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Abstract

We propose new regularization models to solve inverse problems encountered in
biomedical imaging applications. In formulating mathematical schemes, we base
our approach on the sparse signal processing principles that have emerged as a
central paradigm in the field. We adopt a variational perspective and specify the
proposed sparsity-promoting data reconstruction models as energy minimization
problems. To design practical algorithms, we develop novel iterative methods to
efficiently perform the consequent optimization task.

The thesis is organized in three main parts. In the first part, our main contri-
bution is the introduction of a proper statistically-based discretization paradigm
for inverse problems. In particular, our framework considers a continuous-domain
stochastic signal model and characterizes a specific class of inference algorithms.
We show that derived inference-based methods cover the classical Tikhonov-type
techniques as well as a wide range of the sparsity-promoting schemes including
the well-known `1-norm regularization and its nonconvex variants. This provides a
unifying stochastic perception of the resolution of inverse problems.

In the second part, we propose a novel phase retrieval algorithm for imaging
unstained biological samples that are optically thin. In specific terms, we use the
transport-of-intensity equation (TIE) relating the spatial phase map of a field to
the derivative of its intensity along the propagation direction. We analyze the
implications of using the TIE formalism with finer and coarser approximations
of said derivative. Based on this analysis, our contribution is a practical phase
reconstruction algorithm that incorporates a sparsity-based regularization. The
developed technique operates with a standard bright-field microscope. Experiments
on real data illustrate that our phase reconstruction algorithm is viable and can be
a low-cost alternative to dedicated phase microscopes.

i



ii

In the last part, we develop regularization schemes for vector fields, which have
an increasing prevalence in medical imaging. In this context, our first contribution
is a new regularizer that imposes sparsity on the singular values of the Jacobian
of a given vector field. We show that the proposed regularization functional is a
valid extension of total variation (TV) regularization to vector-valued functions.
We utilize the developed framework for enhancing the streamline visualizations
of experimentally acquired 4D flow MRI data. Since vector field regularization
requires processing large volumes of multidimensional data, our second contribution
is the development of a non-iterative denoising algorithm. In particular, we design
model-based tight wavelet frames that are able to remove the spurious divergence
content from the vector field, which is of interest in aortic blood flow imaging.

Keywords: Sparsity, linear inverse problems, variational models, iterative algo-
rithms, total variation regularization, convex optimization, phase imaging, phase
retrieval, transport-of-intensity, 4D flow MRI, phase-contrast MRI, divergence-free
wavelets, vector field regularization.



Résumé

Nous proposons de nouveaux modèles de régularisation pour la résolution de pro-
blèmes inverses rencontrés en imagerie biomédicale. Notre formulation mathéma-
tique se base sur les principes de parcimonie qui ont récemment émergé comme un
paradigme central en traitement du signal. Adoptant une approche variationnelle,
nos modèles de reconstruction parcimonieuse s’expriment comme des problèmes
de minimisation d’énergie. Les tâches d’optimisation résultantes sont résolues en
pratique par des algorithmes basés sur de nouvelles méthodes itératives.

Cette thèse est organisée en trois parties. Dans la première, notre contribution
principale est l’introduction d’un formalisme statistique pour la discrétisation des
problèmes inverses. En particulier, nous considérons un modèle stochastique continu
pour les signaux et caractérisons une classe spécifique d’algorithmes d’inférence.
Nous montrons que les méthodes présentées recouvrent les techniques classiques de
régularisation Tykhonov ainsi qu’une large classe de schémas de reconstruction par-
cimonieuse. Cette classe inclue la régularisation en norme `1 et ses variations non-
convexes. Ceci définit un cadre stochastique unifié pour la résolution des problèmes
inverses.

Dans la seconde partie, nous proposons un nouvel algorithme d’extraction de
phase pour analyser des échantillons biologiques sans coloration et optiquement fins.
Plus précisément, nous utilisons l’équation de transport d’intensité (TIE en anglais)
qui relie la carte spatiale des phases d’un champ à la dérivée de son intensité le long
de la direction de propagation. Nous analysons les implications du formalisme TIE
avec des approximations plus fines et plus grossières de cette dérivée. En nous basant
sur cette analyse, notre contribution est un algorithme effectif de reconstruction de
phase qui identifie des domaines de fréquence adéquats dans les mesures et incorpore
la regularisation parcimonieuse. Les techniques développées sont adaptées à des
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données issues d’un microscope en champ clair standard. Des expériences sur des
données réelles illustrent que notre algorithme de reconstruction de phase est viable
et peut être une alternative à faible coût aux microscopes à phase.

Dans la dernière partie, nous introduisons des schémas de régularisation pour
les champs de vecteurs, qui sont de plus en plus utilisés en imagerie médicale. Dans
ce contexte, notre première contribution est un nouveau régularisateur qui induit
de la parcimonie sur les valeurs singulières du Jacobien d’un champ vectoriel donné.
Nous montrons que la fonctionnelle de régularisation considérée est une extension
valide de la régularisation par variation totale (TV en anglais) pour les fonctions
à valeurs vectorielles. Nous utilisons cet outil pour améliorer la visualisation de
données expérimentales quadridimensionnelles en imagerie à rénonance magnétique
(MRI en anglais). De plus, la régularisation de champs de vecteurs requiert l’analyse
de grandes quantités de données multidimensionnelles. Notre seconde contribution
est donc le développement d’un algorithme non itératif de débruitage adapté pour
ce problème. En particulier, nous introduisons des ondelettes redondantes qui sont
capables de supprimer la divergence du champ de vecteurs. Ceci est particulièrement
intéressant pour l’analyse des flux sanguins aortiques.

Mots clefs : Parcimonie, problèmes inverses linéaires, modèles variationnels, algo-
rithmes itératifs, régularisation par variation totale, optimisation convexe, imagerie
de phase, extraction de phase, transport d’intensité, flux IRM à quatre dimensions,
imagerie à contraste de phase, ondelettes sans divergence, régularisation de champs
de vecteurs.



It is not the brains that matter
most, but that which guides
them—the character, the heart,
generous qualities, progressive
ideas.

Fyodor Dostoyevsky
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Chapter 1

Introduction

This thesis is concerned with practical algorithms for inverse problems in biomed-
ical imaging. Adopting a suitable language, the concept of such problems is to
“invert” the data acquisition process that relates an unknown image to observable
measurements [1]. By doing so, one obtains the spatial distribution of physical
parameters. Reconstruction of the refractive index distribution inside a cell (the
physical parameter) from its diffraction tomograms (the measurements) is a no-
table example [2]. Since we retrieve information about entities—via solving inverse
problems—that we are unable to observe directly, the topic is among the most
intensively studied mathematical problems in the field [3].

For a large class of biomedical imaging applications, the data acquisition pro-
cess is modeled (or well-approximated) by linear models [4]. Still, linear inverse
problems are not straightforward as they are generally ill-posed. This implies that
there may exist several solutions with high data fidelity in the sense that they all
would produce hypothetical measurements that are close to the observed ones. It is
thus necessary to look for solutions that are not only consistent with the measure-
ments, but also satisfy additional constraints. In mathematical terms, the main
idea is to formulate an energy functional that measures both the data fidelity and
the discrepancy with respect to the desired attributes. The solution is then sought
as a minimizer of the energy functional so that preferable solutions are discrim-
inated from spurious ones. The framework is broadly termed variational image
reconstruction.

1



2 Introduction

The way one measures the data fidelity is dictated by the noise characteristics of
the imaging system, leaving not much room for design. Therefore, the quality of the
final image reconstruction is determined by the constraints imposed on the solution.
Principally, they are introduced in two ways: (a) in the deterministic approaches,
one regularizes the solution based on physical or geometric features. For instance,
it can be preferred that the reconstructed image has bounded variations or that its
values are non-negative; (b) in the statistical approaches, images are modeled as
random quantities. By introducing a prior distribution that describes our “belief”
on the solution, one draws statistical inference about the unknown image. A simple
example is to prefix spatial regions in which the solution is located with a high
probability.

In the traditional deterministic (Tikhonov-type) regularization schemes, we uti-
lize quadratic norms for measuring both the data fidelity and the reconstruction
regularity. This provides us with a differentiable optimization problem. The solver
is linear and is evaluated efficiently. Remarkably, the use of the linear reconstruction
is also justified from a statistical perspective. Under the hypothesis of Gaussian-
ity and stationarity, the quadratic regularization methods are derived as statistical
estimators that are based on the Bayesian inference. As we shall detail later, the
statistical model establishes that the derived linear scheme is optimal in the mean
squared error sense. Moreover, it is the best linear algorithm (in terms of the same
error metric), even if the Gaussian assumption is violated [5]. By combining the
outcomes of the two schools in a complementary fashion, a firm understanding of
the linear techniques has been gained.

In recent years, the research efforts in variational image reconstruction have
capitalized on the sparsity-promoting algorithms rather than the classical linear
ones. The trend is motivated by the observation that naturally occurring signals
admit sparse or nearly-sparse representations in some transform domain [6]. The
promotion of sparsity is established by using well-chosen non-quadratic regulariz-
ers. The practical outcome of such approaches is nonlinear reconstruction methods
that demonstratively outperform their linear counterparts [7]. Therefore, nonlinear
frameworks are now central to the inverse problems in biomedical imaging.

The present formulations of sparsity-promoting regularization are based on solid
principles of functional analysis and approximation theory. They are, however,
primarily deterministic. In a purely discrete setting, it is also possible to interpret
them in statistical terms as maximum a posteriori (MAP) estimators, for instance,
by using generalized Gaussian or Laplace distributions as priors [8, 9]. Still, in
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a certain regard, these models are dependent on the subsequent reconstruction
task since they are linked to the choice of a given sparsifying transform. The
apparent drawback is that they do not provide further understanding on the true
nature of the underlying object. In addition, sparsity-promoting reconstructions
necessitate the development of efficient algorithms. The latter is also emphasized by
the ever-increasing dimensionality of the measurements. In other words, practical
and sparsity-driven image reconstruction methods persistently call for algorithmic
solutions with affordable computational complexity.

In this thesis, we attempt to address these problems in a principled manner. To
have an expanded perspective over the challenges, we shall be placed at the interplay
of the deterministic and the stochastic approaches. Particularly, we specify statisti-
cal estimators—based on continuous-domain stochastic models—to strengthen the
links with the current sparsity-promoting algorithms. Our goal being to solve real
world problems, we also allow ourselves to develop deterministic sparsity-promoting
methods whose statistical interpretations are provided to the best of our ability.
We shall constantly see that the sparsity-based methods ultimately translate into
high-dimensional nonlinear optimization problems. Irrespective of the chosen for-
malism, we thus develop iterative algorithms—based on state-of-the-art tools in
convex optimization—that are implemented efficiently.

1.1 Main Contributions

The contributions of this thesis have been grouped under three main headings:

� Stochastic reinterpretation of sparsity-promoting algorithms. The recent the-
ory of continuous-domain sparse stochastic processes characterizes an object
as the solution of a linear stochastic differential equation [10]. Based on this
model, our contribution is the introduction a statistically-based discretization
paradigm for linear inverse problems. Once the problem is discretized, we de-
rive a class of MAP estimators. We show that there is a critical outcome of
specifying an upfront continuous-domain stochastic model: the class of admis-
sible prior distributions for the discrete problem is restricted and thus cannot
be arbitrary. In effect, the said class is necessarily linked to the infinitely
divisible prior distributions. The striking aspect is that our estimators still
cover both the classical Tikhonov-type methods and the sparsity-promoting



4 Introduction

schemes that are currently of use. We formulate an algorithm that handles the
corresponding optimization problems, which can be nonconvex. We compare
the performance of estimators associated with models of increasing sparsity.
Particularly, we show that sparsity-promoting algorithms are powerful tools
for solving biomedical image reconstruction problems. However, encouraging
sparse solutions does not always increase the performance.

� Digital phase imaging of cells. Guided by the above-mentioned elements, we
present a novel phase retrieval algorithm for imaging optically-thin transpar-
ent objects. Our formulation starts with the transport-of-intensity equation
(TIE) [11]. The model relates the spatial phase map of a field to its inten-
sity variation along the propagation direction. The latter is measured by
using a set of bright-field defocus images. Accordingly, we investigate the
effect of the defocus distance on the retrieved phase map. Our contribution
is a sparsity-driven weighted phase reconstruction algorithm that nonlinearly
combines different ranges of spatial frequencies depending on the defocus
value of the measurements. Using both simulated and real microscopic data,
we show that the method outperforms commonly used TIE-based phase re-
construction algorithms. One of our important findings is that the developed
numerical phase imaging technique is practical and has a lower cost than the
hardware-based solutions such as digital holographic microscopy (DHM).

� Sparsity-based reconstruction of vector fields. Vector fields bear an increasing
appearance (directly or indirectly) in medical imaging applications including
4D flow MRI [12]. We hence develop variational schemes for vector fields
by expanding our insights into the image reconstruction. Our contribution
within the context is twofold: (a) inspired by the well-known total variation
regularization for images, we propose a new regularizer for vector fields. The
regularizer, termed nuclear total variation (TVN), imposes sparsity on the
singular values of the Jacobian of the field. Our simulations reveal that TVN
provides improved denoising performance compared to already existing vec-
torial extension of TV. We also illustrate the applicability of the framework
to real data; (b) since vector field reconstruction requires processing large
volumes of multidimensional data, we develop a non-iterative denoising al-
gorithm for incompressible flows. Such objects have practical importance in
flow MRI. We construct tight wavelet frames based on physical principles.
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We show that our construction is much simpler and yields better denoising
results than the available approaches.

1.2 Organization of the Thesis

The thesis is organized as follows: In Chapter 2, we provide the links between the
stochastic and the deterministic approaches for discrete linear inverse problems.
We also review the recently developed convex optimization techniques within a
general setting. In Chapter 3, we introduce a class of MAP estimators that com-
bine the continuous-domain stochastic processes with a discretization framework.
The key concept that provides links with sparsity-promoting algorithms is the use
of infinitely divisible distributions, which we shall explain in detail. In Chapter 4,
we apply the developed MAP estimators to deconvolution, MRI, and X-ray to-
mographic reconstruction problems and compare the performance of estimators
associated with models of increasing sparsity. In Chapter 5, we consider the prob-
lem of optical phase retrieval and review the TIE approach. Our analysis on the
physical model allows us to derive a novel phase reconstruction algorithm whose
applicability is illustrated and validated in practical configurations. In Chapter 6,
we formulate the TVN regularization. We illustrate that TVN has the ability to
enhance real data visualizations. In Chapter 7, we present a denoising technique
for incompressible vector fields by using wavelet tight frames that are specifically
constructed to be divergence-free.



6 Introduction



Chapter 2

Discrete Linear Inverse
Problems

2.1 Overview

In this chapter, we introduce the discrete linear inverse problem framework that lies
at the core of several practical problems studied in the thesis. Our consideration
starts by introducing the general concept of variational image reconstruction where
the solution is obtained by minimizing an energy functional. In designing the
energies, we first review the classical techniques where the consequent minimization
task is linear. During the process, we explain the deterministic and stochastic
perspectives and point out the fundamental links between these approaches. We
then focus on the recent reconstruction models that are motivated by sparsity
precepts. Since such methods are specified by nonlinear minimization problems,
we revisit state-of-the-art iterative optimization algorithms that enable efficient
resolution. The chapter not only lays the algorithmic foundations for what follows,
but also recognizes the need for the contributions presented in the coming chapters.

7
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2.2 Introduction

We have noted in Chapter 1 that the inverse problem formalism is encountered in
various biomedical imaging applications [4]. The common conceptualization of an
inverse problem is to consider it as the “inverse” of a forward (or direct) problem.
Such apprehension (even though it is rather hasty) specifies the starting point of
our analysis.

2.2.1 Forward Problem

The forward problem is concerned with the formulation of the data acquisition
step that relates our quantity of interest to some measured data.1 The general
mathematical model of the process is given by

z = H(s), (2.1)

where s represents the exact spatial (or spatio-temporal) distribution of the quan-
tities and is an element in the image2 space P (i.e., the space that contains the
physical parameters we want to reconstruct). Similarly, z denotes the ideal (noise-
free) measurements that lies in the measurement space M. The mathematical
description of the acquisition is expressed by the mapping H : P → M. In this
setting, the forward problem aims to find an accurate characterization of H (typ-
ically in terms of operators) that is, the process of extracting the measurements
for a given s ∈ P. Accordingly, the goal of an ideal inverse problem is to recover
s given z and H. Such schemes are called hybrid systems as one reconstructs a
continuous-domain object from measurements that are discrete quantities.

In a more realistic scenario, the formation of the measurements is given by

y = H(s) + n, (2.2)

where n models the additive noise and the vector y = z+n ∈ RM denotes the noisy
measurements. Practical methods use numeric computations for solving inverse
problems and operate with an entirely discrete model, going a step beyond their
hybrid analogues (2.1) and (2.2).

