implies a
sparse N0th order derivative. We refer to such solutions as the sparse solutions of
the gTV problem.

Beside providing insights about the nature of the solutions, the representer the-
orems also play a role in the design of numerical methods to solve these problems.
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The parametric forms of the solution provided by the theorems are used for the
discretization of the continuous-domain problems, leading to finite-dimensional op-
timization tasks which can be solved using standard optimization algorithms. A
detailed comparison of L2 versus gTV regularization can be found in [104]. The
reader can refer to [104, 115] for the algorithms.

In this work, our main focus is on (3.12) with a general p ≥ 1. This kind of a
problem has been addressed in [106] for the case of pure interpolation, when the
measurement functionals are Dirac impulses. Here, we state the result from [106]
in a form that is compatible with our framework. When p ∈ (1,∞), there exists a
unique solution s∗ to the Lp-regularized interpolation problem. It satisfies

DN0{s∗} = |v∗|q−1

∥v∗∥q−2
Lq

sgn(v∗), (3.13)

where 1
p +

1
q = 1 and

v∗(x) =

M∑
m=1

amρDN0 (x− xm) +

N0∑
n=1

bnpn(x) (3.14)

is a polynomial spline with knots at the data points {xm}Mm=1, and where {am}Mm=1

and {bn}N0
n=1 are suitable sets of coefficients. On setting p = 2, we recover the

result given in [104]. Equations (3.13)-(3.14) show that the N0th derivative of the
solution to our continuous-domain problem lies in a finite-dimensional manifold.
The solution itself can then be obtained by taking an N0-fold integral, subject to
adequate boundary conditions. However, for p ̸= 2, we have a nonlinear mapping
in (3.13). This makes it difficult to interpret other effects of regularization on
the solution. Moreover, due to this nonlinear mapping, these solutions do not
readily lend themselves to a discretization scheme, unlike in the gTV and L2 cases.
Therefore, we propose a spline-based discretization scheme to numerically solve the
Lp-regularized generalized-interpolation problem for p ≥ 1.

3.3 Polynomial Splines

Polynomial splines of degree N0 form an essential component of our discretization
scheme. They are piecewise-defined functions where each piece is a polynomial
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Figure 3.2: Causal B-splines βN0

h (x) with scaling factor h.

of degree N0. These pieces are connected in a manner such that the first (N0 −
1) derivatives of the function are continuous. The points where the pieces are
connected are called knots. A cardinal polynomial spline of degree N0 has its
knots on the integer grid and can be expressed uniquely in the form of a B-spline
expansion [116]

s(x) =
∑
k∈Z

c[k]βN0
+ (x− k), (3.15)

where βN0
+ (x) is the causal B-spline of degree N0 and (c[k])k∈Z are the expansion

coefficients. The causal B-spline of degree 0 is defined as:

β0
+(x) =

{
1, if 0 ≤ x < 1

0, otherwise,
(3.16)

while the causal B-spline of degree N0 is obtained by the (N0 +1)-fold convolution
of β0

+(x) given by

βN0
+ (x) = (β0

+ ∗ β0
+ ∗ · · · ∗ β0

+)︸ ︷︷ ︸
N0 convolutions

(x). (3.17)
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Table 3.1: The operator DN0 and the scaled B-spline βN0−1
h (x) and sequence

(dN0
[k])k∈Z associated with it.

L = DN0 β
N0−1

h (x) (dN0
[0], . . . , dN0

[N0])

D β0
h(x) =

{
1, 0 ≤ x < h

0, otherwise
(1,−1)

D2 β1
h(x) =


x/h, 0 ≤ x < h

(2h− x)/h, h ≤ x < 2h

0, otherwise

(1,−2, 1)

D3 β2
h(x) =


x2/2h, 0 ≤ x < h

(−2x2 + 6xh− 3h2)/2h2, h ≤ x < 2h

(3h− x)2)/2h2, 2h ≤ x < 3h

0, otherwise

(1,−3, 3,−1)

We are interested in polynomial splines with knots located on a uniform grid of
size h (in other words, the knots lie in hZ). Such a spline of degree N0 admits the
B-spline expansion

sh(x) =
∑
k∈Z

ch[k]β
N0

h (x− kh), (3.18)

where βN0

h (x) = βN0
+

(
x
h

)
is the causal scaled B-spline of degree N0. It is uniquely

specified by its coefficients ch = (ch[k])k∈Z. We illustrate in Figure 3.2 that βN0

h (x)

is compactly supported in [0, (N0 + 1)h]. In fact, the B-spline βN0

h (x) is the poly-
nomial spline of degree N0, with knots in hZ, that has the shortest support [117].

Polynomial splines are closely linked to derivative operators of the form DN0

(N0 ≥ 1). The operator DN0 is associated with the scaled B-spline of degree (N0−1)
according to

DN0{βN0−1
h }(x) = 1

hN0−1

∑
k∈Z

dN0
[k]δ(x− kh). (3.19)

The sequence (dN0
[k])k∈Z is characterized by its z-transform

dN0
(z) = (1− z−1)N0 (3.20)

and is supported in {0, . . . , N0}. In Table 3.1, we provide the explicit forms of
βN0−1
h (x) and (dN0 [k])k∈Z for N0 = 1, 2, 3.
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3.4 Discretization Scheme

3.4.1 Search Space

We discretize the continuous-domain problem (3.12) by restricting the search space
to a suitable space of polynomial splines, defined as

LN0

p,h(R) =
{∑
k∈Z

c[k]βN0

h (· − kh) : c ∈ ℓN0
p (Z)

}
, (3.21)

where βN0

h is the scaled B-spline of degree N0, h > 0 is the grid size, and

ℓN0
p (Z) =

{
(c[k])k∈Z : (dN0 ∗ c) ∈ ℓp(Z)

}
. (3.22)

The choice of the search space LN0

p,h(R) is guided by its exact discretization prop-
erty which we discuss in Section 3.4.2. Moreover, the approximation power of
splines ensures that, when h is sufficiently small, the search space LN0

p,h(R) contains
functions that are arbitrarily close to the solution of the unrestricted continuous-
domain problem (3.12). We present a detailed argument for this in Section 3.4.4.
The fact that LN0

p,h(R) is represented in a B-spline basis is another advantage. B-
splines are compactly supported and form a Riesz basis [118], thus resulting in a
well-conditioned discretization.

3.4.2 Exact Discretization

The exact discretization property of the function space LN0

p,h(R) stems from Propo-
sition 3.1.

Proposition 3.1. For any function s ∈ LN0

p,h(R) with p ∈ (0,∞], we have that

∥∥DN0{s}
∥∥
Lp

=

∥∥∥∥ 1

hN0−1/p
(dN0

∗ c)
∥∥∥∥
ℓp

. (3.23)

Proof. A scaled B-spline of degree N0 can be expressed as

βN0

h (x) =
1

h
(βN0−1
h ∗ β0

h)(x). (3.24)
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Using (3.19) and (3.24), we deduce that

DN0{βN0

h }(x) =
1

hN0

∑
k∈Z

dN0
[k]β0

h(x− kh). (3.25)

Therefore, for any s ∈ LN0

p,h(R) it stands that

DN0{s}(x) = 1

hN0

∑
k∈Z

(dN0 ∗ c)[k]β0
h(x− kh). (3.26)

Equation (3.26) implies that DN0{s} is a piecewise-constant function. For p ∈
(0,∞), the following holds:

∥∥DN0{s}
∥∥
Lp

=

(∫
R

∣∣∣∣∣ 1

hN0

∑
k∈Z

(dN0
∗ c)[k]β0

h(x− kh)
∣∣∣∣∣
p

dx

) 1
p

=

(∑
k∈Z

h

∣∣∣∣ 1

hN0
(dN0

∗ c)[k]
∣∣∣∣p
) 1

p

=

∥∥∥∥ 1

hN0−1/p
(dN0

∗ c)
∥∥∥∥
ℓp

. (3.27)

For the case p =∞, we have that∥∥DN0{s}
∥∥
L∞

= ess sup
x∈R

∣∣∣∣∣ 1

hN0

∑
k∈Z

(dN0
∗ c)[k]β0

h(x− kh)
∣∣∣∣∣

= sup
k∈Z

∣∣∣∣ 1

hN0
(dN0

∗ c)[k]
∣∣∣∣

=

∥∥∥∥ 1

hN0
(dN0 ∗ c)

∥∥∥∥
ℓ∞

. (3.28)

On plugging the parametric form (3.21) of any function s ∈ LN0

p,h(R) into Prob-
lem (3.12) and using Proposition 3.1, we obtain the equivalent discrete problem

Sp,h = argmin
c∈ℓN0

p (Z)

∥∥∥∥ 1

hN0−1/p
(dN0

∗ c)
∥∥∥∥
ℓp

s.t.
∑
k∈Z

c[k]ν(βN0

h (· − kh)) = y. (3.29)
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The important thing to note here is that Problem (3.29) is exactly equivalent to
the continuous-domain problem (3.12) restricted to the search space LN0

p,h(R). In
other words, by solving the above discrete problem, we effectively find a solution to
the restricted continuous-domain problem, which is given by

∑
k∈Z c

∗[k]βN0

h (·−kh)
with c∗ ∈ Sp,h. As indicated by Proposition 3.1, this discretization scheme is also
valid for Lp quasinorm regularization with p ∈ (0, 1). However, these values of p
correspond to non-convex problems.

Interestingly, the function space LN0

1,h(R) can also be used for discretizing the
gTV problem (3.11), which then also happens to be equivalent to the p = 1 case.

Proposition 3.2. For any function s ∈ LN0

1,h(R), we have that∥∥DN0{s}
∥∥
M =

∥∥DN0{s}
∥∥
L1
. (3.30)

Proof. Equation (3.26) implies that DN0{s} is piecewise-constant. Moreover, since
(dN0 ∗ c) ∈ ℓ1(Z), we conclude that DN0{s} ∈ L1(R). The relationship between the
M-norm and L1-norm (3.8) leads to (3.30).

By restricting the search space in (3.11) to LN0

1,h(R) and using Propositions 3.1
and 3.2, we obtain the discrete problem (3.29) with p = 1.

The salient and novel aspect of our method is the exact discretization of the
continuous-domain problem. To the best of our knowledge, there is no prior work
that discretizes Lp-regularized continuous-domain problems, with a general p, ex-
actly. As mentioned earlier, the cases of p = 2 and gTV have also been handled
in [104, 115]. However, those discretization schemes have been specifically derived
from representer theorems for L2 and gTV regularization, and unlike the method
proposed in this paper, are not applicable for other values of p.

3.4.3 Finite-Dimensional Problem

In practice, we assume that the measurement functionals νm are supported over
a finite interval IT = [0, T ]. Consequently, a finite number of B-spline expansion
coefficients are now involved in the constraint term in (3.29). We denote the set of
the indices of these coefficients by K = {kmin, . . . , kmax}; the cardinality of this set
is |K| = N . We now state Proposition 3.3, which has been adapted from Lemma 3
in [115].
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Proposition 3.3. If the measurement functionals {νm}Mm=1 are supported in IT ,
then a solution c∗ ∈ Sp,h of Problem (3.29) is uniquely determined by the N coeffi-
cients c∗|K = (c∗[kmin], . . . , c

∗[kmax]).

This result ensures that we only need to optimize over theN B-spline coefficients
that affect the constraint (or data) term in (3.29). As described in [115], the
expansion coefficients outside the interval of interest IT can be set in a way such
that all the regularization terms that they affect are nullified. This allows us to write
the infinite-dimensional convolution in (3.29) as a matrix multiplication, leading to
the finite-dimensional optimization problem

Sp,h = argmin
c∈RN

∥Lc∥ℓp s.t. Hc = y, (3.31)

where the system matrix H : RN → RM is

H =


...

...

ν(βN0

h (· − kminh)) · · · ν(βN0

h (· − kmaxh))
...

...

 , (3.32)

and the regularization matrix L : RN → RN−N0 is

L =
1

hN0− 1
p


dN0

[N0] · · · dN0
[0] 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 dN0

[N0] · · · dN0
[0]

 . (3.33)

The solutions c∗ ∈ Sp,h and c∗ ∈ Sp,h are related in the following manner:
c∗ = c∗|K = (c∗[kmin], . . . , c

∗[kmax]). Proposition 3.3 implies that the solution
to Problem (3.29) can be uniquely determined from c∗. Thus, we conclude that
Problem (3.31) is equivalent to the continuous-domain problem (3.12) ((3.11), re-
spectively) restricted to the search space LN0

p,h(R) (LN0

1,h(R), respectively), in the
sense that the continuous-domain solution can be fully described by c∗.

3.4.4 Effect of the Grid Size

So far, we have seen that the solutions to our continuous-domain problems, when
restricted to LN0

p,h(R), can be obtained by simply solving the finite problem (3.31).



3.5 Multiresolution Algorithm 45

Now, we look at the influence of the grid size h on these solutions. We define a
linear projection operator for the function space LN0

p,h(R) as

P
L

N0
p,h

{s}(x) =
∑
k∈Z

〈
s,

1

h
β̃N0

( .
h
− k
)〉
βN0
+

(x
h
− k
)
, (3.34)

where β̃N0 is a (generalized) function such that〈
βN0
+ (· − p), β̃N0(· − q)

〉
= δ[p− q]. (3.35)

The operator defined in (3.34) is a valid projection operator since it is idempotent.
This can be shown by using the biorthonormality condition (3.35).

We now state Theorem 3.1, adapted from [119], which bounds the Lp-norm of

the error between a function s ∈ L
(N0)
p (R) (the search space of the unrestricted

continuous-domain problem, as defined in (3.9)) and its projection onto LN0

p,h(R).

Theorem 3.1. Let P
L

N0
p,h

be a linear projection operator for LN0

p,h(R), as defined in

(3.34). When p ∈ (1,∞), the error of approximation for any s ∈ L(N0)
p (R) is

∥s− P
L

N0
p,h

{s}∥Lp
= O(hN0). (3.36)

For a small-enough grid size h, the error of approximation for any s ∈ L(N0)
p (R)

will be negligible. Therefore, our restricted search space LN0

p,h(R) will contain func-
tions (projections) which are arbitrarily close to the solution of the unrestricted
continuous-domain problem. Finally, to compute the solution to the restricted
continuous-domain problem, we only need to solve the finite problem (3.31).

3.5 Multiresolution Algorithm

In this section, we discuss a multiresolution algorithm that computes a solution
with the desired precision by gradually making the grid finer.

3.5.1 Solving the Finite Problem for a Fixed Grid Size

We first discuss the algorithm that we use to solve finite-dimensional problems of
the form (3.31). As constrained-optimization problems are typically harder to solve
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numerically compared to their unconstrained counterparts, to make the optimiza-
tion easier we consider the unconstrained version of (3.31) given by

S′
p,h = argmin

c∈RN

(
∥y −Hc∥22 + τψp(∥Lc∥ℓp)

)
(3.37)

where τ ∈ R+ is the regularization parameter and the function ψp : R+ → R+ is
defined as

ψp(x) =

{
xp if p ∈ [1,∞),
x if p =∞. (3.38)

Since ψp is monotonic over R+, the solution(s) to the constrained problem (3.31)
can be obtained from (3.37) in the limit by taking τ → 0. Thus, we propose to solve
our finite-dimensional problem (3.31) by solving (3.37) with a very small value of
τ .

The case p = 2 is special since then the optimization problem (3.37) is quadratic
and can be solved directly without the need for an iterative algorithm. The unique
solution in this scenario can be obtained by solving the linear system of equations
(HTH + τLTL)c∗ = HTy, which is obtained by setting to zero the gradient with
respect to c of the cost functional in (3.37). This can be done by various methods,
including direct matrix inversion.

For the values of p ∈ [1,∞] \ {2}, we use the well-known ADMM [24] to solve
Problem (3.37). The update rules for ADMM in our case are

ck+1 = (HTH+
ρ

2
LTL)−1(HTy +

ρ

2
LT (zk + uk)) (3.39)

zk+1 = proxτ̃ψp(∥·∥ℓp )
(Lck+1 + uk) (3.40)

uk+1 = uk + Lck+1 − zk+1, (3.41)

where c and z are the primal variables, u is the dual variable, ρ > 0 is the
augmented-Lagrangian parameter and τ̃ = τ/ρ. The proximal operator of a func-
tion g is defined as [120]

proxg(x) = argmin
u

(
1

2
∥u− x∥22 + g(u)

)
. (3.42)
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Figure 3.3: Lookup tables for the proximal operators of | · |p

For p = {1,∞}, the proximal operators involved in (3.40) have the closed-form
expressions

proxτ̃∥·∥ℓ1
(x) = sgn(x)⊗max(|x| − τ̃ , 0) (3.43)

proxτ̃∥·∥ℓ∞
(x) = x− τ̃proj∥·∥ℓ1

≤1(x/τ̃), (3.44)

where the operators sgn(·) and max(·) are applied component-wise, ⊗ denotes
component-wise multiplication, and the projection operator is

proj∥·∥ℓ1
≤1(x) = argmin

u:∥u∥ℓ1
≤1

∥u− x∥22. (3.45)

This projector is computed as explained in [121]. Thus, the proximal operators can
be computed efficiently for these two cases.

In general, we do not have a closed form expression for the proximal operator
when p ∈ (1,∞). The additive separability of the function ψp(∥ · ∥ℓp) can be used
to observe that

[proxτ̃ψp(∥·∥ℓp )
(x)]m = proxτ̃ |·|p([x]m). (3.46)

Now, we only need to compute the proximal operator for the 1D function τ̃ | · |p :
R→ R, which we do with the help of lookup tables (LUTs). We provide in Figure
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3.3 a few examples of LUTs. An efficient implementation is achieved by exploiting
properties of proxτ̃ |·|p(·) such as antisymmetry and monotonicity.

So far, we have seen that ADMM can be used to compute the unique solution to
(3.37) when p ∈ (1,∞). When p = {1,∞}, ADMM gives us one out of the possibly
many solutions. In order to obtain a sparse solution for p = 1, we follow the
procedure proposed in [104]. The solution c∗ ∈ S′

p,h obtained via ADMM is used
to generate the measurements yτ = Hc∗. Using these “denoised” measurements,
Problem (3.37) is then recast as a linear program which we solve using the simplex
algorithm [122]. The simplex algorithm guarantees that we reach an extreme point
of S′

1,h, which is sparse.

3.5.2 Grid Refinement

We begin with a coarse grid hinit and make it finer gradually until a further decrease
of the grid size does not affect the solution much. At each iteration t ∈W, we pick
a grid size ht = hinit/2

t, splitting the grid from the previous iteration in half. We
then solve the corresponding finite problem.

For this sequence of grid sizes, we observe that the search spaces are embedded
like LN0

p,ht
(R) ⊂ LN0

p,ht+1
(R). This ensures that, by splitting the grid in half, we

obtain a refined solution that is at least as good in terms of the cost function.
Finally, we keep making the grid finer until the relative decrease in cost is less than
some desired tolerance level ϵ. Another advantage of this embedding property is
that the solution from the previous grid can be used as initialization for ADMM,
which tends to improve the speed of convergence. This algorithm is adapted from
the work in [115].

In Algorithm 1, c↑2 corresponds to the coefficients c modified to match a grid
that is twice as fine as that of c. The routine ADMM(c↑2; p, y, H, L, τ)
runs ADMM on Problem (3.37) with c↑2 as the initialization while the routine
Simplex(yτ , H, L) runs the simplex algorithm on the linear program obtained
from Problem (3.37) by using the denoised measurements yτ .

3.6 Numerical Experiments

We now present numerical results that allow us to identify certain properties of
Lp-norm regularization and thus understand its effect. We have implemented our
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Algorithm 1 Multiresolution Algorithm

1: Input: p, T , y, ν, N0, τ , hinit, ϵ.
2: Output: c∗

3: Initialization: c = 0, t = 0, rel error = ϵ + 1, prev cost = +∞
4: while rel error > ϵ do
5: h = hinit/2

t

6: Update H, L
7: if p = 2 then
8: c = (HTH+ τLTL)−1HTy
9: else

10: c ← ADMM(c↑2; p, y, H, L, τ)
11: end if
12: rel error = |cost(c) − prev cost| / prev cost
13: prev cost = cost(c)
14: t ← t + 1
15: end while
16: if p = 1 then
17: yτ = Hc
18: c∗ = Simplex(yτ , H, L)
19: else
20: c∗ = c
21: end if

multiresolution algorithm using GlobalBioIm [123], a MATLAB library designed
for solving inverse problems.

3.6.1 Setup

In our experiments, we have considered two types of measurement functionals.

• Dirac Impulses: In this setting, the given measurement operator takes the
form ν(s) =

(
⟨δ(· − x1), s⟩, . . . , ⟨δ(· − xM ), s⟩

)
=
(
s(x1), . . . , s(xM )

)
, where

the points {xm}Mm=1 lie within the interval IT . This operator corresponds to
the standard interpolation problem that was discussed in Section 3.1. We
ensure that the points {xm}Mm=1 are pairwise distinct and that M ≥ N0, so
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Figure 3.4: Unique gTV solution (L = D2). The simplex and ADMM solutions are
coincident.

that the operator ν satisfies the condition NDN0 ∩Nν = {0}.
• Dephased Cosines: In this case, the measurement functionals are ν1 = 1[0,T ]

and νm = cos(ωmx + θm) × 1[0,T ] for m = {2, 3, . . . ,M}. This operator
corresponds to a variant of the Fourier interpolation problem which is relevant
to magnetic resonance imaging. In order to construct such an operator and
the corresponding measurements for our experiments, we first generated a
function s0 and picked a threshold frequency ωmax such that the spectrum
of s0 had little energy above ωmax. The frequencies ωm were then drawn
uniformly at random from (0, ωmax] while the phases θm were drawn uniformly
at random from [0, π). This operator ν was applied to s0 to generate the
measurements that we use in the experiments involving dephased cosines.

The regularization parameter was set to τ = 10−10 in the first two experiments and
τ = 10−15 in the last two experiments. For all examples that we present in this
section, the grid tolerance was set to ϵ = 10−3. In each example, we compute the
solution for several values of p ∈ [1,∞].

3.6.2 Results

1) Continuum of Solutions and Sparsity: We first present two examples (Figures
3.4 and 3.5) to talk about the behavior of the solution as the value of p is changed.
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Figure 3.5: Multiple gTV solutions (L = D2).

In these examples, the measurement functionals are Dirac impulses (interpolation
problem) and the regularization operator is L = D2. Both examples show that, as
we vary p from∞ to 1 (note that p = 1 corresponds to the gTV case), the solutions
gradually move towards the (or one of the) gTV solution(s). For the example in
Figure 3.4, the computed gTV solutions with and without applying the simplex are
the same and resemble a linear spline with two knots, in agreement with [101]. It
can be shown that this particular sparse solution is the unique solution to the gTV
problem. In this case, we see that the solution for p = 1.001 is close to the unique
sparse gTV solution.

By contrast, the configuration of the data points in Figure 3.5 is such that the
gTV problem has multiple solutions. This can be seen in the plots as the solution
obtained by running the simplex after ADMM is sparse (linear spline with three
knots), while the solution obtained via ADMM only is non-sparse. Interestingly in
this case, the solution for p = 1.001 is close to a non-sparse gTV solution. Based
on the above observations and additional experiments of the same nature, we make
several claims.

• There exists a continuum of solutions when p is varied from ∞ to 1.

• When the gTV problem has a unique solution, the continuum converges to
that unique sparse solution as p→ 1.

• When the gTV problem has multiple solutions, the continuum converges to
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Figure 3.6: Dephased-cosine measurement functionals (L = D, M = 15). For
p = 1, the simplex and ADMM solutions are coincident.

one of its non-sparse solutions as p→ 1.

We discuss two implications of our claims. Firstly, the existence of a continuum
implies that one can use Lp-norm regularization with p ∈ (1,∞), to “interpolate”
between the properties of the gTV and L∞ solutions. One such property is regu-
larity or smoothness. In Figures 3.4 and 3.5, we observe that the smoothness of the
solution reduces as p decreases. Secondly, we conclude that Lp-norm regularization
with a small p can be used as a sparsity-promoting prior in settings where the gTV
solution is guaranteed to be unique. This is in line with the use of discrete ℓp-norm
regularization, with a small p, in compressed-sensing frameworks.

As further illustration, we also provide an example with the dephased-cosine
measurement functionals. In this case, the regularization operator was L = D,
leading to a piecewise-constant gTV solution in Figure 3.6. The continuum of
solutions and change in regularity, as p is varied from ∞ to 1, is evident in this
figure.

2) Gibbs-Like Oscillations: In the interpolation of step-like functions using splines,
Gibbs-like oscillations are observed at the discontinuities [112, 124, 125]. We use
the step and staircase functions (Figure 3.7) to investigate this effect in our Lp-
regularized problem. In these cases, we observe that the solutions exhibit an os-
cillatory behavior (with an overshoot at the discontinuity) which decreases as p
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Figure 3.7: Illustration of Gibbs-like oscillations (L = D2). For p = 1, the simplex
and ADMM solutions are coincident.

goes from ∞ to 1. Moreover, as p becomes smaller, the oscillatory effect of the
discontinuity becomes more localized. We claim that

• Lp-norm regularization with a smaller p results in weaker Gibbs-like oscilla-
tions at the edges.

We would like to point out that the above claims exclude the special case of
spatial interpolation with L = D. Here, all values of p ∈ (1,∞) generate the same
solution, which is a linear spline with knots at the data points. This can be inferred
from the theoretical result stated in Section 3.2.
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Figure 3.8: Effect of the regularization operator DN0 for a fixed p = 1.5.

3) Effect of N0: We now discuss the influence of the operator L = DN0 which is the
second component of our regularization term. In Figure 3.8, we present an example
where we fix p = 1.5 and compute the solutions for different values of N0. Our
general observation is that

• For any p ∈ [1,∞], the solution becomes smoother and exhibits more oscilla-
tions as N0 increases.

4) Comparison with Shannon’s sinc interpolation: Consider a standard interpola-
tion problem with uniformly spaced points

xm = m∆, m = 1, 2, . . . ,M, (3.47)

where ∆ > 0 is the spacing between any two consecutive points xm, and measure-
ments {ym}Mm=1. In this case, the well-known sinc interpolant is given by

ssinc(x) =

M∑
m=1

ym sinc
(x−m∆

∆

)
. (3.48)

Remarkably, the variational formulation (3.12) of the above interpolation problem
includes Shannon’s sinc interpolation scheme as a special case corresponding to
p = 2 and N0 →∞ [126].
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Figure 3.9: Maximum overshoot values for interpolation of the data points from
Figure 3.8.

In many applications such as image scaling and image registration, smoother
interpolating functions are desirable since they are well-behaved with well-defined
multi-order derivatives. While ssinc(x) is a highly regular function, unfortunately
it also exhibits strong Gibbs-like oscillations at sharp transitions. On the other
hand, as observed in the previous experiments, by controlling the values of p and
N0, Lp-regularized solutions can be made to achieve a balance between smoothness
and oscillatory behaviour.

To illustrate this advantage of our framework, we consider interpolation of the
data points from Figure 3.8. We compute the maximum overshoot (which is related
to the extent of the oscillations) of the sinc interpolant and the Lp-regularized
interpolant for several values of p and N0, and we plot the results in Figure 3.9.
For ease of comparison, we indicate the maximum overshoot for sinc interpolation,
which is quite high, as a horizontal dashed line. The plots for the Lp-regularized
solutions show that N0 and p (more so when N0 is small) can be varied to control
the overshoots or oscillations, and balance them with the desired smoothness.

3.7 Summary

We have implemented a multiresolution algorithm to solve numerically the generalized-
interpolation problem with Lp-norm regularization, along with its unconstrained
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variants. We have shown that an appropriate grid-based B-spline basis can be used
to exactly discretize the (restricted) continuous-domain problem. Based on previ-
ous results from approximation theory and splines, we have argued that as the grid
size goes to zero, the computed solution approaches the solution of the unrestricted
continuous-domain problem. With the help of numerical results in the context of
spatial and Fourier interpolation, we have established the existence of a continuum
of solutions as p goes from ∞ to 1. Finally, we have made insightful observations
about properties of the Lp-regularized solutions such as sparsity, regularity, and
Gibbs-like oscillations.

3.8 Appendix

Consider the unconstrained optimization problem in (3.2):

S = argmin
s∈X

(
D
(
y,ν(s)

)
+ τR(s)︸ ︷︷ ︸

J (s)

)
. (3.49)

Here, we show that if D is strictly convex and R is convex, then all the solutions
s∗ ∈ S generate the same measurement vector z0 = ν(s∗). The proof is adapted
from [127] and is based on standard arguments in convex analysis.

Let s∗1, s
∗
2 ∈ S be two solutions of (3.49) such that they produce different mea-

surements i.e., ν(s∗1) ̸= ν(s∗2). Let the minimum value of the objective function
be J ∗ = J (s∗1) = J (s∗2). For a candidate function sc = αs∗1 + (1 − α)s∗2, with
α ∈ (0, 1), we have

J (sc) = D
(
y,ν

(
αs∗1 + (1− α)s∗2

))
+ τR

(
αs∗1 + (1− α)s∗2

)
<

(
α
(
D
(
y,ν(s∗1)

)
+ τR(s∗1)︸ ︷︷ ︸

J ∗

)

+ (1− α)D(y,ν(s∗2)) + τR(s∗2)︸ ︷︷ ︸
J ∗

)
= J ∗. (3.50)

The above strict inequality is due to the fact that D is strictly convex and R is
convex. The relation J (sc) < J ∗ is a contradiction and thus ν(s∗1) = ν(s∗2) = z0.



Chapter 4

Sparse Stochastic Processes

1In this chapter, we present a benchmarking environment based on sparse stochastic
processes [114] to objectively evaluate and compare the performance of reconstruc-
tion algorithms for linear inverse problems involving 1D signals. Our framework
offers quantitative measures of the degree of optimality (in the mean-square-error
sense) for any given reconstruction method. Since it is based on stochastic mod-
elling, it provides access to unlimited amounts of data, which enables the proper
benchmarking of NN-based approaches without having to worry about the repre-
sentativity of the training data.

4.1 Introduction

NN-based methods that make use of prior information learned from a large collec-
tion of training data are now the focus of much of the current research in signal
reconstruction. In several applications such as MRI, CT, optical imaging, and ultra-
sound, their gain over state-of-the-art classical methods is impressive. Specifically,
they shine in extreme scenarios where one wishes to achieve more with fewer mea-
surements. However, NN-based methods have certain limitations that currently
hinder their further development.

1This chapter is based on our work [128].

57
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Unlike the classical methods, which are backed by sound mathematics, the de-
velopment of NN-based approaches is empirical. Expressivity is obtained through
the composition of simple units, but the working of the whole is hard to com-
prehend and the architectural options are overwhelming (e.g., depth, number of
channels, size of the filters). In practice, one usually proceeds by trial and error
using the training, validation, and testing errors as quantitative criteria. Further,
the training of NNs is poorly understood and often difficult because of the underly-
ing over-parameterization: getting a stochastic optimization algorithm to perform
properly for a specific application typically requires a lot of adjustments and ex-
perimentation.

Beside the strain that this empirical approach exerts on developers, the per-
formance greatly depends on the quality, cardinality, and representativity of the
training dataset. The bottleneck with several applications (e.g., biomedical imag-
ing) is often a limited access to large, representative datasets. This explains why
the works that demonstrate the superiority of the NN-based approaches over the
classical ones for signal reconstruction have used limited benchmarks so far.

4.1.1 Contributions

In this chapter, we present an objective environment to benchmark the performance
of reconstruction algorithms for linear inverse problems, in particular, NN-based
methods that require large amounts of training data.

We synthesize ground-truth signals and then simulate the measurement process
(e.g., convolution for deconvolution microscopy, Fourier sampling for MRI) in the
presence of noise. Specifically, we consider a statistical framework where the under-
lying signals are realizations of 1D sparse stochastic processes (SSPs) [114]. Since
the true statistical distribution of the signal is known exactly in our framework,
the minimum-mean-square-error (MMSE) estimator is indeed optimal in the mean-
square-error (MSE) sense. Therefore, we are able to provide statistical guarantees
of optimality by specifying an upper limit on the reconstruction performance.

Our framework also provides training data for NN-based methods. Indeed, for
some chosen stochastic signal model, we can produce datasets consisting of any
desired number of signals or signal-measurement pairs for a given measurement
model, which allows for an informed comparison of network architectures. Thus,
the availability of the goldstandard (MMSE estimator) and training data make our
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benchmark a good ground for the tuning of NN architectures and for the identifi-
cation of the best designs in a tightly controlled environment.

The MAP estimates of SSPs are solutions of optimization problems and can be
computed efficiently. However, it has been observed that these MAP estimators
are suboptimal in the MSE sense [34, 129], except in the Gaussian scenario where
the MAP and MMSE estimators (generalized Wiener filter) coincide [15]. In this
work, we focus on non-Gaussian signal models. In principle, the MMSE estimator
involves the calculation of high-dimensional integrals, which are not numerically
tractable in general. Thus, we develop efficient Gibbs-sampling-based algorithms
to compute the MMSE estimators for specific classes of SSPs, with innovations
following the Laplace, Student’s t, and Bernoulli-Laplace distributions. To the
best of our knowledge, no such working solution for generic linear inverse problems
with SSPs has been presented in the literature.

Finally, we present experimental results that illustrate the usefulness of our
framework. Specifically, we benchmark the performance of some well-known clas-
sical MPL estimators and end-to-end trained CNNs that perform direct nonlinear
reconstructions, in the context of deconvolution and Fourier sampling for first-order
SSPs. The CNNs that we consider are optimized by minimizing the MSE loss for
training datasets. On one hand, when the innovations follow a Bernoulli-Laplace
distribution, we observe that CNNs (with sufficient capacity and training data)
outperform the sparsity-promoting MPL estimators, which are well-suited to these
piecewise-constant signals. In fact, some of these CNNs achieve near-optimal MSE
performance. On the other hand, our experiments with Student’s t innovations
indicate regimes where CNNs fail to reconstruct the signals well. More specifically,
we observe that, when the tails of the Student’s t distribution are made heavier
(i.e., when we move towards a Cauchy distribution), CNNs perform rather poorly.

The chapter is organized as follows: In Section 4.2, we describe a continuous-
domain measurement model along with a way to discretize it. In Section 4.3, we
introduce Lévy processes as stochastic models for our signals and we derive the
probability distribution for samples of such processes. We then develop Gibbs
samplers for Lévy processes associated with Laplace, Student’s t, and Bernoulli-
Laplace distributions in Section 4.4. Finally, we present experimental results in
Section 4.5.
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4.2 Measurement Model

In the proposed framework, we consider the recovery of a continuous-domain signal
s† : R→ R from a finite number M of measurements y† = (y†

m)Mm=1.

4.2.1 Continuous-Domain Measurement Model

We model the measurements y† = (y†
m)Mm=1 as

y†
m =

∫
R
s†(t)νm(t)dt+ n†[m], (4.1)

where (νm)Mm=1 are linear functionals that describe the physics of the acquisition
process and n†[·] is a realization of white Gaussian noise with variance σ2

n. By
choosing appropriate functionals (νm)Mm=1, we can study a variety of linear inverse
problems such as denoising, deconvolution, inpainting, and Fourier sampling.

4.2.2 Discrete Measurement Model

We need to discretize (4.1) to obtain a computationally feasible model for the
measurements. To that end, we consider a finite region of interest Ω = (0, T ) of the
signal and approximate it with

s†h(t) =

K∑
k=1

s†(kh)sinc
( t
h
− k
)
, (4.2)

where h is the sampling step and K =
( ⌊

T
h

⌋
− 1
)
. When h is small enough, s†h is

a good approximation of s† within the interval Ω [130]. On introducing (4.2) into
(4.1), we get that

y† = Hs† + n†, (4.3)

where s† = (s†(kh))Kk=1 ∈ RK contains equidistant samples of the signal, H : RK →
RM is the discrete system matrix with

[H]m,k =

∫
R
sinc

( t
h
− k
)
νm(t)dt, (4.4)

and n† ∈ RM is the noise.
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Thus, for any given signal samples s† ∈ RK , we can simulate noisy measurements
using (4.3). Next, we derive the discrete system matrices for deconvolution and
Fourier sampling. Hereafter, we assume for simplicity that h = 1.

4.2.3 Deconvolution

In deconvolution, the measurements are acquired by sampling the result of the con-
volution between the signal and the point-spread function (PSF) ψ of the acquisition
system, which we model by letting the measurement functionals be νm = ψ(m− ·).
We assume that the cutoff frequency of ψ is ω0 ≤ π, as this allows us to sample
(s† ∗ ψ) on an integer grid without aliasing effects. In this case, The entries of the
resulting system matrix H are given by

[H]m,k =

∫
R
sinc(t− k)ψ(m− t)dt

= ψ(m− k). (4.5)

Here, H is a discrete convolution matrix whose entries are samples of the bandlim-
ited PSF ψ.

4.2.4 Fourier Sampling

In Fourier sampling, the measurements are acquired by sampling the Fourier trans-
form of the signal at arbitrary frequencies {ωm}Mm=1. Accordingly, the measurement
functionals are the complex exponentials νm = e−jωm·. Assuming that |ωm| ≤ π,
we get that

[H]m,k =

∫
R
sinc(t− k)e−jωmtdt

= e−jωmk. (4.6)

Here, H is a discrete Fourier-like matrix, except that the frequencies ωm do not
necessarily lie on an uniform grid.
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4.3 Stochastic Signal Model

In this section, we describe a continuous-domain stochastic model for the signal.
We also derive the probability distribution for its samples.

4.3.1 Lévy Processes

In our framework, the underlying signals are realizations of a well-known class of
first-order sparse stochastic processes: the Lévy processes [131, 114].

Definition 4.1 (Lévy process). A stochastic process (or collection of random vari-
ables) S = {S(t) : t ∈ R+} is a Lévy process if

1. S(0) = 0 almost surely;

2. (independent increments) for any N ∈ N \ {0, 1} and 0 ≤ t1 < t2 · · · < tN <
∞, the increments

(
S(t2)− S(t1)

)
,
(
S(t3)− S(t2)

)
, . . . ,

(
S(tN )− S(tN−1)

)
are

mutually independent;

3. (stationary increments) for any given step h, the increment process Uh =
{S(t)− S(t− h) : t ∈ R+} is stationary;

4. (stochastic continuity) for any ϵ > 0 and t ≥ 0

lim
h→0

Pr{|S(t+ h)− S(t)| > ϵ} = 0.

Lévy processes are closely linked to infinitely divisible (id) distributions.

Definition 4.2 (Infinite divisibility). A random variable X is infinitely divisible
if, for any N ∈ N \ {0}, there exist independent and identically distributed (i.i.d.)
random variables X1, . . . ,XN such that X = X1 + · · ·+ XN .

For any Lévy process S, the random variable S(t) for some t > 0 is infinitely
divisible. Moreover, its probability density function (pdf) is given by

pS(t)(x) =

∫
R

(∫
R
pS(1)(y)e

jωydy

)t
e−jωx dω

2π
. (4.7)
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(a) Gaussian: p(x) = 1√
2πσ2

e
− x2

2σ2

(b) Laplace: p(x) = b
2
e−b|x|

(c) Bernoulli-Laplace: p(x) = λδ(x)+ (1−λ) b
2
e−b|x|

(d) Student’s t: p(x) =
Γ(α+1

2
)

Γ
(

α
2

) 1
√
π(1+x2)

α+1
2

Figure 4.1: Realizations of different Lévy processes as characterized by the corre-
sponding infinitely divisible pdfs.
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Conversely, for any id distribution with pdf pid, it is possible to construct a Lévy
process S such that pS(1) = pid. Thus, there is a one-to-one correspondence between
Lévy processes and id distributions [131].

Among all id distributions, the pdf of the Gaussian distribution exhibits the
fastest rate of decay at infinity. In this sense, we refer to the non-Gaussian,
heavier-tailed members (e.g., Laplace, Bernoulli-Laplace, Student’s t, symmetric-
alpha-stable) of the class of id distributions as sparse [132]. Indeed, some of these
sparse distributions have a mass at the origin in their probability distribution (e.g.,
Bernoulli-Laplace) and some of them are strongly compressible (e.g., Student’s t,
symmetric-alpha-stable) [133].

The stochastic model of Lévy processes allows us to consider a variety of signals
with different types of sparsity. In our framework, we focus on the subclass of Lévy
processes associated with the Gaussian, Laplace, Bernoulli-Laplace and Student’s
t distributions. Some realizations of these processes are shown in Figure 4.1.

4.3.2 Discrete Stochastic Model

Now, we derive the pdf of the random vector S = (S(k))Kk=1, which contains uniform
samples of a Lévy process. Consider the stationary increment process U(t) = {S(t)−
S(t − 1) : t ∈ R+} whose first-order pdf pU is the same as pS(1) and so is infinitely
divisible. Its samples U = (U(k))Kk=1 can be expressed as

U = DS, (4.8)

where D is a finite-difference matrix of the form

D =


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0

. . .
. . .

0 0 · · · −1 1

 . (4.9)

Using (4.8) and the fact that the increments are independent, we obtain the pdf of
the discrete signal as

pS(s) =

K∏
k=1

pU

(
[Ds]k

)
. (4.10)
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Note that (4.8) can also be written as

[S]k =

k∑
n=1

[U]n, k = 1, . . . ,K, (4.11)

which gives us a direct way to generate samples of Lévy processes.

4.3.3 Extensions

In this work, we have considered inverse problems involving 1D signals that are
modelled as realizations of Lévy processes with increments that follow the Gaus-
sian, Laplace, Bernoulli-Laplace and Student’s t distributions. Our framework can
further be extended in a straightforward manner to include the more general sig-
nal model of continuous-domain first-order autoregressive processes [114, Chapter
7] driven by white noises associated with the aforementioned distributions. These
AR(1) processes yield a discrete stochastic model that is similar to the one de-
scribed in (4.10). There, the application of a suitable transformation matrix to
the random vector containing equidistant samples of the process decouples it and
generates a random vector (called the innovation or generalized increments) with
i.i.d. entries. Thus, the MMSE estimation methods presented in Section 4.4 can
be readily adapted for such AR(1) processes.

We can also directly extend the proposed framework to handle multidimensional
signals for the particular stochastic model of continuous-domain AR Lévy sheets
[134, Chapter 3], [114] associated with the Gaussian, Laplace, Bernoulli-Laplace
and Student’s t distributions. These are higher-dimensional generalizations (based
on separable whitening operators) of the corresponding AR(1) processes and they
result in desirable discrete models of the form (4.10). Unfortunately, the random
vectors constructed from samples of other (“non-separable”) higher-dimensional
stochastic processes described in [114] cannot be fully decoupled by applying a
linear transformation. This makes the task of designing schemes to evaluate their
MMSE estimators very challenging. An alternate way of extending our framework
could be to define a new class of continuous-domain multidimensional stochastic
models using the spline-operator-based framework of [135, 136]. However, this
approach would require substantial development of novel mathematical ideas and
is thus not discussed further in this work.
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4.4 MMSE Estimators for Sparse Lévy Processes

So far, we have introduced the signal and measurement models that allow us to gen-
erate our ground-truth signals and simulate their noisy measurements for a certain
acquisition setup. Next, we focus on the MMSE estimator for the reconstruction
problem at hand, which is to recover the signal s† from its measurements y†.

