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ABSTRACT

Recent advances in vector-field imaging have brought to the forefront
the need for efficient denoising and reconstruction algorithms that
take the physical properties of vector fields into account and can be
applied to large volumes of data. With these requirements in mind,
we propose a computationally efficient algorithm for variational de-
noising and reconstruction of vector fields. Our variational objective
combines rotation- and scale-invariant regularization functionals that
permit one to tune the algorithm to the physical characteristics of
the underlying phenomenon. In addition, these regularization terms
involve L1 norms in the spirit of total-variation (TV) regularization,
which, as in the scalar case, leads to better preservation of discon-
tinuities and superior SNR performance compared to its quadratic
alternative. Some experimental results are provided to illustrate and
verify the proposed scheme.

Index Terms— Vector fields, denoising, reconstruction from
incomplete data, total-variation regularization, curl, divergence, split-
ting methods.

1. INTRODUCTION

Denoising and enhancement of vector fields arising in flow-sensitive
medical imaging, optical-flow reconstruction, electromagnetic-field
measurement, and a variety of other applications is an increasingly
topical subject of research in image processing. This is in part due to
advances in imaging and measurement technologies that have led to
new modalities such as flow-sensitive magnetic resonance imaging
(MRI) [1, 2]. Moreover, the rise in computational power and capacity
over the past decade has made it possible to process large volumes
of multidimensional data that result from measuring vector fields. A
vector field in 3D consists of 3 components per voxel, which requires
one to store 3N* values for a volume of size N x N x N.

Since the measurements of a vector field are typically related
in a fundamental way to some physical phenomenon/model, it is
worthwhile to design reconstruction frameworks that take the physical
properties of the model into account. Following this reasoning, Tafti
and Unser [3] have recently introduced a regularized reconstruction
method which is not only physically driven but is also based on
the principle of invariance to coordinate transformations such as
rotation and scaling. Their variational method takes the form of the
optimization problem

fope = argmin = D(f;y) + Y _ M| Raf[5, (1)
f -

where f,,¢ is the reconstructed vector field, y is the vector of mea-
surements, ® is the data fidelity functional, R; is the i*™® differential
regularization operator, and || - ||, is the vector (or tensor) L, norm
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(for vectors, it corresponds to the scalar L, norm of the magnitude of
the vector field) [3].

One of the examples of the regularization scheme in [3] involves
the use of curl and divergence operators for regularization. In the
context of quadratic regularization (i.e., with p = 2), these regu-
larization operators have been considered in the past by several au-
thors: See for instance Suter and Chen [4], Dodu and Rabut [5], and
Arigovindan et al. [6]. Consistent with the recent trend in biomedical
image processing—which favors total-variation (TV) type and L,
regularization—it is observed in Tafti and Unser [3] that the use of L;
norms in (1) leads in practice to better performance then the quadratic
(L) alternative in preserving discontinuities. This approach is fur-
ther demonstrated in Tafti ef al. [7], where it is used to enhance the
pathline visualization of blood flow in the aorta.

Unlike in the case of quadratic regularization, where the solution
to the optimization problem can be obtained using iterative linear
methods, the numerical problem to solve in the Ly setting is nonlinear
and the need to identify efficient algorithms for minimizing (1) is far
more pronounced. The algorithm proposed by Tafti and Unser [3]
for the purpose of minimizing (1) with L; norms falls in the cate-
gory of iteratively reweighted least square (IRLS) bound-optimization
methods. While the said method is capable of producing results in
reasonable time, we here show that we are able to gain in terms of
objective minimization and reconstruction performance within same
amount of time. To do so, we use the Legendre-Fenchel transforma-
tion [8] to reformulate the optimization problem in its dual form and
adapt the forward-backward splitting-type algorithm [9] to our needs.
The improved computational efficiency makes it more convenient to
consider difficult problems such as reconstruction from incomplete
measurements.

In the present paper, we first describe our new formulation (Sec-
tion 2.1), and then apply it to the problems of vector-field denoising
(Section 2.1) and reconstruction of vector fields from missing data
(Section 2.2).

2. PROBLEM FORMULATION

In the continuous setting, we combine a quadratic data-fidelity term
with L; div-curl regularization to arrive at the energy functional

J(f;y) =Y |Af(m) — y[m]|* + \.|| curl f|s
+ Al div £]|x

= > |Af(m) — y[m]|* + A /Rd | curl f|

Hd/ | div £],
R4

where A is a linear operator acting on f and | - | denotes the absolute
value of a scalar, or the magnitude of a vector, as appropriate. For
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discretization of the partial derivatives involved in the definition of
curl and divergence, we use the finite-difference operators

0; :f = £ —f] — e,
where e;, i = 1,...,d, denotes the i*®
The adjoint of §; is the operator

standard unit vector in R,

5 s £ — £+ e).

