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Emrah Bostan, Student Member, IEEE, Michael Unser, Fellow, IEEE, and John Paul Ward

Abstract—We propose an efficient construction of wavelet
frames in any number of dimensions that are divergence-free.
Our approach is based on applying the Leray projector, which
is scale-invariant, to a standard wavelet frame. We prove that
the projected wavelets retain the basic characteristics (decay rate
and order of vanishing moments) of the initial wavelets. Since the
Leray projector is also shift-invariant, it is defined as a Fourier
multiplier, and our construction is implemented efficiently using
the fast Fourier transform. In order to illustrate the practicality
of the method, we present vector field denoising experiments.

Index Terms—Denoising, divergence-free wavelets, flow MRI,
phase-contrast MRI, soft-thresholding, tight wavelet frames,
vector fields, vector wavelets, wavelet denoising.

I. INTRODUCTION

T HE mass conservation principle implies that the velocity
fields representing incompressible fluid flows have zero

divergence. Therefore, these physical systems are often repre-
sented using divergence-free wavelets. Not only are they useful
for the multi-scale analysis of such phenomena, but also funda-
mentally prominent for studying the incompressible solutions
of the Navier-Stokes equations [1]. Accordingly, they are used
for the numerical simulation of incompressible flows [2]. This
type of wavelet is relevant for imagingmodalities such as phase-
contrast magnetic resonance imaging (PCMRI). PCMRI pro-
vides three-dimensional and time-resolved blood flowmeasure-
ments [3]. Since blood flow is incompressible, noise-like errors
are reduced by identifying (and eventually suppressing) non-di-
vergence-free components [4], [5]. Volumetric particle image
velocimetry (vPIV) techniques are also capable of measuring
three-dimensional velocity fields. Similar ideas have recently
been applied to vPIV data by removing spurious divergence
through a redundant atomic signal decomposition [6].
The design of divergence-free wavelets was considered first

by Battle and Federbush [7] and Lemarié-Rieusset [8]. The
development in [7] generated orthogonal wavelets (in the 2-
and 3-dimensional cases) with exponential decay. On the other

Manuscript received December 08, 2014; accepted December 27, 2014. Date
of publication January 06, 2015; date of current version January 15, 2015. E.
Bostan and J. P.Ward contributed equally to this work. This work was supported
in part by the Center for Biomedical Imaging of the Geneva-Lausanne Universi-
ties and EPFL. The research leading to these results has received funding from
the European Research Council under the European Union's Seventh Frame-
work Programme FP7/2007-2013/ERC grant agreement 267439. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Prof. Alexandre X. Falcao.
The authors are with the Biomedical Imaging Group, École polytechnique

fédérale de Lausanne (EPFL), CH–1015 Lausanne VD, Switzerland (e-mail:
emrah.bostan@epfl.ch; john.ward@epfl.ch; michael.unser@epfl.ch).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/LSP.2015.2388794

hand, the construction in [8] resulted in compactly-supported
biorthogonal wavelets. Their construction is based on two pairs
of wavelets and scaling functions satisfying certain integra-
tion and differentiation relations. An efficient (tensor-product
based) implementation of these wavelets was developed by
Deriaz and Perrier [9]. Stevenson [10] and Kadri-Harouna and
Perrier [11] have extended these constructions to domains with
free-slip boundary conditions. Other basis constructions have
also been considered [12].
All of the previous schemes are rather technical as they are

concerned with divergence-free wavelet basis functions. In this
letter, we loosen this constraint by allowing redundancy. Based
on this relaxation, we propose a simple yet elegant approach
for constructing divergence-free wavelet frames. Our design in-
volves projecting a wavelet frame onto the space of zero di-
vergence vector-valued functions. We prove that the decay rate
and order of vanishing moments of the initial wavelets are in-
herited by their divergence-free counterparts. We employ our
framework for the vector field denoising problem both in the
two- and three-dimensional settings. In the remaining sections,
we shall concentrate on divergence-free tight wavelet frames
since they are advantageous for such applications. However our
method applies for constructing divergence-free wavelet frames
in a more general sense.

A. Notation

We denote the space of square integrable vector fields (or
vector-valued functions) on by . A vector field

is represented as , where
each component is a function in . The inner product is
defined as follows:

(1)

The Fourier transform of a vector field is the component-wise
Fourier transform

(2)

where

(3)
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The divergence of is given by

(4)

We denote the collection of divergence-free, square-integrable
vector fields as

(5)
The Leray projector is the unique
orthogonal projector that maps a vector field to its divergence-
free version [13]. It is defined in the Fourier domain as

(6)

where is the identity matrix and is the matrix

(7)

Proposition 1: The Leray projector is self-adjoint and is
invariant to translation and scaling in the sense that

for any , , and .
Proposition 1 implies that the Leray projector maps a wavelet

to another wavelet. In the sequel, we shall use this for our con-
struction of divergence-free wavelet frames.

II. WAVELETS
The construction of a band-limited mother wavelet for a

tight wavelet frame

(8)

of is straightforward, cf. Theorem 12.2.1 of [14]. Re-
call that a tight wavelet frame satisfies an energy preservation
relationship

(9)

and it is dual to itself

(10)
From a scalar-valued frame, we can easily construct band-lim-
ited tight frames of . The vector-valued frames are
obtained as follows. For , let denote the th unit
vector in .
Proposition 2: The Collection

(11)
is a vector-valued tight frame of .