Let Y be the underlying random vector for the measurements that takes values
in RM . Since we have an AWGN model, using Bayes’ rule, (4.3) and (4.10), we can
write the pdf of the posterior distribution of S|Y = y† as

pS|Y(s|y†) =
pY|S(y

†|s)pS(s)∫
RK pY|S(y†|s̃)pS(s̃)ds̃

∝ exp

(
− ∥y

† −Hs∥22
2σ2

n

) K∏
k=1

pU

(
[Ds]k

)
. (4.12)

The MMSE estimator is then given by

s∗MMSE(y
†) = argmin

s∈RK

(∫
RK

∥s̃− s∥22 pS|Y(s̃|y†)ds̃

)
=

∫
RK

s̃ pS|Y(s̃|y†)ds̃, (4.13)

which is the mean of the posterior distribution pS|Y(·|y†). For a fixed stochastic
model, the MMSE estimator is the optimal reconstructor in the MSE sense and
thus serves as the goldstandard in our benchmarking framework. In the Gaussian
case, the MMSE estimator is known to coincide with the MAP estimator and is
straightforward to calculate [15, 137]. However, in the non-Gaussian case, we need
to numerically evaluate the high-dimensional integral in (4.13), which is computa-
tionally challenging.

In the remainder of this section, we present efficient methods to compute the
MMSE estimator for sparse Lévy processes with increments that follow the Laplace,
Student’s t, and Bernoulli-Laplace distributions, which constitutes a key contribu-
tion of this chapter.
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Algorithm 2 Gibbs sampling

1: Input: Q (number of samples), B (burn-in period)
2: Initialization:

(
x̃(0), ỹ(0)

)
3: for q = 1, . . . , B +Q do
4: Generate x̃(q) according to pX|Y

(
· |ỹ(q−1)

)
5: Generate ỹ(q) according to pY|X

(
· |x̃(q)

)
6: end for

7: Output:
{(
x(q), y(q)

)}Q
q=1

=
{(
x̃(q+B), ỹ(q+B)

)}Q
q=1

4.4.1 Gibbs Sampling

In order to compute the integral in (4.13), one can generate samples {s†(q)}Qq=1

from the posterior distribution pS|Y(·|y†) using an MCMC method and approximate

s∗MMSE(y
†) by the empirical mean s∗Q(y

†) = 1
Q

∑Q
q=1 s

†(q). In this work, we propose

to use the MCMC method called Gibbs sampling [138, 139] to first generate sam-

ples {u†(q)}Qq=1 from the distribution pU|Y(·|y†). These can then be transformed in

accordance with (4.11) to obtain the desired samples {D−1u†(q)}Qq=1 from pS|Y(·|y†).
We now give the gist of this algorithm.

Let X and Y be two random variables. Consider the task of generating samples
from their joint distribution pX,Y. Gibbs sampling is advantageous whenever it
is computationally difficult to sample from the joint distribution directly but the
conditional distributions pX|Y(·|y) and pY|X(·|x) are easy to sample from. The steps
involved in this method are presented in Algorithm 2. They yield a Markov chain
whose stationary distribution is indeed pX,Y [139]. In practice, one discards some
of the initial samples (burn-in period) to allow the chain to converge. Moreover,
quantities (expectation integrals) based on the marginal distributions pX and pY can

be computed from the individual samples {x(q)}Qq=1 and {y(q)}Qq=1, respectively.

Next, we present Gibbs sampling schemes for Lévy processes with Laplace,
Student’s t, and Bernoulli-Laplace increments. Our strategy is to introduce an
auxiliary random vector W and perform Gibbs sampling for the joint distribution
pU,W|Y(·, ·|y†) [140, 141]. The key is to choose W such that the conditional distribu-
tions pU|W,Y(·|·,y†) and pW|U,Y(·|·,y†) can be sampled from in an efficient manner.

Hereafter, we assume that the noise variance σ2
n and the parameters of the signal
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model are known.

4.4.2 Laplace Increments

For Lévy processes with Laplace increments, we adapt the approach that was de-
veloped in [142].

The pdf for the Laplace distribution is

pU(u) =
b

2
exp

(
− b|u|

)
, (4.14)

where b is the scale parameter. The density in (4.14) can be expressed as a scale
mixture of normal distributions [143], as

pU(u) =

∫
R
pU|W(u|w)pW(w)dw, (4.15)

where

pU|W(u|w) =
1√
2πw

exp

(
− u2

2w

)
(4.16)

is the Gaussian pdf and

pW(w) =
b2

2
exp

(
− b2w

2

)
1+(w) (4.17)

is a mixing exponential pdf2 with λ = 2/b2. This property allows us to define an
auxiliary random vector W that takes values in RK with i.i.d. entries following the
distribution pW in (4.17), such that

pU|W(u|w) =

K∏
k=1

pU|W

(
[u]k|[w]k

)
, (4.18)

where u,w ∈ RK and pU|W is shown in (4.16).

2The pdf of the exponential distribution is

pexp(x) = (1/λ)e−x/λ
1+(x),

where λ > 0 is the scale parameter.
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By the chain rule of probability (or the general product rule), the full joint
distribution pY,U,W can be written as

pY,U,W(y,u,w) = pY|U,W(y|u,w)pU,W(u,w)

= pY|U(y|u)pU|W(u|w)pW(w), (4.19)

where y ∈ RM . Consequently, the distribution pU,W|Y takes the form

pU,W|Y(u,w|y) ∝ exp

(
− 1

2σ2
n

∥y −Au∥22
)
×

K∏
k=1

[w]
− 1

2

k exp

(
− [u]2k

2[w]k

)

×
K∏
k=1

b2

2
exp

(
− b2[w]k

2

)
1+

(
[w]k

)
, (4.20)

where A := HD−1.

Based on (4.20), the conditional distribution pU|W,Y is then obtained as

pU|W,Y(u|w,y) ∝ exp

(
− 1

2

(
1

σ2
n

∥y −Au∥22 + uTCL(w)u

))
, (4.21)

whereCL(w) is a diagonal matrix with elements
(
[w]−1

k

)K
k=1

. Specifically, pU|W,Y(·|w,y)
is a multivariate Gaussian density with mean u = σ−2

n

(
σ−2
n ATA+CL(w)

)−1
ATy

and covariance matrix R =
(
σ−2
n ATA + CL(w)

)−1
. There exist several meth-

ods for the efficient generation of samples from a multivariate Gaussian density
[144, 145, 146, 147].

The conditional distribution pW|U,Y is

pW|U,Y(w|u,y) ∝
K∏
k=1

pW|U,Y

(
[w]k|[u]k,y

)
, (4.22)

where

pW|U,Y

(
w|u,y

)
∝ exp

(
− 1

2

(
u2

w
+ b2w

))
× w− 1

21+(w) (4.23)



70 Sparse Stochastic Processes

belongs to the family of generalized inverse Gaussian distributions3 with λ1 = b2,
λ2 = u2 and a = 0.5. We can rely on the method proposed in [148] to draw samples
from the pdf in (4.23).

To conclude, with the help of the conditional distributions derived in (4.21)
and (4.23), we construct a blocked Gibbs sampler, where at at each iteration q, we
generate u†(q) according to pU|W,Y

(
· |w†(q−1),y†

)
and [w†(q)]k according to pW|U,Y

(
·

|[u†(q)]k,y
†
)
for all k ∈ {1, . . . ,K}. The collected samples {u†(q)}q follow the desired

distribution pU|Y(·|y†).

4.4.3 Student’s t Increments

The case of Student’s t increments can be handled by adapting the method shown
in [149], which is in fact similar to the one we described for Laplace increments.

The Student’s t pdf is given by

pU(u) =
Γ(α+1

2 )

Γ
(
α
2

) 1
√
π(1 + u2)

α+1
2

, (4.24)

where α is the number of degrees of freedom and controls the tail of the distribution,
and where Γ denotes the gamma function. It can also be expressed as

pU(u) =

∫
R
pU|W(u|w)pW(w)dw, (4.25)

where

pU|W(u|w) =
√
w

2π
exp

(
− wu2

2

)
(4.26)

is a Gaussian pdf and

pW(w) =
(0.5)

α
2

Γ(α2 )
w

α
2 −1 exp

(
− w

2

)
1+(w) (4.27)

3The pdf of the generalized inverse Gaussian distribution is

pgig(x) =
(λ1/λ2)a/2

2Ka(
√
λ1λ2)

xa−1e−(λ1x+λ2/x)/21+(x),

where Ka is the modified Bessel function of the second kind, λ1 > 0, λ2 > 0, and a ∈ R.
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is the pdf of a gamma4 distribution. Again, we introduce an auxiliary random
vector W that takes values in RK whose i.i.d. entries follow pW defined in (4.27). It
is such that

pU|W(u|w) =

K∏
k=1

pU|W

(
[u]k|[w]k

)
, (4.28)

where u,w ∈ RK and pU|W is defined in (4.26).
Here, the distribution pU,W|Y is given by

pU,W|Y(u,w|y) ∝ exp

(
− 1

2σ2
n

∥y −Au∥22
)
×

K∏
k=1

[w]
1
2

k exp

(
− [w]k[u]

2
k

2

)

×
K∏
k=1

[w]
α
2 −1

k exp

(
− [w]k

2

)
1+

(
[w]k

)
, (4.29)

where y ∈ RM and A := HD−1.
Now, the conditional distribution pU|W,Y turns out to be

pU|W,Y(u|w,y) ∝ exp

(
− 1

2

(
1

σ2
n

∥y −Au∥22 + uTCT(w)u

))
, (4.30)

where CT(w) is a diagonal matrix with entries
(
[w]k

)K
k=1

. Similar to what we
observed in the Laplace case, pU|W,Y(·|w,y) is a multivariate Gaussian density with

mean u = σ−2
n

(
σ−2
n ATA+CT(w)

)−1
ATy and covariance matrix R =

(
σ−2
n ATA+

CT(w)
)−1

.
The distribution pW|U,Y is again separable and takes the form

pW|U,Y(w|u,y) ∝
K∏
k=1

pW|U,Y

(
[w]k|[u]k,y

)
, (4.31)

4The pdf of the gamma distribution is

pgam(x) =
1

λλ1
2 Γ(λ1)

xλ1−1e−x/λ21+(x),

where λ1 > 0 and λ2 > 0 are the shape and scale parameters, respectively.
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where

pW|U,Y

(
w|u,y

)
∝ exp

(
− (1 + u)2w

2

)
× w

α−1
2 1+(w). (4.32)

is a gamma distribution with λ1 = α+1
2 and λ2 = 2

(1+u)2 , which can easily be

sampled from.

4.4.4 Bernoulli-Laplace Increments

In [150], Gibbs sampling schemes have been designed for a deconvolution prob-
lem where the underlying signal is an i.i.d. spike train that follows the Bernoulli-
Gaussian distribution. Unfortunately, the Bernoulli-Gaussian distribution is not
infinitely divisible and so is not compatible with our framework of Lévy processes.
While there exists some work [32] on Bernoulli-Laplace priors, according to the
analysis presented in [150], their proposed sampler would have a tendency to get
stuck in certain configurations. Thus, we build upon the method in [150] and de-
velop a novel Gibbs sampler for Lévy processes with Bernoulli-Laplace increments.

The Bernoulli-Laplace pdf is

pU(u) = λδ(u) + (1− λ) b
2
exp

(
− b|u|

)
, (4.33)

where λ ∈ (0, 1) denotes the mass probability at the origin and b is a scale param-
eter. We can represent this same density as

pU(u) =

∫
R

( 1∑
v=0

pU|V,W(u|v, w)pV(v)

)
pW(w)dw, (4.34)

where

pV(v) = (λ)1−v(1− λ)v for v ∈ {0, 1} (4.35)

is a Bernoulli distribution,

pW(w) =
b2

2
exp

(
− b2w

2

)
1+(w) (4.36)
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is an exponential pdf, and pU|V,W is defined such that

pU|V,W(u|v = 0, w) = δ(u) (4.37)

pU|V,W(u|v = 1, w) =
1√
2πw

exp

(
− u2

2w

)
. (4.38)

Based on this representation, we introduce two independent auxiliary random vec-
tors V and W that take values in RK . Their elements are i.i.d. and follow the
distributions pV and pW, as defined in (4.35) and (4.36), respectively. Further, these
vectors satisfy

pU|V,W(u|v,w) =

K∏
k=1

pU|V,W

(
[u]k|[v]k, [w]k

)
, (4.39)

where u,v,w ∈ RK and pU|V,W is defined in (4.37) and (4.38).
Here, the full joint distribution pY,U,V,W is given by

pY,U,V,W(y,u,v,w) = pY|U,V,W(y|u,v,w)pU,V,W(u,v,w)

= pY|U(y|u)pU|V,W(u|v,w)pV(v)pW(w), (4.40)

where y ∈ RM . As a result, the distribution pU,V,W|Y takes the form

pU,V,W|Y(u,v,w|y) ∝ exp

(
− 1

2σ2
n

∥y −Au∥22
)
×

K∏
k=1

pU|V,W

(
[u]k|[v]k, [w]k

)
×

K∏
k=1

λ1−[v]k(1− λ)[v]k ×
K∏
k=1

b2

2
exp

(
− b2[w]k

2

)
1+([w]k),

(4.41)

where A = HD−1.
Let us now introduce some notations. For any binary vector q ∈ RK , let Iq,0

and Iq,1 denote sets of indices such that [q]k = 0 for k ∈ Iq,0 and [q]k = 1 for
k ∈ Iq,1. Further, let A(q) be the matrix constructed by taking the columns
of A corresponding to the indices in Iq,1. We then define the matrix B(q, r) =
σ2
nI + A(q)CBL(q, r)A(q)T , where r ∈ RK is a vector with positive entries and

CBL(q, r) is a diagonal matrix with entries ([r]k)k∈Iq,1
. Here, we also introduce

the vector q(−k) ∈ RK−1 that contains all the entries of q except the kth one, so that
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q(−k) = ([q]1, . . . , [q]k−1, [q]k+1, . . . , [q]K)T . Similarly, for a random vector Q that
takes values in RK , we have Q(−k) = ([Q]1, . . . , [Q]k−1, [Q]k+1, . . . , [Q]K)T . Lastly,
for q ∈ {0, 1}, we define the vector qq(−k) ∈ RK such that qq(−k) = ([q]1, . . . , [q]k−1, q

, [q]k+1, . . . , [q]K)T .
First, we look at the conditional distribution pU|V,W,Y. From (4.37) and (4.41),

we deduce that any sample from pU|V,W,Y(·|v,w,y) takes the value of zero at the
indices in Iv,0. If we define (U1|V = v,W = w,Y = y) = ([U|V = v,W = w,Y =
y]k)k∈Iv,1

, then we get

pU1|V,W,Y(u1|v,w,y) ∝ exp

(
− 1

2

(
1

σ2
n

∥y −A(v)u1∥22 + uT1 CBL(v,w)u1

))
,

(4.42)

where u1 ∈ R|Iv,1|. Thus, pU1|V,W,Y is a multivariate Gaussian density with mean

u1 = σ−2
n

(
σ−2
n A(v)TA(v) + CBL(v,w)

)−1
A(v)Ty and covariance matrix R =(

σ−2
n A(v)TA(v) +CBL(v,w)

)−1
.

The conditional distribution pW|U,V,Y takes the form

pW|U,V,Y(w|u,v,y) ∝
K∏
k=1

pW|U,V,Y

(
[w]k|[u]k, [v]k,y

)
, (4.43)

where pW|U,V,Y is given by

pW|U,V,Y(w|u, v = 0,y) ∝ b2

2
exp

(
− b2w

2

)
1+(w) (4.44)

pW|U,V,Y(w|u, v = 1,y) ∝ exp

(
− 1

2

(
u2

w
+ b2w

))
× w− 1

21+(w). (4.45)

The densities in (4.44) and (4.45) correspond to the exponential distribution with
λ = 2/b2 and the generalized inverse Gaussian distribution with λ1 = b2, λ2 = u2,
and a = 0.5.

Next, inspired by the work in [150], we consider sampling from the marginal-
ized conditional distribution of [V]k|V(−k) = v−(k),W = w,Y = y in a sequen-
tial manner as this can allow for a more efficient exploration of configurations of
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V|Y = y. More specifically, at each iteration q, we will draw [v(q)]k from the

distribution p[V]k|V(−k),W,Y

(
v|v(q)

(−k),w
(q),y

)
, where the quantity v

(q)
(−k) is given by

v
(q)
(−k) =

(
[v(q)]1, . . . , [v

(q)]k−1, [v
(q−1)]k+1, . . . , [v

(q−1)]K
)
and k ∈ {1, . . . ,K}.

The marginalized posterior distribution pV,W|Y is given by

pV,W|Y(v,w|y) ∝ pY|V,W(y|v,w)pV(v)pW(w), (4.46)

where

pY|V,W(y|v,w) =

∫
RK

pY|U,V,W(y|u,v,w)pU|V,W(u|v,w)du. (4.47)

It can be shown that (4.46) and (4.47) lead to

pV,W|Y(v,w|y) ∝ |B(v,w)|− 1
2 exp

(
− 1

2
yTB(v,w)−1y

)
×

K∏
k=1

λ1−[v]k(1− λ)[v]k ×
K∏
k=1

b2

2
exp

(
− b2[w]k

2

)
1+([w]k).

(4.48)

From (4.48), we see that p[V]k|V(−k),W,Y is a Bernoulli distribution with

p[V]k|V(−k),W,Y(v|v(−k),w,y) =

(
1 + exp

(
− 1

2

(
h
(
1− v;v(−k),w,y

)
− h
(
v;v(−k),w,y

))))−1

, (4.49)

where

h
(
v;v(−k),w,y

)
= yTB

(
vv(−k),w

)−1
y + log

(
|B
(
vv(−k),w

)
|
)
+ 2v log

( λ

1− λ
)
.

(4.50)

To conclude, using the conditional distributions derived above, we construct a
Gibbs sampler, where in each iteration q, we generate w†(q) according to pW|U,V,Y

(
·

|u†(q−1),v†(q−1),y†
)
, [v†(q)]k according to p[V]k|V(−k),W,Y

(
· |v†(q)

(−k),w
†(q),y†

)
for all k ∈

{1, . . . ,K} and u†(q) according to pU|V,W,Y

(
· |v†(q),w†(q),y†

)
. This particular order

of updates is important as it yields a partially collapsed Gibbs sampler [151] where
the stationary distribution is still pU,V,W|Y(·, ·, ·|y†).
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4.5 Numerical Experiments

In our experiments, we benchmark the performance of some popular signal recon-
struction schemes, including a CNN-based method, on deconvolution and Fourier
sampling problems with Lévy processes associated with the Bernoulli-Laplace and
Student’s t distributions.

4.5.1 Signal Models

We consider a signal vector s† ∈ R100 that contains samples of a Lévy process whose
increments follow the Bernoulli-Laplace or Student’s t distribution.

Bernoulli-Laplace increments

The Bernoulli-Laplace pdf (4.33) is characterized by the parameters λ and b, where
λ determines the mass probability at the origin and b represents the scale of the
Laplace component. We perform experiments for models corresponding to λ ∈
{0.6, 0.7, 0.8, 0.9}. The scale parameter is set to b = 1 for each case.

Student’t t increments

The Student’s t pdf (4.24) is parameterized by α, which controls the tails of the
distribution. We conduct experiments for α ∈ {1, 3, 5, 39}.

4.5.2 Measurement Models

We consider both deconvolution and Fourier sampling problems for each of the
above-described signal models.

Deconvolution

As shown in Section 4.2.3, the system matrix H for deconvolution is a discrete
convolution matrix. Accordingly, we construct H : R100 → R88 such that

H =


[h]13 · · · [h]1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 [h]13 · · · [h]1

 , (4.51)
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where h ∈ R13 consists of the central samples of a truncated Gaussian PSF with
variance σ2

0 = 4.

Fourier Sampling

For Fourier sampling in 1D, which is reminiscent of MRI, the forward model H
resembles a discrete Fourier matrix (see Section 4.2.4). Thus, in order to construct
H, we first sample M ′ = 16 rows of the DFT matrix. The first row of the DFT
matrix (DC component) is always kept, while the remaining ones are selected in a
quasi-random fashion with a denser sampling at low frequencies. We then create
the real system matrix H : R100 → RM , where M = 2M ′ − 1, by separating the
real and imaginary parts.

In both measurement models, the AWGN variance σ2
n is chosen such that the (av-

erage) measurement SNR is around 30 dB.

4.5.3 Reconstruction Algorithms

For each combination of the signal and measurement models, we compare the per-
formance of some classical MPL estimators, a CNN-based scheme and the MMSE
estimator. We generate validation and test datasets, each consisting of 1,000 pairs
of ground-truth signals and their noisy measurements. Further, in order to train
the CNNs, we also synthesize a repository T containing a large number of training
examples.

Classical methods

We consider the MPL estimators

s∗ℓ2(y
†) = arg min

s∈RK

(
∥y† −Hs∥22 + τ∥Ds∥22

)
, (4.52)

s∗ℓ1(y
†) = arg min

s∈RK

(
∥y† −Hs∥22 + τ∥Ds∥1

)
, (4.53)

and

s∗log(y
†) = arg min

s∈RK

(
∥y† −Hs∥22 + τ

K∑
k=1

log
(
1 +

(
[Ds]k

)2))
, (4.54)
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Figure 4.2: Architecture of the CNN, where BN denotes the operation of batch
normalization.

where τ ∈ R+. For each of these methods, the same regularization parameter τ is
used for the entire test dataset. This particular value of τ is the one that yields the
lowest MSE for the validation dataset.

These estimators are implemented in MATLAB using GlobalBioIm [123]—a
library for solving inverse problems. Specifically, the ℓ2 estimator is expressed in
closed-form as

s∗ℓ2(y
†) =

(
HTH+ τDTD

)−1
HTy†. (4.55)

The ℓ1 and log estimators are computed iteratively using ADMM. Since the cost
functional in (4.54) is non-convex, we initialize ADMM for computing the log esti-
mate with the ℓ1 estimate so that it can reach a better local minimum.

CNN-based method

The concept here is to train a CNN as a regressor that maps an initial low-quality
reconstruction s∗init(y

†) to a high-quality one [41, 42, 43, 152, 153]. The architecture
of the CNN used in our experiments is based on the well-known denoising network
DnCNN [154] and is described in Figure 4.2 and Table 4.1.

First, we build a training dataset of cardinalityMT by taking the firstMT exam-
ples {s†

m,y
†
m}MT

m=1 from the repository T . We then train the model by minimizing
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Table 4.1: Convolution Layers.

Layer Filter size Input channels Output channels

1 (F × 1) 1 C

2 ∼ (L− 1) (F × 1) C C

L (F × 1) C 1

the MSE loss function

L(θ) = 1

MT

MT∑
m=1

∥∥s†
m − CNNθ

(
s∗init(y

†
m)
)∥∥2

2
, (4.56)

where θ represents the learnable parameters of the network, with the help of the
ADAM optimizer [155]. The CNN is trained for 1,000 epochs with a batch size of
256 and a weight decay of γ. The initial learning rate is set as 10−2. For some
duration of the training (first 600 epochs for deconvolution and first 750 epochs for
Fourier sampling), it is decreased by a factor of 0.5 every 50 epochs. We choose
the initial low-quality reconstruction to be s∗init(y

†) = HTy† for the deconvolution
problems. In the case of Fourier sampling, s∗init(y

†) is the zero-filled reconstruction.
All the CNN-based reconstruction schemes are implemented in PyTorch.

Goldstandard (MMSE estimator)

Our MMSE estimators are implemented in MATLAB, according to the methods
detailed in Section 4.4. There, we set the number of samples as Q = 8,000 and the
burn-in period as B = 3,000 for signals with Bernoulli-Laplace increments. We use
Q = 15,000 and B = 5,000 for signals associated with the Student’s t distribution.

4.5.4 Results

We present our results for all the test datasets in Figures 4.3, 4.4, 4.5 and 4.6. For
the sake of clarity, instead of the MSE, we display the “MSE optimality gap” which
is the difference between the MSE obtained by a specific method and the MSE
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Figure 4.3: Deconvolution of Lévy processes with Bernoulli-Laplace increments.

attained by the MMSE estimator. In these figures, the CNNs are labelled using
the tuple (F,C, L,MT , γ), where F is the filter size, C is the number of channels,
L is the number of layers, MT is the cardinality of the training dataset and γ is
the weight decay. For the interested reader, we also provide information about the
computation times required by all the methods in the supplementary material.

Lévy processes with Bernoulli-Laplace increments

Here, we summarize our observations for both the deconvolution and Fourier sam-
pling experiments (Figures 4.3 and 4.4).
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Figure 4.4: Fourier sampling of Lévy processes with Bernoulli-Laplace increments.

The sparsity-promoting ℓ1 estimator, which corresponds to the popular TV
regularization, is known to be well-suited to piecewise-constant Lévy processes with
Bernoulli-Laplace increments. As the value of λ increases, these signals become
sparser and exhibit fewer jumps. Consequently, we observe that the ℓ1 estimator
performs better than the ℓ2 estimator. The log estimator also promotes sparse
solutions [29] and we see that it performs well for these piecewise-constant signals.
However, despite the good fit, there is still some gap between the MSE attained by
the ℓ1 and log, and MMSE estimators.

The performance of the CNN-based method improves as we increase the capacity
of the CNN and the amount of training data. In fact, with sufficient capacity and
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training data, they outperform the ℓ1 and log estimators. Remarkably, some of the
CNNs achieve a near-optimal MSE.

Lévy processes with Student’s t increments

The parameter α allows us to consider a wide range of signals. As α → ∞, we
approach the Gaussian regime. The other extreme is α = 1, which corresponds to
the super heavy-tailed (sparse) Cauchy distribution. This scenario can be particu-
larly challenging for the correct setting of algorithm parameters. Due to the heavy
tails of the Cauchy distribution, the validation and test datasets may contain sig-
nals with a vastly different range of values. Consequently, for a given model-based
method, the regularization parameter τ that is chosen to yield the lowest MSE
for the validation dataset may differ significantly from the value τ∗ that achieves
the lowest MSE on the test dataset. Thus, in Figures 4.5 and 4.6, we also include
the performance of model-based methods when their regularization parameter is
tuned for optimal MSE performance on the test dataset directly. These “boosted”
model-based methods are labelled as ℓ∗2, ℓ

∗
1 and log∗.

In Figures 4.5 and 4.6, we can see that the ℓ2 estimator is optimal for a large
value of α. As the value of α decreases, the performance of the ℓ2 estimator deteri-
orates and becomes worse than that of the ℓ1 estimator. For all the cases, the log
estimator attains reasonable MSE values. Note that for the deconvolution experi-
ment involving Cauchy signals, there is a significant gap between the MSE values
obtained by the ℓ2 and ℓ1 and ℓ∗2 and ℓ∗1 estimators, respectively. Interestingly, the
log estimator is less affected by this issue.

Finally, for both deconvolution and Fourier sampling problems, CNNs with suf-
ficient capacity and training data perform well up to α = 3, after which there seems
to be a steep transition and their performance drops sharply. In fact, for Cauchy
signals, we observe that the training process for these CNNs is quite unstable—the
training loss marginally decreases and seems to converge, and the networks do not
generalize to the validation (or test) datasets. We believe that this last example
poses an open challenge for designing robust neural-network-based schemes that
can handle signals following (super) heavy-tailed distributions.

4.6 Summary

We have introduced a controlled environment, based on sparse stochastic processes
(SSPs), for the objective benchmarking of reconstruction algorithms, including NN-
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based methods that require lots of training data, in the context of linear inverse
problems. We have developed efficient posterior sampling schemes to compute the
minimum-mean-square-error estimators for specific classes of SSPs. These yield
the upper limit on reconstruction performance and allow us to provide a measure
of statistical optimality. We have highlighted the abilities of our framework by
benchmarking some popular classical MPL estimators and convolutional neural-
network (CNN) architectures for deconvolution and Fourier-sampling problems. In
particular, we have observed that, while CNNs outperform the sparsity-based MPL
estimators and achieve a near-optimal performance in terms of mean-square error
for a wide range of conditions, they can sometimes fail too, especially for signals
with heavy-tailed innovations.
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Figure 4.5: Deconvolution of Lévy processes with Student’s t increments. The
figure at the bottom is a zoomed-in version of the dotted rectangular box shown in
the figure at the top.
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Figure 4.6: Fourier sampling of Lévy processes with Student’s t increments. The
figure at the bottom is a zoomed-in version of the dotted rectangular box shown in
the figure at the top.
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Part II

The Neural Network
Revolution
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Chapter 5

Convergent Iterative
Image-Reconstruction
Methods

1In this chapter, we focus on the development of universal neural-network-based
approaches within the penalized-likelihood-based estimation paradigm for solving
linear inverse problems in imaging. Here, we first present an efficient module for
learning continuous piecewise-linear activation functions in neural networks (Sec-
tion 5.1). We then deploy this module to train 1-Lipschitz denoising convolutional
neural networks (Section 5.2) and learnable convex regularizers (Section 5.3), both
of which can be used to design provably convergent iterative image-reconstruction
methods.

1This chapter is based on our works [156, 157, 158, 159].
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5.1 Learning Activation Functions in Neural Net-
works

2In this section, we present an efficient computational solution for learning component-
wise activation functions in neural networks.

5.1.1 Introduction

During the past decade, deep neural networks (DNNs) have evolved into a major
player for machine learning. They have been found to outperform the traditional
techniques of statistical learning [160] (e.g., kernel methods, support-vector ma-
chines, random forests) in many real-world applications that include image clas-
sification [161], speech recognition [162], image segmentation [163], and medical
imaging [41].

The basic principle behind DNNs is to construct powerful learning architectures
via the composition of simple basic modules; that is, linear (or affine) transforma-
tions and pointwise nonlinearities [40]. The qualifier “deep” refers to the depth
(or number of layers) of such a composition which is typically much larger than
one. Formally, a typical feedfoward DNN is a map fθ : RN0 → RNL that admits a
factorized representation of the form

fθ(x) : AL ◦ · · · ◦ σℓ ◦Aℓ ◦ · · · ◦ σ1 ◦A1(x), (5.1)

where L is the depth of the neural net and θ is a list of parameters that collects all
adjustable quantities. Specifically, a given layer ℓ of the network is characterized
by

1. a linear transformation RNℓ−1 → RNℓ : x 7→ Aℓ(x) = Wℓx, where Wℓ ∈
RNℓ×Nℓ−1 is a matrix of weights, and

2. the pointwise responses of its neurons

σℓ(x) =
(
σℓ,1(x1), . . . , σℓ,Nℓ

(xNℓ
)
)
,

where the scalar map σℓ,n : R → R is the activation function of the neuron
indexed by (ℓ, n).

2This section is based on our work [156].
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In essence, Wℓ encodes the strength of the neural connections from the previous
layer, while σℓ represents the (parallel) responses of the Nℓ neurons at layer ℓ. In
the conventional setup, the response of the individual neurons is fixed and takes
the form

σℓ,n(x) = σ(x− bℓ,n), (5.2)

where σ : R → R is a common activation function—typically, a sigmoid or a
rectified linear unit (ReLU)—and bℓ,n ∈ R is an adjustable bias [39]. In summary,
the parameters θ associated with the DNN in (5.1) are composed of the linear
weights of Wℓ and the biases bℓ ∈ RNℓ , ℓ = 1, . . . , L.

The topic of this work deviates from the standard paradigm in the sense that
it explores the option of adapting the responses of the individual neurons in an
attempt to further improve the performance of such systems. In other words,
instead of assigning a single bias parameter to each neuron as in (5.2), we investigate
the possibility of redesigning or adjusting the activation functions σℓ,n : R→ R on a
neuron-by-neuron basis. While the typical way in which this can be achieved is via
the introduction of a suitable parametrization, which may be linear or nonlinear,
we will see that one can also formulate the problem in a functional framework with
the help of a suitable regularization [164]. At any rate, the main point is that this
augmented form of training results in a more difficult optimization problem and
that it calls for more powerful algorithms.

The purpose of this work is to unify the parametric and functional approaches
by representing the neural activation functions in terms of B-spline basis functions.
This is possible as long as we restrict ourselves to the class of deep spline neural
networks3, which cover the complete family of continuous piecewise-linear (CPWL)
mappings [165, 166, 167]. Our approach builds on the intimate connection between
ReLU networks and splines, which has been observed by a number of authors
[168, 169, 164, 170, 171]. The spline interpretation is actually present at two levels:
(i) the fact that such DNNs are describable as hierarchical splines and (ii) the
property that the global response is CPWL, which allows one to interpret them
as piecewise perceptrons [169]. While the local linear (perceptron-like) behavior
of deep spline networks is both reassuring and enlightening, the part that is less
obvious is the global continuity of the response, which ensures that the linear pieces

3The denomination “deep spline neural network” refers to a DNN whose activation functions
are linear splines, which includes ReLUs.
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(facets of polytopes) are seamlessly joined together.

The section is organized as follows: We start with a review of prior work on neu-
ral design in Section 5.1.2. In Section 5.1.3, we explain the main theoretical results
on deep spline networks; namely, the CPWL property and the fact that they are
optimal with respect to TV(2) regularization. We then introduce our parametriza-
tion and optimization framework in Section 5.1.4 and present experimental results
in Section 5.1.5.

5.1.2 Prior Work

We now briefly review the prior works on the design of neural activation functions,
which can be broadly classified into three categories.

Inspiration from Neurophysiology

The traditional activation function for neural networks inspired by neurophysiology
is a saturating sigmoid whose sharpness can be tuned for best performance [172].
Since splines have the ability to encode arbitrary functions, they can be used to
generate a much richer variety of activation functions, which can then be optimized
for best performance. Relevant examples of parametric activation function models
for traditional neural networks include B-spline receptive fields [173], Catmull-Rom
cubic splines [174, 175], and smooth piecewise polynomials [176].

Link with Iterative Soft-Thresholding Algorithms

One can make an interesting connection between neural networks and sparse-
encoding techniques [177, 20] by considering the unrolled version of an iterative
soft-thresholding algorithm (ISTA) [44, 178]. This connection suggests that the
activation function fulfills the role of the nonlinearity in classical ISTA [179, 21].
Incidentally, the canonical nonlinearity associated with ℓ1 minimization is an an-
tisymmetric linear spline, which can be expressed as a linear combination of two
ReLUs. In recent years, researchers have considered more general parametric non-
linearities whose weights are learned during training. Such models involve linear
combinations of Gaussian radial-basis functions [45] and cubic B-splines [180, 181].
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ReLU Variations

While many (fixed) activation functions σ in (5.2) have been considered in the
literature, the preferred choice that has emerged over the years is the rectified
linear unit ReLU(x) = (x)+ ≜ max(0, x) [182]. In particular, it has been observed
that ReLUs facilitate training [39]. Two ReLU variants, by order of improving
performance, are “leaky ReLU” [183], in which the vanishing part of the response is
replaced by one with a fixed nonzero linear slope, and “parametric ReLU” (PReLU)
[184], where the linear slope is learnable. Also related to ReLU is Agostinelli et
al.’s model of adaptive piecewise-linear (APL) units [185]. It results in an activation
function that is a linear spline with a small fixed number of knots and has been found
to outperform plain ReLU activation functions. Another instance is [186], where
piecewise-linear units with learnable parameters are used as activation functions.

5.1.3 Theoretical Justification of Spline Activation Functions

Many of the state-of-the-art DNNs rely on ReLU activation functions or some
variant thereof. Beside the issue of practical efficiency, a key feature of ReLU
networks is that they result in a global continuous and piecewise-linear (CPWL)
input-output relation. This is a fundamental property that generalizes to a wider
class of spline activation functions and that also ensures that deep ReLU networks
have universal approximation properties [187, 188, 189].

Deep Neural Nets as High-Dimensional Splines

A polynomial spline of degree 1 is a one-dimensional function that is continuous
and piecewise-linear. In fact, the simplest nontrivial example of polynomial spline
of degree 1 is x 7→ (x− bk)+ = ReLU(x− bk), which is made up of two linear pieces
separated by a single knot at bk. The concept is generalizable to higher dimensions
[190, 191].

Definition 5.1 (CPWL function). A function f : RN0 → R is continuous piecewise-
linear if

1. it is continuous RN0 → R;

2. its domain RN0 =
⋃K
k=1 Pk can be partitioned into a finite set of non-overlapping

polytopes Pk over which it is affine.
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Likewise, a vector-valued function f = (f1, . . . , fN ) : RN0 → RN is CPWL if each
of the component functions fn is CPWL.

What is truly remarkable with CPWL functions is that they remain CPWL
through the operations that typically occur in a deep neural network [167, 166].
Specifically,

1. any linear combination of CPWL functions is CPWL;

2. the composition of any two CPWL functions is CPWL;

3. the max or min of two CPWL functions is CPWL.

Since the functions Aℓ in (5.1) are trivially CPWL, the resulting DNN is CPWL
whenever the pointwise nonlinearities σℓ are CPWL, for instance when they are
piecewice-linear splines, which is indeed the case for deep ReLU networks. It is
therefore perfectly legitimate to interpret deep ReLU networks—and, by extension,
deep spline networks—as multidimensional splines of polynomial degree 1.

Variational Optimality of Deep Spline Networks

Lesser known is the property that the CPWL behavior can also be enforced in-
directly through the use of an appropriate regularization [164]. To that end, one
simply augments the cost functional that is used to train the network by an addi-
tive second-order total-variation regularization term for each adjustable activation
function.

In our framework, we consider deep neural networks fdeep : RN0 → RNL com-
posed of L layers with the generic feedforward architecture described by (5.1).

The linear transformation in layer ℓ, represented by the matrix Wℓ : RNℓ−1 →
RNℓ , is associated with some free (adjustable) parameters ϕℓ ∈ RNlin,ℓ . In order
to specify the latter, one has to distinguish between two configurations. When the
layer is fully connected, ϕℓ is the vectorized version ofWℓ, which amounts to a total
of Nlin,ℓ = Nℓ−1 ×Nℓ tunable weights. The other important configuration is that
of a convolutional layer where ϕℓ contains much fewer convolution filter weights
than Nℓ−1 ×Nℓ. Similarly, to share nonlinearities across neurons, we specify each
nonlinear mapping σℓ : RNℓ → RNℓ by the vector gℓ = (gℓ,1, . . . , gℓ,Nnonlin,ℓ

) of
adjustable activation functions gℓ,n : R → R, where Nnonlin,ℓ ∈ N denotes the
number of unique activation functions used in layer ℓ. For example, in a fully
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connected layer, it can be advantageous to use an independent activation function
for each neuron. In this case, Nnonlin,ℓ = Nℓ and gℓ,n = σℓ,n. By contrast, for
convolutional layers, it is natural to use a single activation function per feature
map, so that Nnonlin,ℓ will typically match the number of channels. When the same
nonlinearity is shared across all channels, one has that Nnonlin,ℓ = 1.

With this extended notation, given a dataset {(xm,ym)}Mm=1, the training of
the network is formulated as the functional optimization problem

min
ϕℓ∈RNlin,ℓ

gℓ∈BV(2)(R)Nnonlin,ℓ

M∑
m=1

E(fdeep(xm),ym) +

L∑
ℓ=1

µℓ∥ϕℓ∥22 +
L−1∑
ℓ=1

λℓTV
(2)(gℓ), (5.3)

where E : RNL×RNL → R+ is an arbitrary proper convex function and TV(2)(g) =

TV(2)(g1, . . . , gN ) =
∑N
n=1 TV

(2)(gn), where

TV(2)(gn) =
∥∥D2gn

∥∥
M ≜ sup

φ∈S(R): ∥φ∥∞≤1

⟨gn,
d2φ

dx2
⟩ (5.4)

is the second-order total variation of the component function gn : R → R. Let
us remark that the two first terms in (5.3) are the standard criteria used to train
deep neural networks. The first (data loss) quantifies the goodness of fit, while the
second (the so-called weight decay) favors solutions with a smaller amplitude of
the linear weights ϕℓ. The novel element here is the additional optimization over
the individual neuronal activation functions gℓ, which is made possible because of
the inclusion of the third term: the sum of the second-order total variations of the
trainable nonlinearities. Since this regularization only penalizes the second deriva-
tive of the activation function, it favors simple solutions—preferably linear or with
“sparse” second derivatives—while ensuring that the activations be differentiable
almost everywhere, which is essential for the backpropagation algorithm. For fur-
ther explanation on the regularization functional TV(2) and the definition of the
search space BV(2)(R), we refer to Appendix 5.4.1.

Unser’s representer theorem for DNNs states that (5.3) admits a global mini-
mizer (deep spline network) with neuronal activation functions of form

x 7→ gℓ,n(x) = b0,ℓ,n + b1,ℓ,nx+

Kℓ,n∑
k=1

ak,ℓ,n(x− τk,ℓ,n)+ (5.5)
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with Kℓ,n ≤ (M−2) and TV(2)(gℓ,n) =
∑Kℓ,n

k=1 |ak,ℓ,n| = ∥aℓ,n∥1. Thus, the optimal
activation functions are adaptive piecewise-linear splines. Specifically, every non-
linearity has a parametric description that is given by (5.5). It is characterized by
its number K = Kℓ,n of knots, the knot locations τ1, . . . , τK , and the linear weights
b ∈ R2,a ∈ RK , where we have dropped the network indices (ℓ, n) for simplicity.
While Characterization (5.5) is elegant, it does not tell one how to determine the
underlying parameters. We thus now face a more challenging optimization prob-
lem. The main complication is the allocation of knots—the determination of Kℓ,n

and the locations τk,ℓ,n on a neuron-by-neuron basis—which is now also part of the
problem.

Let us mention that we can also handle the case where the nonlinear mapping
is shared across the layers, so that σ1 = · · · = σL = σ and σ is specified by a
vector g = (g1, . . . , gNnonlin

) of adjustable scalar maps. Here, the training problem
is formulated as

min
ϕℓ∈RNlin,ℓ

g∈BV(2)(R)Nnonlin

M∑
m=1

E(fdeep(xm),ym) + λTV(2)(g) +

L∑
ℓ=1

µℓ∥ϕℓ∥22. (5.6)

By adapting Unser’s representer theorem, we can show that the optimal shared
activation functions have the same form as in (5.5).

Remarkably, the parametric form that results from the functional minimization
of (5.3) is compatible with the model proposed by Agostinelli et al. [185]. They
represent the activation functions as gℓ,n(x) = hℓ,n(x− bℓ,n), where hℓ,n is an APL
unit of the form

x 7→ hℓ,n(x) = (x)+ +

K∑
k=1

ak,ℓ,n(−x+ τk,ℓ,n)+. (5.7)

Here, the number K of knots is fixed beforehand; the bias bℓ,n, weights ak,ℓ,n, and
knot locations τk,ℓ,n are learnable parameters. While (5.7) bears a close resemblance
to (5.5), there are a few key differences that we highlight here.