1For example, the quantity of interest can be the refractive index distribution of a cell, whereas
the measurements are diffraction tomograms as mentioned in Chapter 1.

2Note that we shall use the terms “image” and “signal” interchangeably throughout the thesis.
In any case, both are used in a general and unifying sense.
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The most basic formulation of a discrete linear inverse problem is

y = Hs + n, (2.3)

where s ∈ RN is the discrete representation of s (for instance, vectorized form of
its sample values) and the system matrix H ∈ RM×N is the discrete version of the
forward operator.3 The transition from (2.2) to (2.3) is called the discretization
step, which requires a precise understanding of the underlying physics. It will be
addressed in Chapter 3 by constructing concrete examples. Meanwhile,—purely for
didactic purposes—the discretization is considered to be performed appropriately.
In the thesis, we assume that n is Gaussian.4

The goal is then to properly invert (2.3) in order to recover s from the observed
measurements. However, as the measurements contain noise, it is generally not
possible to find the exact solution so that one seeks an approximation of s. Still, the
task is not trivial. A substantial body of inverse problems are ill-posed,5 implying
that a simple inversion of H (if it exists) does not usually yield meaningful solutions.
Therefore, we need to introduce additional constraints in the problem. In doing so,
the main purpose is to state some desired attributes for the solution so that better
reconstructions are obtained. This is achieved by formulating a suitable variational
problem, from which the sought approximation of s is computed.

3We assume that the physical response of the acquisition device is linear. Even in nonlinear
cases, it is common practice to linearize the problem, which explains the special emphasis put on
linear inverse problems [1].

4Gaussian noise is a standard assumption in the field. All of the algorithms that are going to
be developed in the thesis can be easily modified to work under Poisson noise assumption [13].

5Three main reasons for ill-posedness are as follows:

1. A solution does not exist: As a result of the noise, y is not an element of the space spanned
by the columns of H (i.e., the measurement domain).

2. Several solutions exist: The nullspace of H is not empty so that y cannot be uniquely
explained.

3. Solutions are not stable: Small changes in y result in large changes in the reconstructed
image.
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2.2.2 Variational Reconstruction

In variational approaches, the solution s? is specified via the following optimization
problem:

s? = arg min
s
Jτ (s; y), (2.4)

where

Jτ (s; y) = D(s; y) + τR(s) (2.5)

is called the energy (or the cost) functional. In (2.5), the data fidelity term D
measures the consistency of a reconstruction with respect to the measurements
whereas the regularization term R imposes constraints on the solution to favor
specific type of solutions. The regularization parameter τ > 0 controls the trade-off
between these two terms.

The reconstruction framework in (2.4) bears fundamental importance for solving
inverse problems [3] and all of the algorithms developed in the thesis will be in line
with this formulation. Considering the central role of (2.5), three aspects need to
be addressed attentively:

– An essential step is to specify R since the characteristics of the final image
reconstruction are determined by the chosen regularization strategy. On one
hand, the regularizer should provide a precise mathematical description of the
prior information. On the other hand, the designed regularization functional
should result in tractable algorithms with low computational complexity. For
instance, it is highly advantageous to have a convex regularizer.

– We also need to establish how one measures the data fidelity. Similar to the
specification of the regularization functional, the term D should provide us
with accurate modeling properties and affordable computational burden.

– Inverse problems (especially in biomedical imaging) usually give rise to large-
scale optimization problems. Once the above mentioned ideas are formulated,
we must then develop an efficient algorithm for computing the reconstruction.
The task should be worked out by taking the underlying structure of the
minimization problem into account.
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2.2.3 Outline

Our intent in the rest of the chapter is to communicate an understanding of the
regularized signal reconstruction concepts. Based on this point, the chapter is or-
ganized as follows: In Section 2.3, we first provide an overview of the conventional
linear reconstruction methods that are derived from a deterministic perspective.
We then explain how variational reconstruction can be recast within a statistical
framework. In particular, we bridge the derived statistical reconstruction tech-
niques to the former deterministic approaches by using Gaussian prior models. In
Section 2.4, we move to the current nonlinear image reconstructions that are driven
by sparsity considerations. Finally, we present the principles of iterative optimiza-
tion algorithms that are well-suited for nonlinear reconstruction frameworks.

2.3 Linear Reconstruction Methods

In the sequel, we consider the classical reconstruction techniques that are linearly
dependent on the measurements. We review the deterministic and stochastic ap-
proaches and highlight the functional equivalence between the two methodologies.

2.3.1 Quadratic Regularizations

We begin with the conventional deterministic techniques that involve the use of
quadratic norms. We first analyze the case where we do not impose any regular-
ization on the solution by means of a regularization functional.

The most basic reconstruction is given by the least squares (LS) method that
is obtained as follows:

s?LS = arg min
s
JLS(s)

= arg min
s

1

2
‖y −Hs‖22, (2.6)

where ‖·‖2 is the standard `2-norm. The LS formulation simply looks for a solution
that produces hypothetical measurements that are as close to the observed ones as
possible in the Euclidean distance sense. The first step to solve (2.6) is to compute
the derivative of the energy with respect to s, which is given by

∂

∂s
JLS(s) = HT(Hs− y).
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Equating this to zero, the solution satisfies that

(HTH)s?LS = HTy. (2.7)

When H is full column rank, the square matrix HTH is invertible. The LS solution
is then given by

s?LS = (HTH)−1HTy

= s + (HTH)−1HTn︸ ︷︷ ︸
ñ

. (2.8)

However, H is badly conditioned in many problems, which means that H has small
singular values [14]. This implies that ñ represents nothing but an amplified noise
term as a result of the inversion of HTH. Specifically, the amplification occurs in
the directions that correspond to the small singular vectors of H. As a consequence,
the LS reconstruction performs poorly in general [15].

If we consider the situation when H is not full column rank, the solution of (2.8)
is not unique. The LS approach (i.e., the quadratic data fidelity term by itself) is
then inadequate and a regularization functional is needed for limiting the noise-
driven errors.

Tikhonov Regularization

Tikhonov regularization is the classical approach for solving ill-posed inverse prob-
lems. As an addition to the LS energy, it incorporates a quadratic regularization
term. In this type of methods, the general form of reconstruction is defined as

s?Tik = arg min
s
JTik(s) (2.9)

= arg min
s

1

2
‖y −Hs‖22 + τ‖Rs‖22, (2.10)

where R is called the regularization operator that acts linearly on s.

To get an elemental insight into (2.9), we state the optimization problem:

min
s

1

2
‖y −Hs‖22 subject to ‖Rs‖22 ≤ %2, (2.11)
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where % is a positive constant. This new problem in (2.11) is a constrained version
of the LS formulation and its Lagrangian functional is given by

L(s, τ) =
1

2
‖y −Hs‖22 + τ

(
‖Rs‖22 − %2

)
,

where τ is the Lagrange multiplier. More importantly, for a suitable value of τ , one
can show that the solution of (2.11) is equal to s?Tik under the mild condition that
%2 ≤ ‖s?LS‖22. Also, the relation between % and τ is monotonic [15].

We see that the Tikhonov-type regularizations effectively introduce an upper-
bound on the `2-norm of the quantity Rs. We also notice that s?Tik becomes s?LS

as τ → 0. In contrast, if τ →∞, the minimization of (2.9) amounts to finding the
reconstruction for which Rs has the smallest `2-norm (i.e., maximum amount of
regularity). Since the regularity criteria is communicated in the range of R , it is
determined in relation to the chosen prior information:

– A straightforward choice is the identity operator. In this situation, the reg-
ularization functional simply introduces a constraint on the energy of the
reconstruction. Potential solutions of high energy are discarded.

– An often preferred choice is the first- or second-order derivative operator.
Such designs encourage the final reconstruction to have lower variations. The
regularizer prefers solutions that have a certain degree of smoothness.

As for the resolution step, we remark that the energy functional is convex and
its derivative reads

∂

∂s
JTik(s) = HT(Hs− y) + 2τRTRs.

The formal Tikhonov solution is a linear mapping that is written as

s?Tik = (HTH + 2τRTR)−1HTy. (2.12)

Under the assumption that the intersection of the nullspaces of H and R is trivial
(i.e., Ker(H) ∩ Ker(R) = {0}), the solution is unique for the system of linear
equations given in (2.12), allowing us to appreciate the role of the regularization in
comparison to the LS approach.
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2.3.2 Bayesian Inference with Gaussian Models

As explained in Section 2.2.1, our primary interest of recovering the unobservable
signal s from the observation vector y is often ill-posed. To overcome this com-
plication, we now consider statistical inference techniques where one models s as
a random object. The goal of inference is to estimate certain type of realizations
of this random object—among infinitely many others—through an assessment of
uncertainty. Particularly, to obtain a meaningful realization (that is the recon-
struction), the evaluation of uncertainty is based on the measurement model and
our prior information about s encoded by a prior probability distribution function
(pdf) pS .

Bayesian estimators specify the solution of an inverse problem through the prob-
ability distribution describing s after all our available information has been incor-
porated into the problem. Using Bayes’ rule, this distribution, called the posterior,
is given by

pS|Y (s |y) ∝ pY |S(y | s)pS(s), (2.13)

where ∝ implies equality after normalization, and pY |S(y | s) is the conditional dis-
tribution of the measurements given s. Based on the posterior (2.13) that provides
a complete statistical characterization of the problem, one can formulate different
estimators.

In the sequel, we derive well-established Bayesian estimators that are based on
a Gaussian prior model for s. These classical estimators are of interest not only on
their own right, but also to interpret and analyze the deterministic regularization
methods introduced in Section 2.3.1 from the Bayesian point of view. This will
help us understand the implicit assumptions of quadratic regularization methods,
which is the main goal of the present section.

To begin, let us first note that an N -dimensional multivariate Gaussian pdf is
specified by

G(x |mx,Cxx) =
1√

(2π)N |det (Cxx) |
exp

(
−1

2
(x−mx)TC−1

xx (x−mx)

)
, (2.14)

where the parameter mx = E{x} denotes the mean, and the N × N covariance
matrix

Cxx = E
{

(x−mx)(x−mx)T
}
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is assumed to be positive definite.6 We also note that x ∼ N (mx,Cxx) indicates
that the random variable x follows such a multivariate Gaussian distribution.

Considering the prior signal model, we assume that s ∼ N (ms,Css). The
additive Gaussian noise in (2.3) is assumed to be zero mean so that n ∼ N (0,Cnn).
Our final assumption is that s and n are mutually independent.

MAP Estimation with Gaussian Priors

The most often used Bayesian approach, called the maximum a posteriori (MAP)
estimator, is to seek the maximizer of the posterior that is defined as

s?MAP = arg max
s

pS|Y (s |y)

= arg max
s

log
(
pY |S(y | s)pS(s)

)
= arg min

s
− log

(
pY |S(y | s)

)
− log (pS(s)), (2.15)

where the second equality follows from the monotonicity of the log function. The
remarkable aspect is that the MAP formulation in (2.15) is completely in line with
the generic variational reconstruction model in (2.5),7 explaining the popularity of
such estimators.

Next, we derive the conditional distribution pY |S(y | s) based on our Gaussian
model. Due to the independence of s and n, we write that

pY |S(y | s) = pY |S(Hs + n | s) = pN (y −Hs)

=
(
(2π)N |det (Cnn) |

)(−1/2)
e−

1
2 (y−Hs)TC−1

nn(y−Hs)

Therefore, by ignoring the constants that are irrelevant to the minimization, we

6This implies that Cxx is invertible. Also, the multivariate Gaussian distribution is said to be
“non-degenerate” in this case.

7We see that the data fidelity term D(s;y) has a direct relationship with the so-called nega-
tive log-likelihood function that is given by − log

(
pY |S(y | s)

)
. The same type of equivalence is

observed between the regularization functional R(s) and the prior distribution pS .
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obtain that

s?MAP = arg min
s
− log

(
pY |S(y | s)

)
− log (pS(s))

= arg min
s

1

2
(y −Hs)TC−1

nn(y −Hs) +
1

2
(s−ms)

TC−1
ss (s−ms)

= arg min
s
JMAP(s). (2.16)

The energy in (2.16) involves two quadratic forms in s. Its derivative can be ex-
pressed as

∂

∂s
JMAP(s) = −HTC−1

nn(y −Hms) +
(
HTC−1

nnH + C−1
ss

)
(s−ms).

The general form of the Gaussian MAP estimator is thus written as

s?MAP = ms +
(
HTC−1

nnH + C−1
ss

)−1
HTC−1

nn(y −Hms). (2.17)

Based on (2.17), we can distinguish clear connections with the quadratic recon-
struction methods. Consider the case where the noise components are independent
and identically distributed (i.i.d.) (i.e., the noise is white and Cnn = σ2I) and the
signal is zero mean (i.e., ms = 0). Then, the MAP solution

s?MAP =
(
HTH + C−1

ss

)−1
HTy, (2.18)

is equivalent to the Tikhonov regularization in (2.12) for R = C
−1/2
ss and τ = σ2/2.

It is important to note that C
−1/2
ss is the whitening operator of s, which enriches

our understanding of the regularization operator. Furthermore, if our confidence in
our prior information decreases, that is to say C−1

ss → 0, we see that s?MAP → s?LS,
which is also known as the maximum likelihood estimation (MLE). Therefore, the
use of the quadratic data fidelity term can be statistically justified if n is additive
white Gaussian noise (AWGN).

MMSE Estimation with Gaussian Priors

We can also draw inference by minimizing an expected risk that is averaged over
a set of possible estimations. A standard risk function is the mean squared error
(MSE) of an estimator ŝ:

MSE(ŝ) = E
{
‖s− ŝ‖22

}
.
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The minimum mean squared error (MMSE) estimator for s given y is the condi-
tional expectation [5]

s?MMSE = arg min
ŝ

MSE(ŝ)

= E {s |y}

=

∫
RN

s pS|Y (s |y)ds. (2.19)

However, evaluation of (2.19) is very often not tractable as it involves an N -
dimensional integration.

The good news is that our present scenario constitutes a rare case where the
MMSE estimation has a closed-form expression. We remark that s and n are jointly
Gaussian due to their independence. Since the observation model is linear, s and
y are also jointly Gaussian. In this case, a classical result in Bayesian estimation
theory [5] establishes that the posterior pdf is also Gaussian with mean

E{s |y} = ms + CssH
T
(
HCssH

T + Cnn

)−1
(y −Hms) (2.20)

and covariance matrix

Cs |y = Css −CssH
T
(
HCssH

T + Cnn

)−1
HCss.

We see that (2.20) provides us with the sought Gaussian MMSE estimator, which
yields the best possible reconstruction in MSE sense. In particular, under the
zero-mean signal assumption, we obtain

s?MMSE = CssH
T
(
HCssH

T + Cnn

)−1
y, (2.21)

which also specifies a linear reconstruction method.

Linear MMSE Estimation

One can also attain the linear estimator (2.21) without using the Gaussian prior.
Consider the case where we know only the mean ms and the covariance matrix Css

of the signal. This implies that only the first- and second-order moments of the joint
pdf of s and n (which is now arbitrary) are available. We keep the MMSE criterion
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as our optimality condition and would like to have the best possible estimator that
is constrained to be linear. Such an estimator is given by the formulation

K? = arg min
K

E{‖s−Ky‖22},

and is known as the linear MMSE (LMMSE) or the Wiener solution. Under the
zero-mean signal hypothesis, the LMMSE reconstruction is given by

s?LMMSE = CssH
T
(
HCssH

T + Cnn

)−1︸ ︷︷ ︸
K?

y, (2.22)

which implicitly assumes that both Cyy and (K?)TK? are invertible [5]. We note
that the resulting approach provides the MMSE solution among all linear recon-
struction schemes—independent of the prior model—and is fully compatible with
the Gaussian MMSE solution (2.21).

In estimation theory, it is also well-known that the Gaussian MAP and LMMSE
solutions are equivalent [10]. This is established by the identity

CssH
T
(
HCssH

T + Cnn

)−1
=
(
HTC−1

nnH + C−1
ss

)−1
HTC−1

nn, (2.23)

which follows from the pre- and post-multiplication of both sides of (2.23) by
(HTCnn

−1H + Css
−1) and (HCssH

T + Cnn), respectively (see [16] for details).
Based on (2.23), we simply see that the general form of the Gaussian MAP/MMSE
and LMMSE reconstructions can be seen as a weighted variant of Tikhonov-type
regularization schemes, where the weights are chosen inversely proportional to the
noise power.