In the implementation, §; also incorporates the desired boundary
conditions and ¢; their adjoint conditions. In three dimensions (i.e.,
with d = 3), where we have f[m] = (fi[m], f2[m], f3s[m]), curl
and divergence are discretized as

curls f = (03 fo — 923,01 f3 — 03 f1, 02 f1 — 1 f2)
divs f = 61 f1 + d2f2 + I3 f3.

Their adjoints are found to be

curly f = (=05 fa + 65 f3,03 f1 — 01 f3, —05 f1 + 67 f2)
divs £ = (07 f1, 605 f2, 03 f3).

2.1. Denoising of Vector Fields

When A is the identity operator, our problem simplifies to vector-
field denoising. To present our formulation, we first introduce the
Legendre-Fenchel transforms of our regularizers, which we then use
to find an equivalent of (1). We introduce dual variables u (vector)
and v (scalar)

| curls f]]1 = max(curl; u,f)
uehBs

|| divs f]j:1 = 1{%%;1<<div§ v, ),

where B;, | = 1, 3, are the unit balls of the scalar and vector dual
(infinity) norms, respectively. They are defined by the identity B; =
{u : |Jul]ec < 1}. We recall that the vector £oc norm is defined
as the standard ¢, norm of the magnitude of the vector field. The
optimization problem then becomes

. 2
qmgg%g(gymm—ﬂmn 3)

A (curli u, £) + Ag(divi v, f>). )

At this point, following an argument similar to the one given by
Beck and Teboulle [10], we exchange the order of minimization and
maximization and obtain

max max mfin (Z |f[m] — y[m]|2 ®)

ueBsz veB;
4 A (curli u, £) + Ag(div} v, f>). 6)

By the first-order optimality condition, the solution of the internal
minimization problem is found to in terms of the dual variables u, v
as

f:y—%curlgu—%divgv. (7

After substituting (7) back into (6), we arrive at the optimization
problem

min miBn {®(u,v) + ¥(u,v)}, (8)

ueBz veEBy

where

b(u,v) = Z ‘y[m] - % curl; u[m)]

m

T
+ |t — 5 i ol

(Ae curly u, \g div; v)

N[ =

+

and W(u,v) = &B,(u) + &5, (v) with 5,, I = 1,3, denoting the
indicator function of the dual ball 3;, defined as

&mo—{i

In (8), note that & € C' whereas ¥ ¢ C'. The dual problem in (8)
is however solvable by means of the proximal gradient algorithm of
Beck and Teboulle [10], which is a variant of the forward-backward
splitting algorithm as explained by Combettes and Pesquet [9]. This
approach involves the computation of the proximity operator asso-
ciated with W. For some Ly, L, > 0, at iteration k, this operator is
given by

ifu e B;
otherwise.

Proxy (u<k> o ; Lu; Ly) =

1 1
argmin <\I/(W,Z) + 3 H — <u<k) _ 783)

(w.2) Ly 0u /|,
oy L 0%
L, Ov

2
) . )
2

In our case, for U(u,v) = &g, (u) + &5, (v), the proximity operator
can be applied element-wise. The parameters Ly, L, in (9), which
determine the step sizes, are computed by bounding the Lipschitz
constants of the respective gradients. Note that we perform proximal
projection in a separable fashion: first with respect to one of our dual
variables assuming that the other one is fixed, and then with respect
to the other dual variable assuming that the previous variable is fixed.
Algorithmically, all this implies that

2

I
2

uF b — proXe, (u(k); Ly)
k 1 09
= 'PBS (u( ) — L7u87u

oY — ProXe, (U(k); L,)

_ ) _ 1 0P
= P, (U L, 81})’

where Ps,, [ = 1, 3, the projection onto the ball 3;, is implemented
by “shrinking” those elements of the argument that have magnitude
larger than 1. The gradients appearing above are computed by

oD Ae N A .

Fa = —Ac curls (y -5 curly u) + 5 d curls divs v
@ * c . *

67 = —Agdivs [y — & divyv ) + Acd divs curl; u.

v 2 2

The final scheme for the denoising problem is given in Algorithm 1.
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Algorithm 1: Vector-Field Denoising
I: input: y,Ac € Roo, g € Ryo
cset: k< 0;uM u® — 0;0M 0@ 0,4 1
: Ly + 1202 L, «+ 12)\3
: repeat
kE+—k+1
u® prox,,r, (u™)

N kv

v®) Prox (v*))

(k) 144/ 1+ (4t(k=1))2
ak D) gk 4 (t<k;;;fl) (um _ u(k—l))

10 o*HD () 4 (4'&(’6;(;))71) (v<k> - v(kfl))
11: until stopping criterion is met
12: return fop < y — 2¢ curl; u* ™ — 24 divy oY

%

2.2. Reconstruction from Missing Measurements

We now consider the problem of reconstructing the vector field from
incomplete measurements. In this case, the operator A is modeled by
a self-adjoint diagonal operator. It is obtained by replacing a subset
of rows of an identity operator with zero vectors, implying that the
spectral norm of A*A is 1. The difficulty now is that the proximity
operator does not admit a closed-form solution anymore. In effect, the
proximity operator at each iteration now corresponds to a denoising
problem in its own right, which we can solve approximately. We
denote this approximate proximity operator by prox®(-, Ac, Aq), and
use Algorithm 1 to implement it. We summarize our approach in
Algorithm 2.