1. The justification of APL units in [185] is empirical while the spline parametriza-
tion of (5.5) is based on a global functional optimization.

2. The APL units involve a fixed ReLU positioned at 0, and so, unlike (5.5),
they cannot reproduce all affine functions of the form b0 + b1x.
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3. The number of spline knots in APL units is fixed (and is the same for all
neurons), whereas it is adaptive in our approach. In fact, the determination
of Kℓ,n is part of the optimization problem that we consider.

4. The ReLU weights of the APL units are either not constrained, or slightly reg-
ularized through some empirical ℓ2-norm weight decay. By contrast, in our ap-
proach, the theory dictates the use of a sparsity-promoting ℓ1-regularization.
In fact, as we shall see in Section 5.1.4, the ℓ1-norm regularization is of great
practical significance as it allows us to control Kℓ,n by removing unnecessary
knots.

5.1.4 Optimization of Activation Functions

Convex Proxy for Shallow Networks

The major difficulty in optimizing the DNN with respect to the spline parameters
in (5.5) is that the number K = Kℓ,n of knots is unknown and that the activation
model is nonlinear with respect to the knot locations τk = τk,ℓ,n. Our workaround
is to place a fixed but highly redundant set of knots on a uniform grid with a step
size T . We then rely on the sparsifying effect of ℓ1-minimization to nullify the
coefficients of a = (ak) that are not needed. This amounts to representing the
spline activation functions by

σ(x) = b0 + b1x+

kmax∑
k=kmin

ak(x− kT )+, (5.8)

with TV(2)(σ) = ∥a∥1. The consideration of the linear model (5.8), thereafter
referred to as “gridded ReLU,” gives rise to a classical ℓ1-optimization problem
that can be handled by most neural-network software frameworks. In the case of a
shallow network with L = 1, it even results in a convex problem that is reminiscent
of the LASSO [192]. We also note that (5.8) can be made arbitrarily close to (5.5)
by taking T sufficiently small. While the solution a is expected to be sparse, with
few active knots, the downside of the approach is that the underlying representation
is cumbersome and badly conditioned due to the exploding behavior of the basis
functions (· − kT )+ at infinity.
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Figure 5.1: Decomposition of a deep spline activation function (solid line) in terms
of B-spline basis functions (dashed lines), as expressed by (5.9) with T = 1. The
basis is composed of (K − 2) triangular functions, which are compactly supported
and shifted replicates of each other, plus 4 one-sided outside functions. The key
property is that the evaluation of σ(x) for any fixed x ∈ R involves no more than
two basis functions.

From ReLUs to B-Splines

While the direct connection with ℓ1-minimization in (5.8) is very attractive, the
less favorable aspect of the model is that its computational cost is proportional to
the underlying number of ReLUs (or spline knots); that is, K = (kmax − kmin + 1),
which can be arbitrarily large depending on the value of T . Here, we propose a
way to bypass this limitation by switching to another equivalent but maximally
localized basis: the B-splines. Our model takes the form

σ(x) =

kmax+1∑
k=kmin−1

ckφk

( x
T

)
, (5.9)

which involves triangular-shaped basis functions that are rescaled versions of B-
splines defined on an integer grid. As illustrated in Figure 1, the central bases for
k = (kmin+1) to (kmax−1) are shifted replicates of the compactly supported linear
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B-spline

φk(x) = β1(x− k), for kmin < k < kmax, (5.10)

where

β1(x) = (x+ 1)+ − 2(x)+ + (x− 1)+ =

{
1− |x|, x ∈ [−1, 1]
0, otherwise.

(5.11)

The four remaining boundary basis functions are one-sided splines that allow the
activation function defined in (5.9) to exhibit a linear behavior at both ends, for
x < kminT as well as for x > kmaxT . Specifically, we have that

φkmin−1(x) = (−x+ kmin)+ =

{
kmin − x, x < kmin

0, otherwise
(5.12)

φkmin
(x) = (−x+ kmin + 1)+ − (−x+ kmin)+

=


1, x ≤ kmin

1− (x− kmin), x ∈ (kmin, kmin + 1)

0, x ≥ kmin + 1

(5.13)

φkmax
(x) = (x− kmax + 1)+ − (x− kmax)+

=


0, x ≤ kmax − 1

x− kmax + 1, x ∈ (kmax − 1, kmax)

1, x ≥ kmax

(5.14)

φkmax+1(x) = (x− kmax)+ =

{
0, x ≤ kmax

x− kmax, x > kmax.
(5.15)

The B-spline model defined in (5.9) has the same knots as those of the gridded
ReLU representation given by (5.8). It also has the same number of degrees of
freedom; namely, K + 2 = (kmax + 1)− (kmin − 1) + 1. By using the property that
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the φk can all be expanded in terms of integer shifts of ReLUs (see the central term
of (5.10)-(5.15)), we can show that the two sets of basis functions span the same
subspace. In doing so, we obtain a formula for the retrieval of the ak and, hence, the
TV(2)(σ)—in terms of the second-order difference of the ck (see Appendix 5.4.2).
While the gridded ReLU and B-spline models (5.8) and (5.9) are mathematically
equivalent, the advantage of (5.9) is that there are at most two active basis functions
at any given point x = x0, independently of the step size T . This has important
implications for the efficiency and scalability of both the evaluation of the DNN at
a given point xm and the computation of its gradient with respect to ck (as opposed
to ak in the equivalent ReLU representation). Details of our implementation of the
B-spline model are given in Appendix 5.4.2.

5.1.5 Experimental Results

In this section, we illustrate the capabilities of the proposed learning framework.
Our main intent is to assess the benefit of optimizing the activation functions and
to demonstrate the following claims:

1. The use of learned activation functions tends to improve the testing perfor-
mance.

2. More complex activation functions can allow for simpler/smaller networks.

3. Learning with gridded ReLUs yields good performance for small values of K.
However, the time and memory required for learning explodes as K grows.

4. The B-spline configuration is easy to train and is scalable in time and mem-
ory as K grows. Hence, it has the ability to learn more complex activation
functions, which then typically also translates into better performance.

Further, we investigate the effect of the regularization parameter λ on the num-
ber of active knots in the learned spline activation functions and the performance
of the neural network.

We consider both classification and signal-recovery (deconvolution) problems to
highlight the versatility of our approach. The code (in PyTorch) is available on
GitHub4.

4https://github.com/joaquimcampos/DeepSplines

https://github.com/joaquimcampos/DeepSplines
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Figure 5.2: Ground truth and training dataset.

Classification

1. Area Classification
First, we discuss a simple two-class classification example with input dimension
N0 = 2. It allows us to obtain a better understanding of our learning scheme and
to illustrate our claims visually.

Setup
The task is to classify points in the two-dimensional space [−1, 1]× [−1, 1] as lying
inside or outside an S shape (see Figure 5.2a). Mathematically, this region is
represented by the binary function f : [−1, 1]× [−1, 1] 7→ {0, 1} given by

f(x1, x2) =

{
1, |x1 − g(x2)| ≤ 0.3 and |x2| < 0.8,

0, otherwise,
(5.16)

where g(x) = 0.4 sin(−5x). We generate training and validation datasets with
M = 1,500 data points each. The coordinates xm = (x1,m, x2,m) of the data points
are sampled from a uniform distribution on [−1, 1]× [−1, 1] and the labels ym are
assigned according to (5.16). The training dataset is shown in Figure 5.2b.

We tackle this problem using a fully connected network with Nh hidden layers,
which takes a 2D input x = (x1, x2) and outputs a real value f̂(x) ∈ [0, 1]. The
number of neurons in each hidden layer isW ; thus, the layer descriptor (N0, . . . , NL)
of the network is of the form (2,W, . . . ,W, 1). In the B-spline network, spline
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activation functions with K = 19 knots on a grid of size T = 0.1 are used as
nonlinearities after each linear step, except the final one which involves a fixed
sigmoid activation function. In the adaptive piecewise-linear unit (APLU) network,
the nonlinearities take the form (5.7) with the number of adjustable knots set to
K = 19. We compare the performance of our, ReLU, PReLU, and APLU networks
on a test dataset that consists of 40,000 points that lie on a 2D grid of width
0.01× 0.01 in [−1, 1]× [−1, 1]. To evaluate the performance of these networks on a

dataset, the output values f̂ are quantized into predictions

f̂pred(x) =

{
1, f̂(x) > 0.5

0, otherwise.
(5.17)

The classification accuracy is computed as

accuracy (%) =
# correct predictions

# total predictions
× 100. (5.18)

The binary cross-entropy loss is given by

L(θ) = 1

M

M∑
m=1

(
(−ym) log(f̂(xm))− (1− ym) log(1− f̂(xm))

)
, (5.19)

where θ represents the parameters of the network. This loss is chosen for the
training process. In all the networks, the weights are initialized using Xavier’s
initialization [193]. For the B-spline network, half of the spline activation functions
are initialized with σabs and the other half with σsoft, where

σabs(x) =

{
−x, x < 0

x, x ≥ 0
(5.20)

σsoft(x) =


x+ 1

2 , x ≤ − 1
2

0, x ∈ (− 1
2 ,

1
2 )

x− 1
2 , x ≥ 1

2 .

(5.21)

This initialization is based on the fact that any function can be represented as the
sum of an even and an odd function. In the APLU network, the ReLU weights
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ak,ℓ,n and knot locations τk,ℓ,n are initialized by randomly sampling them from
zero-mean Gaussian distributions with standard deviations 0.1 and 1, respectively.
The loss function is minimized over a total of 500 epochs using the ADAM opti-
mizer [194]. The initial learning rate, set to 10−3, is decreased by a factor of 10
at the epochs 440 and 480. A small batch size of 10 is helpful to avoid local minima.

Comparison with ReLU, PReLU, and APLU Networks
We compare in Figure 5.3 and Table 5.1 the performance of the ReLU, PReLU,
B-spline, and APLU networks for three different architectures. For the B-spline
networks, the optimal values of µℓ and λℓ, in terms of the performance for the
validation dataset, are found using the method described in Appendix 5.4.3. The
weight decays for the ReLU, PReLU, and APLU networks are tuned with the help of
a grid search. In the APLU network, an ℓ2-norm penalty with scaling factor 10−3

is also applied to the activation function parameters (ak,ℓ,n, τk,ℓ,n). With these
optimal hyperparameters, the networks are then retrained 9 times independently.
The median performance (over these 9 runs) for the test dataset is reported in
Figure 5.3 and Table 5.1.

In the interest of fairness, in Table 5.1 we also mention the number of parameters
associated with the networks. A fully connected network with Nh hidden layers has
3W+(Nh−1)W 2 linear weights and 1 bias parameter for the fixed sigmoid activation
function. The network also has some additional parameters that depend on the
choice of the activation function. The ReLU networks have NhW biases while, in
addition to these biases, the PReLU networks have NhW learnable parameters that
represent the linear slopes of the PReLU activation functions in R−. In the B-spline
networks, the number of additional parameters (per activation function) is equal
to the number of active knots in the learned linear-spline nonlinearity plus the 2
coefficients that determine its linear (null-space) component. Lastly, the APLU
networks have (2K + 1) additional parameters per activation function, where the
number of adjustable knots K was set to 19 beforehand.

For the simplest architecture (2, 4, 1), we observe that the B-spline and APLU
networks outperform the ReLU and PReLU models which lack capacity and perform
rather poorly. This demonstrates that the learning of activation functions improves
the accuracy; more so, if the activation function has reasonably many learnable
parameters.

Remarkably, the simplest B-spline network outperforms the ReLU and PReLU
networks with richer architectures despite having fewer parameters. This is because
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Figure 5.3: Learned probability maps for the area-classification problem.
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Table 5.1: Number of parameters and classification error rate.

Architecture Nparam Error rate (%)

ReLU (2,4,1) 17 17.02

(2,120,1) 481 2.59

(2,6,6,1) 67 15.39

PReLU (2,4,1) 21 17.00

(2,120,1) 601 1.87

(2,6,6,1) 79 2.89

APLU (2,4,1) 169 5.15

(2,120,1) 5041 1.64

(2,6,6,1) 523 1.42

B-spline (2,4,1) 68 1.66

(2,120,1) 822 1.40

(2,6,6,1) 171 1.60

it is capable of learning more complex activation functions. This, in turn, translates
into an overall map that is more faithful to the gold standard—the ideal S shape.
This suggests that, instead of making the architecture of the network more complex,
for example by including more neurons in the initial layers and/or adding more
layers, one can increase the accuracy by relying on more sophisticated, learnable
nonlinearities.

The results of Table 5.1 also illustrate the advantages of our learning scheme
over the APL units. For the architecture (2, 4, 1), the B-spline network yields a
better accuracy than the APLU network even though it has fewer parameters. One
possible explanation is that the APL units, which have a fixed number of knots, face
difficulties in optimizing their knot locations, whereas the adaptive B-splines by-
pass this problem with the help of a grid and sparsity-promoting ℓ1-regularization.
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Another possible reason could be the ill-conditioned nature of expansion (5.7), in
the sense that a small perturbation of one ReLU coefficient has a nonlocal effect on
the activation function, which makes the optimization task more challenging. For
the other two richer architectures, we get similar performances for the APLU and
B-spline networks. However, the B-spline networks require fewer knots.

Effect of the Regularization Parameter λ
We consider now a B-spline network with layer descriptor (2, 4, 1) for the area-
classification task. The weight decay is fixed as µ1 = µ2 = 10−4 and λ is varied in
the interval [10−10, 102]. For each value of λ, 10 independent models are trained on
the training dataset. The median number of total active knots5 and the classifica-
tion error (on the test dataset) of the corresponding model are shown as functions
of λ in Figure 5.4.

The number of active knots decreases (or, equivalently, the sparsity of the
learned activation functions increases) as λ increases, which means that the hy-
perparameter λ controls the complexity of the network. The performance of the
network remains (nearly) constant, up to a critical value of λ, after which it begins
to deteriorate. This is crucial since it suggests that, by carefully tuning λ, we can
obtain simpler networks that still perform well.

2. CIFAR-10 and CIFAR-100
Now, we look at the application of the proposed learning scheme to the classification
of standard datasets such as CIFAR [195]. We consider two network architectures—
the network-in-network [196] (NIN) and a deep residual network [197] (ResNet32)
for the CIFAR-10 and CIFAR-100 classification tasks. Each dataset consists of
50,000 training images and 10,000 test images of size (32× 32).

First, we compare the performance of the B-spline, ReLU, and APLU networks.
We then also demonstrate the advantages of our B-spline solution over its gridded
ReLU counterpart. In the B-spline networks (NIN and ResNet), we use spline
nonlinearities with K = 49 knots on a grid of size T = 0.16. We rely on one
activation function per output channel for the convolutional layers and one spline
activation function per output unit for the fully connected layers. For the APLU
networks6 (NIN and ResNet), we set the number of adjustable knots to K = 1,

5The number of total active knots is the sum of the number of active knots or ReLUs in each
learned activation function in the network.

6The reported configurations are the ones that were found to give the best performance.
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Figure 5.4: Effect of λ on the number of active knots and on the classification error.
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Table 5.2: NIN error rates on CIFAR-10 and CIFAR-100.

Activation function CIFAR-10 CIFAR-100

ReLU 8.78% 32.44%

APLU 8.71% 31.74%

B-spline 8.29% 30.43%

with one APL activation function per output unit for the convolutional layers as
well as the fully connected layers. All networks include a softmax unit in the final
layer and are trained by minimizing the categorical cross-entropy loss.

For each dataset, 5,000 samples are reserved for validation during training, while
the remaining 45,000 samples are augmented as in [197]. The weights in the NINs
are initialized by random sampling from a Gaussian distribution with zero mean
and a standard deviation of 0.05. The weights in the ResNets are initialized using
He’s recipe [184]. The B-spline activation functions are initialized as leaky ReLUs
while the APL units are initialized in the same manner as in the area-classification
experiment. For the B-spline NIN, B-spline ResNet, and APLU ResNet, the pa-
rameters of the activation functions are updated using the ADAM optimizer [194]
with an initial learning rate of 10−3. The remaining network parameters are up-
dated using an SGD optimizer with an initial learning rate of 10−1. For the APLU
NIN, an SGD optimizer with an initial learning rate of 10−1 is used to update all
the learnable parameters. The NINs are trained for 320 epochs with a batch size
of 128. The learning rate is decreased by a factor of 10 in epochs 80, 160, and 240.
The ResNets are trained for 300 epochs with a batch size of 128 while the learning
rate is divided by 10 in epochs 150, 225, and 262, following the training scheme in
[198].

Comparison with ReLU and APLU Networks
For the ReLU networks (NIN and ResNet), we deploy a grid search to optimize
the weight decays in terms of the performance on the validation dataset. For the
B-spline and APLU networks, we use the same weight decays as those found for the
corresponding ReLU networks, and we perform grid searches to find the optimal
values of λ and the ℓ2-norm penalty scaling factor. We then use the optimal hy-
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Table 5.3: ResNet error rates on CIFAR-10 and CIFAR-100.

Activation function CIFAR-10 CIFAR-100

ReLU 6.31% 29.02%

APLU 6.45% 28.85%

B-spline 6.02% 28.24%

perparameters and retrain the networks NT times independently on the complete
training datasets, with 50,000 samples. We set NT = 5 for the NINs and NT = 9
for the ResNets. Finally, we compute the error rates over the test datasets. The
median test errors are reported in Table 5.2 and Table 5.3. We see that the B-spline
networks outperform the ReLU and APLU networks here as well. Surprisingly, the
APLU ResNet is slightly inferior to the ReLU ResNet for the CIFAR-10 dataset.
It turns out that, for residual networks with APL units, a similar observation has
been made in [199].

B-splines vs. gridded ReLUs vs. APLUs
In this experiment7, we record the memory consumption and computation time
(per epoch) for the B-spline, gridded ReLU, and APLU ResNets.

As we see in Table 5.4, the time/memory consumption during forward and
backward propagation for gridded ReLUs and APLUs explodes with the number
of knots. This is because the point evaluation of an activation function requires
a summation over all contributing ReLUs, which results in a time complexity of
O(K). Moreover, the corresponding intermediate values need to be stored for back-
propagation.

For B-splines, by contrast, each evaluation only requires the coefficients of two
adjacent basis functions, since the φk,T have minimal overlap, leading to a time
complexity of O(1). Accordingly, one only needs to store the coefficients and the
index of the two active basis functions.

7This experiment was run on a TITAN X (Pascal) GPU with 12196 MB of memory.
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Table 5.4: B-splines vs. gridded ReLUs vs. APLUs

Architecture, Nb. coefficients Memory (megabytes) Time per epoch (seconds)

B-splines, K = 9 1132 44.92

B-splines, K = 29 1133 41.89

B-splines, K = 499 1299 41.19

Gridded ReLUs, K = 9 3313 49.86

Gridded ReLUs, K = 29 9616 81.21

APLUs, K = 9 3316 49.72

APLUs, K = 29 9618 87.34

For the gridded ReLU and APLU networks, the maximum number of knots
allowed by the GPU memory is 31.

Signal Recovery

We further illustrate the benefits of learning the activation functions through the
application of convolutional neural networks (CNNs) to inverse problems [37]. Here,
the goal is to recover a signal s ∈ Rd from its (noisy) measurements y ∈ Rm given
by

y = Hs+ n, (5.22)

where H : Rd 7→ Rm is a linear operator that describes the measurement acqui-
sition process and n ∈ Rm is an additive noise. In our experiments, we consider
CNN-based regression schemes that relate an initial estimate of the signal to the
desired estimate of the signal [41, 43]. Specifically, we compare the performance of
standard ReLU CNNs with B-spline CNNs in a deconvolution task.

1. Setup
We consider the recovery of piecewise-constant statistical signals s ∈ R100 that
satisfy the discrete innovation model

u = Ds, (5.23)
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Figure 5.5: Piecewise-constant signal generated according to (5.25).

where D ∈ R100×100 is a finite-difference matrix and u ∈ R100 is a sparse random
vector with independent and identically distributed entries that are drawn from the
Bernoulli-Laplace distribution

pU (u) = (0.6)δ(u) + (0.4)
1

2
e−|u|. (5.24)

Under appropriate boundary conditions, we can invert (5.23) and derive the syn-
thesis formula

sk =

k∑
q=1

uq, k = 1, 2, . . . , 100, (5.25)

which has been used for our experiments. The dynamic range of each generated
signal s is adjusted so that its values lie in [−1, 1]. An example of such a signal is
shown in Figure 5.5.

The noiseless measurement vector y0 ∈ R88 is obtained by convolving the signal
s with a Gaussian kernel of standard deviation σ = 2 and support (6σ + 1) × 1.
The resulting discrete-system matrix H ∈ R88×100, such that y0 = Hs, is

H =


h13 · · · h1 0 · · · 0
0

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 h13 · · · h1

 , (5.26)
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Figure 5.6: Architecture of the convolutional neural network. In a ReLU CNN, the
nonlinearity is the ReLU, while in a B-spline CNN, the nonlinearity is a learnable
linear spline.

where h ∈ R13 denotes the truncated Gaussian kernel. Finally, we add a white
Gaussian noise n ∈ R88 to the noiseless measurements y0 such that the input SNR,
defined as

SNR(y0 + n) = 20 log10
(
∥y0∥2/∥n∥2

)
, (5.27)

is equal to 20dB.
Our training dataset for the CNN-based approaches consists of Mt = 10,000

samples. Meanwhile, the validation and test datasets contain 1,000 samples each.
Similar to the work in [41, 43], we train CNNs to learn a mapping from an initial

estimate of the signal (in our case s∗init = HTy) to the desired estimate s∗ of the
signal. The architecture of the network is shown in Figure 5.6 and the details of the
convolutional layers are provided in Table 5.5. For all our experiments, the number
of channels is set as C = 5. In the B-spline CNN, we have learnable linear-spline
activation functions with K = 49 knots on a grid of size T = 0.1.

The loss function used for training is

L(θ) =
M∑
m=1

∥sm − s∗m(θ)∥22, (5.28)

where θ represents the parameters of the network. All the activation functions in
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Table 5.5: Convolution Layers

Layer number (Filter size, number of input channels, number of output channels)

1 (3× 1, 1, C)

2 ∼ (L− 1) (3× 1, C, C)

L (3× 1, C, 1)

the B-spline CNN are initialized as leaky ReLUs with negative slopes set to 0.1. The
loss function is minimized using the ADAM optimizer. The networks are trained
for 150 epochs with a batch size of 20. For ReLU CNNs, the initial learning rate
is set as 10−2 and is decreased by a factor of 0.5 in the epochs [25, 50, 75, 100, 125].
The same learning rate schedule is also used for B-spline CNNs with L ≤ 7. For
B-spline CNNs with more layers (L > 7), the initial learning rate is 10−3 and is
decreased by a factor of 0.5 in the epochs [50, 75, 100, 125].

2. Results and Discussion
In our experiments, we compare the CNN-based approaches with the total-variation
(TV) method [25] given by

s∗TV = argmin
s∈RN

(
∥y −Hs∥22 + τ∥Ds∥1

)
, (5.29)

where τ ∈ R+ is a parameter that controls the regularization strength. It is known
to promote piecewise-constant solutions and is well matched to the signals that
we consider here. In order to make a fair comparison with the CNNs, we use the
same regularization parameter τ in the TV method for every signal in the test
dataset. This value of τ is the one that gives the best performance in terms of the
mean-square error or, equivalently,

SNR(s∗, s) = 20 log10
(
∥s∥2/∥s∗ − s∥2

)
(5.30)

for the validation dataset.

Sharing versus Unsharing
We consider four configurations for the B-spline CNN. The first is the fully shared
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Table 5.6: Sharing versus unsharing of the linear spline activation functions in
B-spline CNNs (L = 4).

Method Nparam SNR (dB) Time per epoch (seconds)

ReLU CNN 211 14.95 4.59

Fully shared B-CNN 253 15.09 16.05

Channel shared B-CNN 346 15.16 17.04

Layer shared B-CNN 456 15.23 15.90

Unshared B-CNN 830 15.36 17.78

network, where a single learnable spline activation function is shared across all layers
and channels. The second and third are the channel (layer, respectively) shared
network, where the nonlinearity is shared only across channels (layers, respectively).
The fourth is the unshared network, which has an independent nonlinearity in each
layer and channel.

In a first experiment, we compare the performance of these four configurations.
We fix the number of layers to L = 4. In the B-spline CNN, we rely on our
hyperparameter-tuning method (see Appendix 5.4.3) to find the optimal µℓ and λℓ
in terms of performance for the validation dataset. The weight decay for the ReLU
CNN is chosen via grid search. Using the optimal values, we retrain the networks
9 times independently; the median SNR over these 9 runs is shown for the test
dataset in Table 5.6, where B-CNN means B-spline CNN.

We provide the number of parameters for the networks in Table 5.6. A ReLU
CNN with L layers, C channels, and filter size (w × 1), has 2wC + (L − 2)wC2

convolutional-filter weights, 1 bias term for the last convolutional layer, and 2(L−
1)C batch-normalization parameters. The additional parameters in the B-spline
CNN are the total number of active knots in the learned spline activation functions.

We observe that all four versions of the B-spline CNN achieve a higher SNR
than the ReLU CNN. This further supports our claim that learning the activation
functions tends to improve the performance of the network. Moreover, as expected,
configurations with a greater number of parameters perform better. The option of
sharing the learnable spline nonlinearities makes our framework flexible and allows
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Table 5.7: Performance of deep networks.

Method Layers Parameters Performance

ReLU CNN

4 211 14.95

5 296 15.27

6 381 15.47

7 466 15.68

8 551 15.74

10 721 15.80

15 1146 15.84

Fully shared
B-CNN

4 253 15.09

5 339 15.34

6 430 15.59

7 503 15.73

8 587 15.79

10 760 15.81

15 1196 15.85

TV - - 14.92

us to benefit from the increased capacity of the network while introducing fewer
additional parameters. Also, note that Table 5.6 confirms that the running times
for the different versions of the B-spline CNN are nearly the same.

Increase in the Depth of the Networks
Next, we compare the ReLU CNN and the fully shared B-spline CNN when the
number of layers increases. The procedure of the previous experiment is followed
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again to set the hyperparameters and to report the performance of the test dataset
(see Table 5.7).

We observe that the CNN-based approaches outperform the TV method, despite
it being particularly well matched to the piecewise-constant signals that we con-
sider. This shows the advantage of using learning-based methods over model-based
ones when sufficient training data is available. For all values of L, the B-spline
CNN achieves a higher SNR than the ReLU CNN. However, this improvement in
performance diminishes as L increases and is negligible for L ≥ 10. We believe
that, when the network is sufficiently deep, the ReLU CNN has a sufficient repre-
sentation power and so the additional capacity offered by the B-spline CNN does
not translate into better performance. The main takeaway here is that learning the
activation functions results in a noticeable improvement in performance for sim-
pler/smaller networks, which are desirable for a number of reasons such as better
interpretability of the networks, computational efficiency, and controlled Lipschitz
constants [200].

5.1.6 Summary

We have presented an efficient computational solution to train deep neural net-
works with learnable activation functions. Specifically, we have focused on deep
spline networks. They form a superset of the traditional ReLU networks and are
known to be optimal with respect to the second-order total variation of the ad-
justable nonlinearities. We have tackled the resulting difficult joint-optimization
problem by representing the linear-spline nonlinearities in terms of B-spline basis
functions and by expressing the second-order total-variation regularization as an
ℓ1-penalty, thus unifying the parametric and functional approaches for the learning
of activation functions. The proposed B-spline representation was instrumental in
making the training of the DNN computationally feasible. Indeed, any computation
concerning the activation functions involves only two basis elements per data point.
Finally, we have demonstrated the benefits of our framework through experiments
in the context of classification and deconvolution problems. In particular, we have
observed that our method compares favorably to the traditional ReLU networks,
the improvement being more pronounced for simpler/smaller networks.
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5.2 Lipschitz-Constrained Neural Networks for
Plug-and-Play Reconstruction

8In this section, we build upon the previously presented framework of deep spline
neural networks (DSNNs) to design expressive 1-Lipschitz denoising networks, which
can be deployed within provably convergent plug-and-play reconstruction schemes.

5.2.1 Introduction

In linear inverse problems, the goal is to reconstruct an image s ∈ Rd from mea-
surements y = Hs + n ∈ Rm. The linear operator9 H : Rd → Rm models the
acquisition system and n ∈ Rm is a realization of additive white Gaussian noise.
Here, the MPL estimator for the image is given by

s∗ = argmin
s∈Rd

(
1

2
∥y −Hs∥22 + τR(s)

)
, (5.31)

where the regularization term R : Rd → R+ imposes some prior knowledge about
the image s and τ ∈ R+ is a tunable hyperparameter. The cost functional in
(5.31) is typically minimized using proximal algorithms such as forward-backward
splitting (FBS) [87] and the alternating direction method of multipliers (ADMM)
[24].

As mentioned in Chapter 2, the main idea in the Plug-and-Play (PnP) priors
framework [51, 201] is to replace the proximal operator of R in the iterations of
proximal algorithms with some off-the-shelf denoiser, even though it might not cor-
respond to an explicit regularization term. This implicit regularization approach
has been shown to yield better results than classical sparsity-promoting methods
for a variety of inverse problems since it allows the use of powerful denoisers such
as NLM [202], WNNM [203], BM3D [204], and neural networks [205, 57, 62]. How-
ever, the delicate point that remains is ensuring the convergence of these algorithms,
which is non-trivial but essential for sensitive applications (e.g., the ones encoun-
tered in medical imaging).

There exist several works that analyze conditions on the denoiser under which
PnP algorithms are guaranteed to converge [206, 207, 208, 209, 210]. For example,

8This section is based on our works [157, 158].
9We assume that the inverse problem is ill-posed, that is, H is non-invertible.
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Ryu et al. [57] show that PnP-FBS and PnP-ADMM provably converge to fixed
points if the denoiser obeys an appropriate Lipschitz condition. They then propose
a practical way to enforce the derived Lipschitz constraint while training neural
network denoisers. However, their analysis requires the data-fidelity term to be
strongly convex and this unfortunately rules out ill-posed inverse problems. In
order to design convergent PnP schemes for ill-posed problems, stricter conditions
need to be enforced on the denoiser. More specifically, it has been shown that
averagedness (firm nonexpansiveness) of the denoiser is sufficient to guarantee fixed
point convergence of PnP-FBS (PnP-ADMM) [54, 55]. The design and training of
constrained neural networks to satisfy the averagedness or firm nonexpansiveness
conditions is a challenging task and remains an active area of research [63, 55].

In this work, we focus on the problem of training 1-Lipschitz10 (nonexpansive)
neural networks in order to construct averaged denoisers that can be used within
PnP-FBS. Specifically, we consider networks where the Lipschitz constant of each
layer (linear and nonlinear) is controlled to be one. Henceforth, we refer to such
networks as 1-Lip neural networks.

There are several ways to impose constraints on the linear layers. The most
popular one is spectral normalization [211], where the ℓ2 operator norm of each
weight matrix is set to one. The required spectral norms are computed via power
iterations. To take this idea even further, [212] and [213] have restricted the weight
matrices to be orthonormal in fully connected layers.

The use of ReLU activation functions in that setting, however, appears to be
overly constraining: it has been shown that 1-Lip ReLU networks cannot even rep-
resent simple functions such as the absolute value function under 2-norm constraints
on the linear layers [212], as well as ∞-norm constraints [214]. This observation
justifies the development of new activation functions specifically tailored to 1-Lip
architectures. Currently, the most popular one is GroupSort (GS), proposed by
[212], where the pre-activations are split into groups that are sorted in ascending
order. This results in a multivariate and gradient-norm-preserving (GNP) activa-
tion function. The authors provide empirical evidence that GS outperforms ReLU
on several tasks such as Wasserstein-1 distance estimation, robust classification,
and function fitting under Lipschitz constraints.

Here, we propose an alternative way to boost the performance of 1-Lip neural

10An operator T: RK → RK is L-Lipschitz if ∥T(x) − T(y)∥ ≤ L∥x − y∥ for all x,y ∈ RK .
The smallest value of L is called the Lipschitz constant of T. In this section, we only consider ∥ · ∥
to be the 2-norm (also known as the Euclidean norm).



5.2 Lipschitz-Constrained Networks for PnP Reconstruction 119

networks via the use of component-wise 1-Lipschitz learnable-linear-spline (LLS)
activation functions. Since the LLS activation functions presented in Section 3.1
are generally not Lipschitz-constrained, we present an efficient method to explicitly
control their Lipschitz constant. Further, we also develop a normalization module
that modulates the scale of each LLS activation function without changing their
Lipschitz constant and thus increases their flexibility. We perform a systematic
comparison of the proposed framework with other 1-Lip architectures (including
ReLU and GS) for function fitting, Wasserstein-1 distance estimation, and CT
and MRI reconstruction within the PnP framework. Our results show that our
framework outperforms all the competing activation functions.

The section is organized as follows: We begin with a brief description of PnP-
FBS in Section 5.2.2. In Section 5.2.3, we present existing 1-Lip architectures. We
then introduce our method in Section 5.2.4 and present experimental results in
Section 5.2.5.

5.2.2 Plug-and-Play Forward-Backward Splitting (PnP-FBS)

The iterates for PnP-FBS corresponding to the optimization problem in (5.31) are
given by

sk+1 = D
(
sk − αHT (Hsk − y)

)
, (5.32)

where D : Rd → Rd is the chosen denoiser and α is the stepsize.

Fixed-Point Convergence

A standard set of sufficient conditions to guarantee fixed-point convergence of the
iterations (5.32) is that

1. D is averaged, namely D = βN+ (1− β)Id where β ∈ (0, 1) and N: Rd → Rd
is a nonexpansive mapping;

2. α ∈ [0, 2/∥H∥2);
3. the update operator in (5.32) has a fixed point.

Condition (2) implies that s 7→
(
s− αHT (Hs− y)

)
is averaged. As averagedness

is preserved through composition, the iterates are updated by the application of an
averaged operator (see [55] for details). With Condition (3), the convergence of the
iterations (5.32) follows from Opial’s convergence theorem.
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Stability of the Reconstruction Map in the Measurement Domain

Beyond convergence, we can also show the stability of the reconstruction map in
the measurement domain.

Proposition 5.1. Let s∗1 and s∗2 be fixed points of the PnP-FBS algorithm (5.32)
for the measurements y1 and y2, respectively. If the denoiser is averaged with
β ≤ 1/2, then for any y1,y2 ∈ Rm, we have that

∥Hs∗1 −Hs∗2∥2 ≤ ∥y1 − y2∥2. (5.33)

Further, if we slightly increase the constraints on D, we get the result of Propo-
sition 5.2

Proposition 5.2. Let s∗1 and s∗2 be fixed points of the PnP-FBS algorithm (5.32)
for the measurements y1 and y2, respectively. If D is K-Lipschitz with K < 1 (if
it is contractive), then the reconstruction process is stable for any H, in the sense
that, for any y1,y2 ∈ Rm,

∥s∗1 − s∗2∥2 ≤
α∥H∥K
1−K ∥y1 − y2∥2. (5.34)

The proofs for these propositions are given in Appendix 5.4.4. Overall, with
PnP-FBS, we can expect better data consistency than the one provided by the end-
to-end neural network frameworks that attempt to directly map the measurements
y to the image s. Those attempts are known to suffer from stability issues [215]
and, more importantly, have been found to remove or hallucinate tumors [216],
which is unacceptable in the context of diagnostic imaging. Relations (5.33) and
(5.34) are protection against such hallucinations. They tell us that, if two sets of
measurements are close to each other, then the corresponding reconstructions must
also be close to each other.

5.2.3 1-Lipschitz Neural Networks

In this work, we consider feedforward neural networks fθ : RN0 → RNL of the form

fθ(x) : AL ◦ · · · ◦ σℓ ◦Aℓ ◦ · · · ◦ σ1 ◦A1(x), (5.35)
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where each Aℓ : RNℓ−1 → RNℓ , ℓ = 1, . . . , L, is a linear layer given by

Aℓ(x) = Wℓx+ bℓ, (5.36)

with weight matrices Wℓ ∈ RNℓ,Nℓ−1 and bias vectors bℓ ∈ RNℓ . The model
incorporates fixed or learnable nonlinear activation functions σℓ : RNℓ → RNℓ . For
component-wise activation functions, we have that σℓ(x) = (σℓ,n(xn))

Nℓ
n=1 with

individual scalar activation functions σℓ,n : R→ R. The complete set of parameters
of the network is denoted by θ.

A straightforward way to control Lip(fθ) is to use the sub-multiplicativity of
the Lipschitz constant for the composition operation, which yields the estimate

Lip(fθ) ≤ Lip(AL)

L−1∏
ℓ=1

Lip(σℓ) Lip(Aℓ). (5.37)

Consequently, one can obtain a bound for Lip(fθ) by controlling the Lipschitz con-
stant of each linear layer and of each activation function.

Lipschitz-Constrained Linear Layers

It is known that the Lipschitz constant of the linear layer Aℓ is equal to the largest
singular value of its weight matrix. In our experiments, we constrain the weight
matrices Wℓ in two ways.

• Spectral Normalization: This method rescales each linear layer by dividing
its weight matrix by its largest singular value. The latter is estimated via
power iterations. This method was introduced for fully connected networks
in [211] and later generalized for convolutional layers in [57].

• Orthonormalization: Here, the weight matrices Wℓ are forced to be or-
thonormal, so that WT

ℓ Wℓ is the identity matrix. Unlike spectral normaliza-
tion, which only constrains the largest singular value, this method forces all
the singular values to be one. Various implementations of orthonormalization
have been proposed to handle both fully connected [212] and convolutional
layers [217, 218].
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Lipschitz-Constrained Activation Functions

Here, we shortly introduce all activation functions that we compare against LLS.

• ReLU: The ReLU activation function is component-wise and 1-Lipschitz. It
is given by ReLU(x) = (max(0, xn))

N
n=1.

• Absolute Value: The absolute value (AV) activation function is component-
wise, 1-Lipschitz, and GNP. It is given by AV(x) = (|xn|)Nn=1.

• Parametric ReLU: The parametric ReLU (PReLU) activation function
[184] is component-wise. It is given by PReLUa(x) = (max(anxn, xn))

N
n=1

with learnable parameters (an)
N
n=1. It holds that Lip(PReLUa) =

max(max1≤n≤N |an|, 1). Hence, an easy way to make it 1-Lipschitz is to clip
the parameters (an)

N
n=1 in [−1, 1].

• GroupSort: This activation function [212] separates the pre-activations into
groups of size k and then sorts each group in ascending order. Hence, it is
locally a permutation and is therefore GNP and 1-Lipschitz. If the group size
is 2, this activation function is called MaxMin. 1-Lip MaxMin and GS neural
networks are universal approximators for 1-Lipschitz functions in a specific
setting where the first weight matrix satisfies ∥W1∥2,∞ ≤ 1 and all other
weight matrices satisfy ∥Wl∥∞ ≤ 1 [212, Theorem 3].

• Householder: The householder (HH) activation function [219] separates the
pre-activations into groups of size 2, and for any x ∈ R2, computes

HHv (x) =

{
x, vTx > 0(
I− 2vvT

)
x, vTx ≤ 0,

(5.38)

where v ∈ R2 is a learnable parameter with ∥v∥2 = 1. The HH activation
function is always 1-Lipschitz and GNP.

For these choices, Proposition 5.3 holds. The proof is given in Appendix 5.4.5.

Proposition 5.3. On any compact set D ⊂ RN0 , 1-Lip neural networks with AV,
PReLU, GS, or HH activation functions can represent the same set of functions.

By contrast to Proposition 5.3, 1-Lip ReLU networks are less expressive and
can only represent a subset of these functions.
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5.2.4 1-Lipschitz Deep Spline Neural Networks

As a first step towards Lipschitz-constrained deep spline neural networks, in [200],
the authors added a term in the training loss that penalizes a loose bound of the
Lipschitz constant of the LLS activation functions. This approach, however, does
not offer a strict control of the overall Lipschitz constant of the network. Here, we
instead present a method to explicitly control the Lipschitz constant of each LLS
activation function.

As detailed in Section 5.4.2, we represent an LLS activation function σ in a B-
spline basis. It is described by the vector of its B-spline coefficients c ∈ RK and the
stepsize T . In practice, we choose a high numberK and a small stepsize T . We then
ensure that a simple activation function is learned by using TV(2) regularization
given by TV(2)(σ) = ∥Lc∥1, where L is the second-order finite-difference matrix
defined in (5.97). The Lipschitz constant of σ is given by Lip(σ) = 1

T ∥Dc∥∞, where

D =



−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · 0 −1 1

 . (5.39)

Overall, we aim to impose strict bounds on the first-order finite differences of the
coefficients c, and we seek to sparsify their second-order finite differences.

To ensure that every activation function σ is 1-Lipschitz, the absolute difference
between any two consecutive coefficients must be at most T . Hence, the correspond-
ing set of feasible coefficients is given by {c ∈ RK : ∥Dc∥∞ ≤ T}. A first attempt
at a minimization over this set was made in our earlier work [157]. There, we used
a method that divides each activation function by its maximum slope after each
training step. In Section 5.2.4, we present an alternative projection scheme that
is better suited to optimization and yields a much better performance in practice,
while being just as fast. Additionally, we introduce a scaling parameter for each
activation function, which facilitates the training and increases the performance of
the network even further at a negligible computational cost.
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Constrained Coefficients

The textbook approach to maintain the 1-Lipschitz property throughout an itera-
tive minimization scheme would be to determine the least-squares projection onto
{c ∈ RK : ∥Dc∥∞ ≤ T} at each iteration. This operation would preserve the mean
of c, as shown in Appendix 5.4.6. Unfortunately, its computation is very expensive
as it requires to solve a quadratic program after each training step and for each
activation function. As substitute, we introduce a simpler projection PLip that also
preserves the mean while being much faster to compute. In brief, PLip computes the
finite-differences, clips them, sums them and adds a constant to the preservation of
the mean.

Let us denote the Moore–Penrose pseudoinverse of D by D† and the vector of
ones by 1 ∈ RK . Further, we define the component-wise operation

Clip[T1,T2](x) =


T1, x < T1

x, x ∈ [T1, T2]

T2, x > T2.

(5.40)

Proposition 5.4. The operation PLip defined as

PLip(c) = D† Clip[−T,T ](Dc) + 1
1

K

K∑
k=1

ck (5.41)

has the following properties:

1. it is a projection onto the set {c ∈ RK : ∥Dc∥∞ ≤ T};

2. it is almost-everywhere differentiable with respect to c;

3. it preserves the mean of c.