2.3.3 Completing Notes on Linear Reconstructions

We have obtained a clear view of the linear reconstruction methods, where there is
a reassuring agreement between quadratic energy minimizations and MAP/MMSE
solutions under the Gaussian signal assumption. In computational terms, the highly
favorable aspect of these methods is that the consequent reconstruction is of the
form Ax = b. This makes the linear schemes particularly interesting within the
scope of the thesis since solving linear systems can also take place as a building-
block for more sophisticated algorithms. For that reason, we explain a generic
resolution strategy.
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In a general setting, high-dimensional matrix inversions are computed using an
iterative algorithm such as the conjugate gradient (CG) method. CG is an efficient
solver for linear systems where A ∈ RN×N is symmetric and positive definite. The
inherent idea of the algorithm is to iteratively minimize the strongly convex energy
functional JCG(x) = (1/2)xTAx − xTb, whose unique minimizer is our formal
solution A−1b.

The starting point is to represent x in a basis of mutually conjugate vectors
(with respect to A).8 That is to say that

x =

N∑
i

αipi,

with pT
i Apj = 0 for i 6= j.

At iteration t, the iterate reads xt =
∑
i≤t αipi and the goal is to identify

the next conjugate vector pt+1 and the corresponding coefficient αt+1. Note that
the residual, that is rt = b − Axt, is the negative of the gradient of JCG at
xt (i.e., the direction that the gradient descent method would move towards).
The CG algorithm chooses pt+1 = rt −

∑
i≤t
(
(pT
i Art)/(p

T
i Api)

)
pi, which as-

sures the mutual conjugacy constraint. In this direction, the coefficient αt+1 =(
pT
t+1rt

)
/
(
pT
t+1Apt+1

)
is optimal with respect to the energy JCG [17]. An effi-

cient implementation scheme of the presented ideas is described in Algorithm 1.
We see that Algorithm 1 is composed of only one matrix-vector multiplication

per iteration, which is highly favorable. For A being an N -by-N matrix, the method
theoretically converges to the exact solution at most after N iterations.9 We note
that the convergence speed of the algorithm is dictated by the condition number of
A. A variant of the method, called the preconditioned CG, can be utilized if there
is need to improve the convergence speed of the standard algorithm [18].

More favorable scenarios exist for the linear reconstruction methods. In certain
cases, the direct inversion of the matrix A is feasible. This implies that the recon-

8Since A is symmetric and positive definite, the expression pT
i Apj can be seen as the inner

product
〈pi,pj〉A = pT

i Apj .

Hence, if two vectors are orthogonal with respect to 〈·, ·〉A, they are conjugate to each other. In
this sense, we realize that the conjugation resembles orthogonality constraint.

9In practice, the statement might not be satisfied due to round-off errors. Still, the good
news is that the CG iterations always improve the solution (in the sense that the energy value is
monotonically decreased).
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Algorithm 1: Conjugate gradient method for solving Ax = b with A being
symmetric and positive definite matrix

input : Matrix A, vector b, and the initial solution x0

output: Resulting vector x? ≈ A−1b
t← 0; rt ← b−Axt; pt ← rt;
repeat

qt ← Apt;

αt ←
(
rT
t rt
) (

pT
t qt
)−1

;
xt+1 ← xt + αtpt;
rt+1 ← rt − αtqt;
pt+1 ← rt+1 +

(
rT
t+1rt+1

) (
rT
t rt
)−1

pt;
t← t+ 1;

until stopping criteria
return xt;

struction (or some elementary units of more advanced schemes) can be obtained
non-iteratively. In Chapter 4, we shall analyze this point in details.

Despite all the computational convenience, linear reconstruction methods have
well-known drawbacks. In the case of quadratic regularizers, the choice R = I does
not introduce any structure on the reconstruction. This becomes a practical issue if
the underlying object has components that cannot be measured such as in the case
of limited-angle tomography. As for R being the first-order derivative operator,
the regularization term does discourage local derivative values to be large. The
downside of such behavior is that the discontinuities (such as edges in images) suffer
from being smoothed out, which in general yields sub-optimal reconstructions. The
aforementioned shortcomings are eliminated through the incorporation of sparsity-
promoting regularization functionals.

2.4 Sparsity-Based Reconstruction Methods

In this section, we examine the use of regularization for incorporating the notion
of sparsity in the inverse problem framework. The approach, usually called the
sparsity-promoting regularization, has emerged as the key element in the develop-
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ment of powerful variational reconstruction algorithms [10]. The practical signifi-
cance of these approaches is that they provide the state-of-the-art results in various
inverse problems in biomedical imaging, obtaining higher quality image reconstruc-
tions than their Tikhonov-type counterparts [7, 19, 20, 21, 22].

Primarily inspired by the use of wavelet transforms to concentrate the energy of
natural signals on very few wavelet coefficients,10 sparsity-based regularization func-
tionals encourage solutions that exhibit a sparse structure in some suitably-chosen
domain. Basically, the sparsity is achieved through the regularization operator.
With this property, Rs is expected to be sparse in the sense that it involves many
fewer nonzero terms than N .

2.4.1 Inducing Sparsity via Regularization

Consolidation of the sparsity property into variational methods is achieved by spec-
ifying non-quadratic regularization functionals. To have a convenient setting to
analyze sparsity-promoting frameworks, we consider the generic energy functional
of the form

JS(s) =
1

2
‖y −Hs‖22 + τ ‖Rs‖pp︸ ︷︷ ︸

RS(s)

, (2.24)

where p ∈ [1, 2) and

‖s‖p =

 N∑
j=1

|sj |p
1/p

.

Intuitively, p can be seen as a sparsity index. For p = 2, one obtains the Tikhonov
regularization which do not promote sparsity. On the contrary, the regularizer RS

encourages more sparsity as p gets smaller.
Among all possible choices for p, we particularly focus on the case p = 1.

Our fundamental motivation is that it imposes the highest level of sparsity on

10In an orthonormal basis of P functions φk and for f =
∑

k∈Ω⊂Z2 c[k]φk,

1. ∃ΩK ⊂ Z2, card(ΩK)� card(Ω) = P (sparse support) and

2. ∃c such that ‖f −
∑

k∈ΩS
c[k]φk‖2 � ‖f‖2 (accurate approximation) [17].

Similar ideas can also be argued as the rapid decay observed for the sorted transform-domain
coefficients. For a formal discussion on the topic, we refer the reader to [6].
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the solution under the constraint that the energy functional (2.24) stays convex.
Even though this property has been long acknowledged in the literature [23, 24,
25], the application of `1-norms to promote sparse solutions has an uninterrupted
popularity. Mainly motivated by the recent developments based on the compressed
sensing (CS) 11 framework [27, 28], it currently stands out as the prevailing approach
in variational reconstruction methods [29]. Accordingly, we fix the regularization
term as

RS(s) = ‖Rs‖1
in the rest of the section.

Let us first consider the simplest form of regularization provided by choosing
RS(s) = ‖s‖1. This leads to the optimization problem

min
s

1

2
‖y −Hs‖22 + τ‖s‖1.

To gain more intuition on the implications of using the `1-norm, we illustrate the
geometry of its unit ball in Figure 2.1. As explained in [30], we see that—for a
given `2-norm value—the `1-norm has a higher cost for vectors containing many
small coefficients than the ones that have few large coefficients. In plain terms,
the `1-norm regularization favors the latter case. Thus, replacing an `2-normed
regularizer with its `1-normed version significantly changes the constraint imposed
on the solution (see Section 2.3.1). We note that this empirical idea can be properly
stated in mathematical terms (and eventually be extended to a larger class of
regularizers) [31]. Next, we point out some common choices for the sparsifying
operator R.

2.4.2 Wavelet-Based Regularization

A typical sparsity-driven regularization approach is to use the prior information
that the underlying signal s has a sparse representation in the wavelet domain.

11The CS theory aims to obtain the “sparsest” signal s given its underdetermined linear mea-
surements y = Qs via solving the problem

min
s
‖s‖0 subject to y = Qs,

where ‖ · ‖0 counts the number of non-zero entries in a given vector. In practice, one replaces
‖ · ‖0 with the `1-norm as the former results in an NP-hard problem. The remarkable aspect of
the theory is that the solution recovered under this simplification coincides the correct one when
Q satisfies certain conditions [26].
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Figure 2.1: Illustration of `2-norm (dashed) and `1-norm (solid) unit balls.

In our present formulation, this is simply accomplished by R = W, where W
represents an orthonormal wavelet transform implying that WTW = I. To have
an approximation of the wavelet coefficients of the true signal w = Ws, we consider
the problem

w?
Wave = arg min

w
JWave(w)

= arg min
w

1

2
‖y −HWTw‖22 + τ‖w‖1. (2.25)

Once (2.25) is solved, the reconstructed signal is retrieved by the inverse wavelet
transform:

s?Wave = WTw?
Wave. (2.26)

To boost the performance of wavelet-based regularizations, one can use an aug-
mented version of W that forms a (normalized) tight frame including the shifted-
versions of W. This technique, known as cycle-spinning, aims to account for the
lack of shift-invariance of W and is very often used in practice [32].

Wavelet-based approaches are particularly interesting for deriving simple algo-
rithms for removing noise in signals. For such problems, which means that H = I,
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we formulate the denoised signal as

s?Wave = arg min
s

1

2
‖y − s‖22 + τ‖Ws‖1

= WT arg min
w

1

2
‖w̃ −w‖22 + τ‖w‖1, (2.27)

where we use the orthonormality of W for the second equality. It is well-known
that the solution of the problem is calculated by soft-thresholding w̃ that represents
the wavelet coefficients of y [33]. The denoising scheme in (2.27) is implemented
efficiently since the forward and inverse wavelet transforms have efficient filter bank
implementations [34]. The computational convenience of the algorithm motivates
the design of wavelets that sparsely represent certain type of signals. In Chapter 7,
we shall develop application-specific wavelets for denoising vector fields with distinct
physical features.

2.4.3 Derivative-Based Regularization

As noted in Section 2.3.1, we often utilize the first-order derivative operator with
a quadratic regularizer for constraining the solution to exhibit a certain level of
smoothness. Alternatively, we now use a regularization term that combines the
derivative operator with the `1-norm. This results in the so-called total variation
(TV) regularization [35] that is given by

s?TV = arg min
s

1

2
‖y −Hs‖22 + τ‖Ds‖1, (2.28)

where D ∈ RN×N is the discrete counterpart of the derivative. By using (2.28),
we favor signals whose derivative is sparse, meaning that the reconstructed signal
is expected to be piecewise-smooth. Contrary to its Tikhonov-type analogue, TV
allows for homogenous regions with sharp boundaries in between. Hence, TV is
often called an “edge-preserving” regularization. This aspect makes it yield state-
of-the-art reconstruction results in various imaging applications [36].

The definition of TV in the one-dimensional setting is clear. For d-dimensional
and scalar-valued signals, the anisotropic TV regularization functional is given by

TVani(s) =
∑
j∈Ω

‖[Ds]j‖1,
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where Ω is the index set of pixel locations and [Ds]j ∈ Rd represents the gradi-
ent vector at pixel j. The disadvantage of the anisotropic TV is that piecewise-
smoothness is imposed with preference to certain orientations. Therefore, the
isotropic TV functional

TViso(s) =
∑
j∈Ω

‖[Ds]j‖2

is the most common choice of TV for such signals.12 In the thesis, we shall be
concerned only with the latter so that we drop the term “isotropic”. Still, we notice
that the definition of TV functional reveals variations as the inherent dimensionality
of the underlying object gets more involved. This point will become clearer when
we focus on extending the TV regularization for multi-dimensional vector-valued
functions in Chapter 6.

Bayesian Interpretation of `1-Norm Regularization

A basic statistical perception of the `1-norm regularizations is obtained by assuming
a separable prior distribution for the signal in the range of R ∈ RN×N . In this case,
the prior reads that

pS(s) ∝ pR(Rs) =

N∏
j=1

pRj ([Rs]j), (2.29)

where pRj is the pdf of the jth entry of Rs. Furthermore, we assume that each
pRj for j = 1, . . . , N is given by a zero-mean Laplace distribution with a scale
parameter τ so that

pRj (x) =
τ

2
e−τ |x|. (2.30)

Consequently, one sees that

− log (pS(s)) = τ‖Rs‖1,
up to a constant that is not important in terms of minimization. Therefore, the
considered `1-norm regularization framework (2.24) coincide with the MAP formu-
lation when we adopt an i.i.d. Laplace prior for the vector Rs together with the
AWGN assumption.

12Alternative regularizers that are also based on the gradient operator have been discussed in
the literature [31, 37, 38]. However, the isotropic TV is the most popular one for solving inverse
problems.
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2.5 Iterative Optimization Methods

The performance improvement brought by the sparsity-promoting methods over the
Tikhonov-type ones comes with an increased computational cost. The reconstruc-
tion step is specified as a nonlinear function of the measurements. Another apparent
difficulty is the non-differentiability of the `1-norm, eliminating the option of using
standard approaches such as the gradient descent.13 These challenges have led to
the development of several iterative optimization algorithms [39, 40, 41, 42]. In the
guidance of these methods, we explain how `1-norm regularizations are tackled. To
that end, we consider the generic reconstruction of the form

s?S = arg min
s

1

2
‖y −Hs‖22 + τRS(s), (2.31)

where RS(s) = ‖Rs‖1 and it is assumed that H and R have distinct nullspaces.

2.5.1 Fast Iterative Shrinkage/Thresholding Algorithm

The basic principle of the fast iterative shrinkage/thresholding algorithm (FISTA)
is explained as a “majorize-minimize” (i.e., optimization transfer) approach.14 In
such schemes, a sequence of surrogate functions that upper-bound the original
energy is sequentially minimized to attain the sought minimizer. The key goal is
to formulate surrogates that are simple to minimize. Seeing the structure of our
energy functional in (2.31), it is possible to obtain such a surrogate that provide
an upper-bound on the quadratic data term:

D(s; y) =
1

2
‖y −Hs‖22 =

1

2
‖H(s− st) + Hst − y‖22

=
1

2
(s− st)THTH(s− st) + (s− st)THT(Hst − y) +

1

2
‖Hst − y‖22

≤ γ

2
(s− st)T(s− st) + (s− st)THT(Hst − y) +

1

2
‖Hst − y‖22

=
γ

2

∥∥∥∥s− st +
1

γ
HT(Hst − y)

∥∥∥∥2

2

+O(st,y), (2.32)

13It is possible to replace the `1-norm with its “smoothed” versions (for example, the Huber
functional). However, this decreases the reconstruction performance.

14The same framework can also be seen as forward-backward splitting algorithm. See [43] for
further details.
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where γ ≥ ‖HTH‖2 and the exact form of O(st,y) is omitted since it is not a
function of s.

In great generality, the surrogate energy proposes the following iterative strategy

st+1 = arg min
s

1

2

∥∥∥∥s− (st − 1

γ
HT(Hst − y)

)∥∥∥∥2

2

+
τ

γ
RS(s), (2.33)

which is called the iterative shrinkage/thresholding algorithm (ISTA) [44, 45]. Note
that (2.33) performs a gradient descent step via the computation of

zt = st − 1

γ
HT(Hst − y).

This is then followed by the implicit denoising problem

st+1 = arg min
s

1

2
‖s− zt‖22 +

τ

γ
RS(s),

which is elegantly formalized by relating it to the proximal mapping of RS:

st+1 = proxRS
(zt; τ/γ) = arg min

s

1

2
‖s− zt‖22 +

τ

γ
RS(s). (2.34)

The convergence of the iterations given in (2.33) to the minimizer is guaranteed
since RS is convex [45]. Unfortunately, the method shows a poor convergence
speed in practice. Hence, FISTA is proposed as an improved version of ISTA [46].
By incorporating what is known as the Nesterov’s acceleration scheme [47], the
algorithm provably improves the convergence speed compared to ISTA [46]. In the
implementation, this is achieved through an “over-shooting” step where one uses
the two previous iterates to update the solution. FISTA can be summarized as in
Algorithm 2.

An important aspect of ISTA-type schemes is that they do not put any smooth-
ness restriction on RS since the evaluation of the proximal mapping is applicable
to non-differential functions. The latter implies that the overall computational cost
is affected by the calculation of proxRS

given in (2.34). Therefore, the algorithm
takes full advantage of the specific structure of (2.31) in certain situations:

– The most favorable case is that R = I. We recall that this occurs for the
wavelet-based regularizations given in (2.25). In this setting, the proximal
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Algorithm 2: FISTA for solving (2.31)

input : Measurements y, regularization parameter τ , step size γ,
and proximal mapping of RS(s) proxRegularizer()

output: Reconstructed signal s?S
t← 0; st ← 0; xt ← 0; kt ← 0;
repeat

zt ← st − 1
γHT(Hst − y);

xt+1 ← proxRegularizer(zt; τ/γ);

kt+1 ← 1+
√

1+4kt

2 ;

st ← xt+1 + kt−1
kt+1 (xt+1 − xt);

t← t+ 1;
until stopping criteria
return st;

mapping is separable and admits the soft-thresholding operator as its closed-
form solution. Consequently, FISTA is frequently used in reconstruction
methods that impose sparsity in the wavelet-domain [48].