The next step is to derive a divergence-free tight frame by
applying the Leray projector.
Proposition 3: The Collection

(12)

is a tight frame of . In particular, for

(13)

Proof: Let . Since the Leray projector is self-
adjoint, we have

(14)

A. Decay Estimates

An important property of our construction is that we preserve
the advantageous properties of the initial wavelet . Both van-
ishing moments and decay rates remain unchanged.
Theorem 4: Let be a differentiable function with vanishing

moments of order such that and its derivatives satisfy
the decay estimates
1)
2) ,
for some and . Then the components of

the divergence-free wavelets have the same number of
vanishing moments and similar decay to , i.e., for

(15)

for some .
Proof: This result follows from the analysis of singular-in-

tegral operators that was presented in [15]. As each component
is similar, we only consider . In the Fourier domain,

(16)

Since , the vanishing moments are pre-
served. Furthermore, is a homogeneous harmonic
polynomial of degree 2, so we can decompose the multiplier in
the spherical harmonics of degree as

(17)

for some coefficients . The decay estimates now follow from
[16, Theorem 3.2].
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B. Wavelet Construction Details
The particular wavelet that we use for implementation is a

Meyer-type mother wavelet. It is defined in the Fourier domain
by a radial profile function , i.e., , where

(18)

and is a degree polynomial satisfying the following:
, , and

for , cf. [17]. In our experiments, we set the pa-
rameter . Our divergence-free wavelets are constructed
as described above. We generate the scalar-valued tight frame
associated with ; extend it to a vector-valued frame; and fi-
nally, apply the Leray projector to each frame element. As for
the implementation of our frame, we follow the pyramid con-
struction of [18]. Our method is efficient as it has a complexity
of with being the number of voxels.

III. VECTOR FIELD REGULARIZATION
We now consider the problem of restoring incompressible

fields from noisy measurements. Our goal is to denoise a dis-
crete vector field denoted by from the observation

where is assumed to be additive white Gaussian noise
(AWGN). Using a wavelet tight frame, the unknown field is
expressed as , where expands the field in the
divergence-free frame. We obtain the expansion coefficients
of the denoised field via the -regularized least-squares

problem

where the soft-thresholding function (with being
the threshold value) is applied componentwise [19]. The de-
noised vector field is then given by .

IV. RESULTS
For our experiments, we generate two different band-lim-

ited vector field phantoms that have zero divergence (see
Fig. 4(a) and (d)). Our 2-dimensional model (called )
is of size , whereas the volumetric one (called

) is of size . The noisy measurements are
obtained by degrading the data with AWGN to achieve various
levels of signal-to-noise ratio (SNR). We measure the denoising
performance of a given denoising method in terms of ,
which simply denotes the improvement provided. Also, for
each wavelet-based method, the soft-thresholding operator is
applied only to the wavelet (or detail) coefficients. We note
that all visualizations are rendered with ParaView (Kitware
Inc.) [20].

Fig. 1. Vector field representation of (left) and its Leray projection
(right).

Fig. 2. Denoising results for : See text for details.

Fig. 3. Denoising results for phantom: See text for details.

First, we investigate the effect of suitably modifying the
threshold value for multi-scale decompositions. We use our
the divergence-free frame with 3-scale decomposition
for denoising the phantom. To make the thresholding
scale-adapted, we compute appropriate multiplicative factors
by expanding a white Gaussian noise (with a known variance)
and measuring the average signal power at each scale. We com-
pare this strategy to simply applying the same threshold value
to all scales. By looking at Fig. 2, we see that the scale-adapted
thresholding significantly improves the denoising performance
of our method.
In the second part of our experiments, we compare our

method against the bi-orthogonal divergence-free wavelets of
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Fig. 4. Illustration of the denoising results. Original and phantoms are shown in (a) and (d), respectively. Noisy vector fields (provided
in (b) and (e), and their SNR value is dB) are reconstructed by using our divergence-free wavelet frame. The of the reconstructed fields are 14.94, and

dB for (c) and (f), respectively.

[9]1. Since our method is redundant (redundancy factor 3),
we also include the cycle-spun version of the bi-orthogonal
divergence-free wavelets (redundancy factor 8). As a baseline
method, Leray projection, which is implemented as a Fourier
domain filtering using (6), is incorporated in the comparisons.
The denoising is done as follows. As a pre-processing step,

we apply a low-pass filter to the initial noisy data. Recall that
our phantoms are band-limited, and the pre-filtering is used
for all of the algorithms in question to make the comparison
fair. For wavelet methods, 3-scale signal decomposition is per-
formed, scale-adapted thresholding is used, and the threshold
values are optimized for the best-possible SNR performance
using an oracle.
By inspecting the results given in Fig. 3, we see that the

proposed divergence-free frame outperforms the other methods
for the simulated field considered in the experiment. Since the
construction given in [9] is bi-orthogonal, the wavelet trans-
form does not preserve energy. In other words, the minimiza-
tion of the -normed error in the wavelet domain does not
imply the minimization of the -normed error in the signal do-
main. The noise statistics also change in the transform domain.

1The software is available at http://www.eecs.berkeley.edu/mlustig/Soft-
ware.html.

However, since our reconstruction is tight, the energy is pre-
served, and thus the said drawback of bi-orthogonal methods
is not observed. This shows the effectiveness of our approach
for denoising incompressible vector fields (see Fig. 4 for visual
inspection).

V. CONCLUSION
We proposed a construction of divergence-free wavelet

frames. We based our approach on the observation that applying
the Leray projector to a standard frame produces a diver-
gence-free version. Furthermore, we used the singular-integral
interpretation of to show that the derived frame maintains
the desirable attributes (decay rate and order of vanishing
moments) of the original wavelets.
Based on a particular collection of wavelet frames of ,

we proposed divergence-free frames of . The effective-
ness of the two- and three-dimensional variants was illustrated
on generated band-limited phantoms. These experiments hint
at the potential of our wavelets for denoising impressible flow
data, which is modeled as divergence-free.
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