The proof of Proposition 5.4 can be found in Appendix 5.4.6.
In gradient-based optimization, one usually handles domain constraints by pro-

jecting the variables back onto the feasible set after each gradient step. However,
this turned out to be inefficient for neural networks in our experiments. Instead,
we parameterize the LLS activation functions directly with PLip(c), which leads to
unconstrained training. This strategy is in line with the popular spectral normal-
ization of [211], where the weight matrices are unconstrained and parameterized
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using an approximate projection. For our parameterization approach, Property 2
of Proposition 5.4 is very important as it allows us to back-propagate through PLip

during the optimization process. To compute PLip efficiently, we calculate D† in
a matrix-free fashion with a cumulative sum. The computational cost of PLip is
negligeable compared to the cost of constraining the linear layer to be 1-Lipschitz.

Scaling Parameter

We propose to increase the flexibility of our LLS activation functions by the intro-
duction of an additional trainable scaling factor γ. Specifically, we propose the new
activation function

σ̃(x) =
1

γ
σ(γx). (5.42)

With this scaling, σ̃ is nonlinear on [kminT/γ, kmaxT/γ] and the Lipschitz constant

Lip(σ̃) = sup
x1,x2∈R

∥ 1γσ(γx1)− 1
γσ(γx2)∥

∥x1 − x2∥
= sup
x1,x2∈R

1
γ ∥σ(γx1)− σ(γx2)∥

1
γ ∥γx1 − γx2∥

= Lip(σ)

(5.43)
is left unchanged. As mentioned in Proposition 5.11, the second-order total varia-
tion is preserved as well. Basically, γ allows us to decrease the data-fitting term used
for training without breaking the constraints or increasing the complexity of the
activation functions. Experimentally, we indeed found that the performance of our
networks improves if we also optimize over γ. In contrast, the ReLU, AV, PReLU,
GS, and HH activation functions are invariant to this parameter and do not benefit
from it. In practice, the scaling parameter γ is initialized as one and updated via
standard stochastic gradient-based methods. Throughout our experiments, every
LLS activation function has its own scaling parameter γ.

5.2.5 Experimental Results

We evaluate the performance of 1-Lip neural networks on a variety of tasks. In each
case, we compare the performance of LLS and the five activation functions discussed
in Section 5.2.3. For all the experiments, we tune the initialization of PReLU, the
group size of GS, and the initialization, range, number of linear regions, and TV(2)

regularization of LLS for best performance. To train the respective networks, we
use the Adam optimizer [194] and the default hyperparameters of its PyTorch
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Figure 5.7: Three 1-Lipschitz functions that we attempt to fit with 1-Lip neural
networks. All functions have zero mean over the interval [−1, 1].

implementation. The deep spline NNs have three optimizers with different learning
rates: one for the weights (with learning rate η), one for the scaling parameters
(with learning rate η/4) and one for parameters of the activation function (with
learning rate η/40). These ratios remain fixed throughout this section and, hence,
only η is going to be stated. Our implementation is available on Github11.

One-Dimensional Function Fitting

Here, we train 1-Lip neural networks to fit 1-Lipschitz functions f : R → R within
the model Y = f(X), where X is uniformly distributed on [−1, 1]. The task is to fit
the three 1-Lipschitz functions depicted in Figure 5.7. The aim of this experiment
is twofold. First, we want to probe the impact of the two methods described in
Section 5.2.4 on the performance of the LLS networks by comparing the proposed
implementation (denoted as LLS New) with the one from our earlier work [157]
(denoted as LLS Old) which relies on simple normalization. Second, we want a
simple but challenging experiment to compare the various available methods.

Let us briefly comment on the functions in Figure 5.7. For f1, we have |∇f1| = 1
almost everywhere. Hence, the GNP activation functions are expected to perform
well and serve as a baseline against which we compare LLS activation functions.
The function f2 alternates between |∇f2| = 1 and |∇f2| = 0. It was designed to test
the ability of LLS to fit functions with constant regions. Lastly, we benchmark all
methods on the highly varying function f3(x) = sin(7πx)/7π, which is challenging
to fit under Lipschitz constraints.

11https://github.com/StanislasDucotterd/Lipschitz DSNN

https://github.com/StanislasDucotterd/Lipschitz_DSNN
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Figure 5.8: Fitting performances for the functions from Figure 5.7. The red markers
represent the median performance. The black bars represent the lower and upper
quartiles, respectively.

For each method, we consider two variants: orthonormalization, and spectral
normalization of the weights. In both cases, we use the mean squared error (MSE)
as loss function. The train loss is computed over 1000 random points sampled
uniformly from [−1, 1]. The test loss is computed over a uniform partition of [−1, 1]
with 10000 points. This experiment lets us assess the expressivity of the models
without caring about generalization. The hyperparameters were all tuned on the
test set. For each activation function, we tuned the width and the depth of the
neural network for best performance. ReLU networks have 10 layers and a width
of 50; AV, PReLU, and HH networks have 8 layers and a width of 20; GS networks
have 7 layers and a width of 20; LLS networks have 4 layers and a width of 10. For
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the activation functions, we initialized the PReLU as the absolute value, we used
GS with a group size of 5, and the LLS was initialized as ReLU and had a range
of [−0.5, 0.5], 100 linear regions, and we set λ = 10−7 for the TV(2) regularization.
The LLS networks used a learning rate of η = 2×10−3 for every function while the
other networks used η = 4 × 10−3 for f1, f2 and η = 10−3 for f3. Every network
relied on Kaiming initialization [184] and was trained 25 times with a batch size of
10 for 1000 epochs. We report the median and the two quartiles of the test losses
in Figure 5.8.

For the spectral normalization, we observe that AV, PReLU, and HH have
a tendency to get stuck in local minima when fitting f3 (the associated upper
quartile of the MSE loss is quite large). In return, we observe that LLS consistently
outperforms the other activation functions in all experiments. Particularly striking
is the improvement of LLS New over LLS Old, which clearly demonstrates the
beneficial role of the two modules described in Section 5.2.4. Accordingly, from
now on, we drop LLS Old and only retain LLS New.

Estimation of the Wasserstein Distance

The Wasserstein-1 distance is a metric between two probability distributions P1

and P2. This metric has been used in [220] to improve the performance of GANs,
which were first introduced in [69]. Using the Kantorovich dual formulation [221],
we can compute the Wasserstein-1 distance W1 by solving an optimization problem
over the space of 1-Lipschitz functions, leading to

W1(P1, P2) = sup
Lip(f)≤1

Ex∼P1 [f(x)]− Ex∼P2 [f(x)]. (5.44)

In our Wasserstein experiment, P1 is a uniform distribution over a set of real
MNIST12 images and P2 is the generator distribution of a GAN trained to generate
MNIST images. The architecture of this GAN is taken from [222]. It has been
shown in [223] that, under reasonable assumptions, any f∗ that maximizes (5.44)
satisfies |∇f∗| = 1 almost everywhere. Further, [212] have shown experimentally
that, in the context of Wasserstein distance estimation, spectral normalization of
the linear layers is outperformed by orthonormalization. Hence, we use the latter
parameterization for the Wasserstein experiments. All networks are fully connected

12http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
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Table 5.8: Mean and standard deviation of the estimated Wasserstein distance over
five trials for several architectures.

Depth ReLU AV PReLU GS HH LLS

3 0.727 1.190/0.002 1.190/0.002 1.189/0.001 1.165/0.001 1.190/0.002
5 0.881/0.001 1.368/0.003 1.371/0.002 1.369/0.002 1.369/0.002 1.373/0.003
7 0.960 1.406/0.008 1.437/0.002 1.436/0.001 1.440/0.003 1.439/0.001

with a width of 1024, and various depths. They were trained 5 times each for 2000
epochs with η = 2×10−3 and orthogonal initialization [224]. For the networks with
a depth of 3, GS has group size of 8, and PReLU and LLS were initialized as the
absolute value. For a depth of 5 or 7, GS has a group size of 2, and PReLU and
LLS were initialized with the identity in half of the activation functions and as the
absolute value in the other half. The LLS have a range of [−0.15, 0.15], 20 linear
regions, and λ = 10−10. The spline coefficients only increase the total number of
parameters in the neural network by 2%. We train the networks on 54000 images
from the MNIST training set and use the 6000 remaining ones as a validation set.
The test set contains 10000 MNIST images.

In Table 5.8, we report the estimated Wasserstein distance between the MNIST
images of the test set and the ones generated by the GAN. The dimensionality of
the problem is such that it is practically unfeasible to compute accurate baseline
estimates based on the sampling of both measures and the computation of their
true Wasserstein distance. ReLU has an estimate that is significantly lower than
the other methods. Most likely, this corresponds to a gross underestimation of the
true Wasserstein distance because of its lack of expressivity. We can see that the
performances are quite similar between all the other activation functions except for
AV and HH with depth 7 and 3, respectively, which are worse than the others.

Image Reconstruction via PnP-FBS

Next, we consider provably convergent PnP-FBS for two ill-posed inverse problems—
MRI and CT reconstruction. Before we talk about the inverse problem setups, we
describe our denoising experiments.
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1. Learning a Denoiser for PnP

The state-of-the-art image denoising architectures [154, 225, 226] are not natively
1-Lipschitz. They rely on dedicated modules designed to improve the performance
of the denoising network, such as skip connections, downsampling and upsampling
layers, batch normalization, and attention modules. These can make it challenging
to build provably averaged denoisers, and their effectiveness remains to be demon-
strated in a constrained setting. For this reason, we use a simple CNN architecture
without batch normalization. This provides competitive performance while relying
on a simple architecture that can be directly constrained. In detail, we train 1-Lip
denoisers that are composed of 8 orthogonal convolutional layers and the activation
functions from 5.2.3. The convolutional layers are parameterized with the BCOP
framework [217] and have kernels of size (3× 3). For LLS, we take 64 channels. To
compensate for the additional spline parameters, we train every other model with
68 channels.

The training dataset consists of 238400 patches of size (40 × 40) taken from
the BSD500 dataset [227]. We report the results on the BSD68 test set. All
images take values in [0, 1]. For our experiment, we add Gaussian noise with σ =
5/255, 10/255, 15/255. We train all networks for 50 epochs with a batch size of
128 and the MSE loss function. The PReLU activation functions were initialized
as the absolute value. GS has a group size of 2. The LLS activation functions
have 50 linear regions, a range of 0.1, and were initialized as the identity. We set
η = 4 × 10−5 for every noise level and every model. In this experiment, we also
investigated the effect of the TV(2) regularization parameter λ (we used the same
parameter for all the layers) on the performance and the number of linear regions
in all the activation functions. The performance results are provided in Table 5.9.
As expected, ReLU is doing worse than the other activation functions. For each
noise level, LLS is outperforming every other activation function.

The number of linear regions for the LLS activation function σℓ,n is equal to
∥Lcℓ,n∥0 + 1. This metric can lead to an overestimation of the number of linear
regions due to numerical imprecisions. Instead, we define the effective number of
linear regions as (|{1 ≤ k ≤ Kℓ,n : |(Lcℓ,n)k| > 0.01}|+ 1). For each LLS network,
we report in Table 5.10 the average number of effective linear regions (AELR) of
all the LLS activation functions. An AELR close to one indicates that the large
majority of neurons become skip connection, which corresponds to a simplifica-
tion of the network. Without regularization, the LLS activation functions have an
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Table 5.9: PSNR and SSIM values for the Lipschitz denoising experiment in terms
of activation functions and noise levels.

Noise level σ = 5/255 σ = 10/255 σ = 15/255
Metric PSNR SSIM PSNR SSIM PSNR SSIM
ReLU 36.10 0.9386 31.92 0.8735 29.76 0.8203
AV 36.58 0.9499 32.33 0.8889 30.09 0.8375
PReLU 36.58 0.9498 32.25 0.8887 30.11 0.8367
GS 36.54 0.9489 32.23 0.8845 30.11 0.8346
HH 36.47 0.9476 32.25 0.8866 30.11 0.8350
LLS (λ = 0) 36.85 0.9540 32.59 0.8978 30.35 0.8464
LLS (λ = 10−6) 36.86 0.9546 32.55 0.8962 30.38 0.8479
LLS (λ = 10−5) 36.86 0.9543 32.55 0.8960 30.34 0.8455
LLS (λ = 10−4) 36.82 0.9534 32.57 0.8970 30.36 0.8468
LLS (λ = 10−3) 36.63 0.9497 32.47 0.8924 30.31 0.8437
LLS (λ = 10−2) 35.15 0.9142 32.00 0.8782 29.73 0.8156

Table 5.10: Average number of effective linear regions (AELR) for several λ and
noise levels. The maximum number of available regions for the LLS is 50.

Noise level σ = 5/255 σ = 10/255 σ = 15/255
LLS (λ = 0) 9.24 8.76 8.07
LLS (λ = 10−6) 1.21 1.24 1.44
LLS (λ = 10−5) 1.11 1.15 1.24
LLS (λ = 10−4) 1.07 1.14 1.25
LLS (λ = 10−3) 1.02 1.06 1.10
LLS (λ = 10−2) 1.00 1.01 1.02

AELR of 8.07 to 9.24 out of the 50 available linear regions. The TV(2) regulariza-
tion drastically sparsifies the LLS activation functions. With λ ∈ [10−6, 10−4], the
AELR is between 1.07 and 1.44, which is a large decrease without degradation in
the denoising performances. For λ = 10−3, the LLS are even further sparsified at
the cost of a small loss of performance. We observe a significant loss of performance



132 Convergent Iterative Image-Reconstruction Methods

when λ is increased to 10−2 where the network is almost an affine mapping. Notice
that the AELR is 2 for ReLU and AV, meaning that LLS outperforms them while
being simpler. Another interesting observation is that, despite being very sparse
on average, the LLS networks with λ ∈ [10−6, 10−3] have at least one activation
function with at least three linear regions. This suggests that most of the common
activation functions might be suboptimal as they have only two linear regions.

2. PnP-FBS for MRI and CT Reconstruction

Finally, we present numerical results for the following reconstruction problems.

MRI The ground-truth images for our MRI experiments are proton-density weighted
knee MR images from the fastMRI dataset [228] with fat suppression (PDFS) and
without fat suppresion (PD). They are generated from the fully-sampled k-space
data. For each of the two categories (PDFS and PD), we create validation and
test sets consisting of 10 and 50 images, respectively, where every image is normal-
ized to have a maximum value of one. We consider both single-coil and multi-coil
setups with several acceleration factors. In the single-coil setup, we simulate the
measurements by masking the Fourier transform of the ground-truth image. In the
multi-coil case, we consider 15 coils, and the measurements are simulated by sub-
sampling the Fourier transforms of the multiplication of the ground-truth images
with 15 complex-valued sensitivity maps (these were estimated from the raw k-space
data using the ESPIRiT algorithm [229] available in the BART toolbox [230]). For
both cases, the subsampling in the Fourier domain is performed with a Cartesian
mask that is specified by two parameters: the acceleration Macc ∈ {2, 4, 8} and the
center fraction Mcf = 0.32/Macc. A fraction of Mcf columns in the center of the k-
space (low frequencies) is kept, while columns in the other region of the k-space are
uniformly sampled so that the expected proportion of selected columns is 1/Macc.
In addition, Gaussian noise with standard deviation σn = 2× 10−3 is added to the
real and imaginary parts of the measurements.

CT We target the CT experiment proposed in [231]. The data consist of human
abdominal CT scans for 10 patients provided by Mayo Clinic for the low-dose CT
Grand Challenge [232]. The validation set consists of 6 images taken uniformly from
the first patient of the training set from [231]. We use the same test set as [231],
more precisely, 128 slices with size (512× 512) that correspond to one patient. The
projections of the data are simulated using a parallel-beam acquisition geometry
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with 200 angles and 400 detectors. Lastly, Gaussian noise with standard deviation
σn ∈ {0.5, 1, 2} is added to the measurements.

For the above setups, we deploy the β-averaged denoisers Dσ,β = βDσ+(1−β)Id,
where β ∈ (0, 1) is a tunable parameter and Dσ denotes the learned 1-Lip denoising
networks from the previous experiment (we use the network corresponding to λ =
10−6 for LLS), within the PnP-FBS algorithm (5.32). We tune the noise level σ
of Dσ over σ = {5/255, 10/255, 15/255}. Also, for each value of σ, we tune β and
the stepsize α given in (5.32) using the coarse-to-fine method from Appendix 5.4.7.
The hyperparameters (σ, β, α) for all the reconstruction methods are tuned on the
validation set to maximize the average PSNR.

The PSNR and SSIM values13 over the test sets are reported in Tables 5.11,
5.12 and 5.20. Moreover, some reconstruction examples are provided in Figures 5.9,
5.10, 5.11, 5.12, 5.13 and 5.14. We observe a significant gap in terms of PSNR and
SSIM between LLS and the other activation functions for all the setups.

5.2.6 Summary

In this work, we have proposed a framework to efficiently train Lipschitz-constrained
neural networks with learnable linear-spline activation functions. Our implemen-
tation embeds the Lipschitz constraint on the activation functions directly into
the forward pass and adds learnable scaling factors, which preserves the Lipschitz
constant of the activation functions and enhances the overall expressivity of the
model. Empirically, we have shown that our approach outperforms other Lipschitz-
constrained neural networks for a variety of tasks including plug-and-play image
reconstruction.

13The PSNR and SSIM values for the MRI experiments are computed on the (320×320) centered
ROI.
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Table 5.11: Single-coil MRI.

2-fold 4-fold
PSNR SSIM PSNR SSIM

PD PDFS PD PDFS PD PDFS PD PDFS
ReLU 38.15 37.41 0.938 0.918 30.62 31.45 0.818 0.786
AV 38.99 38.05 0.946 0.925 31.34 32.02 0.832 0.797
PReLU 38.97 38.09 0.946 0.925 31.22 32.22 0.832 0.800
GS 38.80 37.92 0.944 0.924 31.27 31.93 0.829 0.796
HH 38.72 37.89 0.944 0.924 31.22 31.94 0.830 0.796
LLS 40.06 38.63 0.955 0.931 32.81 33.04 0.859 0.817

Table 5.12: Multi-coil MRI.

4-fold 8-fold
PSNR SSIM PSNR SSIM

PD PDFS PD PDFS PD PDFS PD PDFS
ReLU 37.21 37.06 0.929 0.915 31.37 32.57 0.837 0.822
AV 37.81 37.48 0.935 0.919 31.82 32.95 0.845 0.829
PReLU 37.71 37.51 0.934 0.919 31.67 33.11 0.845 0.832
GS 37.76 37.41 0.933 0.919 31.79 32.9 0.843 0.829
HH 37.66 37.39 0.933 0.919 31.68 32.91 0.843 0.829
LLS 38.68 37.96 0.943 0.924 32.75 33.61 0.859 0.835

Table 5.13: CT.

σn=0.5 σn=1 σn=2
PSNR SSIM PSNR SSIM PSNR SSIM

FBP 32.14 0.697 27.05 0.432 21.29 0.204
ReLU 36.94 0.914 33.65 0.860 30.34 0.782
AV 37.15 0.926 34.19 0.885 31.07 0.813
PReLU 37.18 0.927 34.21 0.887 30.87 0.812
GS 36.95 0.920 33.99 0.877 30.87 0.806
HH 36.94 0.918 34.11 0.877 30.92 0.809
LLS 38.19 0.931 35.15 0.897 31.85 0.844
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Ground-truth HTY - 31.05dB, 0.835 ReLU - 37.90dB, 0.939 AV - 38.83dB, 0.948 GS - 38.73dB, 0.947 HH - 38.50dB, 0.945 LLS - 39.75dB, 0.956

Figure 5.9: Reconstructed images for the 2-fold accelerated single-coil MRI exper-
iment. The reported metrics are PSNR and SSIM.

Ground-truth HTY - 24.57dB, 0.655 ReLU - 28.27dB, 0.773 AV - 29.10dB, 0.795 GS - 29.29dB, 0.798 HH - 28.96dB, 0.790 LLS - 30.91dB, 0.837

Figure 5.10: Reconstructed images for the 4-fold accelerated single-coil MRI exper-
iment. The reported metrics are PSNR and SSIM.

Ground-truth HTY - 25.67dB, 0.716 ReLU - 39.01dB, 0.949 AV - 39.64dB, 0.954 GS - 39.53dB, 0.953 HH - 39.44dB, 0.952 LLS - 40.19dB, 0.958

Figure 5.11: Reconstructed images for the 4-fold accelerated multi-coil MRI exper-
iment. The reported metrics are PSNR and SSIM.
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Ground-truth HTY - 22.14dB, 0.603 ReLU - 32.26dB, 0.853 AV - 32.98dB, 0.868 GS - 33.00dB, 0.867 HH - 32.79dB, 0.864 LLS - 34.06dB, 0.885

Figure 5.12: Reconstructed images for the 8-fold accelerated multi-coil MRI exper-
iment. The reported metrics are PSNR and SSIM.

Phantom FBP - 32.07dB, 0.713 RELU - 36.76dB, 0.920 AV - 36.84dB, 0.928 GS - 36.58dB, 0.922 HH - 36.61dB, 0.923 LLS - 37.76dB, 0.934

Figure 5.13: Reconstructed images for the CT experiment with σn = 0.5. The
reported metrics are PSNR and SSIM.

Phantom FBP - 32.01dB, 0.701 RELU - 36.71dB, 0.908 AV - 36.87dB, 0.921 GS - 36.65dB, 0.916 HH - 36.68dB, 0.916 LLS - 38.04dB, 0.932

Figure 5.14: Reconstructed images for the CT experiment with σn = 0.5. The
reported metrics are PSNR and SSIM.
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5.3 A Neural-Network-Based Convex Regularizer

14In this section, we show how we can leverage our learnable linear spline module
to design explicit neural-network-based convex regularizers.

5.3.1 Introduction

Like in the previous section, we consider ill-posed linear inverse problems with
an AWGN model. Thus, the goal is to reconstruct the image s ∈ Rd from the
measurement vector y ∈ Rm given by

y = Hs+ n, (5.45)

whereH ∈ Rm×d models the physics of the acquisition process and n ∈ Rm accounts
for the additive Gaussian noise. The generic MPL estimator for the image can be
written as

s∗ ∈ argmin
s∈Rd

1

2
∥Hs− y∥22 +R(s), (5.46)

where R : Rd → R is a regularizer that incorporates prior information about s to
counteract the ill-posedness of (5.45). Here, we will focus on the learning of the
regularization term R in (5.46). Pioneering work in this direction includes the fields
of experts [233, 234, 235], where R is parameterized by an interpretable and shal-
low model, namely, a sum of nonlinear one-dimensional functions composed with
convolutional filters. Some recent approaches rely on more sophisticated architec-
tures with much deeper CNNs, such as with the adversarial regularization (AR)
[236, 237], NETT [238], and the total-deep-variation frameworks [67], or with regu-
larizers for which a proximal operator exists [64, 65, 66, 239]. There exists a variety
of strategies to learn R, including bilevel optimization [234], unrolling [67, 235],
gradient-step denoising [64, 65], and adversarial training [236, 237]. When R is
convex, a global minimizer of (5.46) can be found under mild assumptions. As the
relaxation of the convexity constraint usually boosts the performance [234, 240],
it is consequently the most popular approach. Unfortunately, one can then expect
convergence only to a critical point.

In this work, we prioritize the reliability and interpretability of the method.
Thus, we revisit the family of learnable convex-ridge regularizers [233, 234, 240,

14This section is based on our work [159].
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235, 181]

R : s 7→
∑
i

ψi(w
T
i s), (5.47)

where the profile functions ψi : R → R are convex, and wi ∈ Rd are learnable
weights. A popular way to learn R is to solve a non-convex bilevel optimization
task [241, 242] for a given inverse problem. It was reported in [234] that these learnt
regularizers outperform the popular TV regularizer for image reconstruction. As
bilevel optimization is computationally quite intensive, it was proposed in [240]
to unroll the forward-backward splitting (FBS) algorithm applied to (5.46) with a
regularizer of the form (5.47). Accordingly, R is optimized so that a predefined
number t of iterations of the FBS algorithm yields a good reconstruction. Unfortu-
nately, on a denoising task with learnable profiles ψi, the proposed approach does
not match the performance of the bilevel optimization.

To deal with these shortcomings, we introduce an efficient framework15 to learn
some R of the form (5.47) with free-form convex profiles. We train this R on a
generic denoising task and then plug it into (5.46). This yields a generic recon-
struction framework that is applicable to a variety of inverse problems. The main
contributions of our work are as follows.

• Interpretable and Expressive Model: We use a one-hidden-layer neural net-
work (NN) with learnable increasing linear-spline activation functions to pa-
rameterize ∇R. We prove that this yields the maximal expressivity in the
generic setting (5.47).

• Embedding of the Constraints into the Forward Pass: The structural con-
straints on ∇R are embedded into the forward pass during the training. This
includes an efficient procedure to enforce the convexity of the profiles, and the
computation of a bound on the Lipschitz constant of ∇R, which is required
for our training procedure.

• Ultra-Fast Training: The regularizer R is learnt via the training of a multi-
gradient-step denoiser. Empirically, we observe that a few gradient steps
suffice to learn a best-performing R. This leads to training within a few
minutes.

15All experiments can be reproduced with the code published at https://github.com/axgoujon/
convex_ridge_regularizers

https://github.com/axgoujon/convex_ridge_regularizers
https://github.com/axgoujon/convex_ridge_regularizers


5.3 A Neural-Network-Based Convex Regularizer 139

• Best Reconstruction Quality in a Constrained Scenario: We show that our
framework outperforms recent deep-learning-based approaches with compa-
rable guarantees and constraints in two popular medical-imaging modalities
(CT and MRI). This includes the PnP method with averaged denoisers and
a variational framework with a learnable deep convex regularizer. This even
holds for a strong mismatch in the noise level used for the training and the
one found in the inverse problem.

5.3.2 Architecture of the Regularizer

In this section, we introduce the notions required to define the convex-ridge regu-
larizer neural network (CRR-NN).

General Setting

Our goal is to learn a regularizer R for the variational problem (5.46) that performs
well across a variety of ill-posed problems. Similar to the PnP framework, we view
the denoising task

s∗ = argmin
s∈Rd

1

2
∥s− y∥22 + τR(s) (5.48)

as the underlying base problem for training, where y is the noisy image. Since we
prioritize interpretability and reliability, we choose the simple convex-ridge regu-
larizer (5.47) and use its convolutional form. More precisely, the regularity of an
image s is measured as

R : x 7→
NC∑
i=1

∑
k∈Z2

ψi
(
(hi ∗ s)[k]

)
, (5.49)

where hi is the impulse response of a 2D convolutional filter, (hi ∗ s)[k] is the value
of the k-th pixel of the filtered image hi ∗ s, and NC is the number of channels.
In the sequel, we mainly view the (finite-size) image s as the (finite-dimensional)
vector s ∈ Rd, and since (5.49) is a special case of (5.47), we henceforth use the
generic form (5.47) to simplify the notations. We use the notation Rθ to express
the dependence of R on the aggregated set of learnable parameters θ, which will
be specified when necessary. From now on, we assume that the convex profiles ψi
have Lipschitz continuous derivatives, i.e. ψi ∈ C1,1(R).
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Gradient-Step Neural Network

Given the assumptions on Rθ, the denoised image in (5.48) can be interpreted as
the unique fixed point of TRθ,τ,α : Rd → Rd defined by

TRθ,τ,α(s) = s− α
(
(s− y) + τ∇Rθ(s)

)
. (5.50)

Iterations of the operator (5.50) implement a gradient descent with stepsize α, which
converges if α ∈ (0, 2/(1 + τLθ)), where Lθ = Lip(∇Rθ) is the Lipschitz constant
of ∇Rθ. In the sequel, we always enforce this constraint on α. The gradient of the
generic convex-ridge expression (5.47) is given by

∇Rθ(s) = WTσ(Ws), (5.51)

where W = [w1 · · ·wp]
T ∈ Rp×d and σ is a pointwise activation function whose

components (σi = ψ′
i)
p
i=1 are Lipschitz continuous and increasing. In our imple-

mentation, the activation functions σi are shared within each channel of W. The
resulting gradient-step operator

TRθ,τ,α(s) = (1− α)s+ α
(
y − τWTσ(Ws)

)
(5.52)

corresponds to a one-hidden-layer convolutional NN with a bias and a skip connec-
tion. We refer to it as a gradient-step NN. The training of a gradient-step NN will
give a CRR-NN.

5.3.3 Characterization of Good Profile Functions

In this section, we provide theoretical results to motivate our choice of the profiles ψi
or, equivalently, of their derivatives σi = ψ′

i. This will lead us to the implementation
presented in Section 5.3.4.

Existence of Minimizers and Stability of the Reconstruction

The convexity of Rθ is not sufficient to ensure that the solution set in (5.46) is
nonempty for a noninvertible forward matrix H. With convex-ridge regularizers,
this shortcoming can be addressed under a mild condition on the functions ψi
(Proposition 5.5). The implications for our implementation are detailed in Sec-
tion 5.3.4.
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Proposition 5.5. Let H ∈ Rm×d and ψi : R→ R, i = 1, . . . , p, be convex functions.
If argmint∈R ψi(t) ̸= ∅ for all i = 1, . . . , p, then

∅ ≠ argmin
s∈Rd

1

2
∥Hs− y∥22 +

p∑
i=1

ψi(w
T
i s). (5.53)

Proof. Set Si = argmint∈R ψi(t). Then, each ridge ψi(w
T
i ·) partitions Rd into the

three (possibly empty) convex polytopes

• Ωi0 = {s ∈ Rd : wT
i s ∈ Si};

• Ωi1 = {s ∈ Rd : wT
i s ≤ inf Si};

• Ωi2 = {s ∈ Rd : wT
i s ≥ supSi}.

Based on these, we partition Rd into finitely many polytopes of the form
⋂p
i=1 Ω

i
mi

,
where mi ∈ {0, 1, 2}. The infimum of the objective in (5.53) must be attained in
at least one of these polytopes, say, P =

⋂p
i=1 Ω

i
mi

.
Now, we pick a minimizing sequence (sk)k∈N ⊂ P . Let M be the matrix whose

rows are the rows of H and the wT
i with mi ̸= 0. Due to the coercivity of ∥ · ∥22,

we get that Hsk remains bounded. As the ψi are convex, they are coercive on the
intervals (−∞, inf Si] and [supSi,+∞) and, hence, wT

i sk also remains bounded.
Therefore, the sequence (Msk)k∈N is bounded and we can drop to a convergent
subsequence with limit u ∈ ran(M). The associated set

Q = {s ∈ Rd : Ms = u} = {M†u}+ ker(M) (5.54)

is a closed polytope. It holds that

dist(sk, Q) = dist
(
M†Msk + Pker(M)(sk), Q

)
≤ dist(M†Msk,M

†u)→ 0 (5.55)

as k → +∞ and, thus, that dist(P,Q) = 0. The distance of the closed polytopes P
and Q is 0 if and only if P ∩Q ̸= ∅ [243, Theorem 1]. Note that ψi(w

T
i ·) is constant

on P if mi = 0. Hence, any s ∈ P ∩Q is a minimizer of (5.53).

The proof of Proposition 5.5 directly exploits the properties of ridge functions.
Whether it is possible to extend the result to more complex or even generic convex



142 Convergent Iterative Image-Reconstruction Methods

regularizers is not known to the authors. The assumption in Proposition 5.5 is
rather weak as neither the cost function nor the one-dimensional profiles ψi need
to be coercive. The existence of a solution for Problem (5.46) is a key step towards
the stability of the reconstruction map in the measurement domain, which is given
in Proposition 5.6.

Proposition 5.6. Let H ∈ Rm×d and ψi : R → R, i = 1, . . . , p, be convex, con-
tinuously differentiable functions with argmint∈R ψi(t) ̸= ∅. For any y1,y2 ∈ Rm
let

sq ∈ argmin
s∈Rd

1

2
∥Hs− yq∥22 +

p∑
i=1

ψi(w
T
i s) (5.56)

with q = 1, 2 be the corresponding reconstructions. Then,

∥Hs1 −Hs2∥2 ≤ ∥y1 − y2∥2. (5.57)

Proof. Proposition 5.5 guarantees the existence of sq. Since the objective in (5.53)
is smooth, it holds that HT (Hsq − yq) +∇R(sq) = 0. From this, we infer that

HTH(s1 − s2) + (∇R(s1)−∇R(s2)) = HT (y1 − y2). (5.58)

Taking the inner product with (s1 − s2) on both sides gives

∥Hs1 −Hs2∥22 + (s1 − s2)
T (∇R(s1)−∇R(s2))

=(H(s1 − s2))
T (y1 − y2). (5.59)

To conclude, we use the fact that the gradient of a convex map is monotone, i.e.
(s1 − s2)

T (∇R(s1) −∇R(s2)) ≥ 0, and apply the Cauchy-Schwarz inequality to
estimate

(H(s1 − s2))
T (y1 − y2) ≤ ∥Hs1 −Hs2∥∥y1 − y2∥. (5.60)

Expressivity of Profile Functions

The gradient-step NN TRθ,τ,α introduced in (5.52) is the key component of our
training procedure. Here, we investigate its expressivity depending on the choice
of the activation functions σi used to parametrize ∇Rθ.
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Let C0,1
↑ (R) be the set of scalar Lipschitz-continuous and increasing functions

on R, and let LSm↑ (R) be the subset of increasing linear splines with at most m
knots. We also define

E(Rd) =
{
WTσ(W·) : W ∈ Rp×d, σi ∈ C0,1

↑ (R)
}

(5.61)

and, further, for any Ω ⊂ Rd,

E(Ω) =
{
f |Ω : f ∈ E(Rd)

}
. (5.62)

In the following, we set ∥f∥C(Ω) := sups∈Ω ∥f(s)∥ and ∥f∥C1(Ω) := sups∈Ω ∥f(s)∥+
sups∈Ω ∥Jf (s)∥.

The popular ReLU activation function is Lipschitz-continuous and increasing.
Unfortunately, it comes with limited expressivity, as shown in Proposition 5.7.

Proposition 5.7. Let Ω ⊂ Rd be compact with a nonempty interior. Then, the set{
WTReLU(W · −b) : W ∈ Rp×d,b ∈ Rp

}
(5.63)

is not dense with respect to ∥ · ∥C(Ω) in E(Ω).

Proof. Since Ω has a nonempty interior, there exists v ∈ Rd with ∥v∥2 = 1, a ∈ R,
and δ > 0 such that for lv : R→ Rd with lv(t) = tv, it holds that lv((a−δ, a+δ)) ⊂
Ω. Now, we prove the statement by contradiction. If the set (5.63) is dense in E(Ω),
then the set {

(Wv)TReLU(Wv · −b) : W ∈ Rp×d,b ∈ Rp
}

=

{ p∑
i=1

wiReLU(wi · −bi) : wi, bi ∈ R
}

(5.64)

is dense in E((a− δ, a+ δ)). Note that all functions f in (5.63) can be rewritten in
the form

f(x) =

p1∑
i=1

ReLU(wix− bi) +
p2∑
i=1

(−ReLU(−w̃ix− b̃i)), (5.65)

where wi, w̃i ∈ R+, bi, b̃i ∈ R, and p1 + p2 = p. Every summand in this decompo-
sition is an increasing function. For the continuous and increasing function

g : t 7→ ReLU(t− a+ δ/2)− ReLU(t− a− δ/2), (5.66)
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the density implies that there exists f of the form (5.65) satisfying ∥g−f∥C((a−δ,a+δ)) ≤
δ/16. The fact that g(a+δ/2) = g(a+δ) implies that (f(a+δ)−f(a+δ/2)) ≤ δ/8.
In addition, it holds that

f(a+ δ)− f(a+ δ/2)

≥
p1∑
i=1

ReLU
(
wi(a+ δ)− bi

)
− ReLU

(
wi(a+ δ/2)− bi

)
≥

∑
{i:bi≤wi(a+δ/2)}

wi(a+ δ − a− δ/2)

=
∑

{i:bi≤wi(a+δ/2)}

wiδ/2. (5.67)

Hence, we conclude that
∑

{i:bi≤wi(a+δ/2)} wi ≤ 1/4. Similarly, we can show that∑
{i:b̃i≥w̃i(δ/2−a)} w̃i ≤ 1/4. Using these two estimates, we get that

7

8
δ = g(a+ δ/2)− g(a− δ/2)− 1

8
δ

≤ f(a+ δ/2)− f(a− δ/2)

≤
∑

{i:bi≤wi(a+δ/2)}

δwi +
∑

{i:b̃i≥w̃i(δ/2−a)}

δw̃i ≤
δ

2
, (5.68)

which yields a contradiction. Hence, the set (5.63) cannot be dense in E(Ω).

Remark 5.1. Any increasing linear spline s with one knot is fully defined by the
knot position t0 and the slope on its two linear regions (s− and s+). This can be ex-
pressed as s = uTReLU(u(t− t0)) with u = (

√
s+,−√s−). Hence, among one-knot

spline activation functions, the ReLU already achieves the maximal representational
power for CRR-NNs. We infer that increasing PReLU and Leaky-ReLU induce the
same limitations as the ReLU when plugged into CRR-NNs.

In contrast, with Proposition 5.8, the set E(Ω) can be approximated using in-
creasing linear-spline activation functions.

Proposition 5.8. Let Ω ⊂ Rd be compact and m ≥ 2. Then, the set{
WTσ(W·) : W ∈ Rp×d, σi ∈ LSm↑ (R)

}
(5.69)



5.3 A Neural-Network-Based Convex Regularizer 145

is dense with respect to ∥ · ∥C(Ω) in E(Ω).
Proof. First, we consider the case d = 1. By rescaling and shifting, we can assume
that S ⊂ [0, 1] without loss of generality. Let f ∈ C0,1

↑ ([0, 1]), and φn be the linear-
spline interpolator of f at locations 0, 1/2n, . . . , (1− 1/2n), 1. Since f is increasing
and φn is piecewise linear, φn is also increasing. Further, we get that

∥f − φn∥C([0,1]) ≤ max
k∈{1,...,2n}

f(k/2n)− f((k − 1)/2n). (5.70)

Continuous functions on compact sets are uniformly continuous, which directly
implies that ∥f −φn∥C([0,1]) → 0. Now, we represent φn as a linear combination of
increasing linear splines with 2 knots

φn(x) = f(0) +

2n∑
k=1

ak,ng
(
2n · −(k − 1)

)
, (5.71)

where ak,n = (f(k/2n)− f((k − 1)/2n)) and g is given by

g(x) =


0, x ≤ 0

x, 0 < x ≤ 1

1, otherwise.

(5.72)

Finally, (5.71) can be recast as φn(x) = wT
nσn(xwn), where each σn,i is an in-

creasing linear spline with 2 knots and w ∈ R2n . This concludes the proof for
d = 1.

Now, we extend this result to any d ∈ N+. Let Φ : Rd → Rd be given by s 7→
WTσ(Ws) with components σi ∈ C0↑(R). Let Si = {wT

i s : s ∈ Ω}, where wi ∈ Rd
is the ith row of W. Using the result for d = 1, each σi can be approximated
in C(Si) by a sequence of functions (uTn,iφn(un,i·))n∈N, where φn has components

φn,i ∈ LS2↑(R) and un,i are vectors with a size that does not dependend on i.
Further, the un,i can be chosen such that the jth component is only nonzero for
a single i. Let Un be the matrix whose columns are un,i. Then, we directly have
that

lim
n→∞

max
s∈{y∈Rd:yi∈Si}

∥∥UT
nφn(Uns)− σ(s)

∥∥
2
= 0. (5.73)

Hence, the sequence of functions ((UnW)Tφn(UnW·))n∈N converges toΦ in C(Ω).
This concludes the proof.



146 Convergent Iterative Image-Reconstruction Methods

In the end, Propositions 5.7 and 5.8 imply that using linear-spline activation
functions instead of the ReLU for the σi enables us to approximate more convex
regularizers Rθ.

Corollary 5.1. Let Ω ⊂ Rd be convex and compact with a nonempty interior.
Then, the regularizers of the form (5.47) with Jacobians of the form (5.69) are
dense in { p∑

i=1

ψi(w
T
i s) : ψi ∈ C1,1(R) convex,wi ∈ Rd

}
(5.74)

with respect to ∥ · ∥C1(Ω). The density does not hold if we only consider regularizers
with Jacobians of the form (5.63).

Proof. Let R be in (5.74). Consequently, its Jacobian is in E(Ω). Due to Propo-
sition 5.7, the regularizers with Jacobians of the form (5.63) cannot be dense with
respect to ∥·∥C1(Ω). Meanwhile, by Proposition 5.8, we can choose s0 ∈ Ω and corre-
sponding regularizers Rn of the form (5.47) with JRn

∈ (5.69), ∥JRn
−JR∥C(Ω) →

0 as n → ∞, and Rn(s0) = R(s0). Now, the mean-value theorem readily implies
that ∥Rn −R∥C1(Ω) → 0 as n→∞.

Motivated by these results, we propose to parameterize the σi with learnable
linear-spline activation functions. This results in profiles ψi that are splines of
degree 2, being piecewise polynomials of degree 2 with continuous derivatives.

5.3.4 Implementation

Training a Multi-Gradient-Step Denoiser

Let {sm}Mm=1 be a set of clean images and let {ym}Mm=1 = {sm + nm}Mm=1 be their
noisy versions, where nm is the noise realisation. Given a loss function L, the
natural procedure to learn the parameters of Rθ based on (5.48) is to solve

θ∗
t , τ

∗
t ∈ argmin

θ,τ

M∑
m=1

L
(
TtRθ,τ,α

(ym), sm
)

(5.75)

for the limiting case t =∞ and an admissible stepsize α. Here, TtRθ,τ,α
denotes the

t-fold composition of the gradient-step NN given in (5.52). In principle, one can
optimize the training problem (5.75) with t =∞. This forms a bilevel optimization
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problem that can be handled with implicit differentiation techniques [234, 244,
245, 246]. However, it turns out that it is unnecessary to fully compute the fixed-
point T∞

Rθ,τ,α
(ym) to learn Rθ in our constrained setting. Instead, we approximate

T∞
Rθ,τ,α

(ym) in a finite number of steps. This specifies the t-step denoiser TtRθ,τ,α
,

which is trained such that

TtRθ,τ,α
(ym) ≃ sm (5.76)

for m = 1, . . . ,M . This corresponds to a partial minimization of (5.48) with initial
guess ym or, equivalently, as the unfolding of the gradient-descent algorithm for
t iterations with shared parameters across iterations [247, 47]. For small t, this
yields a fast-to-evaluate denoiser. Since it is not necessarily a proximal operator,
its interpretability is, however, limited.

Once the gradient-step NN is trained, we can plug the corresponding Rθ into
(5.48), and fully solve the optimization problem. This yields an interpretable prox-
imal denoiser. In practice, turning a t-step denoiser into a proximal one requires
the adjustment of τ and the addition of a scaling parameter, as described in Sec-
tion 5.3.4. Our numerical experiments in Section 5.3.6 indicate that the number of
steps t used for training the multi-gradient-step denoiser has little influence on the
test performances of both the t-step and proximal denoisers. Hence, training the
model within a few minutes is possible. Note that our method bears some resem-
blance with the variational networks (VN) proposed in [240], but there are some
fundamental differences. While the model used in [240] also involves a sum of con-
vex ridges with learnable profiles, these are parameterized by radial-basis functions
and only the last step of the gradient descent is included in the forward pass. The
authors of [240] observed that an increase in t deters the denoising performances,
which is not the case for our architecture. More differences are outlined in Section
5.3.4.