– The case H = I (i.e., denoising problems) is also extremely convenient. For-
mulating an equivalent dual problem of (2.31), the denoised signal is obtained
efficiently [49]. We shall develop such an algorithm in Chapter 6 and provide
details for the duality-based formulation.

Regarding the general framework of (2.31), it is noteworthy that FISTA involves
inner iterations to obtain the proximal mapping of the regularizer ‖Rs‖1. If a
closed-form solution is not available, this is approximately computed in practice (we
generally perform a small number of inner iterations) and one relies on a slightly
modified implementation of Algorithm 2 that ensures monotonic decrease of the
energy [49].

2.5.2 Alternating Directions Method of Multipliers

Similar to FISTA, alternating directions method of multipliers (ADMM) decom-
poses the opimization problem into simpler sub-problems. To do so, the algorithm
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first transforms the initial unconstrained problem (2.31) into an equivalent con-
strained problem:

s?S = arg min
s

1

2
‖y −Hs‖22 + τ‖u‖1 subject to u = Rs. (2.35)

From the constrained form, we introduce the augmented Lagrangian functional

L(s,u,α) =
1

2
‖y −Hs‖22 + τ‖u‖1 −αT(u−Rs) +

µ

2
‖u−Rs‖22, (2.36)

where α is the Lagrange multiplier and µ is called the penalty parameter. The
augmented Lagrangian differs from the standard Lagrangian form in that it adds
the quadratic penalty term (µ/2)‖u−Rs‖22.

As L is a saddle-function, we can solve the saddle-point problem with the
method of multipliers (MM) technique [50]. This iterative scheme is expressed
as

(st+1,ut+1) = arg min
(st,ut)

L(st,ut,αt)

αt+1 = arg max
αt

L(st+1,ut+1,αt),

where the maximization problem is solved by gradient ascent as L(st+1,ut+1,αt)
is concave over αt. However, the minimization of L(st,ut,αt) over the augmented
variable (st+1,ut+1) is in general difficult to compute. Therefore, we separate
the joint minimization into two individual problems, hence the name “alternating
directions”. ADMM iterations [51, 52, 53] are then given by

ut+1 = arg min
ut

L(st,ut,αt)

st+1 = arg min
st

L(st,ut+1,αt)

αt+1 = αt + µ(Rst+1 − ut+1).

In the current `1-normed regularization setting, the minimization of L(st,ut,αt)
over ut develops into the proximal mapping of `1-norm. As noted previously, this is
computed by the soft-thresholding operator. Similarly, we can show that the second
step becomes a matrix inversion problem. An implementation of the present ADMM
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Algorithm 3: ADMM for solving (2.31)

input : Measurements y, regularization parameter τ , penalty parameter µ
output: Reconstructed signal s?S
t← 0; st ← 0; ut ← 0; αt ← 0; b← HTy;
repeat

zt ← Rst +αt/µ;
st+1 ← prox‖·‖1(zt; τ/µ);

bt ← b + µRT
(
ut+1 −αt/µ

)
;

st+1 ← (HTH + µRTR)−1bt;
αt+1 ← αt + µ(Rst+1 − ut+1);
t← t+ 1;

until stopping criteria
return st;

is provided in Algorithm 3. This is akin to the linear reconstruction methods
explained in Section 2.3.1 and enjoys the same computational benefits.

ADMM-based optimization methods will be particularly interesting within the
scope of the thesis as they are highly modular. By suitably modifying the steps
of the algorithm, we shall use them to systematically compare a wide range of
sparsity-based signal reconstruction algorithms. Moreover, we shall show that both
sub-problems have closed-form solutions in certain images applications. This point
will enable us to develop a practical phase retrieval algorithm in Chapter 5.

2.6 Summary

We have reviewed the basic principles regarding the resolution of linear inverse
problems in this chapter. In particular, we have presented the classical regular-
ization methods from a Bayesian perspective by using Gaussian prior models. De-
spite the computational simplicity of these approaches, they are now replaced with
their sparsity-promoting counterparts that significantly improves the reconstruction
quality. We have seen that the use of sparsity-based methods are mainly driven
by deterministic considerations. Furthermore, the straightforward statistical justi-
fications in a purely discrete setting is not fully satisfying. We address these issues
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by applying a proper discretization to a continuous-domain stochastic signal model
in Chapter 3. Methodologically, this uncommon approach will enable us to have
a rich family of MAP estimators that provide the statistical view of the `p-type
regularizations (for p = 1, 2 and p→ 0).
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Chapter 3

Sparse Reconstructions:
Continuous-Domain Links

3.1 Overview

In this chapter,1 we revisit linear inverse problems. The present approach will
noticeably differ from what has been presented in Chapter 2. We take a step fur-
ther in the problem formulation by establishing a continuous-domain stochastic
signal model in the first place. Since the signal model is specified prior to the
data acquisition step, the fundamental need is its integration into the inverse prob-
lem formalism. Accordingly, we introduce a discretizaton scheme that allows us
to derive MAP estimators in a systematic fashion. On a theoretical note, our key
finding is that the class of admissible priors for the discretized object is confined
to the infinitely divisible distributions. The result—attained as a consequence of
our continuous-domain considerations—paves direct and reassuring links with the
sparsity-driven schemes. The developed methodology also suggests novel algorith-
mic solutions for the subsequent signal reconstruction step. This point will allow
us to study a variety of reconstruction algorithms within unified settings.

1The chapter is based on our paper [54].

33
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3.2 Introduction

We consider the problem of reconstructing a signal from its noisy linear measure-
ments. For this purpose, we return to the generic discrete observation model:

y = Hs + n, (3.1)

where s ∈ RN is the discrete representation of the unknown object, y ∈ RM denotes
the measurements, and the linear operator H ∈ RM×N , with M ≤ N , models the
physical response of the acquisition device. In (3.1), the vector n is the measurement
noise which, from here on, is assumed to be independent and identically distributed
(i.i.d.) Gaussian of variance σ2.

Throughout this chapter, we shall be concerned with the statistical formulation
of the reconstruction task based on the prior knowledge of the distribution of the
signal. As mentioned in Chapter 2, when the signal is zero-mean Gaussian with
covariance Css, the MMSE solution is given by the Wiener filter. It can also
be formulated as a variational technique in terms of the quadratic minimization
problem

s? = arg min
s

1

2
‖y −Hs‖22 + σ2‖C−1/2

ss s‖22, (3.2)

which provides a clear connection between the Gaussian MMSE/MAP estimation
and the Tikhonov-type regularization. We remark that (3.2) effectively imposes a

constraint on the `2-norm of the whitened signal, C
−1/2
ss s, which is i.i.d. Gaussian

with unit variance.
Reconstruction algorithms that are derived under the hypothesis of Gaussian-

ity and stationarity have played a central role for solving problems that are in
spirit of (3.1). They favor linear filtering type implementations and bring power-
ful optimality criterion for the assumed stochastic setting. Nonetheless, the trend
in variational formulations for signal reconstruction has been to move away from
quadratic regularization and to change the second term in (3.2) to promote sparse
solutions [55]. Majorly, the change has been triggered by the wavelet transforms.
Such tools provide us with sparse (or nearly-sparse) representations of many sig-
nals that occur naturally [6]. The promotion of sparsity is achieved by specifying
well-chosen non-quadratic regularization functionals . One common choice for the
regularization functional is R1(v) = ‖v‖1, where v represents the wavelet (or a
wavelet-like multiscale) coefficients of the signal [56]. Combined with computa-
tional techniques like cycle-spinning [57], wavelet-based reconstruction methods
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can greatly improve the reconstruction quality [48]. Another preferred choice of
regularization is R2(s) = ‖Ls‖1 where L is the discrete counterpart of the first-
order derivative operator, which is known as the TV regularization [35]. This type
of regularization is suitable for reconstructing signals with sparse derivatives [58]
and has been used in several imaging applications [59, 19, 21]. Although using the
`1-norm as regularization functional has been around for some time (for instance,
see [60, 61]), it is still at the heart of sparse signal reconstruction problems. The
practical challenge brought by these algorithms is that the final optimization prob-
lem is nonsmooth. Consequently, a significant amount of research is dedicated to
the design of efficient optimization methods [62].

The present formulations of sparsity-promoting regularizations are mainly mo-
tivated by deterministic arguments. In a solely discrete setting, their use can be
statistically justified—by means of MAP estimation—if one considers generalized
Gaussian, Laplace, or hyper-Laplace priors [8, 9, 63, 64, 65]. The choice of the
prior, however, usually depends on the given sparsifying transform. At times, their
use is actuated by the observation that the log-likelihood functionals are compatible
with non-quadratic regularizers. One can argue that these points make the pro-
cess self-coherent but rather unmethodical. Moreover, a purely discrete formulation
for (3.1) does not necessarily provide us with further insights on the true nature of
the signal.

3.2.1 Contributions

In what follows, we would like to establish ensuring statistical links with the
sparsity-promoting reconstruction algorithms. To have a thoroughly generative
framework, we specify a continuous-domain stochastic model for the signal that
does not depend on the final reconstruction task. For this purpose, we rely on
the theory of continuous-domain sparse stochastic processes [66]. In this theory,
the stochastic process is defined through an innovation model that can be driven
by a non-Gaussian excitation. 2 The primary advantage of the continuous-domain
model is that it lends itself to an analytical treatment. In particular, it allows for
the derivation of the probability density function (pdf) of the signal in any trans-
form domain, which is typically much more difficult in a purely discrete framework.

2It is noteworthy that the theory includes the stationary Gaussian processes. This point is
essential as it provides backward-compatibility.
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On the modeling level, it provides us with more accurate characterization of the
signal content (and its interpretation) before the acquisition step. From a practical
perspective, we shall need to be in line with (3.1) since the discrete formulation is
pivotal for implementation. Therefore, we provide a proper discretization method
that allows us to derive MAP estimators in a principled manner. Remarkably, the
underlying class of models provides us with a strict derivation of the class of ad-
missible regularization functionals, which happen to be confined to two categories:
Quadratic or sparse.

The main contributions of this chapter are listed as follows:

� The introduction of continuous-domain stochastic models in the formulation
of inverse problems. This leads to the use of non-quadratic reconstruction
schemes.

� A general framework for the proper discretization of inverse problems. Com-
bined with the stochastic signal modeling, the scheme provides feasible sta-
tistical estimators.

� The characterization of the complete class of admissible potential functions
(prior log-likelihoods) and the derivation of the corresponding MAP estima-
tors. The connections between these estimators and the existing deterministic
methods are also explained. In particular, our estimators cover the classi-
cal Tikhonov-type regularizations and a broad class of sparsity-promoting
schemes that are commonly used in the field.

� A generic reconstruction algorithm that is based on variable-splitting and
ADMM techniques. The method handles the eventual optimization problem
stated by the MAP estimation, which can be nonconvex.

3.2.2 Outline

The chapter is organized as follows: In Section 3.3, we explain the acquisition
model and obtain the corresponding representation of the signal s and the system
matrix H. In Section 3.4, we introduce the continuous-domain innovation model
that defines a generalized stochastic process. We then statistically specify the
discrete-domain counterpart of the innovation model and characterize admissible
prior distributions. Based on this characterization, we derive the MAP estimation
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Figure 3.1: General form of the linear, continuous-domain measurement
model considered in this chapter. The signal s(x) is acquired through linear
measurements of the form zm = [Ψs]m = 〈s, ψm〉. The resulting vector
z ∈ RM is corrupted with AWGN. Our goal is to estimate the original
signal s from noisy measurements y by exploiting the knowledge that s
is a realization of a sparse stochastic process that satisfies the innovation
model Ls = w, where w is a non-Gaussian white innovation process.

as an optimization problem in Section 3.5. In Section 3.6, we provide an efficient
algorithm to solve the optimization problem for a variety of admissible priors.

3.3 Measurement Model

The foundation of our signal recovery approach is to reconstruct the signal as a
d-dimensional function of the space-domain variable x ∈ Rd given some noisy mea-
surements y ∈ RM . Since the resulting reconstruction algorithms are implemented
numerically, we develop a discretization scheme involving the projection of the solu-
tion onto some finite-dimensional reconstruction space. This enables us to obtain a
tractable representation of continuously-defined signal reconstruction problem that
is in line with (3.1) with minimal loss of information.

3.3.1 Discretization of the Signal

To obtain a clean analytical discretization of the problem, we consider the gener-
alized sampling approach using “shift-invariant” reconstruction spaces [67]. The
advantage of such a representation is that it offers the same type of error control
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as finite-element methods. The approximation error between the original signal
and its representation in the reconstruction space can be made arbitrarily small by
choosing a sufficiently fine reconstruction grid [67].

The idea is to represent the signal s by projecting it onto a reconstruction space.
We define our reconstruction space at resolution T as

VT (ϕint) =

sT (x) =
∑
k∈Zd

s [k]ϕint

(x
T
− k

)
: s[k] ∈ `∞(Zd)

, (3.3)

where s[k] = s(x)|x=Tk, and ϕint is an interpolating basis function positioned on the
reconstruction grid TZd. We note that the interpolation property is ϕint(k) = δ[k].

For the representation of s in terms of its samples s[k] to be stable and unam-
biguous, ϕint has to be a valid Riesz basis for VT (ϕint). Moreover, to guarantee
that the approximation error decays as a function of T , the basis function should
satisfy the partition of unity property [67]∑

k∈Zd
ϕint(x− k) = 1, ∀x ∈ Rd. (3.4)

The projection of the signal onto the reconstruction space VT (ϕint) is then given
by

PVT s(x) =
∑
k∈Zd

s(Tk)ϕint

(x
T
− k

)
, (3.5)

with the idempotent property that PVTPVT s = PVT s. To simplify the notation, we
shall use a unit sampling T = 1 with the implicit assumption that the sampling
error is negligible (if the sampling error is large, one can use a finer sampling and
rescale the reconstruction grid appropriately).

Thus, the resulting discretization is

s1(x) = PV1s(x) =
∑
k∈Zd

s[k]ϕint(x− k). (3.6)

To summarize, s1(x) is the projected version of the original signal s(x) and it is
uniquely described by the samples s[k] = s(x)|x=k for k ∈ Zd. The main point is
that the reconstructed signal is represented in terms of samples even though the
problem is still formulated in the continuous-domain.
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3.3.2 Discrete Measurement Model

By using the discretization scheme in (3.6), we are now ready to formally link
the continuous model in Figure 3.1 and the corresponding discrete linear inverse
problem given in (3.1). Although the signal representation (3.6) is an infinite sum,
in practice we restrict ourselves to a subset of N basis functions with k ∈ Ω, where
Ω is a discrete set of integer coordinates in a region-of-interest (ROI). Hence, we
rewrite (3.6) as

s1(x) =
∑
k∈Ω

s[k]ϕk(x), (3.7)

where ϕk(x) corresponds to ϕint(x − k) up to modifications at the boundaries
(periodization or Neumann boundary condition).

Let us first consider a noise-free signal acquisition. The general form of a linear,
continuous-domain noise-free measurement system is

zm =

∫
Rd
s(x)ψm(x)dx, (m = 1, . . . ,M) (3.8)

where s(x) is the original signal, and the measurement function ψm(x) represents
the spatial response of the mth detector which is application dependent as we shall
explain in Chapter 4.

By substituting the signal representation (3.6) into (3.8), we discretize the mea-
surement model and write it in matrix-vector form as

y = z + n = Hs + n, (3.9)

where y is theM -dimensional measurement vector, s = (s[k])k∈Ω is theN -dimensional
signal vector, n is the M -dimensional noise vector, and H is the M × N system
matrix whose entry (m,k) is given by

[H]m,k = 〈ψm, ϕk〉 =

∫
Rd
ψm(x)ϕk(x)dx. (3.10)

We note that this allows us to specify the forward model given in (3.1) which is
compatible with the continuous-domain formulation. The solution of this problem
yields the representation s1(x) of s(x) which is parameterized in terms of the signal
samples s. Having the forward model explained, our next aim is to obtain the
statistical distribution of s.
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3.4 Sparse Stochastic Models

We now proceed by introducing our stochastic framework, which will provide us
with a signal prior. For that purpose, we assume that s(x) is a realization of a
stochastic process that is defined as the solution of a linear stochastic differential
equation (SDE) with a driving term that is not necessarily Gaussian. Starting from
such a continuous-domain model, we aim at obtaining the statistical distribution of
the sampled version of the process (discrete signal) that will be needed to formulate
estimators for the reconstruction problem.