Algorithm 2: Reconstruction from Missing Data
cinput: y, A € Ruo, Mg € Ryo

cset: k<« 0 O 0:49 1

: repeat

k+—k+1

b £ — A* (Af™) —y)

£+ proxt(b, Ac, Aa)
14/ 14 (4t(k—1))2

t*) =
£t gl 4 (7““03”) (f“” - f<k—1>>
t

: until stopping criterion is met
. return fop, « £OFFD

@Y 2 3 D NN

—_

3. EXPERIMENTS AND RESULTS

In our vector-field denoising experiments, we consider a simulated
3D phantom model consisting of a fully developed laminar flow in a

tube that is encircled by constant flow inside a torus (see Figure 1).

The measurements are degraded by additive white Gaussian noise so
that the input SNR is 0 dB. To assess the efficieny of the proposed
denoising scheme, we compare its performance with that of the IRLS
method of [3] with 300 conjugate-gradient (CG) iterations. Both
methods are allowed to run for approximately 120s CPU time and
results are reported in Table 1. As is clear from Table 1, the new
dual scheme results in a significant SNR improvement and a lower
objective value. We also illustrate visually the outputs in Figure 1
using ParaView 3.12.0.

To have a point of comparison in terms of denoising performance,
we also implemented the quadratic equivalent of the proposed algo-
rithm (with the L, norms replaced by L2 norms). The solution to
this quadratic (least-squares) scheme are found by inverting a linear
system using the CG method. Regularization parameters are opti-
mized using an oracle to achieve the smallest-possible MSE for both
regularizations. The results are reported in Table 2. As expected, L
regularization proves to be superior in terms of SNR for the particular
flow model that we considered.

Table 1. Comparison of denoising algorithms for same CPU time.

Algorithm Objective value | SNR improvement [dB]
Proposed method 1.95 x 107 12.87
IRLS 2.24 x 10* 9.19

Finally, we reconstruct a 2D wind flow profile provided by MAT-
LAB, which involves missing data on a uniform grid. Note that, in
the 2D setting, we have to modify the formulation of the problem
and redefine the curl and divergence operators, their adjoints, and
the bounds on the Lipschitz constants. Again, the regularization
parameters, A and A4, were tuned using an oracle so as to get the
smallest-possible MSE. For the prox®(-, Ac, Aq) step in Algorithm 2,
20 denoising iterations are used. We illustrate the results of the
experiment in Figure 2.

All of the experiments are carried out on a Mac Pro with a 4 x2.66
GHz processor and the algorithms were implemented in MATLAB.

Table 2. Comparison of denoising performances.

Regularization | input SNR [dB] | SNR improvement [dB]
L1 0 12.87
Lo 0 8.64
L1 10 10.09
Lo 10 3.79

4. CONCLUSION

We considered denoising and reconstruction of flow fields from miss-
ing data by means of regularized variational reconstruction. The
regularizers were chosen so as to make the class of algorithms in-
variant to transformations of the coordinate system such as rotation
and scaling. For efficient reconstruction, we reformulated the de-
noising problem in its equivalent dual form, to which we were then
able to apply the proximal gradient algorithm of Beck and Teboulle.
In phantom experiments, we found that our dual-based scheme is
more efficient in terms of objective minimization and reconstruction
performance than the IRLS approach for the denoising problem. We
then showed that the reconstruction of a flow field from incomplete
measurements can be implemented by solving successive denoising
problems.

Some directions for future investigation include flow reconstruc-
tion from incomplete pulsed-wave ultrasound Doppler data where
the sampling is not uniform, temporal regularization, optical flow
estimation, and resolution enhancement in 4D flow-sensitive MRI.
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(a)
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Fig. 1. Denoising of a 3D vector field after approximately 120s CPU time: (a) noisy vector field, SNR= 0 dB; (b) denoised vector field with
IRLS, SNR =9.19 dB; (c¢) denoised vector field with the proposed scheme, SNR = 12.87 dB.

Fig. 2. Reconstruction of a 2D
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reconstructed vector field, ISNR = 8.49 dB.
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