Implementation of the Constraints

Our learning of the t-step denoiser is constrained as follows.

1. The activation functions σi must be increasing (convexity constraint on ψi).

2. The activation functions σi must take the value 0 somewhere (existence con-
straint).



148 Convergent Iterative Image-Reconstruction Methods

3. The stepsize in (5.52) should satisfy α ∈ (0, 2/(1+τLθ)) (convergent gradient-
descent).

Since the methods to enforce these constraints can have a major impact on the final
performance, they must be designed carefully.

Monotonic Splines Here, we address Constraints (i) and (ii) simultaneously.
Similar to our previous contributions in Sections 5.1 and 5.2, we choose the activa-
tion functions σi to be learnable linear splines represented in a B-spline basis (see
Appendix 5.4.2 for more details) with K uniform knots νk = (k − (K + 1)/2)T ,
k = 1, . . . ,K, where T is the spacing of the knots, and learnable B-spline coefficients
(values at the knots) ci ∈ RK . However, instead of the linear extrapolations de-
scribed in Appendix 5.4.2, we extend σi by the the constant value [ci]1 on (−∞, ν1]
and [ci]K on [νK ,+∞). This choice results in a linear extension for the correspond-
ing indefinite integrals that appear for the regularizer Rθ in (5.48).

Let D ∈ R(K−1)×K be the one-dimensional finite-difference matrix such that
[Dci]k = [ci]k+1 − [ci]k for k = 1, . . . , (K − 1). As σi is piecewise-linear, it holds
that

σi is increasing⇔ Dci ≥ 0. (5.77)

In order to optimize over {c ∈ RK : Dc ≥ 0}, we reparameterize the linear splines
with Pinc(c

i), where
Pinc(·) = CD†ReLU(D ·) (5.78)

is a nonlinear projection operator onto the feasible set. There, D† denotes the
Moore-Penrose inverse of D and C = (IdK − 1KeT(K+1)/2) shifts the output such

that the ((K + 1)/2)th element is zero. In effect, this projection simply preserves
the nonnegative finite differences between entries in ci and sets the negative ones
to zero. As the associated profiles ψi are convex and satisfy ψ′

i(0) = σi(0) = 0,
Proposition 5.5 guarantees the existence of a solution for Problem (5.46).

The proposed parameterization of the monotonic splines has the advantage to
use unconstrained trainable parameters ci. The gradient of the objective in (5.75)
with respect to ci directly takes into account the constraint via Pinc. This approach
differs significantly from the more standard projected gradient descent—as done in
[240] to learn convex profiles—where the ci would be projected onto {ci : Dci ≥ 0}
after each gradient step. While the latter routine is efficient for convex problems,
we found it to perform poorly for the non-convex problem (5.75). For an efficient
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forward and backward pass with auto-differentiation, Pinc is implemented with
the cumsum function instead of an explicit construction of the matrix D†, and the
computational overhead is very small.

Sparsity-Promoting Regularization The use of learnable activation functions
can lead to overfitting and can weaken the generalizability to arbitrary operators
H. Hence, the training procedure ought to promote simple linear splines. Here, it
is natural to promote the better-performing splines with the fewest knots. This is
achieved by penalizing the second-order total variation ∥LPinc(ci)∥1 of each spline,
where L ∈ R(K−2)×K is the second-order finite-difference matrix. The final training
loss then reads

M∑
m=1

L
(
TtRθ,τ,α

(ym), sm
)
+ λ

p∑
i=1

∥LPinc(ci)∥1, (5.79)

where λ ∈ R+ allows one to tune the strength of the regularization.

Convergent Gradient Steps Constraint (iii) guarantees that the t-fold com-
position of the gradient-step NN TtRθ,τ,α

computes the actual minimizer of (5.48)
for t → ∞. Therefore, it should be enforced in any sensible training method. In
addition, it brings stability to the training. To fully exploit the model capacity,
even for small t, we need a precise upper-bound for Lip(∇Rθ). The estimate that
we provide in Proposition 5.9 is sharper than the classical bound derived from the
sub-multiplicativity of the Lipschitz constant for compositional models. It is easily
computable as well.

Proposition 5.9. Let Lθ denote the Lipschitz constant of ∇Rθ(s) = WTσ(Ws)
with W ∈ Rp×d and σi ∈ C0,1↑ (R). With the notation Σ∞ = diag(∥σ′

1∥∞, . . . , ∥σ′
p∥∞)

it holds that
Lθ ≤ ∥WTΣ∞W∥ = ∥

√
Σ∞W∥2, (5.80)

which is tighter than the naive bound

Lθ ≤ Lσ∥W∥2. (5.81)

Proof. The bound (5.81) is a standard result for compositional models. Next, we
note that the Hessian of Rθ reads

HRθ
(s) = WTΣ(Ws)W, (5.82)
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whereΣ(z) = diag(σ′
1(z1), . . . , σ

′
p(zp)). Further, it holds that Lθ ≤ sups∈Rd ∥HRθ

(s)∥.
Since the functions σi are increasing, we have for every s ∈ Rp that Σ∞−Σ(Ws) ⪰
0 and, consequently,

WT
(
Σ∞ −Σ(Ws)

)
W ⪰ 0. (5.83)

Using the Courant-Fischer theorem, we now infer that the largest eigenvalue of
WTΣ∞W is greater than that of WTΣ(Ws)W.

The bounds (5.80) and (5.81)are in agreement when the activation functions
are identical, which is typically not the case in our framework. For the 14 NNs
trained in Section 5.3.6, we found that the improved bound (5.80) was on average
3.2 times smaller than (5.81). As (5.80) depends on the parameters of the model, it
is critical to embed the computation into the forward pass. Otherwise, the training
gets unstable. This is done by first estimating the normalized eigenvector u corre-
sponding to the largest eigenvalue of WTΣ∞W via the power-iteration method in
a non-differentiable way, for instance under the torch.no grad() context-manager.
Then, we directly plug the estimate Lθ ≃ ∥WTΣ∞Wu∥ in our model and hence
embed it in the forward pass. This approach is inspired by the spectral-normalization
technique proposed in [211], which is a popular and efficient way to enforce Lips-
chitz constraints on fully connected linear layers. Note that a similar simplification
is also proposed and studied in the context of deep equilibrium models [248]. In
practice, the estimate u is stored so that it can be used as a warm start for the
next computation of Lθ.

From Gradients to Potentials

To recover the regularizerR from its gradient∇R, one has to determine the profiles
ψi, which satisfy ψ′

i = σi. Hence, each ψi is a piecewise polynomial of degree 2
with continuous derivatives, i.e. a spline of degree two. These can be expressed
as a weighted sum of shifts of the rescaled causal B-spline of degree 2 [249], more
precisely as

ψi =
∑
k∈Z

dikβ
2
+

( · − k
∆

)
. (5.84)

To determine the coefficients (dik)k∈Z, we use the fact that (β2
+)

′(k) = (δ1,k − δ2,k),
where δ is the Kronecker delta, see [249] for details. Hence, we obtain that dik −
dik−1 = [Pinc(c

i)]k, which defines (dik)k∈Z up to a constant. This constant can be
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Algorithm 3 FISTA [23] to solve (5.85)

Input: s0 ∈ Rd, y ∈ Rm, τ ≥ 0, µ > 0
Set k = 0, z0 = s0, α = 1/(µτLip(∇R) + ∥H∥2), t0 = 1
while tolerance not reached do

sk+1 = (zk − α(HT (Hzk − y) + τ∇R(µzk)))+
tk+1 = (1 +

√
4t2k + 1)/2

zk+1 = sk+1 +
tk−1
tk+1

(sk+1 − sk)

k ← k + 1
end while
Output: sk

set arbitrarily as it does not affect ∇R. Due to the finite support of β2
+, one can

efficiently evaluate ψi and then R.

Boosting the Universality of the Regularizer

The learnt Rθ depends on the training task (denoising) and on the noise level. To
solve a generic inverse problem, in addition to the regularization strength τ , we
propose to incorporate a tunable scaling parameter µ ∈ R+ and to compute

argmin
s∈Rd

1

2
∥Hs− y∥22 + τ/µRθ(µs). (5.85)

While the scaling parameter is irrelevant for homogeneous regularizers such as the
Tikhonov and TV, it is known to boost the performance within the PnP framework
when applied to the input of the denoiser [250]. During the training of t-step
denoisers, we also learn a scaling parameter µ by letting the gradient step NN
(5.50) become

TRθ,τ,µ,α(s) = s− α
(
(s− y) + τ∇Rθ(µs)

)
, (5.86)

with now α < 2/(1 + τµLip(∇Rθ)).

Reconstruction Algorithm

The objective in (5.85) is smooth with Lipschitz-continuous gradients. Hence, a re-
construction can be computed through gradient-based methods. We found the fast
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Table 5.14: Properties of different regularization frameworks.

Explicit Provably Universal Shallow Smooth
cost convergent reg.

TV ✓ ✓ ✓ ✓ ✗
ACR ✓ ✓ ✗ ✗ ✗
DnICNN ✓ ✓ ✓ ✗ ✓
PnP-βCNN ✗ ✓ ✓ ✗ -
PnP-DnCNN ✗ ✗ ✓ ✗ -
CRR-NN ✓ ✓ ✓ ✓ ✓

iterative shrinkage-thresholding algorithm (FISTA, Algorithm 3) to be well-suited
to the problem while it also allows us to enforce the positivity of the reconstruc-
tion. Other efficient algorithms for CRR-NNs include the adaptive gradient descent
(AdGD) [251] and its proximal extension [252]; both benefit from a stepsize based
on an estimate of the local Lipschitz constant of ∇R instead of a more conservative
global one.

5.3.5 Connections to Deep-Learning Approaches

Our proposed CRR-NNs have a single nonlinear layer, which is rather unusual in
an the era of deep learning. To further explore their theoretical properties, we
briefly discuss two successful deep-learning methods, namely, the PnP and the
explicit design of convex regularizers, and state their most stable and interpretable
versions. This will clarify the notions of strict convergence, interpretability, and
universality. All the established comparisons are synthesized in Table 5.14.

Plug-and-Play and Averaged Denoisers

Convergent Plug-and-Play The training procedure proposed for CRR-NNs
leads to a convex regularizer Rθ, whose proximal operator (5.48) is a good denoiser.
Conversely, the proximal operator can be replaced by a powerful denoiser D in
proximal algorithms, which is referred to as PnP (see Sections 2.2.3 (pg.) and 5.2.1
for an introduction to PnP). In the PnP-FBS algorithm derived from (5.46) [87, 23],
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Figure 5.15: The distance between the two noisy images (x1 + ϵ1) and (x2 + ϵ2)
can be smaller than that between their clean versions x1 and x2. This limits
the performance of a nonexpansive denoiser D since ∥D(x1 + ϵ1) − D(x2 + ϵ2)∥ ≤
∥x1 + ϵ1 − (x2 + ϵ2)∥ < ∥x1 − x2∥ in the scenario depicted.

the reconstruction is carried out iteratively via

sk+1 = D
(
sk − αHT (Hsk − y)

)
, (5.87)

where α is the stepsize and D: Rd → Rd is a generic denoiser. As mentioned in
Section 5.2.2, a standard set of sufficient conditions16 to guarantee convergence of
the iterations (5.87) is that

1. D is averaged, namely D = βN+ (1− β)Id where β ∈ (0, 1) and N: Rn → Rn
is a nonexpansive mapping;

2. α ∈ [0, 2/∥H∥2);
3. the update operator in (5.87) has a fixed point.

In general, Condition (i) is not sufficient to ensure that D is the proximal opera-
tor of some convex regularizer R. Hence, its interpretability is still limited. Beyond
convergence, it is known that averaged denoisers with β ≤ 1/2 yield a stable recon-
struction map in the measurement domain (see Section 5.2.2), in the same sense as
given in Proposition 5.6 for CRR-NNs.

Constraint vs Performance As discussed in [201, 66], the performance of the
denoiser D is in direct competition with its averagedness. A simple illustration of
this issue is provided in Figure 5.15. Unsurprisingly, Condition (i) is not met by any
learnt state-of-the-art denoiser, and it is usually also relaxed in the PnP literature.

For instance, it is common to use non-1-Lipschitz learning modules, such as
batch normalization [57], or to only constrain the residual (Id−D) to be nonexpan-
sive, which enables one to train a nonexpansive NN in a residual way [57, 253, 55],

16Here, H can be noninvertible; otherwise, weaker conditions exist [57].
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with the caveat that Lip(D) can be as large as 2. Another recent approach consists
of penalizing during training either the norm of the Jacobian of D at a finite set of
locations [254, 66] or of another local estimate of the Lipschitz constant [255, 246].
Interestingly, even slightly relaxed frameworks usually yield significant improve-
ments in the reconstruction quality. However, they do not provide convergence
guarantees for ill-posed inverse problems, which is problematic for sensitive appli-
cations such as biomedical imaging.

Averaged Deep NNs To leverage the success of deep learning, N is typically
chosen as a deep CNN of the form17

N = CK ◦ σ ◦ · · · ◦C2 ◦ σ ◦C1, (5.88)

where Ck are learnable convolutional layers and σ is the activation function [211,
57]. To meet Condition (i), N must be nonexpansive, which one usually achieves
by constraining Ck and σ to be nonexpansive. This is predicated on the sub-
multiplicativity of the Lipschitz constant with respect to composition; as in Lip(f ◦
g) ≤ Lip(f)Lip(g). Unfortunately, this bound is not sharp and may grossly overes-
timate Lip(f ◦g). For deep models, this overestimation aggravates since the bound
is used sequentially. Therefore, for averaged NNs, the benefit of depth is unclear
because the gain of expressivity brought by the many layers is reduced by a poten-
tially very pessimistic Lipschitz-constant estimate. Put differently, these CNNs can
easily learn the zero function while they struggle to generate mappings with a Lip-
schitz constant close to one. For the same reason, the learning process is also prone
to vanishing gradients in this constrained setting. Under Lipschitz constraints, the
zero-gradient region of the popular ReLU activation function causes provable lim-
itations [214, 212, 256]. As we saw in Section 5.2, some of these can be resolved
by the use of other activation functions such as 1-Lipschitz learnable linear splines
instead.

In this work, CRR-NNs are compared against two variants of PnP.

• PnP-DnCNN corresponds to the popular implementation given in [57].
The denoiser is a DnCNN with 1-Lipschitz linear layers (the constraints

17The benefit of standard skip connections combined with the preservation of the nonexpan-
siveness of the NN is unclear.
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are therefore enforced on the residual map only) and unconstrained batch-
normalization modules. Hence this method has no convergence and stability
guarantees, especially for ill-posed inverse problems.

• PnP-βCNN (LLS) corresponds to PnP equipped with a provably averaged
denoiser constructed from a 1-Lipschitz network with learnable linear spline
(LLS) activation functions (as in Section 5.2). This method comes with similar
guarantees as CRR-NNs but less interpretability. It is included to convey
the message that the standard way of enforcing Lipschitz constraints affects
expressivity. With that in mind, CRR-NNs provide a way to overcome this
limitation.

Construction of Averaged Denoisers from CRR-NNs The training of CRR-
NNs offers two ways to build averaged denoisers. Since proximal operators are half-
averaged, we directly get that the proximal denoiser (5.48) is an averaged operator.
For the t-step denoiser, the following holds.

Proposition 5.10. The t-step denoiser (5.76) is averaged for α ∈ [0, 2/(2+ τLθ)]
with Lθ = Lip(∇Rθ).

Proof. The t-step denoiser is built from the gradient-step operator TRθ,τ,α. Here,
we use the more explicit notation

T(s,y) = s− α((s− y) + τ∇Rθ(s)). (5.89)

This makes explicit the dependence on y and, for simplicity, the dependence on
Rθ, τ , and α are omitted. It is known that T is averaged with respect to s for
α ∈ (0, 2/(1+ τLθ)). This ensures convergence of gradient descent, but it does not
characterize the denoiser itself. The t-step denoiser depends on the initial value
s0 = y and is determined by the recurrence relation sk+1 = T(sk,y). For the map
Lk : y 7→ sk, it holds that Lk+1 = U◦Lk+αId, where U = Id−α(Id+τ∇Rθ). The
Jacobian of U reads JU = I− α(I+ τHRθ

) and satisfies that ((1− α)− ατLθ)I ⪯
JU ⪯ (1− α)I. From this, we infer that

Lip(U) ≤ max
(
ατLθ − (1− α), 1− α

)
. (5.90)

Since α ≤ 2/(2 + τLθ), we then get that Lip(U) ≤ (1 − α). Hence, Lip(U ◦ Lk) ≤
(1− α)Lip(Lk). Since L0 = Id is averaged, the same holds by induction for all the
t-step denoisers Lt.
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Note that for α ∈ (2/(2+τLθ), 2/(1+τLθ)), the 1-step denoiser is also averaged
but, for 1 < t < +∞, it remains an open question. The structure of t-step and
proximal denoisers differs radically from averaged CNNs as in (5.88). For instance,
the t-step denoiser uses the noisy input y in each layer. Remarkably, these skip
connections preserve the averagedness of the mapping. While constrained deep
CNNs struggle to learn mappings that are not too contractive, both proximal and
t-step denoisers can easily reproduce the identity by choosing Rθ = 0. This seems
key to account for the fact that the proposed denoisers outperform averaged deep
NNs, while they can be trained two orders of magnitude faster, see Section 5.3.6.

Deep Convex Regularizers

Another approach to leverage deep-learning-based priors with stability and conver-
gence guarantees consists of learning a deep convex regularizer R. These priors are
typically parameterized with an ICNN, which is a NN with increasing and convex
activation functions along with positive weights for some linear layers [257]. There
exist various strategies to train the ICNN.

The adversarial convex regularizer (ACR) framework [231, 258] relies on the
adversarial training proposed in [236]. The regularizer is learnt by minimizing its
value on clean images and maximizing its value on unregularized reconstructions.
This allows for learning non-smooth R and also avoids bilevel optimization.

A key difference with CRR-NNs and PnP methods is that ACR is modality-
depend (it is not universal). In addition, with R being non-smooth, it is challenging
to exactly minimize the cost function, but the authors of [231, 258] did not find
any practical issues in that matter using gradient-based solvers. To boost the
performance of R, they also added a sparsifying filter bank to the ICNN, namely, a
convex term of the form ∥Us∥1, where the linear operatorU is made of convolutions
learnt conjointly with the ICNN.

In [64], the regularizer is trained so that its gradient step is a good blind Gaus-
sian denoiser. There, the authors use ELU activations in the ICNN18 to obtain a
smooth R.

The aforementioned ICNN-based frameworks [231, 258, 64] have major differ-
ences with CRR-NNs: (i) they typically require orders of magnitude more param-
eters; (ii) the computation of ∇R, used to solve inverse problems, requires one to

18The authors also explore non-convex regularization but they offer no guarantees on computing
the global minimum.
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back-propagate through the deep CNN which is time-consuming; (iii) the role of
each parameter is not interpretable because of the depth of the model (see Section
5.3.6). As we shall see, CRR-NNs are much faster to train and tend to perform
better (see Section 5.3.6).

5.3.6 Experimental Results

Training of CRR-NNs

The CRR-NNs are trained on a Gaussian-denoising task with noise levels σ ∈
{5/255, 25/255}. The same procedure as in [154, 57] is used to form 238,400 patches
of size (40× 40) from 400 images of the BSD500 dataset [227]. For validation, the
same 12 images as in [154, 57] are used. The weights W in Rθ are parameterized as
the composition of two zero-padded convolutions with kernels of size (7×7) and with
8 and 32 output channels, respectively. This composition of two linear components,
although not more expressive theoretically, facilitates the patch-based training of
CRR-NNs. For inference, the convolutional layer can then be transformed back to a
single convolution. Similar to [234], the kernels of the convolutions are constrained
to have zero mean. Lastly, the linear splines have K = 21 equally distant knots
with T = 0.01, and the sparsifying regularization parameter is λ = 2× 10−3(255σ).
We initially set ci = 0.

The CRR-NNs are trained for 10 epochs with t ∈ {1, 2, 5, 10, 20, 30, 50} gradient
steps. For this purpose, the ℓ1 loss is used for L along with the Adam optimizer
with its default parameters (β1, β2) = (0.9, 0.999), and the batch size is set to 128.
The learning rates are decayed with rate 0.75 at each epoch and initially set to 0.05
for the parameters τ and µ, to 10−3 for W, and to 5× 10−5 for ci.

Recall that for a given t, the training yields two denoisers.

• t-Step Denoiser: This corresponds to TtRθ,τ,α
and is the denoiser optimized

during training. It is natural to compare it to properly constrained PnP
methods based on averaged deep denoisers as in [157, 259], which in general
also do not correspond to minimizing an energy.

• Proximal Denoiser: The learnt regularizer Rθ is plugged into (5.85) with
H = I, and the solution is computed using Algorithm 3 with small tolerance
(10−6 for the relative change of norm between consecutive iterates). The pa-
rameters τ and µ are tuned on the validation dataset with the coarse-to-fine
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Table 5.15: Convex models and averaged denoisers tested on BSD68.

σ = 5/255 σ = 25/255
TV*,‡ [260] 36.41 27.48
Higher-order MRFs*,‡ [234] NA 28.04
VN1,t†[240] NA 27.69
LLS-CNNσ,β

‡ 36.86 27.93
DISTA

‡ [259] 36.54 NA
GS-DnICNN†[64] 36.85 27.76
DADMM

‡[259] 36.62 NA
CRR-NN-ReLU (t-step)†,‡ 35.50 26.75
CRR-NN (t-step)†,‡ 36.97 28.12
CRR-NN (proximal)*,‡ 36.96 28.11

* Full minimization of a convex function
† Partial minimization of a convex function
‡ Stable steps (averaged layers)

method given in Appendix 5.4.7. This important step enables us to compen-
sate for the gap between (i) gradient-step training and full minimization, and
(ii) training and testing noise levels, if different.

Denoising: Comparison with Other Methods

Although not the final goal, image denoising yields valuable insights into the train-
ing of CRR-NNs. It also enables us to compare CRR-NNs to the related methods
given in Table 5.15 on the standard BSD68 test set.

Now, we briefly give the implementation details of the various frameworks.
CRR-NN-ReLU models are trained in the same way as CRR-NNs, but with ReLU
activation functions (with learnable biases) instead of linear splines. To emulate
[64], we train a DnICNN with the same architecture (ELU activations, 6 layers,
and 128 channels per layer, 745 344 parameters) as a gradient step denoiser for 200
epochs, separately for σ ∈ {5/255, 25/255}, and refer to it as GS-DnICNN. The
averaged deep CNN denoiser LLS-CNNσ,β is constructed as LLS-CNNσ,β = βDσ +
(1−β)Id, where Dσ is the nonexpansive LLS network (with λ = 10−6) from Section
5.2 trained on the same denoising task as the CRR-NNs with σ ∈ {5/255, 25/255}
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Figure 5.16: Test denoising performance of CRR-NNs for noise level σ = 5/255 and
σ = 25/255 versus the number of gradient steps used for training, the denoiser type
(t-step vs proximal), and the noise level used for training.

and β = 0.999. The other reported frameworks do not provide public implemen-
tations. Therefore, the numbers are taken from the corresponding papers. Lastly,
the TV denoising is performed with the algorithm proposed in [260]. The results
for all models are presented in Table 5.15 and Figure 5.16.

• t-Step/Averaged Denoisers: The CRR-NN-ReLU models perform poorly
and confirms that ReLU is not well-suited to our setting. This limitation
of ReLU was also observed in our experiments of Section 5.2.5 in the con-
text of 1-Lipschitz denoisers. Our models improve over the gradient-step
denoisers parameterized with ICNNs, even though the latter has many more
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parameters. The CRR-NN implementation improves over the special instance
VN1,t of variational-network denoisers proposed in [240], which also partially
minimizes a convex cost. With a convex model similar to CRR-NNs (see
Section 5.3.4 for a discussion), it is shown that an increase in t decreases the
performance (reported as VN1,t

24 in [240, Figure 5]). The model VN1,t can-
not compete with the proximal denoiser trained with bilevel optimization in
[234]. By contrast, for σ = 25/255 we obtain an improvement over VN1,t of
0.2dB for t = 1, and more than 0.6dB as t increases. Note that, in [240],
the layers of the t-step VN1,t denoiser are not guaranteed to be averaged.
Our models also outperform the averaged LLS-CNNσ,β (+0.1dB for σ = 5,
+0.2dB for σ = 25/255), and the two averaged denoisers DISTA and DADMM

[259] (+0.4/+0.3dB for σ = 5/255). In their simplest form, the latter are
built with fixed linear layers (patch-based wavelet transforms) and learnable
soft-thresholding activation functions.

• Proximal Denoisers: Our models yield slight improvements over the higher-
order Markov random field (MRF) model in the pioneering work [234] (28.04dB
vs 28.11dB for σ = 25/255). With a similar architecture—but with fixed
smoothed absolute value ψi—the latter approach involves a computationally
intensive bilevel optimization with second-order solvers. Here, we show that
a few gradient steps for training already suffice to be competitive. This leads
to ultrafast training and bridges the gap between higher-order MRF models
and VN denoisers. Lastly, we remark that our proximal denoisers are robust
to a mismatch in the training and testing noise levels.

Biomedical Image Reconstruction

The six CRR-NNs trained on denoising with t ∈ {1, 10, 50} and σ ∈ {5/255, 25/255}
are now used to solve the MRI and CT reconstruction problems from Section 5.2.5.

MRI The ground-truth images for our MRI experiments are proton-density weighted
knee MR images from the fastMRI dataset [228] with fat suppression (PDFS) and
without fat suppresion (PD). They are generated from the fully-sampled k-space
data. For each of the two categories (PDFS and PD), we create validation and
test sets consisting of 10 and 50 images, respectively, where every image is normal-
ized to have a maximum value of one. We consider both single-coil and multi-coil



5.3 A Neural-Network-Based Convex Regularizer 161

setups with several acceleration factors. In the single-coil setup, we simulate the
measurements by masking the Fourier transform of the ground-truth image. In the
multi-coil case, we consider 15 coils, and the measurements are simulated by sub-
sampling the Fourier transforms of the multiplication of the ground-truth images
with 15 complex-valued sensitivity maps (these were estimated from the raw k-space
data using the ESPIRiT algorithm [229] available in the BART toolbox [230]). For
both cases, the subsampling in the Fourier domain is performed with a Cartesian
mask that is specified by two parameters: the acceleration Macc ∈ {2, 4, 8} and the
center fraction Mcf = 0.32/Macc. A fraction of Mcf columns in the center of the k-
space (low frequencies) is kept, while columns in the other region of the k-space are
uniformly sampled so that the expected proportion of selected columns is 1/Macc.
In addition, Gaussian noise with standard deviation σn = 2× 10−3 is added to the
real and imaginary parts of the measurements. The PSNR and SSIM values for
each method are computed on the (320× 320) centered ROI.

CT We target the CT experiment proposed in [231]. The data consist of human
abdominal CT scans for 10 patients provided by Mayo Clinic for the low-dose CT
Grand Challenge [232]. The validation set consists of 6 images taken uniformly from
the first patient of the training set from [231]. We use the same test set as [231],
more precisely, 128 slices with size (512× 512) that correspond to one patient. The
projections of the data are simulated using a parallel-beam acquisition geometry
with 200 angles and 400 detectors. Lastly, Gaussian noise with standard deviation
σn ∈ {0.5, 1, 2} is added to the measurements.

Reconstruction Frameworks A reconstruction with isotropic TV regulariza-
tion is computed with FISTA [23], in which proxR is computed as in [26] to enforce
positivity. We also consider reconstructions obtained with the PnP method with
(i) provably averaged denoisers LLS-CNNσ,β (σ = 5, 15, 25); and (ii) the popular
pretrained DnCNNs [57] (σ = 5, 15, 40). The latter are residual denoisers with
1-Lipschitz convolutional layers and batch normalization modules, which yield a
non-averaged denoiser with no convergence guarantees for ill-posed problems. To
adapt the strength of the denoisers, in addition to the training noise level, we use
relaxed denoisers Dγ = γD+(1− γ)Id for all denoisers D, where γ ∈ (0, 1] is tuned
along with the stepsize α given in (5.87). We only report the performance of the
best-performing setting. The ACR framework [231, 258] yields a convex regularizer
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Table 5.16: Single-coil MRI.

2-fold 4-fold
PSNR SSIM PSNR SSIM

PD PDFS PD PDFS PD PDFS PD PDFS
Zero-fill 33.32 34.49 0.871 0.872 27.40 29.68 0.729 0.745
TV 39.22 37.73 0.947 0.917 32.44 32.67 0.833 0.781
PnP-βCNN (LLS) 40.06 38.63 0.955 0.931 32.81 33.04 0.859 0.817
CRR-NN 40.95 38.91 0.961 0.934 33.99 33.75 0.880 0.831
PnP-DnCNN [57] 40.52 39.02 0.956 0.935 35.24 34.63 0.884 0.840

Table 5.17: CRR-NN: Single-coil MRI versus training setup.

2-fold 4-fold
PSNR SSIM PSNR SSIM

image σtrain t PD PDFS PD PDFS PD PDFS PD PDFS
BSD 5/255 1 40.55 38.71 0.959 0.932 33.32 33.37 0.866 0.819
BSD 5/255 10 40.52 38.69 0.959 0.932 33.30 33.36 0.865 0.817
BSD 5/255 50 40.50 38.67 0.958 0.931 33.29 33.32 0.865 0.816
BSD 25/255 1 40.75 38.84 0.960 0.934 33.62 33.60 0.875 0.828
BSD 25/255 10 40.78 38.81 0.960 0.933 33.63 33.59 0.875 0.826
BSD 25/255 50 40.71 38.77 0.960 0.932 33.57 33.54 0.872 0.824
MRI 5/255 10 40.95 38.91 0.961 0.934 33.99 33.75 0.880 0.831
MRI 25/255 10 40.61 38.73 0.959 0.932 33.93 33.71 0.878 0.830

for (5.46) that is specifically designed to the described CT problem. To be consis-
tent with [231, 258], we apply 400 iterations of gradient descent, even though the
objective is nonsmooth, and tune the stepsize and τ . The results are consistent
with those reported in [231, 258].

To assess the dependence of CRR-NNs on the image domain, we also train mod-
els for Gaussian denoising of CT and MRI images (t = 10, σ ∈ {5/255, 25/255}).
The training procedure is the same as for BSD image denoising, but a larger kernel
size of 11 was required to saturate the performance. The learnt filters and activation
functions are included in Appendix 5.4.8.
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Table 5.18: Multi-coil MRI.

4-fold 8-fold
PSNR SSIM PSNR SSIM

PD PDFS PD PDFS PD PDFS PD PDFS
HTy 27.71 29.94 0.751 0.759 23.80 27.19 0.648 0.681
TV 38.06 37.31 0.935 0.914 32.77 33.38 0.850 0.824
PnP-βCNN (LLS) 38.68 37.96 0.943 0.924 32.75 33.61 0.859 0.835
CRR-NN 39.54 38.29 0.950 0.927 34.29 34.50 0.881 0.852
PnP-DnCNN [57] 39.55 38.52 0.947 0.929 35.11 35.14 0.881 0.858

Table 5.19: CRR-NN: Multi-coil MRI versus training setup.

4-fold 8-fold
PSNR SSIM PSNR SSIM

image σtrain t PD PDFS PD PDFS PD PDFS PD PDFS
BSD 5/255 1 39.15 38.09 0.947 0.925 33.82 34.22 0.873 0.846
BSD 5/255 10 39.14 38.08 0.946 0.925 33.82 34.20 0.873 0.845
BSD 5/255 50 39.14 38.05 0.946 0.924 33.78 34.16 0.872 0.844
BSD 25/255 1 39.34 38.21 0.948 0.926 34.02 34.35 0.876 0.849
BSD 25/255 10 39.33 38.19 0.948 0.926 34.01 34.34 0.876 0.848
BSD 25/255 50 39.29 38.15 0.948 0.926 33.96 34.29 0.876 0.847
MRI 5/255 10 39.54 38.29 0.950 0.927 34.29 34.50 0.881 0.852
MRI 25/255 10 39.33 38.14 0.947 0.925 34.22 34.40 0.878 0.849

The hyperparameters for all these methods are tuned to maximize the aver-
age PSNR over the validation set with the coarse-to-fine method given in Ap-
pendix 5.4.7.

Results and Discussion For each modality, a reconstruction example is given
for each framework in Figures 5.17 and 5.18, and additional illustrations are given
in Appendix 5.4.9. The PSNR and SSIM values for the test set given in Tables 5.16,
5.18, and 5.20 attest that CRR-NNs consistently outperform the other frameworks
with comparable guarantees. It can be seen from Tables 5.17, 5.19, and 5.21 that
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Table 5.20: CT.

σn=0.5 σn=1 σn=2
PSNR SSIM PSNR SSIM PSNR SSIM

FBP 32.14 0.697 27.05 0.432 21.29 0.204
TV 36.38 0.936 34.11 0.906 31.57 0.863
PnP-βCNN (LLS) 38.19 0.931 35.15 0.897 31.85 0.844
ACR [231, 258] 38.06 0.943 35.12 0.911 32.17 0.868
CRR-NN 39.30 0.947 36.29 0.916 33.16 0.878
PnP-DnCNN [57] 38.93 0.941 36.49 0.921 33.52 0.897

Table 5.21: CRR-NN: CT versus training setup.

σn=0.5 σn=1 σn=2
image σtrain t PSNR SSIM PSNR SSIM PSNR SSIM
BSD 5/255 1 38.84 0.943 35.70 0.907 32.48 0.860
BSD 5/255 10 38.90 0.943 35.73 0.908 32.49 0.860
BSD 5/255 50 38.82 0.940 35.64 0.904 32.47 0.855
BSD 25/255 1 39.01 0.945 35.91 0.913 32.72 0.867
BSD 25/255 10 39.07 0.945 35.95 0.911 32.71 0.867
BSD 25/255 50 39.04 0.944 35.89 0.912 32.71 0.860
CT 5/255 10 39.30 0.947 36.29 0.916 33.15 0.873
CT 25/255 10 38.89 0.945 36.11 0.917 33.16 0.878

the improvements hold for all setups explored to trained CRR-NNs. The training of
CRR-NNs on the target image domain allows for an additional small performance
boost. The performances of CRR-NNs are close to the ones of PnP-DnCNN, which
has however no guarantees and little interpretability. PnP-DnCNN typically yields
artifact-free reconstructions but is more prone to over-smoothing (Figure 5.17) or
even to exaggeration of some details in rare cases (see Figures in Appendix 5.4.9).
Lastly, observe that the properly constrained PnP-βCNN (LLS) is outperformed by
the CRR-NNs. This confirms the difficulty of training provably 1-Lipchitz CNN,
which is also reported for MRI image reconstruction in [261]. Convergence curves
for CRR-NNs can be found in Appendix 5.4.10.
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Ground-truth Hty - 25.67dB, 0.710 TV - 39.56dB, 0.954 PnP- CNN - 40.19dB, 0.958 CRR - 40.85dB, 0.964 PnP-DnCNN - 40.43dB, 0.958

Figure 5.17: Reconstructed images for the 4-fold accelerated multi-coil MRI exper-
iment. The reported metrics are PSNR and SSIM. The last row shows the squared
differences between the reconstructions and the ground-truth image.

Phantom FBP - 32.07dB, 0.713 TV - 35.92dB, 0.936 PnP- CNN - 37.76dB, 0.934 ACR - 37.53dB, 0.940 CRR - 38.75dB, 0.948 PnP-DnCNN - 38.71dB, 0.944

Figure 5.18: Reconstructed images for the CT experiment with σn = 0.5. The
reported metrics are PSNR and SSIM. The last row shows the squared differences
between the reconstructions and the ground-truth image.
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Figure 5.19: Impulse response of the filters and activation functions of the CRR-NN
trained with σ = 5. The crosses indicate the knots of the splines. For the 8 missing
filters, the associated activation functions were numerically identically zero.

Under the Hood of the Learnt Regularizers

The filters and activation functions for learnt CRR-NNs with σ ∈ {5/255, 25/255}
and t = 5 are shown in Figures 5.19 and 5.20.

Filters The impulse responses of the filters vary in orientation and frequency
response. This indicates that the CRR-NN decouples the frequency components
of patches. The learnt kernels typically come in groups that are reminiscent of 2D
steerable filters [262, 263]. Interestingly, their support is wider when the denoising
task is carried out for σ = 25/255 than for σ = 5/255.

Activation Functions The linear splines converge to simple functions through-
out the training. The regularization (5.79) leads to even simpler ones without
a compromise in performance. Most of them end up with 3 linear regions, with
their shape being reminiscent of the clipping function Clip(x) = sign(x)min(|x|, 1).
The learnt regularizer is closely related to ℓ1-norm based regularization as many of
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Figure 5.20: Impulse response of the filters and activation functions of the CRR-NN
trained with σ = 25/255.

the learnt convex profiles ψi resemble some smoothed version of the absolute-value
function.

Pruning CRR-NNs Since the NN has a simple architecture, it can be efficiently
pruned before inference by removal of the filters associated with almost-vanishing
activation functions. This yields models with typically between 3000 and 5000
parameters and offers a clear advantage over deep models, which can usually not
be pruned efficiently.

A Signal-Processing Interpretation Given that the gradient-step operator
s 7→ (s − αWTσ(Ws)) of the learnt regularizer is expected to remove some noise
from s, the 1-hidden-layer CNN WTσ(W·) is expected to extract noise. The
response of s to the learnt filters forms the high-dimensional representation Ws
of s. The clipping function preserves the small responses to the filters, while it
cuts the large ones. Hence, the estimated noise WTσ(Ws) is reconstructed by
essentially removing the components of s that exhibit a significant correlation with
the kernels of the filters. All in all, the learning of the activation functions leads
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Figure 5.21: Solutions of the one-dimensional problem (5.92) for increasing values
of µ. The plotted functions are supported in [25, 175] and minimize the learnt
regularizer given a unit sum of their values.

closely to wavelet- or framelet-like denoising. Indeed, the proximal operator of
x 7→ ∥DWT(s)∥1 is given by

prox∥DWT(·)∥1
(s) = IDWT(soft(DWT(s)))

= s− IDWT(clip(DWT(s))), (5.91)

where soft(·) is the soft-thresholding function, DWT and IDWT are the orthogonal
discrete wavelet transform and its inverse, respectively. The equivalent formula-
tion with the clipping function follows from IDWT(DWT(s)) = s and soft(s) =
(s − clip(s)). The soft-thresholding function is used for direct denoising while the
clipping function is tailored to residual denoising. Note that the given analogy is,
however, limited since the learnt filters are not orthonormal (WTW ̸= I).

Role of the Scaling Factor To clarify the role of the scaling factor µ introduced
in (5.85), we investigate a toy problem on the space of one-dimensional signals.
Since these can be interpreted as images varying along a single direction, a signal
regularizer R1 can be obtained from Rθ by replacing the 2D convolutional filters
with 1D convolutional filters whose kernels are the ones of Rθ summed along a
direction. Next, we seek a compactly supported signal with fixed mass that has
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minimum regularization cost, as in

ĉ = argmin
c∈Rd

R1(µc) s.t.

{
1T c = 1,

ck = 0, ∀k ̸∈ [k1, k2].
(5.92)

The solutions for various values of µ are shown in Figure 5.21. Small values of µ
promote smooth functions in a way reminiscent of the Tikhonov regularizer applied
to finite differences. Large values of µ promote functions with constant portions
and, conjointly, allows for sharp jumps, which is reminiscent of the TV regularizer.
This reasoning is in agreement with the shape of the activation functions shown in
Figures 5.19 and 5.20. Indeed, an increase in µ allows one to enlarge the region
where the regularizer has constant gradients, while a decrease of µ allows one to
enlarge the region where the regularizer has linear gradients.

5.3.7 Summary

We have proposed a framework to learn universal convex-ridge regularizers with
adaptive profiles (implemented using learnable linear spline activation functions).
When applied to inverse problems, it is competitive with those recent deep-learning
approaches that also prioritize the reliability of the method. Not only CRR-NNs
are faster to train, but they also offer improvements in image quality.
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5.4 Appendix

5.4.1 Second-Order Total Variation

In this section, we briefly explain the notion of second-order total variation and
provide the definition of the corresponding native space BV(2)(R). We refer to
[164] for more details.

The second-order total-variation seminorm of a function f : R → R is defined
as

TV(2)(f) = ∥D2f∥M, (5.93)

where D is the (weak) derivative operator and the total-variation norm ∥ · ∥M is
defined over the Banach spaceM(R) of bounded Radon measures as

∥w∥M ≜ sup
φ∈S(R): ∥φ∥∞=1

⟨w,φ⟩,

where S(R) is Schwartz’ space of smooth and rapidly decaying test functions. The
spaceM(R) is a generalization of the space L1(R) of absolutely integrable functions,
in the sense that L1(R) ⊆ M(R) and, for any f ∈ L1(R), the two norms satisfy
∥f∥L1 = ∥f∥M. The generalized spaceM(R) is, however, larger than L1(R) as it
contains the set of all shifted Dirac impulses δ(· − τ) with ∥δ(· − τ)∥M = 1 for any
τ ∈ R. In particular, this implies that

wδ =
∑
k∈Z

a[k]δ(· − τk) ∈M(R) and ∥wδ∥M =
∑
k∈Z

∣∣a[k]∣∣
for any absolutely summable sequence a[·] ∈ ℓ1(Z). Likewise, since D2{(·−τk)+} =
δ(· − τk) (Green’s function property), one readily deduces that TV(2)(σ) = ∥a∥ℓ1
for the generic spline activation function defined by (5.8).

Finally, the native space BV(2)(R) is the space of functions with second-order
bounded variation

BV(2)(R) = {f : R→ R : TV(2)(f) < +∞}.

5.4.2 Learnable Spline Activation Function Module

In this section, we describe our implementation of the B-spline formulation of the
learnable linear-spline activation functions. We also detail our sparsification pro-
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cedure which is a postprocessing step during training; the intent is to control the
number of active knots in the network.

B-Spline Formulation

We place a highly redundant set of knots (for the linear spline) on a finite uniform
grid of size T . The cardinality of this set of knots is K, with K odd. We define
the indices kmin = −(K − 1)/2 and kmax = (K − 1)/2. The spline we want to build
will extend linearly outside the interval [kminT, kmaxT ] and can be represented in
the gridded ReLU basis as

σ(x) = b0 + b1x+

kmax∑
k=kmin

ak(x− kT )+, (5.94)

with TV(2)(σ) = ∥a∥1.
Here, we represent σ in a B-spline basis as

σ(x) =


ckmin + 1

T (ckmin − ckmin−1)(x− kminT ), x ∈ (−∞, kminT )
kmax+1∑
k=kmin−1

ckφT (x− kT ), x ∈ [kminT, kmaxT ]

ckmax
+ 1

T (ckmax+1 − ckmax
)(x− kmaxT ), x ∈ (kmaxT,∞),

(5.95)

where φT is the triangle-shaped B-spline

φT (x) =

{
1−

∣∣ x
T

∣∣, −T ≤ x ≤ T,
0, otherwise.