3.4.1 Continuous-Domain Innovation Model

As mentioned in Section 3.2, we specify our relevant class of signals as the solution
of an SDE in which the process s is assumed to be whitened by a linear operator.
This model takes the form

Ls = w, (3.11)

where w is a continuous-domain white innovation process (the driving term), and
L is a (multidimensional) differential operator. The right-hand side of (3.11) rep-
resents the unpredictable part of the process, while L is called the whitening op-
erator. Such models are standard in the classical theory of stationary Gaussian
processes [68]. The twist here is that the driving term w is not necessarily Gaus-
sian. Moreover, the underlying differential system is potentially unstable to allow
for self-similar models.

In the present model, the process s is characterized by the formal solution s =
L−1w, where L−1 is an appropriate right inverse of L. The operator L−1 amounts
to some generalized “integration” of the innovation w. The implication is that
the correlation structure of the stochastic process s is determined by the shaping
operator L−1, whereas its statistical properties and sparsity structure is determined
by the driving term w. As an example in the one-dimensional setting, the operator L
can be chosen as the first-order continuous-domain derivative operator L = D. For
multidimensional signals, an attractive class of operators is the fractional Laplacian
(−∆)

γ
2 which is invariant to translation, dilation, and rotation in Rd [69]. This

operator gives rise to “1/‖ω‖γ”-type power spectrum and is frequently used to
model certain types of images [70, 71, 72]. Such models provide interesting aspects
about regularization as we shall detail in Chapter 4.
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The mathematical difficulty is that the innovation w cannot be interpreted as an
ordinary function because it is highly singular. The proper framework for handling
such singular objects is Gelfand and Vilenkin’s theory of generalized stochastic
processes [73]. In this framework, the stochastic process s is observed by means of
scalar-products 〈s, ϕ〉 with ϕ ∈ S(Rd), where S(Rd) denotes the Schwartz class of
smooth rapidly decreasing test functions.

A fundamental aspect of the theory is that the driving term w of the innovation
model (3.11) is uniquely specified in terms of its Lévy exponent f(·).

Definition 1. A complex-valued function f : R → C is a valid Lévy exponent iff.
it satisfies the three following conditions:

1. it is continuous;

2. it vanishes at the origin;

3. it is conditionally positive-definite of order one in the sense that

N∑
m=1

N∑
n=1

f(ωm − ωn)ξmξn ≥ 0

under the condition
∑N
m=1 ξm = 0 for every possible choice of ω1, . . . , ωN ∈ R,

ξ1, . . . , ξN ∈ C, and N ∈ N \ {0}.

An important subset of Lévy exponents are the p-admissible ones, which are
central to our formulation.

Definition 2. A Lévy exponent f with derivative f ′ is called p-admissible if it
satisfies the inequality

|f(ω)|+ |ω||f ′(ω)| ≤ C|ω|p

for some constant C > 0 and 0 < p ≤ 2.

A typical example of a p-admissible Lévy exponent is f(ω) = −s0|ω|α with
s0 > 0. The simplest case is fGauss(ω) = − 1

2 |ω|2; it will be used to specify Gaussian
processes.
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Gelfand and Vilenkin have characterized the whole class of continuous-domain
white innovation and have shown that they are fully specified by the generic char-
acteristic form

P̂w(ϕ) = E
{

ej〈w,ϕ〉
}

= exp

(∫
Rd
f(ϕ(x))dx

)
, (3.12)

where f is the corresponding Lévy exponent of the innovation process w. The

powerful aspect of this characterization is that P̂w is indexed by a test function ϕ ∈
S rather than by a scalar (or vector) Fourier variable ω. As such, it constitutes the
infinite-dimensional generalization of the characteristic function of a conventional
random variable.

Recently, Unser et al. characterized the class of stochastic processes that are
solutions of (3.11) where L is a linear shift-invariant (LSI) operator and w is a
member of the class of so-called Lévy noises [66, Theorem 3].

Theorem 1. Let w be a Lévy noise as specified by (3.12) and L−1∗ be a left inverse
of the adjoint operator L∗ such that either one of the conditions below is met:

1. L−1∗ is a continuous linear map from S(Rd) into itself;

2. f is p-admissible and L−1∗ is a continuous linear map from S(Rd) into
Lp(Rd); that is,

‖L−1∗ϕ‖Lp < C‖ϕ‖Lp , ∀ϕ ∈ S(Rd)

for some constant C and some p ≥ 1.

Then, s = L−1w is a well-defined generalized stochastic process over the space of
tempered distributions S ′(Rd) and is uniquely characterized by its characteristic
form

P̂s(ϕ) = E
{

ej〈s,ϕ〉
}

= exp

(∫
Rd
f
(
L−1∗ϕ(x)

)
dx

)
. (3.13)

It is a (weak) solution of the stochastic differential equation Ls = w in the sense
that 〈Ls, ϕ〉 = 〈w,ϕ〉 for all ϕ ∈ S(Rd).
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Before we move on, it is important to emphasize that Lévy exponents are in one-
to-one correspondence with the so-called infinitely divisible (i.d.) distributions [74].

Definition 3. A generic pdf pX is infinitely divisible if, for any positive integer n,
it can be represented as the n-fold convolution (p ∗ · · · ∗ p) where p is a valid pdf.

Theorem 2 (Lévy-Schoenberg). Let p̂X(ω) = E{ejωX} =
∫
R ejωxpX(x) dx be the

characteristic function of an infinitely divisible random variable X. Then,

f(ω) = log p̂X(ω)

is a Lévy exponent in the sense of Definition 1. Conversely, if f(ω) is a valid Lévy
exponent, then the inverse Fourier integral

pX(x) =

∫
R

ef(ω)e−jωx dω

2π

yields the pdf of an i.d. random variable.

Another important theoretical result is that it is possible to specify the complete
family of i.d. distributions thanks to the celebrated Lévy-Khintchine representa-
tion [75] which provides a constructive method for defining Lévy exponents. This
tight connection will be essential for our formulation and limits us to a certain
family of prior distributions.

3.4.2 Statistical Distribution of Discrete Signal Model

The interest is now to statistically characterize the discretized signal described in
Section 3.3.1. To that end, the first step is to formulate a discrete version of the
continuous-domain innovation model (3.11). Since, in practical applications, we
are only given the samples (s[k])k∈Ω of the signal, we obtain the discrete-domain
innovation model by applying to them the discrete counterpart Ld of the whitening
operator L. The fundamental requirement for our formulation is that the com-
position of Ld and L−1 results in a stable, shift-invariant operator whose impulse
response is well localized [76](

LdL−1δ
)

(x) = βL(x) ∈ L1(Rd). (3.14)
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The function βL is the generalized B-spline associated with the operator L. Ideally,
we would like it to be maximally localized. A necessary requirement for Ld is that
its null space includes the one of L [76].

To give more insight, let us consider L = D and Ld = Dd (the finite-difference
operator associated to D). Then, the associated B-spline is

βD(x) = Dd1+(x) = 1+(x)− 1+(x− 1),

where 1+(x) is the unit step (Heaviside) function. Hence, βD(x) = rect(x − 1
2 )

is a causal rectangle function (polynomial B-spline of degree 0). Let us remark
that (3.14) bears an important practical consequence that is given by

u = Lds = LdL−1w = βL ∗ w. (3.15)

Since

(βL ∗ w)(x) = 〈w, β∨L (· − x)〉,

where β∨L (x) = βL(−x) is the space-reversed version of βL, it can be inferred
from (3.15) that the evaluation of the samples of Lds is equivalent to the observation
of the innovation through a B-spline window.

From a system-theoretic point of view, Ld is understood as a finite impulse
response (FIR) filter. This impulse response is of the form

∑
k∈Ω d[k]δ(· − k) with

some appropriate weights d[k]. Therefore, we write the discrete counterpart of the
continuous-domain innovation variable as

u[k] = Lds(x)|x=k =
∑
k′∈Ω

d[k′]s(k − k′).

This enables us to write in matrix-vector notation the discrete-domain version of
the innovation model (3.11) as

u = Ls, (3.16)

where s = (s[k])k∈Ω represents the discretization of the stochastic model with
s[k] = s(x)|x=k for k ∈ Ω, L : RN → RN is the matrix representation of Ld, and
u = (u[k])k∈Ω is the discrete innovation vector.

We shall now rely on (3.13) to derive the pdf of the discrete innovation variable,
which is one of the key results of this chapter.
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Theorem 3. Let s be a stochastic process whose characteristic form is given
by (3.13) where f is a p-admissible Lévy exponent, and βL = LdL−1δ ∈ Lp(Rd)
for some p ∈ [1, 2]. Then, u = Lds is stationary and infinitely divisible. Its first-
order pdf is given by

pU (u) =

∫
R

exp
(
fβ∨L (ω)

)
ejωu dω

2π
, (3.17)

with Lévy exponent

fβ∨L (ω) = log p̂U (ω) =

∫
Rd
f
(
ωβ∨L (x)

)
dx, (3.18)

which is p-admissible as well.

Proof. Taking (3.15) into account, we derive the characteristic form of u which is
given by

P̂u(ϕ) = E{ej〈u,ϕ〉} = E{ej〈βL∗w,ϕ〉} = E{ej〈w,β∨L ∗ϕ〉}
= P̂w(β∨L ∗ ϕ)

= exp

(∫
Rd
f
(
β∨L ∗ ϕ(x)

)
dx

)
. (3.19)

The fact that u is stationary is equivalent to P̂u(ϕ) = P̂u

(
ϕ(· − x0)

)
for any

x0 ∈ Rd, which is established by a simple change of variable in (3.19). We now
consider the random variable U = 〈u, δ〉 = 〈w, β∨L 〉. Its characteristic function is
obtained as

p̂U (ω) = E{ejωU} = E{ej〈w,ωβ∨L 〉}
= P̂w(ωβ∨L )

= exp
(
fβ∨L (ω)

)
where the substitution ϕ = ωβ∨L in P̂w(ϕ) is valid since P̂w is a continuous func-
tional on Lp(Rd) as a consequence of the p-admissibility condition. To prove that
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fβ∨L (ω) is a p-admissible Lévy exponent, we start by establishing the bound

C‖ϕ‖pLp |ω|
p ≥

∫
Rd

∣∣f(ωβ∨L (x)
)∣∣ dx

+ |ω|
∫
Rd

∣∣f ′(ωβ∨L (x)
)
ϕ(x)

∣∣ dx

≥
∣∣fβ∨L (ω)

∣∣+ |ω|
∣∣∣f ′β∨L (ω)

∣∣∣ , (3.20)

which follows from the p-admissibility of f . We are also relying on Lebesgue’s
dominated convergence theorem to move the derivative with respect to ω inside the
integral that defines fβ∨L (ω). In particular, (3.20) implies that fβ∨L is continuous
and vanishes at the origin. The last step is to establish its conditional positive
definiteness which is achieved by interchanging the order of summation. We write

N∑
m=1

N∑
n=1

fβ∨L (ωm − ωn)ξmξn = (3.21)

∫
Rd

N∑
m=1

N∑
n=1

f
(
ωmβ

∨
L (x)− ωnβ∨L (x)

)
ξmξn︸ ︷︷ ︸

≥0

dx ≥ 0

under the condition
∑N
m=1 ξm = 0 for every possible choice of ω1, . . . , ωN ∈ R,

ξ1, . . . , ξN ∈ C, and N ∈ N \ {0}.

The direct consequence of Theorem 3 is that the primary statistical features of
u is directly related to the continuous-domain innovation process w via the Lévy
exponent. This implies that the sparsity structure (tail behavior of the pdf and/or
presence of a mass distribution at the origin) is primarily dependent upon f . The
important conceptual aspect, which follows from the Lévy-Schoenberg theorem, is
that the class of admissible pdfs is restricted to the family of i.d. laws since fβ∨L (ω),
as given by (3.18), is a valid Lévy exponent. We emphasize that this result is
attained by taking advantage of considerations in the continuous-domain.
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3.4.3 Illustrative Examples

We now would like to present our formalism by highlighting some specific examples.
If we choose L = D, then the solution of (3.11) with the boundary condition s(0) = 0
is given by

s(x) =

∫ x

0

w(x′)dx′

and is a Lévy process. It is noteworthy that the Lévy processes—a fundamental and
well-studied family of stochastic processes—include Brownian motion and Poisson
processes which are commonly used to model physical random phenomena [74].

When Lévy processes are considered, βD(x) = rect(x − 1
2 ) and the discrete

innovation vector u is obtained by

u[k] = 〈w, rect(·+ 1
2 − k)〉

= s(k)− s(k − 1).

Since the B-splines are non-overlapping, we can deduce that the increments (u[k])k∈Ω

are i.i.d., which is the defining property of a Lévy process [74]. This property also
qualifies the class of such objects as a convenient benchmarking platform for differ-
ent denoising algorithms [58].

Evaluating (3.18) together with f(0) = 0 (see Definition 1), we obtain

fβ∨D(ω) =

∫ 0

−1

f(ω)dx = f(ω).

In particular, we generate Lévy processes with Laplace-distributed increments by

choosing f(ω) = log( τ2

τ2+ω2 ) with the scale parameter τ > 0. To see that, we write

exp(fβ∨D(ω)) = p̂U (ω) = τ2

τ2+ω2 via (3.18). The inverse Fourier transform of this
rational function is known to be

pU (u) =
τ

2
e−τ |u|.

Also, we rely on Theorem 3 in a more general aspect. For instance, a special case of
interest is the Gaussian (nonsparse) scenario where fGauss(ω) = − 1

2 |ω|2. Therefore,
one gets fβ∨L (ω) = log p̂U (ω) = − 1

2ω
2‖βL‖22 from (3.18). Plugging this into (3.17),

we deduce that the discrete innovation vector is zero-mean Gaussian with variance
‖βL‖22 (i.e., pU (u) = N (0, ‖βL‖22)).
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Table 3.1: Four members of the family of infinitely divisible distributions
and the corresponding potential functions.

pU (x) ΦU (x) Property

Gaussian 1
σ0

√
2π
e−x

2/2σ2
0 a1x

2 + b1 smooth, convex

Laplace τ
2 e
−τ |x| a2|x|+ b2 nonsmooth, convex

Student’s t 1
εB(r, 12 )

(
1

(x/ε)2+1

)r+ 1
2

a3log
(
x2+ε2

ε2

)
+ b3 smooth, nonconvex

Cauchy 1
πs0

1
(x/s0)2+1 log(

x2+s20
s20

) + b4 smooth, nonconvex

Additionally, when f(ω) = −|ω|α
2 with α ∈ [1, 2], one finds that fβ∨L (ω) =

log p̂U (ω) = − |ω|
α

2 ‖βL‖αLα . This indicates that u is a symmetric α-stable (SαS)
distribution with scale parameter s0 = ‖βL‖αLα . For α = 1, we have the Cauchy
distribution (or Student’s t-distribution with r = 1/2).

Considering other i.d. laws, the inverse Fourier transformation (3.17) is often
harder to compute analytically, but it can still be performed numerically to deter-
mine pU (u) (or its corresponding potential function ΦU = −log pU ). In general, pU
will be i.d. and will typically imply heavy tails. Note that heavy-tailed distributions
exhibit attractive properties for compressibility [77, 78].

3.5 Bayesian Estimation

We now use the results of Section 3.4 to derive solutions to the reconstruction
problem in some well-defined statistical sense. To that end, we concentrate on
the MAP solutions that are presently derived under the decoupling assumption
that the components of u are independent and identically distributed (i.i.d.). This
assumption is exact when L is a first-order differential operator (such as the deriva-
tive) in which case the B-spline is of unit support. For higher-order operators,
the decoupling has local dependencies over the support of βL that can be worked
out explicitly [79]. However, taking these into account results in more complicated
estimation algorithms.



3.5 Bayesian Estimation 49

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

 

 

−10 −5 0 5 10
−10

−5

0

5

10

Input

O
ut

pu
t

 

 

(a)

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

 

 

−10 −5 0 5 10
−10

−5

0

5

10

Input

O
ut

pu
t

 

 

(b)

Figure 3.2: Potential functions (a) and the corresponding proximity op-
erators (b) of different prior distributions: Gaussian prior (dash-dotted),
Laplacian prior (dashed), and Student’s t-prior (ε = 10−2) (solid). For il-
lustrative purposes, the multiplication factors are set such that ΦU (1) = 1
for all potential functions.

3.5.1 MAP Formulation

In order to reconstruct the signal, we seek an estimate of s that maximizes the
posterior distribution pS|Y which depends upon the prior distribution pS , assumed
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to be proportional to pU (since u = Ls). The direct application of Bayes’ rule is

pS|Y (s | y) ∝ pN (y −Hs)pU (u)

∝ exp

(
−‖y −Hs‖2

2σ2

) ∏
k∈Ω

pU
(
[Ls]k

)
.

Then, we write the MAP estimation for s as

s?MAP = arg max
s

pS|Y (s | y)

= arg min
s

(
1
2‖Hs− y‖22 + σ2

∑
k∈Ω

ΦU
(
[Ls]k

))
, (3.22)

where ΦU (x) = −log pU (x) is called the potential function corresponding to pU .
Note that (3.22) is compatible with the standard form of the variational recon-
struction formulation as explained in Chapter 2. In the next section, we focus on
the potential functions.

3.5.2 Potential Functions

Recall that, in the current Bayesian formulation, the potential function

ΦU (x) = −log pU (x)

is specified by the Lévy exponent fβ∨L , which is itself in direct relation with the
continuous-domain innovation w via (3.18). For illustration purposes, we consider
three members of the i.d. family: Gaussian, Laplace, and Student’s t (or, equiva-
lently, Cauchy) distributions. We provide the potential functions for these priors
in Table 3.1.3 On one hand, we already know that the Gaussian prior does not cor-
respond to a sparse reconstruction. On the other hand, the Student’s t-prior has a
slower tail decay and promotes sparser solutions than the Laplace prior. Also, to
provide a geometrical intuition of how the Student’s t-prior increases the sparsity of
the solution, we plot the potential functions for Gaussian, Laplacian, and Student’s

3The exact values of the constants b1, b2, b3, and b4 and the positive scaling factors a1, a2,
and a3 have been omitted since they are irrelevant to the optimization problem.
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t estimators in Figure 3.2. By looking at Figure 3.2, we see that the Student’s t-
estimator penalizes small values more than the Laplacian or Gaussian counterparts
do. Conversely, it penalizes the large values less.

Let us point out some connections between the general estimator (3.22) and
the standard variational methods. The first quadratic potential function (Gaussian
estimator) yields the classical Tikhonov-type regularizer and produces a stabilized
linear solution, as explained in Section 3.2. The second potential function (Laplace
estimator) provides the `1-type regularizer. Moreover, the well-known TV regu-
larizer [35] is obtained if the operator L is a first-order derivative operator. Inter-
estingly, the third log-based potential (Student’s t-estimator) is linked to the limit
case of the `p relaxation scheme as p → 0 [80]. To see the relation, we note that

minimizing limp→0

∑
i |xi|p is equivalent to minimizing limp→0

∑
i
|xi|p−1

p . Then, it
holds that

lim
p→0

∑
i

|xi|p − 1

p
=
∑
i

log|xi| =
∑
i

1
2 log|xi|2 ≤

1

2

∑
i

log(x2
i + κ) (3.23)

for any κ ≥ 0. The key observation is that the upper-bounding log-based potential
function in (3.23) is interpretable as a Student’s t-prior. This kind of regularization
has been considered by different authors (see [81, 82, 32] and also [83, 84, 37]
where the authors consider a similar log-based potential) to encourage highly sparse
reconstructions.

3.6 Reconstruction Algorithm

We have now the necessary elements to derive the general MAP solution of our
image reconstruction problem. By using the discrete innovation vector u as an
auxiliary variable, we naturally recast the MAP estimation as the constrained op-
timization problem

s?MAP = arg min
s∈RK

(
1

2
‖Hs− y‖22 + σ2

∑
k∈Ω

ΦU (u[k])

)
subject to u = Ls. (3.24)

This representation of the solution naturally suggests using the type of splitting-
based techniques that have been employed by various authors for solving similar
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optimization problems [36, 85, 52]. Rather than dealing with a constrained op-
timization problem directly, we prefer to formulate an equivalent unconstrained
problem. To that purpose, we rely on the augmented Lagrangian (AL) method [86]
and introduce the corresponding AL functional of (3.24) given by

LA(s,u,α) =
1

2
‖Hs− y‖22 + σ2

∑
k∈Ω

ΦU (u[k]) +αT(Ls− u) +
µ

2
‖Ls− u‖22,

where α ∈ RN denotes the Lagrange multiplier and µ ∈ R is the penalty parameter.
To obtain the solution, we apply ADMM [53] that replaces the joint minimization
of the AL functional over (s,u) by partial minimizations of LA with respect to
each independent variable in turn, while keeping the other variable fixed. These
independent minimizations are followed by the update of the Lagrange multiplier.
In summary, ADMM results in the following scheme at iteration t:

ut+1 ← arg min
u
LA(st,u,αt) (3.25a)

st+1 ← arg min
s
LA(s,ut+1,αt) (3.25b)

αt+1 = αt + µ(Lst+1 − ut+1). (3.25c)

From the Lagrangian duality point of view, (3.25c) can be interpreted as the max-
imization of the dual functional so that, as the above scheme proceeds, feasibility
is imposed [53].

Alternating Minimization Steps

We now explain the alternating minimization steps. Let us focus on the sub–
problem (3.25a). First, we observe the relation

arg min
u
LA = arg min

u
σ2
∑
k∈Ω

ΦU (u[k]) +αT(Ls− u) +
µ

2
‖Ls− u‖22 (3.26)

≡ arg min
u

σ2
∑
k∈Ω

ΦU (u[k]) +
µ

2

(
u[k]−

(
[Ls]k +

α[k]

µ

))2

, (3.27)

where the equivalence is obtained by completing the squares and ignoring the con-
stant values that are irrelevant to minimization purposes.
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In effect, we see that the minimization is separable, which implies that (3.25a)
reduces to performing K scalar minimizations of the form

min
u[k]∈R

(
σ2ΦU (u[k]) +

µ

2
(u[k]− z[k])

2
)

, ∀k ∈ Ω, (3.28)

where z = Ls + α/µ. One sees that (3.28) is nothing but the proximity operator
of ΦU (·) that is defined below.

Definition 4. The proximity operator associated to the function λΦU (·) with λ ∈
R+ is defined as

proxΦU (y;λ) = arg min
x∈R

1

2
(y − x)2 + λΦU (x). (3.29)

At each iteration t, the solution of (3.25a) is obtained by applying proxΦU ,
with λ = σ2/µ, in a component-wise fashion to zt = Lst + αt/µ. The closed-form
solutions for the proximity operator are well-known for the Gaussian and Laplace
priors [56]. For k ∈ Ω, they are given by

prox(·)2 (z[k];λ) = z[k](1 + 2λ)−1, (3.30a)

prox|·| (z[k];λ) = max(|z[k]| − λ, 0)sgn(z[k]), (3.30b)

respectively. The proximity operator has no closed-form solution for the potential
function of Student’s t-distribution. However, the global solution of each scalar
problem can still be computed. The first-order optimality condition requires that
the global minimizer is a stationary point. Hence, the minimizer satisfies

∂

∂u[k]

(
σ2ΦU (u[k]) +

µ

2
(u[k]− z[k])

2
)

= 0.

For ΦU (x) = log
(
(x2 + ε2)/ε2

)
, we have the third-order root finding problem of

the form
µu3[k] + (z[k]− µ)u2[k] + (2σ2 − ε2)u[k]− εµz[k] = 0.

The identification of the global minimizer among the roots can be easily computed
and stored in a lookup table (LUT) (see Figure 3.2(b)) for a suitable range of
values. This idea suggests a very fast implementation of the proximal step which
is applicable to the entire class of potential functions of i.d. distributions.
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Lastly, we consider the second minimization problem (3.25b), which amounts
to the minimization of a quadratic problem. Again, the minimizer satisfies that

∂LA
∂s

= HTHs−HTy + LTα+ µLTLs− µLTu = 0. (3.31)

At each iteration, the solution of (3.25b) is given by

st+1 = (HTH + µLTL)−1

(
HTy + µLT

(
ut+1 − α

t

µ

))
. (3.32)

Interestingly, this part of the reconstruction algorithm is compatible with the Gaus-
sian MAP/MMSE solution as given in Chapter 2. In a general setting, this prob-
lem is solved iteratively using a linear solver such as the conjugate-gradient (CG)
method. It is noteworthy that the condition Ker(H) ∩ Ker(L) = {0} should be
satisfied to have a well-defined and unique solution of (3.25b). We note that the
computational complexity of the shrinkage step is linear with respect to the given
data size. Therefore, the dominating part of the computation is the matrix inver-
sion in (3.32). Also in some cases, the direct inversion is possible, which makes the
algorithm highly efficient. We shall discuss such aspects in details in Chapter 4.

We conclude this section with some remarks regarding the optimization algo-
rithm. Note that the method remains applicable when ΦU (x) is nonconvex, with the
following caveat: The convergence is not guaranteed. However, when the ADMM
converges and ΦU is nonconvex, it converges to a local minimum, including the
case where the sub-minimization problems are solved exactly [53]. As the potential
functions considered in the present context are closed and proper, we stress the fact
that if ΦU : R → R+ is convex and the unaugmented Lagrangian functional has a
saddle point, then the constraint in (3.24) is satisfied and the objective functional
reaches the optimal value as t → ∞ [53]. Meanwhile, in the case of nonconvex
problems, the algorithm can converge to different local minima depending on the
initial point. It is therefore recommended to apply a deterministic continuation
method [64, 38] or to consider a reasonable initial solution that can be obtained by
solving the problem first with Gaussian or Laplace priors.

3.7 Summary

The purpose of this chapter has been to develop a practical scheme for linear in-
verse problems by combining a proper discretization method and the theory of
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continuous-domain sparse stochastic processes. In basic terms, our model is com-
posed of two fundamental concepts: the whitening operator L, which is in connec-
tion with the regularization operator, and the Lévy exponent f , which is related
to the prior distribution. An important theoretical implication of our formalism
is that the potential functions are linked to infinitely divisible distributions. The
latter sounds restrictive at first, but it essentially provides us with a sufficiently
large class of MAP estimators. Particularly, we have shown that the derived MAP
estimators cover the current state-of-the-art methods in the field including TV-
type regularizers. Another interesting observation is that we face an optimization
problem for MAP estimation that is generally nonconvex, with the exception of
the Gaussian and the Laplacian priors. We have proposed a computational solu-
tion, based on ADMM, that applies to arbitrary potential functions by suitable
adaptation of the proximity operator.
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Chapter 4

Sparse Reconstructions:
In-Silico Considerations

4.1 Overview

In this chapter, 1 we present the MAP reconstruction of biomedical images. In
particular, we concentrate on three different imaging modalities and consider the
problems of deconvolution, MR image reconstruction from partial Fourier coeffi-
cients, and image reconstruction from X-ray tomograms. For each of these prob-
lems, we explain how the image acquisition model is constructed—by using the
discretization scheme described in the previous chapter—while keeping the com-
putational complexity aspects in mind. The reconstruction is performed via the
generic ADMM-based algorithm where we exploit the structure of the optimization
problem to have an efficient implementation. In a broader prospect, the goal of this
chapter is to gain an understanding of the relation between the regularization and
the characteristics of the underlying image. Thus, for a fixed imaging modality, we
perform model-based image reconstructions, where we highlight images that suit
well to a particular MAP estimator. These examinations will provide us with the
right background for choosing (and also designing) suitable regularization frame-
works in the coming chapters.

1The chapter is based on our papers [54, 87].
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4.2 General Framework

Let us first explain some points in our reconstruction framework that are common
to all different imaging modalities considered in the sequel. To simulate the noisy
measurements y, we degrade the noise-free measurements (i.e., the application of
the system matrix H to some noise-free image s) with AWGN. The images are
extended using periodic boundary conditions. We analyze three different priors
associated with varying levels of sparsity. Based on our developments in Chapter 3,
we shall use the following potential functions ΦU :

– Gaussian prior where ΦGauss(x) = a1|x|2: We obtain the classical linear re-
construction. In this case, one does not impose sparsity on the solution. The
optimization is convex and differentiable.

– Laplace prior where ΦLaplace(x) = a2|x|: We obtain the `1-type reconstruc-
tion. The method encourages sparsity in the reconstructions. The optimiza-
tion is convex but not differentiable.

– Student’s t-prior where ΦStudent′s(x) = a3log((x2 + ε2)/ε2): We obtain the
`p-type reconstruction as p→ 0. Within our numerical comparisons, this con-
figuration corresponds to the highest level of sparsity in the reconstructions.
The ε parameter is set to 10−2 based on the geometric arguments illustrated
in Figure 3.2(b). The optimization is nonconvex but differentiable.

For the image reconstruction, we use the iterative algorithm introduced in Sec-
tion 3.6. Working with two-dimensional images, we shall explain how to adapt the
method to the chosen settings and the system matrix H that is to be constructed in
a problem-specific way. For the sake of completeness, we also would like to provide
insights into how the reconstruction can be carried out numerically. This task is
addressed by providing the mathematical description of the operators taking part
in the iterations. We also analyze the corresponding image processing operations
(such as filtering and pointwise operations) and the complexity issues. This is
followed by some numerical experiments where we discuss certain computational
aspects in a more detailed manner.
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4.3 Computational Recipes

We have seen that the image reconstruction algorithm outlined in Section 3.6 is
composed of two essential steps: 1) the application of the proximal mapping asso-
ciated to a potential function and 2) the matrix inversion whose structure depends
on the specific imaging problem at hand. Along these lines, we develop (and re-
fine when necessary) the strategies that make the reconstruction computationally
efficient.

To begin with, let Ω define the index set of all sample locations of the image.
Without loss of generality, it is assumed to be the square region

Ω =
{
k = (k1, k2) ∈ Z2

∣∣∣1 ≤ k1 ≤ n, 1 ≤ k2 ≤ n
}
,

where N = n2 denotes the total number of sample locations (i.e., card(Ω) = N).
The vector representation of the underlying image is given by

s = vect (s[k])k∈Ω ∈ RN,

where the vectorization is assumed to be lexicographically ordered.

4.3.1 Analysis of Circulant Operators

We now review some basic computational principles regarding the block circulant
matrices with circulant entries (BCCB)2 as they are of special interest in our formu-
lation. In particular, the structure of such operators enables efficient computations.
First, we remark that

g = vect (g[k] = (ht ∗ s)[k])k∈Ω

= Ts,

2A BCCB matrix T is of the form

T =


T0 TM−1 . . . T1

T1 T0 . . . T2

...
...

. . .
...

TM−1 TM−2 . . . T0

, (4.1)

where each block Tj for j = 0, 1, . . . ,M − 1 is a circulant matrix.
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Algorithm 4: Operations with circulant matrix T

input : Dense matrix ÊT containing the eigenvalues of T and an image s
output: Resulting image g
ŝ← FFT2(s) (two-dimensional DFT);
if g == Ts

ĝ ← ÊT ◦ ŝ (pointwise multiplication);
else if g == T−1s

ĝ ← Ê−1
T ◦ ŝ (pointwise division);

end if
g ← IFFT2(ĝ) (two-dimensional inverse DFT);
return g;

where T ∈ RN×N is a BCCB matrix whose entries can be directly 3 deduced from
the ones of the shift-invariant convolution kernel ht and ∗ denotes the discrete con-
volution that is circular as a result of our assumption on the boundary conditions.

Theorem 4 (Spectral Decomposition Theorem [14]). If the matrix T ∈ RN×N is
BCCB, then there exists a spectral decomposition of the form

T = F−1ΛTF,

where ΛT ∈ CN×N is a diagonal matrix containing the eigenvalues of T and F ∈
CN×N is the unitary two-dimensional discrete Fourier transform (DFT) matrix.

In the Fourier domain, the output vector is hence computed by using Theorem 4
as ĝ[k] = [ΛT]k,k ŝ[k], for k ∈ Ω. Knowing that the first column of F is a vector
of all ones, the eigenvalues of a BCCB matrix is completely characterized by its
first column. Let t1 be the first column of T, and ET be its (n× n) dense matrix
representation in the sense that t1 = vec(ET). Then, we have

ΛT = diag(vec(ÊT)),

where ÊT denotes the two-dimensional DFT of ET. In terms of image processing,
the implementation is carried out via two FFTs and pointwise multiplication. Sim-
ilarly, since ΛT is a diagonal matrix, we can easily invert a BCCB matrix given

3See [88] for an illustrative example.
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that the inverse T−1 exists. In both cases, the computational cost is O(N log n)
(see Algorithm 4).

4.3.2 Operator-Specific Regularization

Prior to examining the performance of the chosen potential functions, we briefly
depict some specific aspects of the regularization. Since our primary goal is to as-
sess the practical influence of sparse reconstructions, we choose the regularization
operator as the magnitude of the image gradient.4 Having fixed the regularization
operator, we continue our computational developments by establishing the imple-
mentation details with respect to the current settings.

We write the discrete regularization functional as

R(s) = τ
∑
k∈Ω

ΦU (‖[Ls]k‖2) , (4.2)

where τ is the regularization parameter that refers to grouping all the multiplicative
factors (i.e., aiσ

2 for i = 1, 2, 3). In (4.2), the discrete gradient operator is denoted
by L : RN → RN×2 : s 7→

(
vect(D1s) vect(D2s)

)
, where each partial derivative

Dj for j = 1, 2 is discretized by using forward finite differences. Accordingly, the
gradient vector at the k-th sample position is represented by

[Ls]k = (s[k + e1]− s[k], s[k + e2]− s[k]), (4.3)

where ej is the j-th unit vector in R2. The following proposition provides the
implementation of LT.