(5.96)

The B-spline representation in (5.95) is equivalent to the one in (5.9). Here, we
place K + 2 triangular basis functions on the grid and, instead of using one-sided
boundary basis functions, the linear extrapolations beyond [kminT, kmaxT ] are han-
dled with the help of the last two B-spline coefficients on each side: (kmin−1, kmin)
and (kmax, kmax+1). An example of this construction is shown in Figure 5.22.

The relationship between the ReLU coefficients a ∈ RK and the B-spline coef-
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Figure 5.22: The left and right linear extrapolations beyond [−3, 3] of the activation
function are computed with the help of two extra B-splines on each side.

ficients c ∈ RK+2 is given by

akmin

...
akmax

 =
1

T



1 −2 1 0 · · · · · · 0
0 1 −2 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 1 −2 1


︸ ︷︷ ︸

L∈RK×(K+2)


ckmin−1

ckmin

...
ckmax

ckmax+1

 , (5.97)

while the linear-term parameters b0, b1 can be determined from ckmin−1
and ckmin

.

From (5.97), we see that the TV(2) regularization of σ can also be computed from
the B-spline coefficients as TV(2)(σ) = ∥Lc∥1.

Sparsification

To train networks with learnable spline nonlinearities, we augment the cost function
with the TV(2) regularization of the activation functions. This translates into an
ℓ1-penalty on the ReLU coefficients a = (ak) or, equivalently, on the filtered version
of the B-spline coefficients Lc. We rely on the sparsifying effect of the ℓ1-norm to
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remove some of the redundant knots. In practice, we observe that, while some of
the coefficients ak = [Lc]k attain small values, they never vanish entirely. In order
to fix this and have a tight control on the number of knots, we have applied a
further “sparsification” as a postprocessing step after training.

The first step is to retrieve the ReLU coefficients a from the trained B-spline
coefficients c using (5.97). Then, every coefficient ak with absolute value below
a certain threshold is set to zero, yielding â = (âk). Finally, we transform these
modified ReLU coefficients to the new B-spline coefficients ĉ. In this step, the
coefficients ĉkmin−1

and ĉkmin
that determine the linear term are assigned the same

values as ckmin−1
and ckmin

, respectively. The other coefficients ĉk are computed
from âk using the relations in (5.97). The sparsification is achieved by selecting the
maximum threshold such that the training accuracy does not drop by more than
0.2%.

5.4.3 Hyperparameter Tuning: Training Unconstrained Deep
Spline Neural Networks

In this section, we propose a method to tune the hyperparameters of Problems
(5.3) and (5.6). Our hyperparameter-tuning method is based on some optimality
conditions that we prove for the global minimizers of these problems. It is flexible
with respect to the choice of linear layers and architecture and can be applied to
any deep spline network.

Optimality Conditions

The main principle of our optimality conditions is based on the scale- and dilation-
invariance properties of the second-order total-variation regularization, as we state
in Proposition 5.11.

Proposition 5.11. The second-order total-variation regularization TV(2) : BV(2)(R)→
R is scale- and dilation-invariant. Specifically, for any σ ∈ BV(2)(R) and any c ̸= 0,
we have that

TV(2) (cσ) = |c|TV(2) (σ) , (5.98)

and

TV(2) (σ(c·)) = |c|TV(2) (σ) . (5.99)
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Proof. We first recall that

TV(2)(σ) = ∥D2σ∥M = sup
φ∈S(R)\{0}

⟨D2σ, φ⟩
∥φ∥∞

. (5.100)

One deduces (5.98) from the linearity of D2 and the homogeneity of theM-norm.
To derive (5.99), we use the relation D2{σ(c·)} = c2D2{σ}(c·) and the equality
⟨f(c·), g⟩ = c−1⟨f, g(·/c)⟩ which, together with (5.100), yields

TV(2)(σ(c·)) = sup
φ∈S(R)\{0}

c
⟨D2σ, φ(·/c)⟩
∥φ∥∞

= |c| sup
ψ∈S(R)\{0}

⟨D2σ, ψ⟩
∥ψ∥∞

, (5.101)

where the latter is obtained via the change of variable ψ = sgn(c)φ(·/c). The last
step is to notice that

sup
ψ∈S(R)\{0}

⟨D2σ, ψ⟩
∥ψ∥∞

= TV(2)(σ)

which, when combined with (5.101), yields (5.99).

In Theorem (5.1), we prove that the energies of all linear and nonlinear layers
of any global minimizer of (5.3) are inversely proportional to their corresponding
regularization parameters.

Theorem 5.1. Let fθ∗ be a global minimizer of (5.3) with linear parameters ϕ∗
ℓ

and learned activation functions g∗
ℓ . Then, we have that

2µ1∥ϕ∗
1∥22 = λ1TV

(2)(g∗
1) = · · · = λL−1TV

(2)(g∗
L−1) = 2µL∥ϕ∗

L∥22. (5.102)

Proof. Let us denote by G∗ the geometric mean of the L + 2(L − 1) = (3L − 2)
quantities

{
µℓ∥ϕ∗

ℓ∥22
}L
ℓ=1

⋃{
λℓ
2
TV(2)(g∗

ℓ )

}L−1

ℓ=1

⋃{
λℓ
2
TV(2)(g∗

ℓ )

}L−1

ℓ=1

.

It turns out that G∗ can be computed via the relation

G∗(3L−2) =

(
L∏
ℓ=1

µℓ∥ϕ∗
ℓ∥22

)(
L−1∏
ℓ=1

λℓ
2
TV(2)(g∗

ℓ )

)2

.
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Due to the inequality of arithmetic and geometric means (AM and GM, respec-
tively), we have that

(3L− 2)G∗ ≤
L−1∑
ℓ=1

λℓTV
(2)(g∗

ℓ ) +
L∑
ℓ=1

µℓ∥ϕ∗
ℓ∥22, (5.103)

where the inequality is saturated if and only if (5.102) holds.
Inspired from the mentioned AM-GM inequality, we now define a new set of

linear parameters ϕ̃ℓ, ℓ = 1, . . . , L and adjustable activation functions g̃ℓ, ℓ =
1, . . . , L− 1, as

ϕ̃ℓ = cℓϕℓ, cℓ =

(
G∗

µℓ∥ϕℓ∥22

) 1
2

,

g̃ℓ = dℓgℓ

( ·
cℓdℓ−1

)
, dℓ = cℓdℓ−1

G∗

λℓ

2 TV(2)(gℓ)
,

with the convention that d0 = 1. Let us specify the corresponding linear and
nonlinear layers by W̃ℓ and σ̃ℓ, respectively. One readily observes that

W̃ℓ = cℓWℓ, σ̃ℓ = dℓσℓ

( ·
cℓdℓ−1

)
in all layers. Interestingly, the input-output relation of this new neural network is
the same as that of fθ∗ . This is due to two simple observations.

• For ℓ = 1, . . . , L− 1, we have that

W̃ℓ ◦ σ̃ℓ(·) = dℓWℓ ◦ σ(·/dℓ−1).

• For the output-layer, we have that cLdL−1 = 1.

Since the input-output relation remains unchanged, the data-fidelity term in the
cost functional of the minimization (5.3) does not change either. Now, due to the
optimality of fθ∗ , we deduce that

L−1∑
ℓ=1

λℓTV
(2)(g∗

ℓ ) +

L∑
ℓ=1

µℓ∥ϕ∗
ℓ∥22 ≤

L−1∑
ℓ=1

λℓTV
(2)(g̃ℓ) +

L∑
ℓ=1

µℓ∥ϕ̃ℓ∥22. (5.104)
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Using Proposition 5.11, we have that

λℓTV
(2)(g̃ℓ) = λℓ

dℓ
cℓdℓ−1

TV(2)(gℓ) = 2G∗,

for ℓ = 1, . . . , L− 1. Similarly, from the scale invariance of the ℓ2-norm, we deduce
that

µℓ∥ϕ̃ℓ∥22 = µℓc
2
ℓ∥ϕ∗

ℓ∥22 = G∗.

Replacing these in (5.104), we obtain that

L−1∑
ℓ=1

λℓTV
(2)(g∗

ℓ ) +

L∑
ℓ=1

µℓ∥ϕ∗
ℓ∥22 ≤ (3L− 2)G∗,

which is the converse of the AM-GM inequality (5.103). This shows that (5.103) is
saturated and, hence, that (5.102) holds.

For the case where the activation functions are shared across layers, we show in
Theorem 5.2 that the optimal configuration is such that there would be a balance
between the total energy of linear layers and the second-order total variation of the
learned activation functions.

Theorem 5.2. Let fθ∗ be a global minimizer of (5.6). Then, we have that

λTV(2)(g∗) = 2

L−1∑
ℓ=1

µℓ∥ϕ∗
ℓ∥22. (5.105)

Proof. The proof is very similar to the one for Theorem 5.1. We define G∗ as

G∗ =

(
λ

2
TV(2)(g∗)

) 2
3

(
L∑
ℓ=1

µℓ∥ϕℓ∥22

) 1
3

.

The AM-GM inequality implies in this case that

3G∗ ≤ λℓTV(2)(g∗) +

L∑
ℓ=1

µℓ∥ϕ∗
ℓ∥22, (5.106)
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with equality if and only if (5.105) holds. Now, we define a new set of linear
parameters and adjustable activation functions as

ϕ̃ℓ = c−1ϕℓ, ℓ = 1, . . . , L,

g̃ = cg(c·),

where the constant c > 0 is

c =
G∗

λ
2TV

(2)(g)
.

Again, the data-fidelity term remains unchanged. From the optimality of fθ∗ , we
deduce that

λTV(2)(g∗) +

L∑
ℓ=1

µℓ∥ϕ∗
ℓ∥22 ≤ λTV(2)(g̃) +

L∑
ℓ=1

µℓ∥ϕ̃ℓ∥22.

By direct calculations, similar to what we did in Theorem 5.1, we simplify the above
inequality into

λTV(2)(g∗) +

L∑
ℓ=1

µℓ∥ϕ∗
ℓ∥22 ≤ 3G∗

which, together with (5.106) implies that the AM-GM equality holds, ultimately
leading to (5.105).

Hyperparameter Tuning

Using Theorems 5.1 and 5.2, we now introduce a way to tune the hyperparameters
of our optimization problems. The main idea is to enforce the optimality condition
in the initial settings (before training) and, consequently, to reduce the dimension
of the hyperparameter space so that it is sufficient to perform a grid search over a
single parameter.

Our scheme is described as follows:

1. Initialize the linear parameters ϕ0
ℓ (e.g., using Xavier’s rule) and the ac-

tivation functions g0
ℓ (e.g., soft-threshold/absolute value) and compute the

quantities ∥ϕ0
ℓ∥22 and TV(2)(g0

ℓ ) for all layers.
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2. Set

µℓ =
C

2∥ϕ0
ℓ∥22

, (5.107)

where C > 0 is the unique hyperparameter that is required to be tuned.

3. If the activation functions are shared across layers, set

λ =
(L− 1)C

TV(2)(g0)
. (5.108)

Otherwise, set

λℓ =
C

TV(2)(g0
ℓ )
. (5.109)

4. Perform a grid search to find the optimal value of C > 0.

5.4.4 Stability Results for PnP-FBS

Proof of Proposition 5.1. We start by showing that, if D is β-averaged with β ≤
1/2, then 2D− Id is 1-Lipschitz since

∥(2D− Id)(z1 − z2)∥2 = ∥2β(N(z1)−N(z2)) + (1− 2β)(z1 − z2)∥2
≤ 2β∥N(z1)−N(z2)∥2 + (1− 2β)∥z1 − z2∥2
≤ ∥z1 − z2∥2, ∀z1, z2 ∈ Rn. (5.110)

Let f(Hs,y) = 1
2∥Hs− y∥22. Using the above property, we get that

∥(2D− Id)(s∗1 − α∇∇∇f(Hs∗1,y1))− (2D− Id)(s∗2 − α∇∇∇f(Hs∗2,y2))∥2
≤ ∥(s∗1 − α∇∇∇f(Hs∗1,y1))− (s∗2 − α∇∇∇f(Hs∗2,y2))∥2 (5.111)

and, from the fixed-point property of s∗1 and s∗2, we get that

∥2(s∗1 − s∗2)− (s∗1 − α∇∇∇f(Hs∗1,y1)) + (s∗2 − α∇∇∇f(Hs∗2,y2))∥2
≤ ∥(s∗1 − α∇∇∇f(Hs∗1,y1))− (s∗2 − α∇∇∇f(Hs∗2,y2))∥2. (5.112)

Using the fact that∇∇∇f(Hs,y) = HT (Hs−y) and developing on both sides, we get
that

⟨s∗1 − s∗2,H
T (Hs∗2 − y2)−HT (Hs∗1 − y1)⟩ ≥ 0. (5.113)
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We finally get the result by switchingHT to the other side and by using the Cauchy-
Schwartz inequality, which leads to

∥H(s∗1 − s∗2)∥2∥y1 − y2∥2 ≥ ⟨H(s∗1 − s∗2),y1 − y2⟩ ≥ ∥H(s∗1 − s∗2)∥22. (5.114)

Proof of Proposition 5.2. We show the relation between the difference of the kth
iterate of PnP-FBS and the difference of its starting points using the fact that the
matrix I − αHTH has a spectral norm of one when α has an appropriate value.
The modulus is

∥sk1 − sk2∥2 = ∥D(sk−1
1 − αHT (Hsk−1

1 − y1)−D(sk−1
2 − αHT (Hsk−1

2 − y2)∥2
≤ K∥(I− αHTH)(sk−1

1 − sk−1
2 )− αHT (y1 − y2)∥2

≤ K∥sk−1
1 − sk−1

2 ∥2 + αK∥H∥∥y1 − y2∥2
≤ K2∥sk−2

1 − sk−2
2 ∥2 + α∥H∥(K +K2)∥y1 − y2∥2

≤ Kk∥s01 − s02∥2 + α∥H∥∥y1 − y2∥2
k∑

n=1

Kn. (5.115)

Taking the limit k →∞, we get that

∥s∗1 − s∗2∥2 ≤
α∥H∥K
1−K ∥y1 − y2∥2. (5.116)

5.4.5 Expressivity of Lipschitz-Constrained Activation Func-
tions

Proof of Proposition 5.3. We show that the four activation functions can be ex-
pressed in terms of each other on compact sets without violating the 2-norm weight
constraints. Choose B such that x + B > 0 for all x in the compact set and any
pre-activation in the network.

1. AV as Expressive as PReLU
We can express AV using PReLU with a = −1. For the other direction, we
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have that

PReLUa(x)

=
[√

(1+a)
2 −

√
(1−a)

2

]
AV

√ (1+a)
2√

(1−a)
2

x+

[√
(1+a)

2 B

0

]− 1 + a

2B
. (5.117)

2. AV as Expressive as GS
This was already proven in [212], but we include the expressions for the sake
of completeness. It holds that[

max(x1)
min(x2)

]
= MAV

(
M

[
x1
x2

]
+

[
B
0

])
−
[√

2B
0

]
, (5.118)

where

M =
1√
2

[
1 1
1 −1

]
. (5.119)

For the reverse direction, we have that

AV(x) =
[

1√
2
− 1√

2

]
MaxMin

([
1√
2
1√
2

]
x

)
. (5.120)

3. GS as Expressive as HH
For v = 1√

2
(1,−1) we have that HHv = MaxMin. Further, we can also

express HHv using MaxMin as

HHv (z) = R(v)MaxMin
(
R(v)T z

)
, (5.121)

where R(v) is the rotation matrix

R(v) =

[
cos γ(v1, v2) − sin γ(v1, v2)
sin γ(v1, v2) cos γ(v1, v2)

]
(5.122)

with γ(v1, v2) =
π
4 + 2arctan v2

1+v1
.
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5.4.6 Properties of Projections

Proof of: The least-square projection onto {c ∈ RK : ∥Dc∥∞ ≤ T} preserves the mean.
Let x ∈ RK and y ∈ {c ∈ RK : ∥Dc∥∞ ≤ T} and x = x̄+µx1, y = ȳ+µy1, where
x̄ and ȳ have zero mean. It holds that

∥x− y∥22 = ∥x̄− ȳ + 1(µx − µy)∥22 = ∥x̄− ȳ∥22 + (µx − µy)2K. (5.123)

Hence, we can add (µx−µy)1 to y and decrease the distance without violating the
constraints.

Proof of Proposition 5.4.

1. First, we show that PLip maps RK to {x ∈ RK : ∥Dx∥∞ ≤ T}. We have, for
any c ∈ RK , that

∥DPLip(c)∥∞ = ∥DD† Clip[−T,T ](Dc) +D1
1

K

K∑
k=1

ck∥∞

= ∥Clip[−T,T ](Dc)∥∞ ≤ T. (5.124)

Here, we used the fact that DD† is the identity matrix in RK−1,K−1 and that
D1 is equal to the zero vector in RK .

Next, we prove that PLip is a projection. Using the same properties as above,
it holds that

PLip(PLip(c)) = D† Clip[−T,T ](DD† Clip[−T,T ](Dc) +D1
1

K

K∑
k=1

ck) + 1
1

K

K∑
k=1

ck

= D† Clip[−T,T ](Clip[−T,T ](Dc)) + 1
1

K

K∑
k=1

ck

= D† Clip[−T,T ](Dc) + 1
1

K

K∑
k=1

ck = PLip(c). (5.125)

2. The Clip[−T,T ] function is differentiable everywhere except at T and −T .
Therefore, the operation D† Clip[−T,T ](Dc) is differentiable everywhere ex-
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cept on

S =

K−1⋃
k=1

{
x ∈ RK : |(Dx)k| = T

}
. (5.126)

The set S is a union of 2(K − 1) hyperplanes with dimension K − 1. Hence,
it has measure zero in RK .

3. From the properties of the Moore-Penrose inverse, we have that ker((D†)T ) =
ker (D), therefore, 1TD† = 0 and

1

K
1TPLip(c) =

1

K
1TD† Clip[−T,T ](Dc) + 1T1

1

K2

K∑
k=1

ck =
1

K

K∑
k=1

ck.

(5.127)

5.4.7 Hyperparameter Tuning: Solving Inverse Problems

The parameters τ and µ used in (5.85) can be tuned with a coarse-to-fine approach.
Given the performance on the 3× 3 grid {(γτ )−1τ, τ, γττ} × {(γµ)−1µ, µ, γµµ}, we
identify the best values τ∗ and µ∗ on this subset and move on to the next iteration
as follows:

• if τ∗ = τ , we refine the search grid by reducing γµ to (γµ)
ζ , ζ < 1;

• otherwise, τ is updated to τ∗.

A similar update is performed for the scaling parameter. The search is terminated
when both γτ and γµ are smaller than a threshold, typically, 1.01. In practice, we
initialized γτ = γµ = 4 and set ζ = 0.5. The method usually requires between 50
and 100 evaluations on tuples (τ, µ) on the validation set before it terminates. The
proposed approach is predicated on the observation that the optimization landscape
in the (τ, µ) domain is typically well-behaved. The same principles apply to tune
a single hyperparameter, as found in the TV method. Let us remark that the
performances were found to change only slowly with the scaling parameter µ for
the MRI and CT experiments. Hence, in practice, it is enough to tune µ very
coarsely.
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Figure 5.23: Impulse response of the filters and activation functions of the CRR-NN
trained to denoise CT images.

Figure 5.24: Impulse response of the filters and activation functions of the CRR-NN
trained to denoise MRI images.

5.4.8 Filters and Activation Functions

We provide the filters and activations of a CRR-NN trained for the denoising of CT
images (Figure 5.23) and of MRI images (Figure 5.24). Compared to the training on
the BSD500 dataset, larger kernel sizes were needed to saturate the performances.
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Ground-truth Hty - 22.14dB, 0.600 TV - 33.60dB, 0.871 PnP- CNN - 33.72dB, 0.873 CRR - 35.21dB, 0.900 PnP-DnCNN - 36.17dB, 0.899

Figure 5.25: Reconstructions for the 8-fold accelerated multi-coil MRI experiment.

Ground-truth Hty - 24.12dB, 0.606 TV - 27.09dB, 0.655 PnP- CNN - 26.29dB, 0.677 CRR - 28.62dB, 0.734 PnP-DnCNN - 30.30dB, 0.762

Figure 5.26: Reconstructions for the 4-fold accelerated single-coil MRI experiment.
Note the unexpected behavior of DnCNN.

5.4.9 Reconstructed Images

MRI In Figures 5.25 and 5.26, we present reconstructions from multi- and single-
coil MRI measurements, and report their PSNR and SSIM as metrics. The recon-
struction task in Figure 5.26 is particularly challenging. In this regime, it can be
observed that the loosely constrained PnP-DnCNN exaggerates some structures,
even though the metrics remain acceptable.
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Phantom FBP - 27.01dB, 0.450 TV - 33.56dB, 0.901 PnP- CNN - 33.73dB, 0.869 ACR - 34.40dB, 0.900 PnP-DnCNN - 36.07dB, 0.920 CRR - 35.50dB, 0.911

Figure 5.27: Reconstructed images for the CT experiment with σn = 1.0.

Phantom FBP - 21.27dB, 0.220 TV - 30.99dB, 0.848 PnP- CNN - 30.55dB, 0.789 ACR - 31.40dB, 0.845 PnP-DnCNN - 32.95dB, 0.884 CRR - 32.26dB, 0.861

Figure 5.28: Reconstructed images for the CT experiment with σn = 2.0.

CT In Figures 5.27 and 5.28, we provide reconstructions for the CT experiments
with noise levels σn = 1, 2 in the measurements. The reported metrics are PSNR
and SSIM.

5.4.10 Convergence Curves

In this section, we present convergence curves for image denoising (Figure 5.29),
MRI reconstruction (Figure 5.30), and CT reconstruction (Figure 5.31) with CRR-
NNs. The underlying objective is minimized with FISTA1920[23] and AdaGD5[251],

19For the plots, the positivity constraint is dropped, otherwise, the gradient does not necessarily
vanish at the minimum.

20For denoising, the problem is 1-strongly convex. Hence, we use Nesterov’s rule (1−
√
L)/(1+√

L) instead of (tk − 1)/tk+1 for extrapolation [264].
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Figure 5.29: Example of convergence curves (denoising).
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Figure 5.30: Example of convergence curves (MRI).
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Figure 5.31: Example of convergence curves (CT).

which both converge generally fast. Depending on the task and the desired accu-
racy, one or the other might be faster. The observed gradient-norm oscillations
for AdaGD are typical for this method and unrelated to CRR-NNs [251]. Finally,
note that the initialization affects the convergence speed, but does not impact the
reconstruction quality. This differs significantly from PnP methods that deploy
loosely constrained denoisers.
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Chapter 6

Deep Generative Priors for
Nonlinear Inverse Problems

1In this chapter, we show how we can leverage the power of deep generative models
as image priors to develop a Bayesian inference pipeline that produces high quality
reconstructions together with uncertainty maps. To the best of our knowledge, this
is one of the first deployments of such techniques for the resolution of nonlinear
inverse problems.

6.1 Contributions

Here, we present a Bayesian framework to solve a broad class of nonlinear inverse
problems, where the prior knowledge about the image of interest is specified through
a trained deep latent variable generative model such as a GAN or a VAE. Our
contributions are listed below.

• We develop a method based on the Metropolis-adjusted Langevin algorithm
(MALA) [266, 267] to sample from the posterior distribution for the class of
nonlinear inverse problems where the forward model has a neural-network-like
structure. This class includes a wide variety of practical imaging modalities.

1This chapter is based on our work [265].

189
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We show that the structure of the forward model and the low-dimensional
latent space of the generative prior enable tractable Bayesian inference.

• We introduce the concept of augmented generative models. This is motivated
by the observation that the above-mentioned deep generative models are eas-
ier to train when the dataset consists of images with the same range of pixel
values. Unfortunately, such models are not well-matched to imaging modal-
ities where one is interested in extracting the precise value of objects rather
than merely visualizing contrast. Our proposed augmented models provide
us with a simple but effective way of dealing with quantitative data.

• We illustrate the advantages of the proposed reconstruction framework through
numerical experiments for two nonlinear imaging modalities: phase retrieval
and optical diffraction tomography.

The chapter is organized as follows: In Section 6.2, we discuss the structure
of the forward model for our nonlinear inverse problems. We detail the Bayesian
reconstruction framework in Section 6.3. There, we introduce augmented generative
models and we explain our posterior-sampling scheme. We present our experimental
results in Section 6.4.

6.2 Nonlinear Inverse Problems and Forward Mod-
els

In this section, we start by describing the class of nonlinear inverse problems that
we are interested in. We then focus on two concrete examples—phase retrieval and
optical diffraction tomography—and detail the physical models involved.

6.2.1 Nonlinear Inverse Problems

The objective is to recover an image s† ∈ RK from its noisy measurements y† ∈ CM
given by y† = N(y†

0) with

y†
0 = H(s†), (6.1)

where H : RK → CM is a nonlinear operator that models the physics of the
imaging system and N : CM → CM is an operator that models the corruption
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of the measurements by noise. In this work, we consider the class of nonlinear
forward models H whose computational structure can be encoded by a directed
acyclic graph and thus resembles a neural network.

The Jacobian matrix of H at any point x = (x1, . . . , xK) ∈ RK is defined as

JH(x) =


∂
∂x1

[H(x)]1 · · · ∂
∂xK

[H(x)]1
...

. . .
...

∂
∂x1

[H(x)]M · · · ∂
∂xK

[H(x)]M

 . (6.2)

Gradient-based MCMC methods (see Section 6.3 for a specific example) involve the
computation of quantities such as JHH(x)r for some vectors x ∈ RK , r ∈ CM , and
this can be a potential bottleneck. The neural-network-like structure of H allows
us to compute these efficiently using the error backpropagation algorithm. This, in
turn, makes Bayesian inference computationally feasible.

The class of nonlinear inverse problems that fit this description is very broad and
adaptable to most existing imaging modalities. In principle, it covers all possible
inverse problems, in particular, the linear case is trivially covered. More generally,
if sufficient data is available, one can indeed train a neural network to mimic the
physics of our forward model. Next, we look at two particular problems that nicely
fall within our predefined class.

6.2.2 Phase Retrieval

Phase retrieval [268, 269] is a nonlinear inverse problem that is ubiquitous in com-
putational imaging. It consists in the recovery of a signal from its intensity-only
measurements and is a central issue in optics [270, 271], astronomy [272, 273], and
computational microscopy [274, 275, 276, 277].

In the phase-retrieval problem that we consider in this paper, the noise-free
measurements are modeled as

y†
0 = Hpr(s

†) = |As†|2, (6.3)

where A : RK → CM is either the Fourier matrix [270, 277, 278] or some realization
of a random matrix with independent and identically distributed (i.i.d.) elements
[279, 280, 269], and where | · |2 is a component-wise operator. As shown in Figure
6.1, the forward model in (6.3) can be expressed as a one-layer fully-connected
neural network with fixed linear weights A and quadratic activation functions.
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Figure 6.1: The forward model for phase retrieval (6.3) expressed as a one-layer
fully-connected neural network with linear weightsA and quadratic activation func-
tions.

6.2.3 Optical Diffraction Tomography

In optical diffraction tomography (ODT), the aim is to recover the refractive-index
(RI) map of a sample from complex-valued measurements of the scattered fields
generated when the sample is probed by a series of tilted incident fields [281].
According to the scalar-diffraction theory, the propagation of the incident fields
through the sample is governed by the wave equation. While pioneering works re-
lied on linear models to approximate this propagation [281, 282], recent works have
significantly improved the quality of RI reconstruction by using more accurate non-
linear models that account for multiple scattering [283]. Here, we look at one such
nonlinear model called the beam-propagation method (BPM).

Helmholtz Equation
We consider a sample with a real-valued spatially varying refractive index that is
immersed in a medium with constant refractive index nb, as shown in Figure 6.2.
The RI distribution in the region of interest Ω = [0, Lx] × [0, Lz] is represented as
n(r) = nb + s†(r), where r = (x, z) and s†(r) is the RI contrast. The sample is
illuminated with an incident plane wave uin(r) of free-space wavelength λ, whose
direction of propagation is specified by the wave vector k. The total field u(r)
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Figure 6.2: Optical diffraction tomography. A sample of refractive index nb+s
†(r)

is immersed in a medium of index nb and illuminated by an incident plane wave
(wave vector k). The interaction of the wave with the object produces scattered
waves, which are recorded at the detector plane.

that results from the interaction between the sample and the incident wave is then
recorded at the positions {rm}M

′

m=1 in the detector plane Γ to yield the complex
measurements y† ∈ CM ′

. The interplay between the total field u(r) at any point in
space and the refractive index contrast δn(r) is described by the Helmholtz equation

∇2u(r) + k20n
2(r)u(r) = 0, (6.4)

where k0 = 2π
λ .

Beam Propagation Method
For computational purposes, the region of interest Ω is subdivided into an (Nx×Nz)
array of pixels with sampling steps δx and δz along the first and second dimension,
respectively. The corresponding samples of the RI contrast s†(r) and total field u(r)



194 Deep Generative Priors for Nonlinear Inverse Problems

Figure 6.3: The computational structure for BPM resembles a neural network.

are stored in the vectors2 s† ∈ RK and u ∈ CK , respectively, where K = NxNz.
Further, let s†

k ∈ RNx and uk ∈ CNx represent the above quantities when restricted
to the slice z = kδz.

BPM computes the total field u in a slice-by-slice manner along the z -axis. For
a given incident wave uin(r) that is propagated over a region larger than Ω, we set

the initial conditions as u−1(s
†
0) =

(
uin(iδx,−δz)

)Nx−1

i=0
∈ CNx . The total field over

Ω is then computed via a series of diffraction and refraction steps

ũk(s
†) = uk−1(s

†) ∗ hδzprop (diffraction) (6.5)

uk(s
†) = ũk(s

†
0)⊙ pk(s

†) (refraction), (6.6)

where k = 0, 1, . . . , (Nz − 1), and the symbols ∗ and ⊙ stand for convolution and
pointwise multiplication, respectively. The convolution kernel hδzprop ∈ CNx for the
diffraction step is characterized in the Fourier domain as

F
{
hδzprop

}
(wx) = e

jδz

(√
k20nb

2 − w2
x

)
, (6.7)

where F denotes the discrete Fourier transform and wx ∈ RNx is the frequency
variable. The subsequent refraction step involves a pointwise multiplication with

2Since the total field u(r) depends on the RI contrast s†(r), we also refer to its discretized
version as u(s†).
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the phase mask

pk(s
†) = ejk0δzs

†
k . (6.8)

Finally, we define an operator R : CNx 7→ CM ′
that propagates uNz−1(s

†) to the
detector plane Γ and restricts it to the sensor positions to give us the measurements
y† ∈ CM ′

. Thus, for a given incident wave uin, our noise-free nonlinear BPM
forward model is of the form

y†
0 = Hbpm(s

†;uin) = R
(
uNz−1(s

†)
)
. (6.9)

In Figure 6.3, we show the implementation of Hbpm as a directed acyclic graph.

Complete Forward Model
We assume that the sample is illuminated withQ incident plane waves {uinq }q∈{1,...,Q}

and that the corresponding measurements are {y†
q ∈ CM ′}q∈{1,...,Q}. These mea-

surements are related to the RI contrast s† of the sample through the BPM forward
model in (6.9). We define a stacked measurement vector as y† = (y†

1, . . . ,y
†
Q) ∈ RM

(M = QM ′). This allows us to rewrite the complete forward model in the form
of (6.1), where the operator H consists of the application of Hbpm with all the
illuminations and the concatenation of the outputs into a single vector.

6.3 Bayesian Reconstruction Framework

We now present our reconstruction framework that is based on Bayesian statistics
for solving the generic nonlinear inverse problem described in Section 6.2.1. Let Y
and S be the random vectors3 associated with the measurements and the signal,
respectively. As in Chapter 2, the statistical model for the measurement noise
is specified via the conditional distribution of Y|S = s, where s ∈ RK . In this
section, we first discuss the prior distribution of S, which, in our framework, is
defined through a deep generative model, followed by the posterior distribution
of S|Y = y†. Finally, we detail a MCMC scheme to generate samples from the
posterior distribution. This allows us to perform inference by computing point
estimates and the uncertainties associated with them.

3In this chapter, for a given random vector V, we will denote its probability distribution by PV

(which is a measure) and its pdf with respect to the Lebesgue measure (if PV admits one) by pV.
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6.3.1 Prior Distribution

The choice of the distribution PS reflects our prior knowledge about the image of
interest. In classical Bayesian methods, PS is generally chosen from a family of dis-
tributions with closed-form analytical expressions for their pdfs such that it fits the
characteristics of the image and also allows for efficient inference. Popular examples
include the Gaussian and Markovian models. In our framework, we instead propose
to leverage the power of neural networks to define a data-driven prior distribution.

We assume that we have access to a dataset that contains sample images from
the true (but unknown) probability distribution Pimage of our image of interest. The
idea then is to approximate Pimage with PS as defined by a deep generative model.
More specifically, we consider deep latent variable generative models consisting of a
generator network G : Rd → RK (d≪ K) that maps a low-dimensional latent space
to the high-dimensional image space. For such a model, we have S = G(Z), where
Z is a random vector that takes values in Rd with a pdf pZ (typically a Gaussian
or uniform distribution). If this model is properly trained, the resulting PS (which
is the pushforward of PZ through the mapping G) is close to Pimage and the images
generated by it are statistically similar to the ones in the dataset.

In our experiments (see Section 6.4), we use the well-known Wasserstein GANs
(WGANs) [220] for our data-driven prior. We provide a brief description of WGANs
in Appendix 6.6.2.

Augmented Deep Generative Priors
The training of deep generative models such as GANs requires large amounts of data
and is a challenging task in general. Over the past few years, there have been several
proposals for performance improvements that have led to the development of better
training schemes and network architectures. Most existing works use normalized
datasets, where each image has the same range of pixel values. However, this is
not suitable if we wish to use such models as priors in quantitative imaging (e.g.,
ODT). In these modalities, it is important to recover the actual values of the object
(image) as compared to only the contrast. Thus, we require our generative model
to be able to output images with different ranges of pixel values.

While performing our experiments, we observed that the training of high-quality
WGANs on unnormalized datasets was non-trivial. We propose a simple effective
workaround, which simplifies the training and allows us to build models that gen-
erate images with different ranges. We define an augmented generative model
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Gh : Rd+1 → RK (d ≪ K) that consists of a (standard) generative network
G : Rd → RK trained on a normalized dataset and a deterministic function
h : R → R. Here, the latent (random) vector Z = (Z1,Z2) takes values in Rd+1

and has two independent components Z1 (that takes values in Rd) and Z2 (that
takes values in R) with pdfs pZ1

and pZ2
, respectively. The output image of this

model is S = Gh(Z) = h(Z2)G(Z1), where the term G(Z1) represents it details or
contrast, and the term h(Z2) represents it scaling factor. Since G is now required to
only produce images with the same range, we can rely on existing GANs to obtain
high-quality models. Moreover, the distribution of the scaling factor can be easily
controlled by carefully choosing the distribution pZ2

and the function h.

6.3.2 Posterior Distribution

Since our prior distribution PS is defined by a pre-trained augmented deep generative
model Gh : Rd+1 → RK , z 7→ Gh(z) with pZ(z) = pZ1

(z1)pZ2
(z2) for any z =

(z1, z2) ∈ Rd+1, our posterior distribution PS|Y=y† is given by the push-forward of
the posterior distribution PZ|Y=y† of the latent vector through the mapping Gh. The
pdf for PZ|Y=y† can be written as

pZ|Y(z|y†) =
pY|Z(y

†|z)pZ(z)∫
Rd+1 pY|Z(y†|z̃)pZ(z̃)dz̃

,

where pY|Z(·|z) = pY|S(·|s = Gh(z)).

A Bayesian inverse problem is said to be well-posed in some metric on the
space of probability measures if its solution (the posterior distribution) exists, is
unique, and is continuous with respect to the measurements for the chosen metric
[284]. Depending on the metric, the well-posedness of the Bayesian inverse problem
ensures continuity of posterior expectations of appropriate quantities of interest.
Based on the work in [284], we can show that for the AWGN model, our Bayesian
problem is well-posed in the Prokhorov, total-variation and Hellinger distances.
Moreover, our problem is well-posed in the Wasserstein distance if pZ satisfies a
finite-moment-like condition. By using a result from [78], we can also show the
existence of the moments of our posterior distribution under mild conditions on pZ

and Gh. We provide the details regarding these properties in Appendix 6.6.1.
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6.3.3 Sampling from the Posterior Distribution

The proposed framework allows one to draw samples in the low-dimensional latent
space instead of the high-dimensional image space directly. Specifically, if we gen-
erate samples {z†(t)}Tt=1 from pZ|Y(·|y†), then the images {s†(t) = Gh(z

†(t))}Tt=1 are
samples from PS|Y=y† .

In this work, we use the MCMC method called Metropolis-adjusted Langevin
algorithm (MALA) [266, 267] to sample from pZ|Y(·|y†). Given a sample z†(t), it
generates z†(t+1) in two steps. In the first step, we construct a proposal z̃†(t+1) for
the new sample according to

z̃†(t+1) = z†(t) + η∇z log pZ|Y(z
†(t)|y†) +

√
2ηζ, (6.10)

where ζ is drawn from the standard multivariate Gaussian distribution and η ∈ R+

is a fixed step-size. In the second step, the proposal z̃†(t+1) is either accepted or
rejected, the acceptance probability being

α = min
{
1,
pZ|Y(z̃

†(t+1)|y†)qy†(z†(t)|z̃†(t+1))

pZ|Y(z†(t)|y†)qy†(z̃†(t+1)|z†(t))

}
, (6.11)

where qy(z̄|z) = exp
(
− 1

4η∥z̄ − z − η∇z log pZ|Y(z|y)∥22
)
for any y ∈ CM and

z̄, z ∈ Rd+1. If the proposal is accepted, then we set z†(t+1) = z̃†(t+1); otherwise,
z†(t+1) = z†(t). One advantage of MALA is that it uses the gradient of the (log)
target distribution to construct more probable proposals. In doing so, it explores
the target distribution faster than some other MCMC methods such as the well-
known random walk Metropolis-Hastings algorithm [285].

The major computational bottleneck in MALA is the computation of the gra-
dient term ∇z log pZ|Y(·|y†) as it involves terms such as JHH(x1)r1 and JHGh

(x2)r2,

where x1 ∈ RK , r1 ∈ CM , x2 ∈ Rd+1, and r2 ∈ RK . For instance, if we assume an
AWGN model with variance σ2 and that pZ is the standard mutivariate Gaussian
distribution, then pZ|Y can be written as

pZ|Y(z|y†) =
1

C
exp

(
− ∥y

† −H(Gh(z))∥22
2σ2

− ∥z∥
2
2

2

)
, (6.12)

where C is the normalization factor. In this case, the gradient term is

∇z log pZ|Y(z|y†) = −JHGh
(z)JHH(Gh(z))(y

† −H(Gh(z)))

σ2
− z. (6.13)
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Since Gh is a neural network and H has a neural-network-like structure, we then
compute ∇z log pZ|Y efficiently using an error backpropagation algorithm.

Once we have obtained the samples {z†(t)}Tt=1 from pZ|Y(·|y†), we transform them
to get the samples {Gh(z†(t))}Tt=1 from PS|Y=y† and use them to perform inference.
Specifically, we approximate any integral of the form

∫
RK f(s)pS|Y(s|y†)ds, where

f : RK → R is a real-valued function, by its empirical estimate 1
T

∑T
t=1 f(Gh(z

†(t))).
In practice, we discard some of the samples generated at the beginning of the

chain to correct for their bias. This “burn-in” period can often be shortened by
choosing a suitable starting point for the chain. We propose to initialize MALA
with

z∗init(y
†) = argmin

z∈Rd+1

∥s∗init(y†)−Gh(z)∥22, (6.14)

where s∗init(y
†) is a low-quality estimate obtained by using some fast classical re-

construction algorithm.

6.4 Results and Discussion

In this section, we show the benefits of our neural-network-based Bayesian recon-
struction framework by applying it to both phase retrieval and optical diffraction
tomography.

6.4.1 Augmented Generative Models

In our first experiment, we highlight the importance of the proposed augmented
generative models. We consider the task of training WGAN models on synthetic
datasets consisting of (128 × 128) images, where each image contains a constant-
valued disc and its background pixels are zero-valued. The coordinates (x, y) of the
center of the disc, its radius r (in pixels), and its constant-intensity value v follow
the uniform distributions U(10,115), U(10,115), U[8,35], and U(0,0.2], respectively. The
aforementioned parameters implicitly define the probability distribution Pdata that
we wish to approximate using WGANs.

We qualitatively compare the performance of two models. The first model is a
WGAN trained on 50,000 images sampled from Pdata. In this case, the distribution
pZ for the latent variable is chosen to be the standard multivariate Gaussian distri-
bution. The second model is an augmented WGAN, where the WGAN component
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(a) WGAN

(b) Augmented WGAN

Figure 6.4: Samples generated by trained models.

is trained on a normalized dataset with 50,000 images. Thus, we first sample 50,000
images from Pdata and we then normalize each of them such that the value of the
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disc is one. The distributions pZ1
and pZ2

are chosen to be standard Gaussian
distributions as well, and the function h is

h(x) =
0.2√
2π

∫ x

−∞
e−

t2

2 dt. (6.15)

This choice of h and pZ2
ensures that the scaling factor of the augmented WGAN

follows the uniform distribution U(0,0.2]. For both the models, we use the generator
and critic network architectures described in Appendix 6.6.3. The WGAN is trained
for 2500 epochs while the augmented WGAN is trained for 1250 epochs using
RMSProp optimizers with a learning rate of 5× 10−5 and a batch size of 64. The
parameters λgp and ncritic (refer to Appendix 6.6.2) are set as 10 and 5, respectively.

In Figure 6.4, we present typical samples generated by the two models. We
observe that the augmented WGAN, unlike the WGAN, is able to produce sharp
constant-valued discs.

6.4.2 Phase Retrieval

Next, we look at the phase-retrieval problem. We present two examples where the
ground-truth images are taken from the MNIST [286] and Fashion-MNIST [287]
testing datasets. In both cases, the measurements y† ∈ NM are simulated according
to (6.3) with a Poisson-noise model, where A is one realization of a random matrix
with i.i.d. entries from a zero-mean Gaussian distribution with variance σ2

A.

MNIST

The MNIST dataset contains (28× 28) images of handwritten digits. The ground-
truth image (Figure 6.5) is first normalized to have values in the range [0, 1] and is
then multiplied by a factor α which is picked uniformly at random from (0, 0.5].