Proposition 1. Let L : RN → RN×2 be a linear operator defined as (4.3). Then,
the adjoint operator LT : RN×2 → RN is given by

[LTu]k = u1[k − e1]− u1[k] + u2[k − e2]− u2[k], (4.4)

where u[k] = (u1[k], u2[k]).

4We note that this choice is motivated by the most prominent method in the field that is TV
regularization.
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4.3.3 Vectorial Proximal Mappings

In the present formulation, the potential function acts on the `2-norm of a vector
in R2. Hence, we need to modify the proximal mappings. To do so, let us first
remark that the constrained form of the reconstruction problem is given by

s?MAP = arg min
s∈RN

(
1

2
‖Hs− y‖22 + τ

∑
k∈Ω

ΦU (‖u[k]‖2)

)
s. t. Ls = u ∈ RN×2. (4.5)

By following the developments given in Section 3.6, we arrive at the vectorial
counterpart of (3.25a) that is—at iteration t—of the form

min
u[k]∈R2

(
τΦU (‖u[k]‖2) +

µ

2
‖u[k]− zt[k]‖22

)
, ∀k ∈ Ω,

where zt = Lst +αt/µ with αt ∈ RN×2 denoting the Lagrange multiplier. For the
case of Gaussian prior, the modification is trivial and the solution is given by

prox‖‖22(zt; τ/µ) = zt(1 + 2(τ/µ))−1.

As for the Laplace case, the vectorial extension of the proximal mapping is less
obvious. First, we note that one needs to solve the optimization problem

min
u[k]∈R2

(
τ‖u[k]‖2 +

µ

2
‖u[k]− zt[k]‖22

)
, ∀k ∈ Ω, (4.6)

which is nonsmooth. To address it properly, we shall need to introduce some basic
notions regularly used in convex optimization [86, 89, 90, 50].

Definition 5. Let f : Rq → R be a convex function and v be a vector in Rq. The
subdifferential of f at v is defined as

∂f(v) = {w ∈ Rq | f(v) + wT(v′ − v) ≤ f(v′) ∀v′ ∈ Rq}. (4.7)

We note that the elements of the set ∂f(v) are called the subgradients of f
at v. The following proposition points the importance of studying the concept of
subdifferential.

Proposition 2. For any convex function f : Rq → R, a point v ∈ Rq is a global
minimum of f iff. 0 ∈ ∂f(v).
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In effect, if the underlying convex function f is smooth at v, the set ∂f(v)
includes only the gradient of f at v (i.e., ∂f(v) = {∇f(v)}). Therefore, the
provided optimality condition 0 ∈ ∂f(v) is equivalent to the classical first-order
optimality condition ∇f(v) = 0.

Lemma 1. For v ∈ Rq, the subdifferential of the f(v) = ‖v‖2 is

∂f(v) =

{
v/‖v‖2 if v 6= 0;

{v′ | ‖v′‖2 ≤ 1} otherwise.
(4.8)

We are now equipped with the necessary tools to formalize the solution. The
following proposition provides a closed-form expression for (4.6).

Proposition 3. Let λ > 0 and v′ ∈ Rq. Then, the minimizer of

min
v∈Rq

(
λ‖v‖2 +

1

2
‖v − v′‖22

)
(4.9)

is given by

prox‖·‖2(v′;λ) = max (‖v′‖2 − λ, 0)
v′

‖v′‖2
. (4.10)

Proof. 5 Using Proposition 2, we see that the minimizer v? must satisfy 0 ∈ ∂f(v?).
Considering this with Lemma 1, it writes for v? that{

λv?/‖v?‖2 + (v? − v′) = 0 if v 6= 0;

‖v′‖2 ≤ λ otherwise.
(4.11)

For the former case, it holds that v′ = v? + λ v?

‖v?‖2 and that ‖v′‖2 = ‖v?‖2 + λ.

Thus, (v?) /‖v?‖2 = (v′) /|v′‖2. Thus, we have

v? = ‖v?‖2
v?

‖v?‖2
=
(
‖v′ − λ‖2

)
(v′) /|v′‖2.

As for the latter case, v? = 0 iff. ‖v′‖2 ≤ λ. Combining both results, we arrive at
the desired conclusion.

5Similar ideas have been presented in [91, 92].
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In the light of Proposition 3, the minimizer ut+1 of (4.6) is specified via the
vectorial proximal mapping of the Laplace prior that is given by

ut+1[k] = prox‖‖2
(
zt[k]; τ/µ

)
= max

{
||zt[k]||2 −

τ

µ
, 0

}
zt[k]

‖zt[k]‖2
. (4.12)

Since the minimization is implemented for each sample location k ∈ Ω in parallel,
the computational cost is O(N). Finally, note that the problem (4.3.3) for the
Student’s t-prior is smooth. This allows us to extend our LUT-based approach for
the vector case in a straightforward way. Having explained the vectorial proximal
mappings, we focus on the last main computational step of our reconstruction
method.

4.3.4 Efficient Calculation of Matrix Inverse

In the sequel, we consider solving (3.32). As discussed earlier in Chapter 3, we need
to perform a matrix inversion. At iteration t, we are interested in obtaining the
solution that is specified as

st+1 = (HTH + µLTL)︸ ︷︷ ︸
A

−1

(
HTy + µLT

(
ut+1 − α

t

µ

))
︸ ︷︷ ︸

bt

. (4.13)

Prior to analyzing A, we first note that LTL has a fixed structure.

Proposition 4. Let L : RN → RN×2 be a linear operator defined as (4.3). Then,
the linear operator LTL : RN → RN is given by

[LTLs]k = 4s[k]− s[k − e1]− s[k + e1]− s[k − e2]− s[k + e2]. (4.14)

One essentially sees that LTL represents nothing but the circular convolution
with a Laplacian kernel (up to a sign change). Hence, it is a BCCB operator. This
implies that the inversion of the matrix A depends on the structure of HTH. If
HTH is also BCCB, then A admits the spectral decomposition given in Theorem 4
where the eigenvalues of A are obtained as the sum of the eigenvalues of HTH
and LTL. This enables one to obtain st+1 = A−1bt directly as explained in Algo-
rithm 4. In our numerical experiments, we shall illustrate examples for both cases.
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In summary, the main computational complexity of the reconstruction is driven
by the structure (and the implementation) of HTH. As a concluding remark, we
note that the general outline of our image reconstruction framework is described in
Algorithm 5.
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Algorithm 5: Generic MAP reconstruction of images according to (4.5)

input : Noisy measurements y, initial solution s0,
regularization parameter τ , penalty parameter µ,
and implementation of proximalMapping()

output: Reconstructed image sMAP

if H is a BCCB operator then
ÊH ← computeEigenvalues(H);

ÊLTL ← computeEigenvalues(LTL);

ÊA ← ÊH ◦ Ê∗H + µÊLTL;

else if HTH is a BCCB operator then
ÊHTH ← computeEigenvalues(HTH);

ÊLTL ← computeEigenvalues(LTL);

ÊA ← ÊHTH + µÊLTL;
else

A(·)← constructOperator(HTH + µLTL); (see Note 1)
end if
t← 0; ut ← 0; αt ← 0; b← HTy;
repeat

zt ← Lst +αt/µ;
ut+1 ← proximalMapping(zt; τ/µ);

bt ← b + µLT
(
ut+1 −αt/µ

)
;

if ÊA exists then
st+1 ← A−1bt; (use Algorithm 4)

else
st+1 ← conjugateGradient(A(·),bt,st); (see Note 2)

end if
αt+1 ← αt + µ(Lst+1 − ut+1);
t← t+ 1;

until stopping criteria
return st;

Note 1: constructOperator() returns a function that implements the
action of the argument (i.e. A:s 7→ (HTH + µLTL)s).
Note 2: conjugateGradient() implements the conjugate gradient iterations
to compute A−1(bt) where st is the initial solution.
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4.4 Numerical Results

In this section, we apply our MAP reconstruction framework to a set of imaging
problems. For each instance of reconstruction, the regularization parameter τ is
optimized via an oracle to obtain the highest-possible SNR. The penalty parameter
µ is set to 10τ for convex problems and 5 × 103τ for the nonconvex one. These
heuristics are found to provide a good convergence speed. The reconstructions are
initialized in a systematic fashion: The solution of the Gaussian estimator is used
as the initial solution for the Laplace estimator whose result is used as the initial
solution for Student’s t-estimator.

4.4.1 Image Deconvolution

The first problem we consider is the deconvolution of fluorescence micrographs (i.e.,
spatial distribution of florescent labels). For simplicity, we consider that the fluo-
rescence emitters are strictly located on a single spatial plane only. This means that
the imaging is assumed to be two dimensional. For deconvolution, the measure-
ment function in (3.8) is assumed to be shift-invariant. Therefore, it corresponds
to the shifted version of the point-spread function (PSF) of the microscope on the
sampling grid.

For m = (m1,m2), we write that

ψdecon
m (x) = ψdecon(x−m),

where ψdecon represents the PSF. We discretize the model by choosing

ϕint(x) = sinc(x1)sinc(x2)

with ϕk(x) = ϕint(x− k) for k ∈ Ω. The entries of the resulting system matrix H
are given by

[H]m,k = 〈ψdecon(· −m), sinc(· − k)〉
=
(
ψdecon ∗ sinc

)
(m− k). (4.15)

In effect, (4.15) corresponds to the samples of the band-limited version of the PSF.
The current discretization framework implies that H is BCCB that represents a
discrete convolution with the samples of the band-limited PSF. Remark that HT is
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also diagonalized by the discrete Fourier transform. Its eigenvalues are the complex
conjugates of ΛH. In the present scenario, we simply write that

HTH = F−1Λ∗H FF−1︸ ︷︷ ︸
I

ΛHF

= F−1|ΛH|2F,

which means that the eigenvalues of HTH are obtained as the squared modulus of
the ones of H. Since A = (HTH+µLTL) is BCCB, the direct solution of the matrix
inversion in (4.13) is thus obtained at the cost of two FFTs. This makes our ADMM-
based reconstruction particularly well-suited for the deconvolution problem.

Reconstruction Results

We perform controlled experiments, where the blurring of the microscope is simu-
lated by a Gaussian PSF kernel of support (9× 9) and standard deviation σb = 4,
on three microscopic images of size (512 × 512) that are displayed in Figure 4.1.
In Figure 4.1(a), we show stem cells surrounded by numerous goblet cells. In
Figure 4.1(b), we illustrate nerve cells growing along fibers, and we show in Fig-
ure 4.1(c) bovine pulmonary artery cells.

For deconvolution, the algorithm is run for a maximum of 500 iterations, or
until the relative error between the successive iterates is less than 5 × 10−6. The
measurements are degraded with different levels of AWGN. The noise variance σ2 is
determined through blurred SNR (BSNR) that is defined as BSNR = var(Hs)/σ2.

We conclude from the results of Table 4.1 that the MAP estimator based on
a Laplace prior yields the best performance for images having sharp edges with a
moderate amount of texture, such as those in Figures 4.1(b)-4.1(c). This confirms
the observation that, by promoting solutions with sparse gradient, it is possible to
improve the deconvolution performance. However, enforcing sparsity too heavily,
as is the case for Student’s t-priors, results in a degradation of the deconvolution
performance for the biological images considered. Finally, for a heavily textured
image like the one found in Figure 4.1(a), the linear image deconvolution algorithm
(Gaussian prior based MAP estimator) yields the best performance. We note that
the derived algorithms are compatible with the methods commonly used in the field
(e.g., Tikhonov regularization [93] and TV regularization [94]).
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(a) (b) (c)

Figure 4.1: Images used in deconvolution experiments: (a) stem cells
surrounded by goblet cells; (b) nerve cells growing around fibers; (c) artery
cells.

Table 4.1: Deconvolution performance of MAP estimators based on dif-
ferent prior distributions.

Estimation Performance (SNR in dB)
BSNR (dB) Gaussian Laplace Student’s

Stem cells 20 14.43 13.76 11.86
Stem cells 30 15.92 15.77 13.15
Stem cells 40 18.11 18.11 13.83

Nerve cells 20 13.86 15.31 14.01
Nerve cells 30 15.89 18.18 15.81
Nerve cells 40 18.58 20.57 16.92

Artery cells 20 14.86 15.23 13.48
Artery cells 30 16.59 17.21 14.92
Artery cells 40 18.68 19.61 15.94
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4.4.2 MRI Reconstruction

We now consider the problem of reconstructing MR images (i.e., spatial distribution
of spin densities) from undersampled spatial-frequency domain trajectories. The
measurement function represents a complex exponential at some fixed frequencies
and is given by

ψmri
m (x) = e−2πj〈ωm,x〉,

where ωm represents the sample point in spatial-frequency space. For convenience,
we use the same sinc basis for discretization as in Section 4.4.1. This results in a
system matrix with the entries

[H]m,n = 〈ψmri
m , sinc(· − n)〉

= 〈e−2πj〈ωm,·〉, sinc(· − n)〉
= e−2πj〈ωm,n〉, (4.16)

for ‖ωm‖∞ ≤ 1
2 . The effect of choosing a sinc function is that the system matrix

reduces to the discrete version of complex Fourier exponentials. We assume that
ωm are located on the Cartesian grid. It is noteworthy that the system matrix is
not a square matrix but it can be factorized as

H = MF ∈ CM×N

where M ∈ RM×N , with M < N , is a binary matrix that is constructed by the
suitable subset of rows of the identity matrix. Even though, H is not BCCB in this
case, let us remark that HTH is still BCCB since

HTH = F−1MTMF,

where the eigenvalues ΛHTH = MTM is a diagonal matrix with the entries at each
(m,m) being one (remaining diagonal entries are zero). The good news is that the
matrix inversion in (4.13) (once again) can be directly performed.

Reconstruction Results

We study the reconstruction of the two MR images of size (256 × 256) illustrated
Figure 4.2—a cross-section of a wrist is displayed in the first image, followed by an
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(a) (b) (c)

Figure 4.2: Images used in MR reconstruction experiments: (a) cross sec-
tion of a wrist; (b) angiography image; (c) spatial-frequency space sampling
pattern along 40 radial lines.

Table 4.2: MR image reconstruction performance of MAP estimators
based on different prior distributions.

Estimation Performance (SNR in dB)
Gaussian Laplace Student’s

Wrist (20 radial lines) 8.82 11.8 5.97
Wrist (40 radial lines) 11.30 14.69 13.81

Angiogram (20 radial lines) 4.30 9.01 9.40
Angiogram (40 radial lines) 6.31 14.48 14.97

MR angiography image—and consider a radial sampling spatial-frequency sampling
pattern (see Figure 4.2(c)).

The reconstruction algorithm is run with the stopping criteria set as in Sec-
tion 4.4.1. We show in Table 4.2 the reconstruction performance of the reconstruc-
tion algorithms in question for different number of radial lines.

On one hand, we observe that the MAP estimators based on Laplace priors
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yield the best solution in the case of the wrist image, which has sharp edges and
some amount of texture. Meanwhile, the reconstructions using Student’s t-priors
are suboptimal because they over-encourage sparsity. This is similar to what has
been observed with the microscopic images in Section4.4.1. On the other hand,
Student’s t-priors are quite suitable for reconstructing the angiogram image, which
is mostly composed of piecewise-smooth components. Finally, we observe that the
performance of Gaussian estimators is not competitive for the images considered.
Our reconstruction algorithms are tightly linked with the deterministic approaches
used for MRI reconstruction including TV [95] and its nonconvex counterparts [96],
which are in line with Laplace and Student’s t- priors, respectively.

4.4.3 X-Ray Tomographic Reconstruction

X-ray computed tomography (CT) aims at reconstructing an object from its pro-
jections taken along different directions. The mathematical model of a conventional
CT is based on the Radon transform

gθm(tm) = Rθm{s(x)}(tm)

=

∫
R2

s(x)δ(tm − 〈x,θm〉)dx ,

where s(x) is the absorption coefficient distribution of the underlying object, tm is
the sampling point and θm = (cos(θm), sin(θm)) is the angular parameter. There-
fore, the measurement function

ψxray
m (x) = δ (tm − 〈x,θm〉)

denotes an idealized line in R2 perpendicular to θm.
In our formulation, we represent the absorption distribution in the space spanned

by the tensor product of two B-splines

s(x) =
∑
k

s[k]ϕint(x− k) ,

where
ϕint(x) = tri(x1)tri(x2)

with tri(x) = (1− |x|) denoting the linear B-spline function.
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The entries of the system matrix are then determined explicitly using the B-
spline calculus described in [97], which leads to

[H]m,k = 〈δ(tm − 〈x,θm〉), ϕint(x− k)〉

=
42
|cos θm|4

2
|sin θm|

3!
(tm − 〈k,θm〉)3

+,

where

4t0f(t) =
f(t)− f(t− t0)

h
is the finite-difference operator, 4nhf(t) is its n-fold iteration, and t+ = max(0, t).
This approach provides an accurate modeling, as demonstrated in [97]. In the
current case, HTH is not a BCCB operator so that one has to use an iterative
solver to compute A−1 = (HTH + µLTL)−1 in (4.13). Particularly, we use CG
method. As noted previously, the algorithm requires one to be able to compute the
multiplication of A with a vector (i.e., the series of image processing operations
to compute the output image). Since the operator LTL is performed via FFTs,
the remaining task is to implement HTH. To do so, one can take advantage of
multi-threading and look-up-table techniques as explained in [98].