In this case, the WGAN component of our augmented model Gh is trained on
the normalized MNIST training dataset which contains 50,000 images with values
in the range [0, 1]. The distributions pZ1

and pZ2
are standard Gaussian distributions

and the function h is

h(x) =
0.5√
2π

∫ x

−∞
e−

t2

2 dt. (6.16)

The architectures for the generator and critic networks can be found in Appendix
6.6.3. The WGAN is trained for 2000 epochs using ADAM optimizers [194] with a
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learning rate of 2× 10−4, hyperparameters (β1, β2) = (0.5, 0.999), and a batch size
of 64. The parameters λgp and ncritic are set as 10 and 5, respectively.

Fashion-MNIST

The Fashion-MNIST dataset consists of (28 × 28) grayscale images of different
fashion products. Our ground-truth image from this dataset is shown in Figure
6.6.

Here, the WGAN for our augmented deep generative prior is trained on the nor-
malized Fashion-MNIST training dataset. It contains 60,000 images whose values
lie in the range [0, 1]. The distributions pZ1

and pZ2
are taken as standard Gaussian

distributions while the function h is

h(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt. (6.17)

We provide the architectures for the generator and critic networks in Appendix
6.6.3. The WGAN is trained for 2250 epochs using ADAM optimizers with a
learning rate of 2× 10−4, hyperparameters (β1, β2) = (0.5, 0.999), and a batch size
of 64. The parameters λgp and ncritic are set as 10 and 5, respectively.

Methods

As discussed in Section 6.3.3, we draw samples from the posterior distribution using
MALA. The estimator s∗init(y

†) that we use for initializing the chain is

s∗init(y
†) = argmin

s∈RK

(
M∑
m=1

(
− [y†]m log

([
|As|2

]
m

)
+
[
|As|2

]
m

)

+ τ∥∇s∥22,2 + i+(s)

)
. (6.18)

There, ∇ : RK → RK×2 is the gradient operator, ∥ · ∥p,q is the (ℓp, ℓq)-mixed norm
defined as

∥x∥p,q ≜
( U∑
u=1

( V∑
v=1

(
[x]u,v

)p)q/p)1/q

∀x ∈ RU×V , (6.19)
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τ ∈ R+ is the regularization parameter and the functional i+ given by

i+(s) =

{
0, s ∈ RK+
+∞, otherwise

(6.20)

enforces the non-negativity constraint on the solution. The data-fidelity term in
(6.18) corresponds to the negative log-likelihood under the Poisson-noise model.
We solve the problem in (6.18) using a projected-gradient-descent algorithm. The
regularization parameter τ so that it minimizes the mean-square error (MSE) with
respect to the ground-truth is chosen via grid search.

After discarding the first Tb samples (burn-in period), we collect the next T
samples for performing inference. We compute the posterior mean which corre-
sponds to the minimum mean-square error (MMSE) estimate. Further, to quantify
the uncertainty associated with our estimation, we also compute the pixel-wise
standard-deviation map.

We compare the performance of our GAN-based posterior-mean estimator with
that of the TV-regularized method [25]

s∗TV(y
†) = argmin

s∈RK

(
M∑
m=1

(
− [y†]m log

([
|As|2

]
m

)
+
[
|As|2

]
m

)

+ τ∥∇s∥2,1 + i+(s)

)
. (6.21)

TV regularization is known to promote piecewise-constant solutions and is well-
matched to our test images. We solve (6.21) using FISTA [23] initialized with
s∗init(y

†). The regularization parameter τ is tuned for optimal MSE performance
with the help of a grid search.

Results

To illustrate the advantage of our neural-network-based prior, we consider extreme
imaging settings where the number of measurements M is very small. For the first
case (Figure 6.5), we have that α = 0.36,M/K = 0.1, σ2

A = 10, η = 10−5, Tb =
8 × 105, and T = 12 × 105. The parameters for the second case (Figure 6.6) are
M/K = 0.15, σ2

A = 0.5, η = 1.75× 10−6, Tb = 17.5× 105, and T = 5× 105.
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Ground-truth image
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Figure 6.5: Reconstructions for phase retrieval (oversampling ratio M/K = 0.1).

In Figures 6.5 and 6.6, we see that the GAN-based posterior-mean estimator
outperforms the TV-regularized method considerably. Here, the very low oversam-
pling ratios severely affect the performance of TV regularization, even though it
is a good fit for the underlying images. By contrast, despite the scarcity of mea-
surements, our estimator remarkably yields excellent results. This highlights the
potential of learning-based priors for highly ill-posed problems. Finally, we observe
that, as one would expect, the standard-deviation maps indicate higher uncertainty
at the edges for the posterior-mean estimator.

6.4.3 Optical Diffraction Tomography

We consider both simulated and real data for our ODT experiments.
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Figure 6.6: Reconstructions for phase retrieval (oversampling ratio M/K = 0.15).

Simulated data

In our simulated setup, the test image (Figure 6.7) that represents the RI contrast
is a random sample from the dataset described in Section 6.4.1: a disc with constant
intensity v.

The measurements are simulated using the BPM of Section 6.2.3 with an AWGN
model of variance σ2

n = 0.05. We set the sampling steps to δx = δy = 0.1 µm, the
medium RI to nb = 1.52, and the wavelength to λ = 0.406 µm. We use Q = 20
incident tilted plane waves with angles that are uniformly spaced in the range
[−π/12, π/12].

For this setting, we use the augmented WGAN prior of Section 6.4.1 in our
reconstruction framework.
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Real data

In our experiment with real data, the sample is a 2D cross-section of two non-
overlapping fibres immersed in oil (nb = 1.525) [288]. The RI contrast of the
sample is negative. A standard Mach-Zehnder interferometer relying on off-axis
digital holography (λ = 0.450 µm) is used to collect measurements from Q = 59
views in the range [−π/6, π/6].

We crop the acquired data such that the measurement vector for each view is
of length M ′ = 256. We take the discretized region of interest to be of the size
(256 × 256) and we set the sampling steps for BPM (used for reconstruction) to
δx = δy = 0.1257 µm. We assume an AWGN model of variance σ2

n = 0.15 for the
measurements.

Here, the WGAN for our prior is trained on a synthetic dataset containing
100,000 images of size (256×256), where each image consists of two non-overlapping
discs with a constant intensity of one and a zero-valued background. The coordi-
nates of the centers of the two discs are sampled from U(20,235) and their radii are
sampled from U[10,50] subject to the constraint that they do not overlap. The dis-
tributions pZ1

and pZ2
are standard Gaussian distributions and the function h is

taken to be

h(x) = − 0.1√
2π

∫ x

−∞
e−

t2

2 dt. (6.22)

The architectures for the generator and critic networks are detailed in Appendix
6.6.3. The WGAN is trained for 500 epochs using RMSProp optimizers with a
learning rate of 5 × 10−5 and a batch size of 128. The parameters λgp and ncritic
are set as 10 and 5, respectively.

Methods

For both settings, the estimate s∗init(y
†) for MALA is obtained by the application

of a filtered backpropagation algorithm that uses the Rytov approximation [282] to
model the scattering. We collect T samples from the posterior distribution using
MALA with a step-size τ and burn-in period Tb, and use them to compute the
posterior mean and pixel-wise standard-deviation map.
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Figure 6.7: Reconstructions for ODT (v = 0.07).

We compare our estimator with the TV-based method

s∗TV(y
†) = argmin

s∈RK

( Q∑
q=1

∥y†
q −Hbpm(s;u

in
q )∥22 + τ∥∇s∥2,1 + I(s)

)
, (6.23)

where I(s) = i+(s) for the simulated data and I(s) = i−(s) for the real data.
This is a state-of-the-art method for ODT and is commonly used in practice [289,
290]. Moreover, it is well-suited for the constant-valued discs in our samples. The
problem in (6.23) is solved using FISTA initialized with s∗init(y

†). The regularization
parameter τ is tuned for optimal MSE performance in the simulated-data setting
via a grid search, while it is tuned manually in the real-data setting.
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Figure 6.8: Reconstructions for ODT (real data).

Results

The settings that we consider for our ODT experiments are highly ill-posed as
the incident waves only explore a limited range. As a result, the measurements
lack information along the horizontal axis, which leads to the so-called missing-
cone problem. For the first case (Figure 6.7), we have that v = 0.07, η = 2 ×
10−7, Tb = 2 × 104, and T = 8 × 104. For the second case (Figure 6.8), we have
that η = 5× 10−8, Tb = 15× 104, and T = 5× 104.

In Figures 6.7 and 6.8, we observe that the TV reconstructions (and the initial
ones) are elongated in the horizontal direction due to the lack of information along
this axis. However, the GAN-based estimator is able to overcome the missing-cone
problem. It yields reconstructions whose quality is remarkable.
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6.4.4 Discussion

With the help of the above-described experiments, we have demonstrated the po-
tential of our deep-generative-prior-based Bayesian reconstruction framework for
challenging nonlinear inverse problems. We now mention some directions for future
work which can further improve this framework.

In the present form, our scheme lacks theoretical guarantees for MALA to be
geometrically ergodic (convergence to the equilibrium distribution at a geometric
rate). A topic of future work could be to investigate the imposition of appropriate
constraints on the generative model such that the resulting posterior distribution
satisfies certain smoothness and tail conditions [291] that ensure geometric ergod-
icity of MALA.

The performance of our scheme heavily relies on how well the prior models the
object of interest. Thus, any progress on the side of designing and training high-
quality large-scale deep generative models could be translated to our framework.

While the neural-network-like structure of our forward models make our ap-
proach tractable, like MCMC methods in general, it requires a lot of computation.
It could be interesting to consider alternatives to MALA that might help in speeding
up this approach.

6.5 Summary

We have presented a Bayesian reconstruction framework for nonlinear inverse prob-
lems where the prior information on the image of interest is encoded by a deep la-
tent variable generative model. Specifically, we have designed a tractable posterior-
sampling scheme based on the Metropolis-adjusted Langevin algorithm for the class
of nonlinear inverse problems where the forward model has a neural-network-like
computational structure. This class includes most practical imaging modalities.
We have proposed the concept of augmented generative models. They allow us
to tackle the problem of the quantitative recovery of images. Finally, we have il-
lustrated the benefits of our framework by applying it to two nonlinear imaging
modalities—phase retrieval and optical diffraction tomography.



210 Deep Generative Priors for Nonlinear Inverse Problems

6.6 Appendix

6.6.1 Properties of the Posterior Distribution

Well-posedness

A Bayesian inverse problem is said to be well-posed in some metric on the space of
probability measures if the posterior distribution exists, is unique, and is continuous
with respect to the measurements for the chosen metric [284]. Here, we present
sufficient conditions from [284, Assumptions 3.5, 3.10 and Theorems 3.6, 3.12] that
guarantee the well-posedness of our problem in the latent space, that is, with respect
to PZ|Y=y† as described in Section 6.3.2.

The following conditions are stated for pZ-almost every (a.e.) z′ ∈ Rd+1 and
every y† ∈ RM .

Conditions:

1. pY|Z(·|z′) is a strictly positive pdf.

2.
∫
Rd+1 |pY|Z(y

†|z̃)|pZ(z̃)dz̃ <∞

3. There exists g with
∫
Rd+1 |g(z̃)|pZ(z̃)dz̃ < ∞ such that pY|Z(y

‡|·) ≤ g for all
y‡ ∈ RM .

4. pY|Z(·|z′) is continuous.

5. There exists g′ with
∫
Rd+1 |g′(z̃)|pZ(z̃)dz̃ < ∞ such that ∥z′∥p2 pY|Z(y

†|z′) ≤
g′(z′), where p ∈ [1,∞).

If the conditions (1)−(4) hold, our Bayesian inverse problem in the latent space
is well-posed in the Prokhorov, Hellinger and total-variation distances. In addition,
if condition (5) holds, then the problem is also well-posed in the Wasserstein p-
distance.

For additive white-Gaussian-noise (AWGN) models, the conditions (1)− (4) are
satisfied for any physical forward model H and prior distribution pZ. Further, if pZ

is such that
∫
∥z̃∥p2 pZ(z̃)dz̃ <∞ (e.g., Gaussian distribution), condition (5) is also

satisfied [284, Corollary 5.1]. As for the Poisson-noise models used in some of our
experiments, they do not fall within this framework of well-posedness developed in
[284].
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Existence of Moments

Based on Proposition 3.6 in [78], we also present some conditions under which the
moments of our posterior distribution PS|Y=y† exist. If the augmented deep gener-
ative prior Gh is Lipschitz-continuous and the prior distribution pZ has finite mo-
ments EPZ [|Z|k] for k = 1, 2, . . . ,K, then theKth posterior moment EP

S|Y=y† [|(S|Y =

y†)|K ] exists for almost all measurements y†.
The typical choice for pZ is the standard Gaussian distribution, which has finite

moments. The Lipschitz-continuity of Gh is guaranteed if the generative network
G and the function h are both Lipschitz-continuous and bounded. The Lipschitz
condition on the network G holds when its weights and biases are finite-valued and
it consists of Lipschitz-continuous activation functions (e.g., ReLU, sigmoid). The
boundedness of G is ensured when the activation function in the output layer is
bounded (such as the sigmoid function). These are conditions that are satisfied
by the networks used in Section 6.4. Further, in our experiments, we choose the
function h to be a scaled version of the cumulative density function of the standard
normal distribution, which is Lipschitz-continuous and bounded.

6.6.2 Wasserstein Generative Adversarial Networks

Classical generative adversarial networks (GANs) [69] are known to suffer from
issues such as the instability of the training process [292, 293], vanishing gradients,
and mode collapse. The framework of Wasserstein GANs (WGANs) [220] is an
alternative that alleviates these problems.

Let D be a dataset consisting of samples drawn from a probability distribution
Pr. The goal is to build a model using D that can generate samples that follow a
distribution that closely approximates Pr. A WGAN consists of a generator network
Gθ : Rd → RK (d≪ K), where θ ∈ Rd1 denotes its trainable parameters. It takes
an input vector z ∈ Rd, sampled from a fixed pdf pZ, and outputs Gθ(z) ∈ RK . The
samples generated by this model follow some distribution Pθ that is characterized
by Gθ and pZ. Thus, the parameters θ need to be chosen such that Pθ approximates
Pr well.

In the WGAN framework, the generator is trained to minimize the Wasserstein-1
(or Earth-Mover) distance between Pr and Pθ, which is given by

W (Pr,Pθ) = inf
γ∈π(Pr,Pθ)

E(U,V)∼γ

[
∥U− V∥

]
. (6.24)
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Here, π(Pr,Pθ) is the collection of all joint distributions with marginals Pr and Pθ.
The Kantorovich-Rubinstein duality theorem [294] states that (6.24) can be written
as

W (Pr,Pθ) = sup
f∈X

(
EU∼Pr [f(U)]− EV∼Pθ [f(V)]

)
, (6.25)

where X = {f : RK → R | f is 1-Lipschitz}. The space X is then replaced by a
family of 1-Lipschitz functions represented by a critic neural network Dϕ : RK →
R,w 7→ Dϕ(w) with appropriately constrained parameters ϕ ∈ Rd2 . This leads to
the minimax problem

min
θ∈Rd1

max
ϕ∈Y

(
EU∼Pr [Dϕ(U)]− EV∼Pθ [Dϕ(V)]

)
, (6.26)

where Y = {ϕ ∈ Rd2 | Dϕ is 1-Lipschitz}. In [220], the authors enforce the 1-
Lipschitz condition on Dϕ by clipping its weights during training. Instead, the
1-Lipschitz constraint can also be enforced by adding a gradient penalty to the cost
function in (6.26) [295]. The regularized minimax problem becomes

min
θ∈Rd1

max
ϕ∈Rd2

(
EU∼Pr [Dϕ(U)]− EV∼Pθ [Dϕ(V)

]
+ λgpEW∼Pint

[
(∥∇wDϕ(W)∥ − 1)2

])
,

(6.27)

where a point W ∼ Pint is obtained by sampling uniformly along straight lines
between points drawn from Pr and Pθ, and λgp > 0 is a hyperparameter.

In practice, Problem (6.27) is solved using mini-batch stochastic-gradient algo-
rithms in an alternating manner. During each iteration for the critic, we collect a
batch of samples {x(n)}Nc

n=1 from the dataset D. We sample vectors {z(n)}Nc
n=1 from

pZ and a sequence of numbers {α(n)}Nc
n=1 from the uniform distribution U[0,1], and

we construct w(n) = α(n)x(n) + (1−α(n))Gθ(z
(n)). The critic parameters are then

updated by ascending along the gradient given by

1

Nc
∇ϕ

(
Nc∑
n=1

Dϕ(x
(n))−Dϕ(Gθ(z

(n))) + λgp(∥∇wDϕ(w
(n))∥ − 1)2

)
. (6.28)

During each iteration for the generator, we sample latent vectors {z(n)}Ng

n=1 from
pZ. The generator parameters are then updated by descending along the gradient
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given by

1

Ng
∇θ

(
Ng∑
n=1

−Dϕ(Gθ(z
(n)))

)
. (6.29)

Typically, for every generator iteration, the critic is trained for ncritic iterations.

6.6.3 WGAN Architectures

The generator and critic architectures used for datasets consisting of constant-
valued discs are shown in Table 6.1 and 6.4. The architectures used for the MNIST
and Fashion MNIST datasets are shown in Table 6.2 and 6.3, respectively.
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Layers Output shape
Conv 4× 4 + LReLU 512× 4× 4
Conv 3× 3 + LReLU 512× 4× 4

Upsample 512× 8× 8
Conv 3× 3 + LReLU 256× 8× 8

Upsample 256× 16× 16
Conv 3× 3 + LReLU 128× 16× 16

Upsample 128× 32× 32
Conv 3× 3 + LReLU 64× 32× 32

Upsample 64× 64× 64
Conv 3× 3 + LReLU 32× 64× 64

Upsample 32× 128× 128
Conv 3× 3 + LReLU 16× 128× 128
Conv 1× 1 + Sigmoid 1× 128× 128

(a) Generator network with (128× 1× 1) input shape.

Layers Output shape
Conv 1× 1 + LReLU 16× 128× 128
Conv 3× 3 + LReLU 16× 128× 128
Conv 3× 3 + LReLU 32× 128× 128

Downsample 32× 64× 64
Conv 3× 3 + LReLU 64× 64× 64

Downsample 64× 32× 32
Conv 3× 3 + LReLU 128× 32× 32

Downsample 128× 16× 16
Conv 3× 3 + LReLU 256× 16× 16

Downsample 256× 8× 8
Conv 3× 3 + LReLU 512× 8× 8

Downsample 512× 4× 4
Conv 3× 3 + LReLU 512× 4× 4
Conv 4× 4 + LReLU 512× 1× 1

Reshape 1× 512
Fully-connected 1× 1

(b) Critic network with (1× 128× 128) input shape.

Table 6.1: Generator and critic architectures (single disc). The negative slope for
LReLU is set as 0.2. The upsampling layer uses nearest-neighbor interpolation
while the downsampling layer involves max pooling.
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Layers Output shape
Fully-connected + LReLU 1× 128

Fully-connected + Batch-norm + LReLU 1× 256
Fully-connected + Batch-norm + LReLU 1× 512
Fully-connected + Batch-norm + LReLU 1× 1024

Fully-connected + Sigmoid 1× 784

(a) Generator network with (1× 100) input shape.

Layers Output shape
Fully-connected + LReLU 1× 512
Fully-connected + LReLU 1× 256

Fully-connected 1× 1

(b) Critic network with (1× 784) input shape.

Table 6.2: Generator and critic architectures (MNIST). The negative slope for
LReLU is set as 0.2.
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Layers Output shape
Fully-connected + Batch-norm + ReLU 1× 1024
Fully-connected + Batch-norm + ReLU 1× 6272

Reshape 128× 7× 7
ConvTranspose 4× 4 + Batch-norm + ReLU 64× 14× 14

ConvTranspose 4× 4 + Sigmoid 1× 28× 28

(a) Generator network with (1× 100) input shape.

Layers Output shape
Conv 4× 4 + LReLU 64× 14× 14

Conv 4× 4 + Batch-norm + LReLU 128× 7× 7
Reshape 1× 6272

Fully-connected + Batch-norm + LReLU 1× 1024
Fully-connected 1× 1

(b) Critic network with (1× 28× 28) input shape.

Table 6.3: Generator and critic architectures (Fashion-MNIST). The negative slope
for LReLU is set as 0.2.
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Layers Output shape
Conv 4× 4 + LReLU 256× 4× 4
Conv 3× 3 + LReLU 256× 4× 4

Upsample 256× 8× 8
Conv 3× 3 + LReLU 128× 8× 8

Upsample 128× 16× 16
Conv 3× 3 + LReLU 64× 16× 16

Upsample 64× 32× 32
Conv 3× 3 + LReLU 32× 32× 32

Upsample 32× 64× 64
Conv 3× 3 + LReLU 16× 64× 64

Upsample 16× 128× 128
Conv 3× 3 + LReLU 8× 128× 128

Upsample 8× 256× 256
Conv 3× 3 + LReLU 4× 256× 256
Conv 1× 1 + Sigmoid 1× 256× 256

(a) Generator network with (128× 1× 1) input shape.

Layers Output shape
Conv 1× 1 + LReLU 4× 256× 256
Conv 3× 3 + LReLU 4× 256× 256
Conv 3× 3 + LReLU 8× 256× 256

Downsample 8× 128× 128
Conv 3× 3 + LReLU 16× 128× 128

Downsample 16× 64× 64
Conv 3× 3 + LReLU 32× 64× 64

Downsample 32× 32× 32
Conv 3× 3 + LReLU 64× 32× 32

Downsample 64× 16× 16
Conv 3× 3 + LReLU 128× 16× 16

Downsample 128× 8× 8
Conv 3× 3 + LReLU 256× 8× 8

Downsample 256× 4× 4
Conv 3× 3 + LReLU 256× 4× 4
Conv 4× 4 + LReLU 256× 1× 1

Reshape 1× 256
Fully-connected 1× 1

(b) Critic network with (1× 256× 256) input shape.

Table 6.4: Generator and critic architectures (two non-overlapping discs). The
negative slope for LReLU is set as 0.2. The upsampling layer uses nearest-neighbor
interpolation while the downsampling layer involves max pooling.
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Chapter 7

Deep Spatiotemporal
Regularization for Dynamic
Fourier Ptychography

1This chapter explores the use of an untrained neural network as an implicit reg-
ularizer in the context of Fourier ptychography (FP). This modality involves the
acquisition of several low-resolution intensity images of a sample under varying il-
lumination angles. They are then combined into a high-resolution complex-valued
image by solving a phase-retrieval problem. The objective in dynamic FP is to
obtain a sequence of high-resolution images of a moving sample. There, the ap-
plication of standard frame-by-frame reconstruction methods limits the temporal
resolution due to the large number of measurements that must be acquired for each
frame. We instead propose a neural-network-based reconstruction framework for
dynamic FP, which achieves high temporal resolution without compromising the
spatial resolution. It does not require training data and also recovers the pupil
function of the microscope.

1This chapter is based on our work [296].

219



220 Deep Spatiotemporal Regularization for Dynamic FP

7.1 Introduction

In Fourier ptychography (FP) [277], hundreds of low-resolution intensity images
are acquired by illuminating the object of interest with a coherent light source
with varying incidence angles. This task is typically performed using a LED array
and a microscope with a low numerical aperture (NA) objective lens, which makes
FP a low-cost and label-free imaging modality. The collection of measurements is
then algorithmically combined into a high-resolution complex-valued image of the
sample over a large field of view. Thus, FP has a high space-bandwidth product.

Building upon the pioneering work of Zheng et al. [277], the capabilities of FP
have been extended in a variety of ways by improving the optical acquisition setup.
For instance, in [297] and [298], the sequence of illuminations is optimized via an
importance metric and neural networks, respectively. Multiplexed FP is introduced
in [299], where one illuminates the sample with multiple LEDs and is able to reduce
the number of measurements. Further, optimal combinations of LEDs are studied
in [298, 300, 301, 302].

There have also been several improvements on the computational side for FP. At
its core, the reconstruction process involves the solution of a phase-retrieval (PR)
problem—the recovery of phase information from intensity measurements. In [277],
this task is performed by using the iterative Gerchberg-Saxton (GS) algorithm [303].
As PR is a non-convex problem, the solution obtained by GS depends on the start-
ing point. This problem of initialization is tackled in [304]. In [305, 306, 307], PR is
formulated as a convex optimization problem with the help of a lifting scheme. How-
ever, this elegant approach comes at the cost of a large computational burden. As
the acquired measurements are typically corrupted by noise, maximum-likelihood
estimation offers an adequate framework for one to incorporate the noise statis-
tics [308]. The resulting optimization problems are solved efficiently by gradient-
based or higher-order methods [309, 310]. A thorough comparative study of differ-
ent methods for PR can be found in [311]. In addition to solving the PR problem,
algorithms that include the estimation of the pupil function of the microscope [312]
and correction of the LED positions [313, 314] have also been proposed.

While FP has matured into a versatile modality with numerous applications [315],
high-quality high-speed imaging remains a challenge. The temporal resolution in FP
is inherently limited by the large number of measurements that need to be acquired
in order to reconstruct the high-resolution image of the sample. To alleviate this
problem, ad hoc acquisition setups [300, 301, 316] have been devised. They allow
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one to obtain a higher temporal resolution without a significant deterioration of the
spatial resolution. Alternatively, there has been a lot of interest in the development
of sophisticated computational methods to solve the PR problem with only a few
measurements. In such ill-posed scenarios, regularization techniques can be used to
incorporate some prior knowledge about the sample of interest. These are typically
applied by formulating PR as an optimization problem where the cost functional
consists of a data-fidelity term and a regularization term. The data-fidelity term
ensures that the solution is consistent with the observed data while the regular-
ization promotes solutions with the desired properties. For example, the popular
total-variation (TV) regularization [25] favors piecewise-constant images and has
been adapted for FP in several works [317, 318, 319, 320]. Group-sparsity-based
priors have been successfully deployed in FP as well [321]. An online plug-and-play
approach for FP has also been proposed in [322], where sophisticated denoisers such
as BM3D [204] are used for (implicit) regularization.

Over the past few years, deep-learning-based methods have yielded impressive
results, outperforming the model-based regularized methods in a variety of imaging
modalities, especially in ill-posed settings [323, 38]. In the context of FP, deep
neural networks have been trained in a supervised manner as nonlinear mappings
that take the low-resolution measurements and output the high-resolution image of
interest [324, 325, 326]. Further, in [327, 328], pre-trained deep generative priors
are used to solve the PR problem. For more details regarding FP, we refer the
reader to recent comprehensive reviews [315, 329].

In dynamic FP, when it is desired to image a moving sample, the computational
methods described above must be applied in a frame-by-frame manner to obtain
the sequence of high-resolution images, without accounting for the temporal depen-
dencies in the measurements. Yet, one can decrease the number of measurements
required per frame (thus increasing the effective imaging speed) by exploiting the
temporal correlations in the sequence of images to be recovered. Based on this idea,
the concept of low-rank FP is introduced in [330], where a low-rank constraint is
enforced on the matrix formed by stacking the (vectorized) images.

7.1.1 Contributions

In this chapter, we propose a novel computational framework for dynamic FP. In-
spired by the method developed in [331] for dynamic magnetic resonance imaging,
we use a deep neural network to impose a spatiotemporal regularization on the
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sequence of complex-valued images to be recovered. More specifically, we parame-
terize each image in the sequence as the output of a single convolutional network
corresponding to some fixed latent input vector. These input vectors are chosen
to lie on a one-dimensional manifold. The parameters of the network are then
estimated by optimizing a likelihood-based criterion. The architecture of the gen-
erative network imposes an implicit spatial regularization on the images while the
constraints on the input latent vectors allow the network to associate their prox-
imity with temporal variations in the sequence. Our method does not require any
training data. It also estimates the pupil function together with the complex-
valued images, which means it can be readily applied for different settings. We
assess the performance of our framework on simulated data with a single measured
low-resolution image per reconstructed frame and show that it paves the way for
high-quality ultrafast FP.

The chapter is organized as follows. In 7.2, we describe a continuous-domain
physical model for FP along with its computationally efficient discretization. We
present the proposed reconstruction framework in 7.3 and the experimental results
in 7.4.

7.2 Physical Model

In this section, we first formulate the physical model that relates the acquired
measurements and the sample of interest in the continuous domain. Then, we
present a discretized version of the forward model that can be implemented in a
computationally efficient manner.

7.2.1 Continuous-Domain Formulation

The optical system in FP usually involves an array of L LEDs (see Figure 7.1),
where the lth LED illuminates the specimen with a tilted plane wave with wave
vector kl ∈ R2 (l ∈ L = {1, 2, . . . , L}) and wavelength λ > 0. In this work,
we consider the case where only one LED is turned on for each measured image.
However, our framework is also compatible with more sophisticated acquisition
settings [299].

We model the sample of interest as a 2D complex object, which is a valid
assumption for thin samples. Therefore, we can represent the moving sample as a
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Figure 7.1: Acquisition setup of Fourier ptychography.

complex-valued function s : ΩS × R≥0 → C, where ΩS ⊂ R2 includes the region

of interest of the sample. Let {tq}Qq=1 be the uniformly-spaced timestamps, with
spacing ∆t, at which we are interested in observing the sample. We assume that
the sample moves very slowly in the intervals {Tq = [tq − ∆t/2, tq + ∆t/2]}Qq=1.

Thus, during Tq, we can acquire multiple measurements {yq,w : ΩY → R}Ww=1,
where W ≤ L and where ΩY ⊂ R2 includes the support of the measurement, of
the object s(·, tq). Here, the tradeoff between the temporal resolution and the
spatial resolution can be understood in terms of ∆t and W : a small value of ∆t

(high temporal resolution) implies a small value of W, which yields a low spatial
resolution.

Let Iq ⊂ L, where q ∈ {1, 2, . . . , Q}, be the set of LEDs that are switched on
during Tq; the cardinality of this set is |Iq| = W . Further, for w ∈ {1, 2, . . . ,W},
we introduce lq,w = Iq(w) ∈ L to denote the wth entry of Iq. The measurement
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image yq,w is obtained when s(·, tq) is illuminated by the lq,wth LED with the tilted

plane wave r 7→ ej⟨klq,w ,r⟩. As mentioned in [299, 311], it is given by

yq,w(r) =
∣∣F−1

{
p̂(k)F

{
s(·, tq)ej⟨klq,w ,·⟩

}
(k)
}
(r)
∣∣2

=
∣∣F−1

{
p̂(k)ŝ(k− klq,w , tq)

}
(r)
∣∣2. (7.1)

Here, the operators F and F−1 denote the Fourier transform and its inverse, re-
spectively, k ∈ R2 is the 2D spatial frequency variable, and the quantity ŝ(k, tq)
denotes the Fourier transform of s(r, tq). The pupil function2 p̂ : R2 → C models
the pupil aperture and is compactly supported on a disk of radius 2πNA

λ , where
NA is the numerical aperture of the system, thus cutting off high frequencies.

7.2.2 Camera Sampling

The camera in the acquisition setup samples yq,w on a uniform grid with stepsize
∆ and records a discrete image ỹim

q,w of size3 (M ×M) such that

ỹim
q,w = Noise(yim

q,w), (7.2)

where the (M ×M) image yim
q,w is the sampled version of yq,w given by

yim
q,w[m1,m2] = yq,w

(
(m1 −M/2)∆, (m2 −M/2)∆

)
(7.3)

for m1 = 0, . . . , (M−1) and m2 = 0, . . . , (M−1), and the operator Noise(·) models
the corruption of yim

q,w by noise. Consider the quantity

uq,w(r) = F−1
{
p̂(k)F

{
s(·, tq)ej⟨klq,w ,·⟩

}
(k)
}
(r). (7.4)

Due to the compact support of the pupil function p̂, the maximum angular frequency
of uq,w is 2πNA

λ . Note that the Fourier transform of yq,w can be written as

F {yq,w} (k) = F
{
|uq,w|2

}
(k) =

(
û∨q,w ∗ ûq,w

)
(k), (7.5)

2The pupil function p̂ is described directly in the Fourier domain.
3We consider square even-sized images for the sake of simplicity.
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where û∨q,w denotes the complex conjugate of û∨q,w which is given by û∨q,w(k) =
ûq,w(−k), and ∗ denotes the convolution operation. Thus, the maximum angular
frequency of yq,w is 4πNA

λ . Consequently, the Nyquist criterion dictates that the
sampling step ∆ of the camera should satisfy

∆ ≤ λ

4NA
. (7.6)

7.2.3 Discretized Forward Model

In this work, we obtain a discrete version simq of s(r, tq) by sampling it on a uniform
(N ×N) grid with pixel-size ∆r, as

simq [n1, n2] = s
(
(n1 −N/2)∆r, (n2 −N/2)∆r, tq

)
(7.7)

for n1 = 0, . . . , (N − 1) and n2 = 0, . . . , (N − 1). The image size is given by
N = rpM , where rp = ∆/∆r ∈ N is the upsampling factor. Now, consider the 2D
discrete Fourier transform (DFT) of simq . The corresponding pixel size in the Fourier
domain (or angular frequency resolution) is ∆k = 2π/N∆r. Thus, we discretize the
pupil function such that

p̂im[k1, k2] = p̂
(
(k1 −M/2)∆k, (k2 −M/2)∆k

)
(7.8)

for k1 = 0, . . . , (M − 1) and k2 = 0, . . . , (M − 1). Note that the choice of ∆ and ∆k

ensures that the support of the pupil function lies within the (M ×M) sampling
grid for p̂. Moreover, in our discretization scheme, we assume that the wave vector
klq,w can be written as klq,w = (blq,w,1∆k, blq,w,2∆k), where blq,w,1, blq,w,2 ∈ Z.

We now introduce some additional notations to specify the discrete forward
model. Let yq,w ∈ RM2

, sq ∈ CN2

, and p̂ ∈ CM2

be the vectorized versions of

yim
q,w, s

im
q , and p̂im, respectively. Then, let FQ,F

−1
Q ∈ CQ2×Q2

be matrices that
represent the 2D DFT and its inverse of a (Q × Q) image, respectively. Next, we

define diag(p̂) ∈ CM2×M2

to be a diagonal matrix whose entries are the values in
p̂. Finally, Cklq,w

is a boolean matrix that restricts an N2-dimensional vector to

an M2-dimensional vector depending on the illumination wave vector klq,w .

Proposition 7.1. The discrete counterpart of (7.1) can be computed as

yq,w = |Hlq,wsq|2 =
∣∣∣4π2

r2p
F−1
M diag(p̂)Cklq,w

FNsq

∣∣∣2. (7.9)
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Proof. Consider the quantity

uq,w(r) = F−1
{
p̂(k)F

{
s(·, tq)ej⟨klq,w ,·⟩

}
(k)
}
(r)

=

∫
R2

p̂(k)ej⟨k,r⟩

(∫
R2

s(x, tq)e
−j⟨k−klq,w ,x⟩dx

)
dk. (7.10)

We discretize the integrals in (7.10) using Riemann sums. A step-size ∆k is used
for the integral with respect to k and a step-size ∆r is used for the integral with
respect to s. The samples uim

q,w[m1,m2] = uq,w
(
(m1 −M/2)∆, (m2 −M/2)∆

)
for

m1 = 0, . . . , (M − 1) and m2 = 0, . . . , (M − 1), are then given by

uim
q,w[m1,m2] = (∆k∆r)

2
M−1∑
k1=0

M−1∑
k2=0

(
p̂
(
(k1 −M/2)∆k, (k2 −M/2)∆k

)︸ ︷︷ ︸
p̂im[k1,k2]

× ej(k1−M/2)(m1−M/2)∆k∆ ej(k2−M/2)(m2−M/2)∆k∆ aq,w[k1, k2]

)
,

(7.11)

where

aq,w[k1, k2] =

N−1∑
n1=0

N−1∑
n2=0

(
s
(
(n1 −N/2)∆r, (n2 −N/2)∆r, tq

)︸ ︷︷ ︸
simq [n1,n2]

× e−j(k1−blq,w,1−M/2)(n1−N/2)∆k∆r e−j(k2−blq,w,2−M/2)(n2−N/2)∆k∆r

)
.

(7.12)

The limits in the sums in (7.11) and (7.12) are dictated by the supports of p̂ and
s(r, tq), respectively. By rearranging some terms and using the fact that ∆k∆r =
2π/N , we rewrite (7.12) as

aq,w[k1, k2] =

(
N−1∑
n1=0

N−1∑
n2=0

simq [n1, n2] e
−j 2πN (k1−blq,w,1−M/2)n1 e−j 2πN (k2−blq,w,2−M/2)n2

︸ ︷︷ ︸
ŝimq [k1−blq,w,1−M/2,k2−blq,w,2−M/2]

)

× ejπ(k1−blq,w,1−M/2) ejπ(k2−blq,w,2−M/2), (7.13)
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where ŝimq is the (N,N)-point DFT of simq and the shifts in the DFT are applied in
a circular manner. On plugging (7.13) into (7.11), we get that

uim
q,w[m1,m2]

= (2π/N)2
M−1∑
k1=0

M−1∑
k2=0

(
p̂im[k1, k2] ŝ

im
q [k1 − blq,w,1 −M/2, k2 − blq,w,2 −M/2]

× ej(k1−M/2)(m1−M/2)∆k∆ ej(k2−M/2)(m2−M/2)∆k∆

× ejπ(k1−blq,w,1−M/2) ejπ(k2−blq,w,2−M/2)

)
. (7.14)

Next, we group all the exponential terms involving k1 and k2 and use ∆k∆ = 2π/M
to obtain that

uim
q,w[m1,m2]

= (2π/N)2

(
M−1∑
k1=0

M−1∑
k2=0

p̂im[k1, k2] ŝ
im
q [k1 − blq,w,1 −M/2, k2 − blq,w,2 −M/2]

× ej
2π
M k1m1 ej

2π
M k2m2

)
× e−jπ(m1+blq,w,1) e−jπ(m2+blq,w,2). (7.15)

Let gim
q,w be the (M,M)-point IDFT of ĝim

q,w[k1, k2] = p̂im[k1, k2] ŝ
im
q [k1 − blq,w,1 −

M/2, k2 − blq,w,2 −M/2]. Then, the discrete measurements can be expressed as

yim
q,w[m1,m2] =

∣∣uim
q,w[m1,m2]

∣∣2 =
∣∣(4π2/r2p) g

im
q,w[m1,m2]

∣∣2. (7.16)

Note that the computation of gim
q,w involves taking the (N,N)-point DFT of simq ,

(circularly) shifting it according to the wave vector klq,w , restricting the shifted
DFT to an (M × M) image, performing pointwise multiplication with p̂im, and
then taking the (M,M)-point IDFT. This allows us to write (7.16) in vectorized
form as in the right-hand side of (7.9).

While the discrete forward model (7.9) has previously been used in works such
as [311], to the best of our knowledge, a systematic derivation of (7.9) from the
continuous model (7.1) has not been presented in the literature.
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7.3 Reconstruction Framework

The goal in dynamic FP is to reconstruct the images {sq ∈ CN2}Qq=1 from the

recorded measurements {{ỹq,w ∈ RM2}Ww=1}Qq=1. We first present our neural-
network-based framework for the case of a well-characterized pupil function. Then,
we describe a way to incorporate the recovery of the pupil function into our recon-
struction algorithm.

7.3.1 Deep Spatiotemporal Regularization

In our framework, we propose to use an extended version of the untrained-neural-
network-based method presented in Section 2.2.3 to impose spatiotemporal regu-
larization on the sequence of images. We parameterize each of the Q images as the
output of a single CNN fθ : RN2

z → CN2

, with parameters θ ∈ RP , applied to some
fixed input latent vector zq ∈ RN2

z , q = 1, . . . , Q. We choose these latent vectors
such that they lie on a straight line, in accordance with

zq = z1 +
q − 1

Q− 1
(zQ − z1) , q = 1, . . . , Q, (7.17)

where the end-points z1, zQ are fixed beforehand (for example, by drawing two
samples from some multivariate probability distribution). We then estimate the
parameters of the network according to

θ∗ ∈ argmin
θ∈RP

Q∑
q=1

W∑
w=1

D
(
ỹq,w, |Hlq,w fθ(zq)|2

)
, (7.18)

where D : RM2 × RM2 → R+ is a data-fidelity term derived from a suitable statis-
tical model for the Noise(·) operator (like in Equation 2.8) and the reconstructed

sequence is {s∗q}Qq=1 = {fθ∗(zq)}Qq=1. The rationale behind our choice of the latent
vectors is to allow the CNN to associate the spatial proximity between them with
the temporal proximity of the images. In this manner, the architecture of the net-
work imposes spatial regularization while the use of a shared network for all images
and the design of the latent space impose temporal regularization. A schematic
illustration of our framework is given in Figure 7.2.
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)

Figure 7.2: Spatiotemporal regularization using the generative neural network fθ.

7.3.2 Optimization Strategy

The relation between the measurements and the underlying images is nonlinear,
which makes the inverse problem very challenging. The fact that only one LED
is switched on for each measurement further adds to the difficulty. Thus, in order
to avoid bad local minima while solving the optimization problem in (7.18), we
initialize the parameters of the network according to

θ̃ ∈ arg min
θ∈RP

Q∑
q=1

(∥∥|̃sq| − |fθ(zq)|∥∥1 + ∥∥ arg (s̃q)− arg
(
fθ(zq)

)∥∥
1

)
, (7.19)

where {s̃q}Qq=1 are low-quality reconstructions obtained via a standard frame-by-
frame method. The magnitude | · | and phase arg(·) operations in (7.19) are ap-
plied component-wise. We can solve (7.19) using off-the-shelf minibatch stochastic
gradient-descent algorithms. However, it is not desirable to run these algorithms
till convergence as the network then overfits the artifacts present in the low-quality
reconstructions. Thus, in our initialization routine, which is described in Algorithm
4, we deploy early stopping by choosing suitable values for the tolerance ϵtol and
the maximum number of iterations nmax (see Section 7.4.1 for details).

After the initialization, we can solve (7.18) using again some minibatch stochas-
tic gradient-descent algorithm. In some cases (for example, when the measurements
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Algorithm 4 Initialization of network parameters.

Input: Low-quality reconstructions {s̃q}Qq=1, latent vectors {zq}Qq=1, batch size
BQ, tolerance ϵtol, maximum number of iterations nmax.
Randomly initialize θ
Lbatch ← +∞, i← 0
while Lbatch > ϵtol do

Randomly sample a batch Q of size BQ from {1, 2, . . . , Q}
Compute Lbatch(θ) =

∑
q∈Q

(∥∥|̃sq| − |fθ(zq)|∥∥1 + ∥∥ arg (s̃q)− arg
(
fθ(zq)

)∥∥
1

)
Update θ with gradient ∇θLbatch(θ)
i← i+ 1
if i > nmax then

Exit the while loop
end if

end while
Output: Network parameters θ

are corrupted by a non-negligible amount of noise), running the optimization pro-
cess beyond a certain number of iterations leads to deterioration of the reconstruc-
tion quality as the network begins to overfit the measurements. Thus, we also adopt
early stopping when necessary.

For both the initialization and reconstruction tasks, we use (minibatch) stochas-
tic gradient-descent algorithms instead of deterministic ones. This introduces ad-
ditional hyperparameters (batch sizes) that must be set appropriately. However,
stochastic methods with small batch sizes require much less memory than the deter-
ministic ones. In fact, if the number of frames Q is large, applying a deteministic
gradient-descent method is infeasible. Further, such stochastic methods are also
more likely to escape bad local minima and thus reach better solutions. Indeed, in
our experiments, we observed that using reasonably small batch sizes (BQ = 10)
led to better reconstructions than using large batch sizes (BQ = 40).

7.3.3 Recovery of the Pupil Function

So far, we have assumed complete knowledge of the pupil function in our reconstruc-
tion framework. However, the pupil function is typically not well-characterized in



7.3 Reconstruction Framework 231

Algorithm 5 Joint recovery of dynamic sample and pupil function.

Input: Measurements {{ỹq,w}Ww=1}Qq=1, LED indices {{lq,w}Ww=1}Qq=1, latent vec-

tors {zq}Qq=1, initial network parameters θ̃, initial Zernike coefficients c̃, regular-
ization parameter τ , batch sizes {BW , BQ}, number of epochs nep.

θ ← θ̃, c← c̃
nW ← ⌊ WBW

⌋, nQ ← ⌊ QBQ
⌋

for nep epochs do
for nW iterations do

Randomly sample a batch W of size BW from {1, 2, . . . ,W}
for nQ iterations do

Randomly sample a batch Q of size BQ from {1, 2, . . . , Q}
Compute the loss Lbatch(θ, c) =

∑
q∈Q

∑
w∈W D

(
ỹq,w, |Hlq,w(c)fθ(zq)|2

)
Update θ with gradient ∇θLbatch(θ, c)
Update c with gradient ∇cLbatch(θ, c)

end for
end for

end for
Output: Reconstructed images {fθ(zq)}Qq=1, Zernike coefficients c

FP. Thus, similar to the work in [312, 320], we estimate it along with the sequence
of images.

Following [320], we use Zernike polynomials to represent the pupil function with
only a few parameters (≪ M2). These functions are orthogonal on the unit circle
and are often used in optics for modeling aberrations. We express the pupil function
in polar coordinates (ρ, ϕ) as

p̂(ρ, ϕ) =

 exp

(
j
A∑
a=1

caZa
(

ρλ
2πNA , ϕ

))
, ρ ≤ 2πNA

λ

0, otherwise,
(7.20)

where Za is the ath Zernike polynomial according to Noll’s sequential indices (re-
fer to 7.6.1 for details) and c = (ca)

A
a=1 ∈ RA (A ≪ M2) contains the Zernike

coefficients. The pupil function is discretized as in (7.8) by evaluating (7.20) on
the required Cartesian grid. We denote the vectorized discrete pupil function by
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p̂(c) ∈ RM2

to explicitly indicate the dependence on the Zernike coefficients. Sim-
ilarly, our forward model (7.9) is then written as

yq,w = |Hlq,w(c)sq|2 =
∣∣∣4π2

r2p
F−1
M diag(p̂(c))Cklq,w

FNsq

∣∣∣2. (7.21)

Finally, the optimization problem for the joint recovery of the pupil function and
the sequence of images is

(θ∗, c∗) ∈ argmin
θ∈RP ,c∈RA

Q∑
q=1

W∑
w=1

D
(
ỹq,w, |Hlq,w(c)fθ(zq)|2

)
, (7.22)

where D : RM2 × RM2 → R+ is the data-fidelity term. We can solve (7.22) using
a minibatch stochastic gradient-descent algorithm coupled with early stopping if
required. Our complete reconstruction algorithm is summarized in Algorithm 5.

7.4 Numerical Results

7.4.1 Simulated Setup

We demonstrate the advantages of our reconstruction method on simulated data.
We consider an FP setup consisting of L = 100 LEDs arranged in a (10×10) uniform
grid with a spacing of dL = 4mm. The maximum illumination NA of the LED array,
which is placed at distance h = 90.88mm from the sample, is 0.27. The LEDs emit
light with wavelength λ = 532 nm. The numerical aperture of the objective is NA =
0.1. We have chosen these values of dL, h, λ and NA based on the experimental
setup in [315]. The pupil function is defined according to (7.20) using the first nine
Zernike polynomials with coefficients c = (0, 0.15, 0.3,−0.1, 0.2, 0, 0, 0, 0) ∈ R9. We
take the low-resolution measurements acquired by the camera to be of size (64×64)
with pixel-size ∆ = λ

4NA = 1.33 µm and we set the oversampling ratio as rp = 4.
Consequently, the pixel size for the highresolution image is ∆r = 332.5 nm and the
step-size for discretizing the pupil function is ∆k = 0.074 µm−1. The LED array
and the pupil function are shown in Figure 7.3.

Our ground truth is a sequence of complex-valued images {sq ∈ C2562}100q=1
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Figure 7.3: Simulated FP setup. Panel A: LED array. Panel B: Pupil function.

of size (256 × 256) which we created from experimental phase images4. We place
ourselves in the extremely challenging ultrafast regime where only one measurement
is acquired for each image in the sequence. For each measurement, a single LED of
index5 lq is randomly activated and a low-resolution image5 yq ∈ R642 is simulated

according to (7.21). The recorded measurement image ỹq ∈ R642 is then generated
according to

ỹq = yq + nq, (7.23)

where nq ∈ R642 is a realization of a zero-mean Gaussian random vector with

4The experimental phase images are from [332] and are available at
http://celltrackingchallenge.net/2d-datasets/.

5We have dropped the index w as W = 1.

http://celltrackingchallenge.net/2d-datasets/
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Figure 7.4: First and second row: frames of the ground-truth sequence (amplitude
and phase). Third and fourth row: corresponding low-resolution measurements
(noiseless and noisy, normalized for visualization). The signal-to-noise ratios for the

noisy measurements, computed as 20 log10
∥yq∥2

∥yq−ỹq∥2
, are indicated at the bottom

right corners of the measurement images. Scale bar: 10 µm.

covariance matrix Σq ∈ R642×642 . Specifically, we consider two settings for our
simulations. In the first case, Σq is the zero matrix, which means that the recorded
measurements are noiseless. In the second case, Σq is a diagonal matrix with entries(
([yq]m)/1000

)642
m=1

. There, (7.23) corresponds to a Gaussian approximation of the
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Poisson noise model with a photon budget of 1000.
We show some of the frames in the ground-truth sequence and the corresponding

measurements for both the settings (noiseless and noisy) in 7.4. The full sequences
are provided in the supplementary material.

7.4.2 Implementation of the Deep Spatiotemporal Regular-
izer

In this subsection, we describe the implementation of our reconstruction method—
the deep spatiotemporal regularizer (DSTR).

Network Architecture

It has been observed that the choice of the network architecture can greatly affect
the performance of untrained-neural-network-based methods [82]. Therefore, the
common practice when deploying such schemes is to select the architecture in an
empirical trial-and-error manner for the specific task at hand. For our experiments,
inspired by [331], we adopt a convolutional decoder-like architecture for fθ, which,
as we demonstrate in Sections 7.4.5 and 7.4.6, yields high-quality reconstructions.
It takes a low-dimensional input vector z ∈ R82 and outputs a complex-valued
(vectorized) image fθ(z) ∈ C2562 . The architectural details are described in Table
7.1. In particular, the complex-valued image is generated from a pair of magnitude
and phase images. The initial part of the network creates feature maps of size
(128× 256× 256). These are then fed into both the magnitude and phase branches
of the network. The magnitude branch consists of a convolutional layer followed
by the pointwise differentiable rectified linear unit (DReLU) activation function,
which we define as

DReLU(x) =

{
γ exp(xγ − 1), x < γ

x, otherwise,
(7.24)

where γ > 0 is set a priori. We use DReLU (with γ = 0.1) instead of ReLU to avoid
the “dead-neuron” issue during the first few iterations of the optimization, while
ensuring that the magnitude is positive. Meanwhile, the phase branch consists of
a convolutional layer followed by the π tanh nonlinearity to constrain the phase to
lie within the range [−π, π].
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Layers Output shape

Reshape 1× 8× 8

2 × (Conv + BN + ReLU) 128× 8× 8

Upsampling + 2 × (Conv + BN + ReLU) 128× 16× 16

Upsampling + 2 × (Conv + BN + ReLU) 128× 32× 32

Upsampling + 2 × (Conv + BN + ReLU) 128× 64× 64

Upsampling + 2 × (Conv + BN + ReLU) 128× 128× 128

Upsampling + 2 × (Conv + BN + ReLU) 128× 256× 256

Magnitude: Conv + DReLU
Phase: Conv + π tanh

1× 256× 256
1× 256× 256

Combination: Magnitude ⊙ ejPhase 1× 256× 256

Reshape 1× 2562

Table 7.1: Architecture of the network fθ. Size of input: (1 × 82). Conv: convo-
lutional layer with (3 × 3) kernels and reflective boundary conditions. BN: batch
normalization layer. Upsampling: nearest neighbor interpolation. The amplitude
and phase branches take the same input of size (128 × 256 × 256) and output the
magnitude and phase images of size (1 × 256 × 256), respectively. DReLU is de-
scribed in (7.24). The combination layer generates a complex-valued image from
the magnitude and phase images. This network consists of 1,628,546 learnable pa-
rameters.

Latent Vectors

As mentioned in Section 7.3.1, the latent vectors {zq ∈ R82}100q=1 are chosen such
that they lie on the straight line defined in (7.17). We fix the end-points z1, z100 of
this line by drawing two samples from the standard multivariate normal distribution
in 82 dimensions.

Initialization

In all our experiments, we initialize the parameters of the network using reconstruc-
tions obtained from the Gerchberg-Saxton algorithm (briefly described in Section
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7.4.3). We run Algorithm 4 using the AMSGrad solver [333] with a learning rate
of 10−3, batch size BQ = 10, tolerance ϵtol = 0.1 × (BQ × 2562) and maximum
number of iterations nmax = 1000. We then freeze the tunable parameters of the
batch-normalization layers. For experiments involving the estimation of the pupil
function, we initialize the Zernike coefficients as c̃ = 0.

We have observed that the initialization of the network parameters has an im-
pact on the reconstruction quality. For example, randomly initializing the param-
eters does not lead to satisfactory results. However, initializing the network by
simply fitting it to low-quality solutions of the Gerchberg-Saxton algorithm (along
with early stopping to avoid overfitting the artifacts) allows us to obtain excellent
reconstructions (see Sections 7.4.5 and 7.4.6).

Choice of the Data-Fidelity Term

In our simulations, we consider two kinds of measurements—noiseless and those
corrupted by (an approximation of) Poisson noise. For the latter, the data-fidelity
term based on the negative log-likelihood function corresponding to the Poisson
distribution is given by

DPoisson(a,b) =

M∑
m=1

(
− [a]m log([b]m) + [b]m

)
, (7.25)

where a,b ∈ RM2

. However, for optimization-based FP reconstruction, it has been
shown (experimentally) in [311] that a cost function of the form

Dsqrt(a,b) =
1

2

∥∥√a−√b∥∥2
2

(7.26)

yields better reconstructions than the one in (7.25). Thus, for our reconstruction
experiments, we use the slightly modified version of (7.26) given by

D(a,b) = 1

2

∥∥√a+ ϵ1−
√
b+ ϵ1

∥∥2
2
, (7.27)

where 1 ∈ RM2

is a vector with all entries equal to 1 and ϵ = 10−10 helps us
avoid numerical instabilities in the computation of the gradient. We would like
to mention that Dsqrt can be interpreted from a statistical point of view as being
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based on the negative log-likelihood function derived from the distribution of the
transformed measurements

√
ỹq. This is due to the well-known property that if X

is a Poisson random variable with mean µX, then Y =
√
X approximately follows a

Gaussian distribution with mean µY =
√
µX and variance σ2

Y = 1/4 [334, 335].
For the noiseless setting, ideally we should optimize the network parameters

such that the generated sequence fits the measurements exactly. However, it is
difficult to solve this constrained optimization problem and thus we use the data-
fidelity term from (7.27) in this case as well.

Note: The details regarding the optimization process for (7.18) and (7.22) are
provided in Sections 7.4.5 and 7.4.6.

7.4.3 Comparisons

We compare our proposed framework to the following methods.

Gerchberg-Saxton Algorithm The GS algorithm [303] is a classical method
for phase retrieval. Assuming that the Zernike coefficient vector c is known, it aims
at solving the feasibility problem

s∗GS,q ∈
{
s : ỹq = |Hlq (c)s|2

}
(7.28)

for q = 1, 2, . . . , 100, by alternately updating the image plane and the object plane.
We refer the reader to [303] for more details. When the pupil function is not well-
characterized, we do not incorporate its recovery within the GS algorithm. Instead,
we solve (7.28) assuming an idealized pupil function with no phase aberrations that
corresponds to c = 0.

Data-Consistency Estimator Based on the work in [311], we consider a data-
consistency (DC) estimator that minimizes the (slightly modified) “amplitude-
based” cost function (7.27). For the joint recovery of the images and pupil function,
it is given by

(
s∗DC,1, . . . , s

∗
DC,100, c

∗
DC

)
∈ arg min

s1,...,s100,c

100∑
q=1

D
(
ỹq, |Hlq (c)sq|2

)
, (7.29)

where D(·, ·) is defined in (7.27).



7.4 Numerical Results 239

Spatially Total-Variation-Regularized Estimator In our numerical simula-
tions, we also consider a regularized estimator where the cost function in (7.29) is
augmented with spatial anisotropic TV regularization for each frame. It is given
by

(
s∗STV,1, . . . , s

∗
STV,100, c

∗
STV

)
∈ arg min

s1,...,s100,c

100∑
q=1

(
D
(
ỹq, |Hlq (c)sq|2

)
+ τamp,q

∥∥L{|sq|}∥∥1 + τphase,q
∥∥L{arg(sq)}∥∥1),

(7.30)

where the operator L : RN → R2N computes finite differences in both the directions
for the underlying image, and {τamp,q, τphase,q}100q=1 ⊂ R+ are hyperparameters that
control the strength of the regularization.

Spatiotemporally Total-Variation-Regularized Estimator Finally, we also
implement a spatiotemporally-regularized estimator where the cost function in
(7.29) is augmented with both spatial and temporal TV regularization. It is given
by

(
s∗STTV,1, . . . , s

∗
STTV,100, c

∗
STTV

)
∈ arg min

s1,...,s100,c

100∑
q=1

(
D
(
ỹq, |Hlq (c)sq|2

)
+ τamp,s

∥∥L{|sq|}∥∥1 + τphase,s
∥∥L{arg(sq)}∥∥1)

+

99∑
q′=1

(
τamp,t

∥∥|sq′+1| − |sq′ |
∥∥
1

+ τphase,t
∥∥ arg(sq′+1)− arg(sq′)

∥∥
1

)
, (7.31)

where L : RN → R2N is the finite-difference operator and {τamp,s, τphase,s, τamp,t, τphase,t} ⊂
R+ are the regularization hyperparameters.
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Table 7.2: Reconstruction from noiseless measurements with a perfectly character-
ized pupil function.

Method GS DC STV STTV DSTR
RSNR [dB] 17.24 9.66 17.85 18.58 28.61

7.4.4 Evaluation Metric

We quantify the performance of a method by computing the regressed signal-to-
noise ratio (RSNR) for the entire reconstructed sequence of images. Let s and
s∗ denote vectorized versions of the ground truth and reconstruction, respectively.
These are created by concatenating the vectorized representations of each frame in
the sequence. The RSNR is computed as

RSNR(s∗, s) = max
a∈C

20 log10
∥s∥2

∥s− as∗∥2
. (7.32)

We also report the SNR for the pupil function whenever it is jointly estimated with
the sequence of images. This metric is computed as

SNR
(
p̂(c), p̂(c∗)

)
= 20 log10

∥p̂(c)∥2
∥p̂(c)− p̂(c∗)∥2

, (7.33)

where c and c∗ are the ground-truth and estimated Zernike coefficients, respectively.

7.4.5 Reconstruction from Noiseless Measurements

We now present two experiments involving noiseless measurements. In both of
them, we run the iterative algorithm for each method for a sufficient number of
iterations (details are provided below), beyond which the reconstruction does not
change significantly. In other words, we do not deploy early stopping for any method
as the measurements are noiseless.

Perfectly Characterized Pupil Function

We first consider an idealized setting where the pupil function is perfectly char-
acterized and is therefore not estimated during the reconstruction of the images
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Figure 7.5: Reconstruction from noiseless measurements with a perfectly charac-
terized pupil function. Panel A: XY view for the frame index q = 26. Panel B: XT
view for the Y position indicated in Panel A (GT, Phase, dashed line). Scale bar:
10 µm.

of interest. In this scenario, the DC and STV estimators can be computed in
frame-by-frame manner (similar to the GS method) by decomposing the overall
optimization problems into Q = 100 smaller ones. We solve these by running
AMSGrad with a learning rate of 10−3 for 1,000 iterations. In order to improve
their performance, we initialize the GS, DC, and STV methods for the timestamp
tq with the reconstructed images from the previous timestamp tq−1. The GS solu-
tion is used for initializing the STTV method. We solve (7.31) by using AMSGrad
for 10,000 epochs with a learning rate of 10−3 and a full batch size of 100. The
optimal hyperparameters {τamp,q, τphase,q}100q=1 and {τamp,s, τphase,s, τamp,t, τphase,t}
for the STV and STTV methods, respectively, are chosen via a grid-search. For
DSTR, the network parameters are initialized with the help of the GS solution.
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Table 7.3: Joint recovery of the dynamic sample and the pupil function from noise-
less measurements.

Method GS DC STV STTV DSTR
Sequence RSNR [dB] 14.70 14.82 15.88 17.10 28.04
Pupil SNR [dB] N.A. 8.28 9.57 12.74 31.22

We then solve (7.18) by running the AMSGrad optimizer for 10,000 epochs with a
learning rate of 5× 10−5 and a batch size of BQ = 10.

We present the RSNR values for all the methods in Table 7.2. Further, we
display some slices of the (2D + time) reconstructions in Figure 7.5. The entire
reconstructed sequences can be found at the link given in Appendix 7.6.2. We
observe that the proposed method significantly outperforms the GS, DC, STV and
STTV methods. Even though only one measurement is acquired per frame, it
yields a high-quality reconstruction, unlike the other methods which exhibit various
artifacts (for example, the features marked by arrows in Figure 7.5).

Joint Recovery of Dynamic Sample and Pupil Function

Next, we consider a setting where the pupil function is not well-characterized and
is therefore estimated jointly with the dynamic sample in our framework and in the
DC, STV and STTV methods. (We do not adapt the GS algorithm for the recovery
of the pupil function; we simply assume the idealized pupil function c = 0.) For
the DC, STV and STTV methods, the sequence of images is initialized with the GS
solution and the Zernike coefficients are initialized as c̃ = 0. We solve (7.29) and
(7.30) by running the AMSGrad optimizer for 10,000 epochs with a learning rate of
10−3 and a batch size of 10. For solving (7.31), we run AMSGrad for 10,000 epochs
with a learning rate of 10−3 and a full batch size of 100. In the STV method, we
select two global hyperparameters {τamp, τphase} via grid search and share them
among all frames. The hyperparameters {τamp,s, τphase,s, τamp,t, τphase,t} for the
STTV method are also tuned for best performance with the help of a grid search.
In our method, we initialize the network parameters using the GS solution and we
initialize the Zernike coefficients as c̃ = 0. We solve (7.18) by running AMSGrad
for 10,000 epochs with a learning rate of 5× 10−5 and a batch size of BQ = 10.

We present the RSNR and SNR values for the reconstructed sequence and the
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Figure 7.6: Joint recovery of the dynamic sample and the pupil function from
noiseless measurements. Panel A: XY view for the frame index q = 26. Panel B:
XT view for the Y position indicated in Panel A (GT, Phase, dashed line). Panel
C: phase of the pupil function. Scale bar (for Panels A and B): 10 µm.

pupil function, respectively, in Table 7.3. We also show some slices of the (2D
+ time) reconstructions and the recovered pupil functions (phase) in Figure 7.6,
as well as the recovered Zernike coefficients in Figure 7.7. The full reconstructed
sequences are provided at the link mentioned in Appendix 7.6.2. Here, the DC,
STV and STTV methods fail to recover the Zernike coefficients (i.e., the pupil
function) accurately and yield poor reconstructions of the dynamic sample. On the
contrary, our method provides a good estimate of the pupil function along with a
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Figure 7.7: Recovered Zernike coefficients from noiseless measurements. The first
(Noll index = 1) Zernike mode only contributes a constant phase factor which has
no effect on the intensity measurements and thus can be ignored.

Table 7.4: Joint recovery of the dynamic sample and the pupil function from noisy
measurements.

Method GS DC STV STTV DSTR
Sequence RSNR [dB] 14.09 14.14 14.65 16.39 24.86
Pupil SNR [dB] N.A. 9.36 10.66 14.98 28.36

high-quality reconstruction of the moving sample.

7.4.6 Reconstruction from Noisy Measurements

Finally, we consider the joint recovery of the sequence of images and the pupil
function from noisy measurements. In this case, we observe that the GS, DC
and DSTR methods require early stopping as running the corresponding iterative
algorithm beyond a point leads to overfitting the noisy measurements. Thus, we
run each method for a sufficiently large number of epochs (= 10,000) and we report
the reconstruction that achieves the best RSNR during these epochs. For each
method, we use the initialization, optimizer, learning rate and batch size described
in Section 7.4.5. The hyperparameters for the STV and STTV methods are also
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Figure 7.8: Joint recovery of the dynamic sample and the pupil function from noisy
measurements. Panel A: XY view for the frame index q = 26. Panel B: XT view
for the Y position indicated in Panel A (GT, Phase, dashed line). Panel C: phase
of the pupil function. Scale bar (for Panels A and B): 10 µm.

tuned in the same way as in Section 7.4.5.

We summarize the quantitative results for all the methods in Table 7.4. We
display some slices of the (2D + time) reconstructions and the estimated pupil
functions (phase) in Figure 7.8, and we present the recovered Zernike coefficients in
Figure 7.9. The entire reconstructed sequences are available at the link provided in
Appendix 7.6.2. In this setting, as shown in Figure 7.4, the dark-field measurements
are corrupted by significant amounts of noise, which makes the recovery problem
quite challenging. Remarkably, our method still yields reconstructions of very good
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Figure 7.9: Recovered Zernike coefficients from noisy measurements. The first
(Noll index = 1) Zernike mode only contributes a constant phase factor which has
no effect on the intensity measurements and thus can be ignored.

quality and outperforms the DC, STV and STTV methods by a big margin.

7.4.7 Computational Cost

In all our experiments, we used an Intel Xeon Gold 6240R (2.6 GHz) CPU for the GS
method and an NVIDIA V100 GPU for the DC, STV, SSTV and DSTR methods.
While DSTR achieves substantially better reconstruction quality than the other
methods, its computational cost is also higher. For example, the run time for DSTR
was around 5.5 hours as opposed to 3− 30 minutes for the other approaches when
jointly estimating the sequence and the pupil function from noiseless measurements.

7.5 Summary

We have presented a neural-network-based framework that does not require training
data for the reconstruction of high-resolution complex-valued images of a moving
sample in dynamic Fourier ptychography. In our method, we have parameterized
the sequence of images to be reconstructed using a shared convolutional network
with adjustable parameters. We have encoded the temporal behavior of the sample
in the input vectors of the network by constraining them to lie on a one-dimensional
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manifold. In this manner, we have leveraged both the structural prior of a neu-
ral network and the temporal regularity between consecutive frames. Further, we
have incorporated the recovery of the pupil function of the microscope within our
framework. Finally, with the help of simulations, we have shown that the pro-
posed approach drastically improves the quality of reconstruction over standard
frame-by-frame methods.

7.6 Appendix

7.6.1 Zernike Polynomials

In the polar coordinates (ρ, ϕ), the Zernike polynomials are given by

Zuv (ρ, ϕ) =

{
R

|u|
v (ρ) cos (|u|ϕ), u ≥ 0

R
|u|
v (ρ) sin (|u|ϕ), u < 0,

(7.34)

where u ∈ Z, v ∈ N, ρ ∈ [0, 1], ϕ ∈ [0, 2π), and

R|u|
v (ρ) =


(v−|u|)

2∑
s=0

(−1)s (v−s)!
s!
(

(v+|u|)
2 −s

)
!
(

(v−|u|)
2 −s

)
!
ρv−2s, (v − |u|) is even,

0, (v − |u|) is odd.
(7.35)

For a ∈ Z+ \ {0}, Noll’s sequential indexing defines a mapping Zuv 7→ Za such that

a =
v(v + 1)

2
+ |u|+


0, u > 0 ∧ ⌊v/2⌋ ∈ 2N
0, u < 0 ∧ ⌊v/2⌋ ∈ 2N+ 1
0, u ≥ 0 ∧ ⌊v/2⌋ ∈ 2N+ 1
0, u ≤ 0 ∧ ⌊v/2⌋ ∈ 2N.

(7.36)

7.6.2 Data Link

The data corresponding to our experiments (the full ground-truth sequences and
all the reconstructed sequences) can be found at the following link:
https://iopscience.iop.org/article/10.1088/1361-6420/acca72/meta.

https://iopscience.iop.org/article/10.1088/1361-6420/acca72/meta
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Chapter 8

Conclusion

In this thesis, we have presented a collection of novel reconstruction methods
for solving ill-posed inverse problems. These methods were developed within the
penalized-likelihood-based estimation and Bayesian estimation paradigms and range
from those that involve classical sparsity-based signal models to those that exploit
the power of neural networks. In this concluding chapter, we first summarize our
contributions and then briefly outline some directions for future research.

8.1 Contributions

Part I: The World of Sparsity

In the first part of the thesis, we have focused on sparse signal models in the context
of linear inverse problems for 1D signals.

Continuous-Domain Lp-norm Regularization

We have devised an algorithm to numerically solve Lp-regularized generalized-
interpolation problems for p ≥ 1 and with a multi-order derivative regularization
operator DN0 . Our method involves the use of splines of degree N0, with uniformly
spaced knots, for an exact discretization. The resulting discrete problem is solved
using the alternating direction method of multipliers (ADMM) and a small-enough

249
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grid size is picked with the help of a grid-refinement strategy. Through our experi-
ments for spatial and Fourier interpolation, we have established the existence of a
continuum of solutions as p goes from ∞ to 1. We have also made insightful ob-
servations about properties of Lp-regularized solutions such as sparsity, regularity,
and Gibbs-like oscillations and overshoot.

Sparse Stochastic Processes

We have introduced a sparse-stochastic-processes-based framework to objectively
benchmark the performance of reconstruction algorithms in the context of 1D lin-
ear inverse problems. In particular, our framework facilitates the benchmarking of
neural-network-based methods that require large amounts of training data. We have
developed customized Gibbs sampling schemes to compute the minimum-mean-
square-error (MMSE) estimators for specific classes of sparse processes. These
provide an upper bound on reconstruction performance and thus allow us to spec-
ify a quantitative measure of the statistical optimality of any given method. We
have highlighted the abilities of our framework by benchmarking some iterative
sparsity-promoting techniques (such as the total-variation-regularized method) and
convolutional neural network (CNN) architectures that perform direct nonlinear
reconstructions for deconvolution and Fourier-sampling problems. There, we have
observed that, while CNNs outperform these sparsity-based approaches and achieve
a near-optimal performance in terms of the mean-square error for a wide range of
conditions, they can sometimes fail too, especially for signals with heavy-tailed
innovations.

Part II: The Neural Network Revolution

In the second part of the thesis, we have looked at the integration of neural networks
into the penalized-likelihood-based estimation and Bayesian estimation paradigms
for image reconstruction.

Convergent Iterative Image-Reconstruction Methods

We have developed an efficient module for learning pointwise continuous piecewise-
linear activation functions in neural networks. We have shown how our module
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can be adapted to train powerful 1-Lipschitz denoising neural networks and learn-
able convex regularizers, which can then be deployed within provably convergent
iterative image-recontruction methods.

1. Learning Activation Functions in Neural Networks
We have presented an efficient computational solution based on B-splines
to train neural networks with adjustable linear spline activation functions.
Through several experiments for classification and signal-recovery, we have
demonstrated that our method compares favorably to the widely-used ReLU
networks, the improvement being more pronounced for simpler/smaller net-
works.

2. Lipschitz-Constrained Neural Networks for Plug-and-Play Reconstruction
We have proposed a framework to efficiently train Lipschitz-constrained neu-
ral networks with learnable linear-spline activation functions. Empirically, we
have shown that our approach outperforms other Lipschitz-constrained neural
architectures for a variety of tasks including plug-and-play image reconstruc-
tion.

3. A Neural-Network-Based Convex Regularizer
We have proposed a framework to learn universal convex-ridge regularizers
with adaptive profiles. When applied to inverse problems, it is competitive
with recent deep-learning-based approaches that also prioritize reliability of
the method. Our models are not only faster to train, but they also offer
improvements in reconstruction quality.

Deep Generative Priors for Nonlinear Inverse Problems

We have developed a Bayesian reconstruction pipeline for the resolution of non-
linear inverse problems that leverages the power of deep generative models (such
as variational autoencoders or generative adversarial networks) as image priors.
Specifically, we have designed a tractable posterior-sampling scheme based on the
Metropolis-adjusted Langevin algorithm (MALA) for the class of nonlinear inverse
problems where the forward model has a neural-network-like computational struc-
ture. This class includes a wide variety of practical imaging modalities. We have
also proposed the concept of augmented generative models to tackle the problem
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of the quantitative recovery of images. We have illustrated the advantages of our
framework by applying it to phase retrieval and optical diffraction tomography.

Deep Spatiotemporal Regularization for Dynamic Fourier Ptychography

We have presented a neural-network-based framework that does not require training
data for the reconstruction of high-resolution complex-valued images of a moving
sample in dynamic Fourier ptychography (FP). In our method, we parametrize
the sequence of images to be reconstructed as the outputs of a shared untrained
deep convolutional network driven by a series of fixed input vectors that lie on a
one-dimensional (temporal) manifold. The parameters of the network are then op-
timized to globally fit the acquired measurements according to a suitable likelihood-
based criterion. The architecture of the network and the constraints on the input
vectors impose spatiotemporal regularization on the sequence of images. We have
also incorporated the estimation of the pupil function of the microscope within our
framework. With the help of simulations, we have shown that our approach yields
state-of-the-art reconstructions.

8.2 Outlook

In Chapter 3, we designed an exact discretization scheme for the Lp-regularized
generalized-interpolation problem in 1D. Similar schemes have also been proposed
to discretize MPL estimators (formulated directly in the continuous domain) for 1D
linear inverse problems corresponding to the gTV regularization [104, 115]. The
advantage of these approaches is that they incur no discretization error and are
better matched to the underlying analog signal. A potential direction of research
is the development of such exact discretization methods in higher dimensions for
sparsity-based models such as the total-variation [25] and Hessian total-variation
[336, 337] regularizers.

In Chapter 4, we presented a framework based on 1D first-order sparse stochas-
tic processes to benchmark reconstruction algorithms. One can extend this frame-
work to include hybrid processes (constructed by the superposition of elementary
processes), which are suitable for modelling multicomponent signals. Another in-
teresting (and more challenging) avenue for research is to extend our framework to
non-separable multidimensional signal models. One possible way to do this would
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be to define a new class of multidimensional stochastic processes using the spline-
operator-based framework of [135, 136].

In Chapter 5, we developed a module for learning component-wise activation
functions in neural networks. An interesting direction of future work is the design
of an efficient module for learning multivariate activation functions. For example,
one could attempt to design nonlinearities σ : R2 → R2 using the box spline
representation from [338], with a possible application being the development of
powerful complex-valued neural networks.

While our experiments in Chapter 6 demonstrated the potential of our deep-
generative-prior-based Bayesian reconstruction framework, in the present form, our
scheme lacks theoretical guarantees for MALA to be geometrically ergodic (conver-
gence to the equilibrium distribution at a geometric rate). A topic of future work
could be to investigate the imposition of appropriate constraints on the generative
model such that the resulting posterior distribution satisfies certain smoothness
and tail conditions [291] that ensure geometric ergodicity of MALA. Also, the per-
formance of our scheme heavily relies on how well the prior models the object of
interest. Thus, any progress on the side of designing and training high-quality
large-scale deep generative models could be translated to our framework. Finally,
while the neural-network-like structure of our forward models make our approach
tractable, like MCMC methods in general, it requires a lot of computation. It could
be interesting to consider alternatives to MALA that might help in speeding up this
approach.

In Chapter 7, we presented an untrained-neural-network-based spatiotemporal
regularization method for high-quality dynamic FP reconstruction. We deployed
our method with early stopping for simulations involving noisy measurements. Al-
ternately, one can adapt the idea in [84] and perform Bayesian estimation for the
network parameters with a simple Gaussian prior distribution, which would then
eliminate the need for early stopping. Moreover, this approach would also enable
us to obtain a pixelwise variance map for each image in the sequence in addition
its point estimate.
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[241] Gabriel Peyré and Jalal M Fadili, “Learning analysis sparsity priors,” in
SampTA’11, 2011, p. 4.

[242] Yunjin Chen, Thomas Pock, and Horst Bischof, “Learning ℓ1-based analysis
and synthesis sparsity priors using bi-level optimization,” in 26th Neural
Information Processing Systems Confercence, 2012.

[243] Leopold B. Willner, “On the distance between polytopes,” Quarterly of
Applied Mathematics, vol. 26, no. 2, pp. 207–212, 1968.

[244] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun, “Deep equilibrium models,”
in Advances in Neural Information Processing Systems, 2019, vol. 32.

[245] Davis Gilton, Gregory Ongie, and Rebecca Willett, “Deep equilibrium archi-
tectures for inverse problems in imaging,” IEEE Transactions on Computa-
tional Imaging, vol. 7, pp. 1123–1133, 2021.

[246] Aniket Pramanik, M. Bridget Zimmerman, and Mathews Jacob, “Memory-
efficient model-based deep learning with convergence and robustness guaran-
tees,” IEEE Transactions on Computational Imaging, vol. 9, pp. 260–275,
2023.

[247] Aniket Pramanik, Hemant Kumar Aggarwal, and Mathews Jacob, “Deep gen-
eralization of structured low-rank algorithms (deep-slr),” IEEE Transactions
on Medical Imaging, vol. 39, no. 12, pp. 4186–4197, 2020.

[248] Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel McKenzie, Stanley Osher,
and Wotao Yin, “JFB: Jacobian-free backpropagation for implicit networks,”
in Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

[249] M. Unser, “Splines: A perfect fit for signal and image processing,” IEEE
Signal Processing Magazine, vol. 16, no. 6, pp. 22–38, November 1999, IEEE-
SPS best paper award.



280 BIBLIOGRAPHY

[250] Xiaojian Xu, Jiaming Liu, Yu Sun, Brendt Wohlberg, and Ulugbek S.
Kamilov, “Boosting the performance of plug-and-play priors via denoiser
scaling,” in 54th Asilomar Conference on Signals, Systems, and Computers,
2020, pp. 1305–1312.

[251] Yura Malitsky and Konstantin Mishchenko, “Adaptive gradient descent with-
out descent,” in Proceedings of the 37th International Conference on Machine
Learning. 13–18 Jul 2020, vol. 119 of Proceedings of Machine Learning Re-
search, pp. 6702–6712, PMLR.

[252] Puya Latafat, Andreas Themelis, Lorenzo Stella, and Panagiotis Patrinos,
“Adaptive proximal algorithms for convex optimization under local Lipschitz
continuity of the gradient,” arXiv:2301.04431, 2023.

[253] Jiaming Liu, Salman Asif, Brendt Wohlberg, and Ulugbek Kamilov, “Re-
covery analysis for plug-and-play priors using the restricted eigenvalue con-
dition,” in Advances in Neural Information Processing Systems, 2021.

[254] Jean-Christophe Pesquet, Audrey Repetti, Matthieu Terris, and Yves Wiaux,
“Learning maximally monotone operators for image recovery,” SIAM Journal
on Imaging Sciences, vol. 14, no. 3, pp. 1206–1237, 2021.

[255] Aniket Pramanik and Mathews Jacob, “Improved model based deep learning
using monotone operator learning (MOL),” in 2022 IEEE 19th International
Symposium on Biomedical Imaging (ISBI), 2022, pp. 1–4.

[256] Sebastian Neumayer, Alexis Goujon, Pakshal Bohra, and Michael Unser, “Ap-
proximation of Lipschitz functions using deep spline neural networks,” SIAM
Journal on Mathematics of Data Science, vol. 5, no. 2, pp. 306–322, 2023.

[257] Brandon Amos, Lei Xu, and J. Zico Kolter, “Input convex neural networks,”
in Proceedings of the 34th International Conference on Machine Learning.
06–11 August 2017, vol. 70 of Proceedings of Machine Learning Research, pp.
146–155, PMLR.

[258] Subhadip Mukherjee, Carola-Bibiane Schönlieb, and Martin Burger, “Learn-
ing convex regularizers satisfying the variational source condition for inverse
problems,” in NeurIPS Workshop on Deep Learning and Inverse Problems,
2021.



BIBLIOGRAPHY 281

[259] Pravin Nair and Kunal N. Chaudhury, “On the construction of averaged deep
denoisers for image regularization,” arXiv:2207.07321, 2022.

[260] Antonin Chambolle, “An algorithm for total variation minimization and
applications,” Journal of Mathematical imaging and vision, vol. 20, no. 1,
pp. 89–97, 2004.

[261] Jyothi Rikhab Chand and Mathews Jacob, “Multi-scale energy (MuSE) plug
and play framework for inverse problems,” arXiv:2305.04775, 2023.

[262] William T Freeman and Edward H Adelson, “The design and use of steerable
filters,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 13, no. 9, pp. 891–906, 1991.

[263] Michael Unser and Nicolas Chenouard, “A unifying parametric framework
for 2D steerable wavelet transforms,” SIAM Journal on Imaging Sciences,
vol. 6, no. 1, pp. 102–135, 2013.

[264] Yurii Nesterov, Smooth Convex Optimization, pp. 51–110, Springer US,
Boston, MA, 2004.

[265] Pakshal Bohra, Thanh-an Pham, Jonathan Dong, and Michael Unser,
“Bayesian inversion for nonlinear imaging models using deep generative pri-
ors,” IEEE Transactions on Computational Imaging, vol. 8, pp. 1237–1249,
2022.

[266] Gareth O Roberts and Richard L Tweedie, “Exponential convergence of
Langevin distributions and their discrete approximations,” Bernoulli, pp.
341–363, 1996.

[267] Gareth O Roberts and Osnat Stramer, “Langevin diffusions and Metropolis-
Hastings algorithms,” Methodology and Computing in Applied Probability,
vol. 4, no. 4, pp. 337–357, 2002.

[268] Yoav Shechtman, Yonina C Eldar, Oren Cohen, Henry Nicholas Chapman,
Jianwei Miao, and Mordechai Segev, “Phase retrieval with application to op-
tical imaging: A contemporary overview,” IEEE Signal Processing Magazine,
vol. 32, no. 3, pp. 87–109, 2015.



282 BIBLIOGRAPHY

[269] Fajwel Fogel, Irene Waldspurger, and Alexandre d’Aspremont, “Phase re-
trieval for imaging problems,” Mathematical Programming Computation, vol.
8, no. 3, pp. 311–335, 2016.

[270] Rick P Millane, “Phase retrieval in crystallography and optics,” JOSA A,
vol. 7, no. 3, pp. 394–411, 1990.

[271] Andrew M Maiden and John M Rodenburg, “An improved ptychographical
phase retrieval algorithm for diffractive imaging,” Ultramicroscopy, vol. 109,
no. 10, pp. 1256–1262, 2009.

[272] James R Fienup, Joseph C Marron, Timothy J Schulz, and John H Seldin,
“Hubble space telescope characterized by using phase-retrieval algorithms,”
Applied Optics, vol. 32, no. 10, pp. 1747–1767, 1993.

[273] Wendy L Freedman, Barry F Madore, Brad K Gibson, Laura Ferrarese,
Daniel D Kelson, Shoko Sakai, Jeremy R Mould, Robert C Kennicutt Jr, Hol-
land C Ford, John A Graham, John P Huchra, Shaun M G Hughes, Garth D
Illingworth, Lucas M Macri, and Peter B. Stetson, “Final results from the
Hubble space telescope key project to measure the Hubble constant,” The
Astrophysical Journal, vol. 553, no. 1, pp. 47, 2001.

[274] Mohammad H Maleki and Anthony J Devaney, “Phase-retrieval and
intensity-only reconstruction algorithms for optical diffraction tomography,”
JOSA A, vol. 10, no. 5, pp. 1086–1092, 1993.

[275] Timur E Gureyev and Keith A Nugent, “Rapid quantitative phase imaging
using the transport of intensity equation,” Optics Communications, vol. 133,
no. 1-6, pp. 339–346, 1997.

[276] Frits Zernike, “Phase contrast, a new method for the microscopic observation
of transparent objects—Part II,” Physica, vol. 9, no. 10, pp. 974–986, 1942.

[277] Guoan Zheng, Roarke Horstmeyer, and Changhuei Yang, “Wide-field, high-
resolution Fourier ptychographic microscopy,” Nature Photonics, vol. 7, no.
9, pp. 739–745, 2013.

[278] John M Rodenburg and Helen ML Faulkner, “A phase retrieval algorithm for
shifting illumination,” Applied Physics Letters, vol. 85, no. 20, pp. 4795–4797,
2004.



BIBLIOGRAPHY 283

[279] Emmanuel J Candès, Xiaodong Li, and Mahdi Soltanolkotabi, “Phase re-
trieval via Wirtinger flow: Theory and algorithms,” IEEE Transactions on
Information Theory, vol. 61, no. 4, pp. 1985–2007, 2015.

[280] Marco Mondelli and Andrea Montanari, “Fundamental limits of weak recov-
ery with applications to phase retrieval,” in Conference on Learning Theory,
2018, pp. 1445–1450.

[281] Emil Wolf, “Three-dimensional structure determination of semi-transparent
objects from holographic data,” Optics Communications, vol. 1, no. 4, pp.
153–156, 1969.

[282] AJ Devaney, “Inverse-scattering theory within the Rytov approximation,”
Optics Letters, vol. 6, no. 8, pp. 374–376, 1981.

[283] Emmanuel Soubies, Thanh-An Pham, and Michael Unser, “Efficient inver-
sion of multiple-scattering model for optical diffraction tomography,” Optics
Express, vol. 25, no. 18, pp. 21786–21800, 2017.

[284] Jonas Latz, “On the well-posedness of Bayesian inverse problems,”
SIAM/ASA Journal on Uncertainty Quantification, vol. 8, no. 1, pp. 451–
482, 2020.

[285] Andrew Gelman, Walter R Gilks, and Gareth O Roberts, “Weak convergence
and optimal scaling of random walk metropolis algorithms,” The annals of
applied probability, vol. 7, no. 1, pp. 110–120, 1997.
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