Reconstruction Results

We consider the two images shown in Figure 4.3. The Shepp-Logan (SL) phantom
has size (256 × 256), while the cross section of the lung has size (750 × 750). In
the simulations of the forward model, the Radon transform is computed along 180
and 360 directions for the lung image and along 120 and 180 directions for the SL
phantom. The measurements are degraded with the Gaussian noise such that the
signal-to-noise ratio is 20 dB.

We solve the quadratic minimization problem (3.32) iteratively by using 50 CG
iterations. The reconstruction results are reported in Table 4.3.

Before commenting on the results, let us remark that the SL phantom is a
piecewise-smooth image with sparse gradient. Therefore, we observe that the im-
position of more sparsity brought by Student’s t-priors significantly improves the
reconstruction quality for this particular image. However, we find that the Gaus-
sian priors for the lung image outperform the other priors. Like the deconvolution
and MRI problems, our algorithms are in line with Tikhonov-type [99] and TV [100]
reconstructions used for X-ray CT.
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(a) (b)

Figure 4.3: Images used in X-ray tomographic reconstruction experi-
ments: (a) the Shepp-Logan (SL) phantom; (b) cross section of the lung.

Table 4.3: Reconstruction results of X-ray computed tomography using
different estimators.

Estimation Performance (SNR in dB)
Gaussian Laplace Student’s

SL Phantom (120 direction) 16.8 17.53 18.76
SL Phantom (180 direction) 18.13 18.75 20.34

Lung (180 direction) 22.49 21.52 21.45
Lung (360 direction) 24.38 22.47 22.37
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4.5 Discussion

By performing numerical experiments on different types of imaging modalities, we
have seen that sparsity-promoting reconstructions are effective methods for solv-
ing biomedical imaging problems. Our simulations point the importance of sparse
models and demonstrate that `1-type reconstructions are favorable in general. This
case is represented in our family of MAP estimators via Laplace priors. However,
encouraging sparser solutions (by using Student’s t-priors) improves the reconstruc-
tion performance only for a very specific class of images. We have also seen that the
classical non-sparse solutions (provided by Gaussian priors) can still yield better
reconstructions for images of high texture content, for instance. Therefore, the effi-
ciency of a potential function is primarily dependent upon the type of image being
considered. In our model, this is related to the Lévy exponent of the underlying
continuous-domain innovation process w which is in direct relationship with the
discrete signal prior.

The exact equivalence between our models and the TV regularization is fully jus-
tified in the one-dimensional setting as it has been pointed out in Subsection 3.5.2.
However, due to images being multi-dimensional signals, the discrete gradient op-
erator L is a vector-valued mapping which causes mathematical complications to
exactly fit it in the theory. As mentioned earlier in Section 3.4.1, the class of frac-
tional Laplacian operators (−∆)γ/2, with γ > 0, can be chosen as the whitening
operator. These operators allow us to generate self-similar stochastic processes that
are used for modeling of fractal-type images [70, 71, 72]. These isotropic differential
operators defined in Fourier domain by

F
{

(−∆)γ/2g
}

(ω) = ‖ω‖γ2F {g} (ω),

where g has a well-defined Fourier transform. The fractional Laplacian is a lin-
ear, self-adjoint, and continuous operator with translation-, rotation-, and scaling-
invariance properties. Specifically, for g having a well-defined gradient ∇g, the
following relation is established:

‖∇g‖22 = ‖ω‖22‖F{g}‖22
= ‖(−∆)1/2g‖22, (4.17)

where the first equality follows from squared L2-norms being homogeneous of or-
der 1 and the Parseval relation. The algorithmic implication of (4.17) is valuable:
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Under the decoupling simplification, the quadratic regularizer used in the experi-
ments provides the computational means to perform the MAP/MMSE estimation
of a self-similar process with the underlying continuous-domain innovation being
Gaussian. Despite all these enticing mathematical properties, fractional Laplacian-
based regularizations (both `2- and `1-types) either do not overperform [18, 101],
or provide improvement for a narrow class of images [87] in comparison to their
gradient-based counterparts. In any manner, the implicit assumption in our formu-
lation that the gradient of the image is independent from one pixel location to the
next is quite likely to be an oversimplification [102].

Theoretical sophistication and exactness are thus abandoned for practical sim-
plicity and insight in anticipation of designing algorithms that are applicable to
real data. By limiting our attention to a particular operator, the essential results
and constructive ideas are conveyed more intuitively. These points will be more
apparent when we propose our optical phase imaging algorithm for unstained cell
samples in Chapter 5 and properly extend TV regularization for vector fields in
Chapter 6.



Chapter 5

Variational Phase Imaging

5.1 Overview

In this chapter,1 we introduce a variational phase retrieval algorithm for imaging
transparent objects that are optically-thin. Our approach is based on the so-called
transport-of-intensity equation (TIE). The model puts forward a differential equa-
tion that relates the phase of an optical field to the variation of its intensity along
the direction of propagation. In practical terms, TIE allows one to use a conven-
tional light microscope and record a set of defocus images to obtain the phase map
of the sample that is being imaged. Accordingly, we first investigate the effect of the
defocus distance on the retrieved phase image. The key outcome of our analysis is
that the chosen defocus value has direct influence on the range of spatial frequen-
cies of the reconstructed phase image. Based on this observation, we propose a
phase reconstruction algorithm that is nonlinear and utilizes weighted norms. The
method combines different ranges of spatial frequencies—depending on the defocus
value of the measurements—in a regularized fashion. Our simulations outperform
commonly used linear and nonlinear TIE solvers. We also illustrate and validate
our method on real microscopy data of HeLa cells. An important practical outcome
of the proposed method is that the reconstructed phase images are greatly in line
with those produced by dedicated phase microscopes.

1This chapter is based on our paper [103].
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5.2 Introduction

The generic problem of imaging transparent objects is highly relevant to biological
research as most cells and thin tissue samples do not absorb light and produce im-
ages with very low contrast when observed under a standard bright-field microscope
(see Figure 5.1(a)) [104]. To reveal specific structures in the sample, one can apply
staining or use fluorescent dyes and biomarkers. These exogenous contrast agents
then allow for the use of advanced light microscopy techniques that include the super
resolution ones such as stimulated-emission depletion microscopy (STED) [105] and
single-molecule localization microscopy (SMLM) [106, 107]. The high-end modali-
ties, however, require careful sample preparation and are not well-suited to image
live cells (especially over extended periods of time) since the contrast agents can
be phototoxic [108]. Also, the observation of the global tissue or cell morphology
becomes harder [109]. For these reasons, label-free phase imaging techniques are
needed especially when minimal manipulation of the cell is required (such as in
stem cell and drug discovery studies) [110].

While transparent objects have insignificant absorption, they do introduce phase
shifts—on the incident light field—due to variations in the optical path length in
the sample. Knowing that specimens change the phase of the light wave, the in-
formation about the distribution of the refractive index (hence, about the global
morphology and the structure of the specimen) is encoded in the phase. Unfortu-
nately, the optical phase shifts are lost during the acquisition since the detectors are
sensitive only to the intensity of the field. Two conventional imaging modalities that
translate the phase shifts into detectable intensity differences are phase contrast mi-
croscopy (PC) [111] and differential interference contrast (DIC) microscopy [112].
However, both DIC and PC images are challenging to segment (and to track) due to
shade and halo artifacts (see Figure 5.1). This essentially limits their use since seg-
mentation is a key step in cell biology [113]. Another well-established technique for
phase imaging is digital holography microscopy (DHM) [114, 20]. Applying holo-
graphic imaging principles to microscopy imaging, DHM images yield quantitative
phase information, which distinguishes them from DIC and PC images. Basically,
DHM allows one to obtain the actual shape map of the transparent samples. The
apparent advantage is that the upcoming task of segmenting cells (and other spe-
cific structures of interest) is more convenient. The downside of DHM is that it
is a hardware-based solution of higher cost compared to bright-field, DIC, and PC
microscopies [115].
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(a)

(b)

(c)

Bright-field image

DIC image

PC image

Figure 5.1: Imaging the same HeLa cells with different microscopes. Info-
cus images for the same field of view are obtained by using (a) bright-field,
(b) DIC, and (c) PC microscopes. Normalized intensity profiles corre-
sponding to the same line segment are given at the right hand side of each
image.
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In this chapter, we consider a low-cost label-free phase imaging approach that
uses the transport-of-intensity equation (TIE) [11]. This method has significant
advantages: it is a computational method that can be used with a basic bright-
field [116] microscope; the resulting phase dispenses with the unwrapping task
required by interferometric methods such as DHM [117]. As we shall see later, TIE
provides us with a linear mathematical formalism that relates the spatial phase map
of the sample to the derivative of its intensity map along the propagation direction.
In a practical setup, the phase is recovered by using a set of images acquired at var-
ious positions along the optical axis. Hence, TIE simply requires a stack of defocus
measurements to obtain the phase information at the infocus plane (i.e., the axial
location of the sample). Allowing phase images to be obtained by using numeri-
cal methods—rather than implementing specialised hardware modifications—TIE-
based imaging is a viable tool for electron microscopy [118] and X-ray imaging [119].
In addition, TIE can be applied to a partially coherent source, even though it has
been initially derived for coherent illumination [116]. This makes it applicable to a
DIC microscope [120].

TIE has been extensively studied in the optics community, where researchers
have explored ways to obtain better estimates of the axial derivative of the intensity.
The simplest approach has been to capture two images that are slightly above and
below the focus plane, followed by a centered finite difference. Various refined
models using additional defocused images have also been proposed. In [121], the
authors consider computing higher-order terms in the Taylor development of the
intensity along the optical axis. The use of finite differences results in a simple
linear combination of defocused images, but the estimate tends to be sensitive to
noise. An alternative approach is based on a pixel-wise polynomial fitting of the
intensity along the optical axis [121]. Again, it is carried out at the expense of
acquiring more images. The authors of [122] have presented a framework in which
they estimate the axial derivative of the intensity through fitting in the spatial
frequency domain. In [123], the estimation by polynomial fitting is generalized via
the Savitzky-Golay differentiation filter.

In addition to such approaches, one may combine multiple TIE solutions. In [124],
different TIE reconstructions for distinct defocus distances are fused by using linear
filtering operations by investigating the the validity of first order finite difference
approximations for a given noise level. The authors have designed improved fil-
ters by considering the pointwise variance of the phase in the frequency domain
in [125]. The designed filters are found to be a function of the noise variance so
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that the applicability of the method has been limited. The method of [124] has
been extended in [126] by using combining various TIE solutions in the spatial
frequency domain. What is common in all of these methods is that they are all
linear reconstruction algorithms and that the TIE is solved directly by inverting
the model. The latter suggests the use of regularization to stabilize the solutions.
In this regard, Tikhonov-type [127] regularizations have been considered.

Rather recently, TIE has also drawn attention of the image processing commu-
nity. TV and its nonconvex variants, which agree with MAP reconstructions based
on Student’s t-priors, have been applied to simulated data in [128]. In [129], the
authors have showed the applicability of TV regularization for real data reconstruc-
tions.

5.2.1 Contributions

On a fundamental level, TIE suffers from two problems. First, when the model is
inverted, the noise in the measurements is integrated because TIE is a differential
form. This typically produces low-frequency errors (such as “cloudy” artifacts) in
the reconstructions. Second, the computation of the axial intensity derivative by
using centered finite differences necessitates small defocus distances. Deviations
from this requirement introduce further errors. As we shall show in the coming
sections, these problems are tightly related. Extending our previous research [129],
we propose a nonlinear variational method that provides a unifying framework for
the resolution of TIE. Our main contributions are as follows:

� A joint model that is able to combine the spectral information coming from
different defocus distances within a regularized reconstruction framework.
The model is built upon identifying reliable frequency ranges as the defo-
cus distance changes.

� The proposal of an iterative algorithm that is based on the alternating min-
imization concepts. The method is highly modular and takes full advantage
of the underlying structure of TIE.

� A detailed comparison of our method with common TIE reconstruction al-
gorithms. We show that we achieve better phase reconstructions for both
simulated and experimental data. The reconstructed phase images are also
validated by comparing them with DHM acquisitions.
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Figure 5.2: Representation of the measurement model (and the corre-
sponding problem geometry) in this chapter. A transparent object is lo-
cated at the input plane of an ideal imaging system. Note that a magnified
version of the object field is generated at the image plane. Defocus images
are captured by moving the object symmetrically around the focus posi-
tion. The phase map at the infocus plane is then obtained by using the
defocus images in (5.10).

5.2.2 Outline

The chapter is organized as follows: In Section 5.3, we first explain the underly-
ing physical and mathematical frameworks of TIE that constitute the core of our
approach. We shall then formulate a complementary approach known as the con-
trast transfer function. By considering the two models together, we establish a
relationship between the defocus distance and the range of the spatial frequencies
(of a transparent object) for which the reconstruction is potentially of high quality.
Following this observation and our considerations in Chapter 4, we cast the phase
reconstruction task as an inverse problem and propose an iterative algorithm for
its resolution in Section 5.4. Finally, we provide numerical simulations, real data
experiments, and discuss our results in Section 5.5.
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5.3 Physical Models

Consider the problem geometry given in Figure 5.2. We define (x, z) as our coor-
dinate vector where x = (x1, x2) ∈ R2 denotes the spatial location on a transverse
plane that is perpendicular to the optical axis z. The monochromatic plane wave
ejkz illuminates a thin object that lies on a bounded domain in R2. The wave
function after traversing the object is written as

U(x, z) = UA(x, z)ejkz, (5.1)

where UA represents the so-called complex amplitude of U , k = 2π/ν is the wave
number with ν being the illumination wavelength. The expression of the complex
amplitude is given by

UA(x, z) =
√
I(x, z)ejφ(x,z), (5.2)

where the real-valued functions I and φ are the intensity and the phase, respectively.

For convenience, we shall assume that the object is located at the axial position
z = 0. Therefore, the wave field at the object plane is specified by

O(x) = UA(x, 0) =
√
I0(x)ejφ0(x), (5.3)

where φ0(x) = φ(x, 0) corresponds to the spatial phase map of the object. In
practice, one is able to record the intensity map of a light field (specifically, its
average over a certain time) and the phase information is lost (as a result of the
fast oscillations at visible frequencies). This necessitates establishing a relationship
between the phase and the intensity maps of UA where only the latter is measured.

5.3.1 Transport-of-Intensity Equation

Suppose the propagation of UA is dominant along the z axis (i.e., the paraxial
approximation is valid). Then, the physics of UA is governed by the paraxial wave
equation (

∇2
⊥ + 2jk

∂

∂z

)
UA(x, z) = 0, (5.4)

where∇2
⊥ is the transverse Laplacian operator defined by∇2

⊥ =
(
∂2/∂x2

1 + ∂2/∂x2
2

)
.
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By multiplying (5.4) by U∗A on the left-hand side, and separating the real and
the imaginary parts, Teague [11] has derived two equations. In particular, the
imaginary part2 specifies the transport-of-intensity equation (TIE)

−k ∂
∂z
I(x, z) = ∇⊥ · (I(x, z)∇⊥φ(x, z)) , (5.5)

where ∇⊥ = [∂/∂x1 ∂/∂x2]T is the transverse gradient operator and · denotes
the dot product. We see that (5.5) is an elliptical second-order partial differential
equation that links the phase information to the axial derivative of the intensity of
the field. Practically, TIE bears an important outcome: the spatial phase map φ is
computed by measuring the intensity I and its axial derivative ∂I(x, z)/∂z, where
the latter can be approximated by finite differences.

We now investigate TIE in relation to our problem settings. We consider an
object that is at the input plane of an ideal magnification system, generating a
dilated version of the object field at the image plane. As mentioned in Section 5.2,
we are interested in imaging unstained biological samples. Such class of objects
are modeled as phase-only objects, meaning that they do not significantly absorb
or scatter the illuminating field [109]. We further assume that the illumination is
uniform so that I0(x) is constant: I0(x) = J0. Therefore, (5.5) is rewritten as

− k

J0

∂

∂z
I(x, z)

∣∣∣
z=0

= ∇2
⊥φ0(x). (5.6)

To simplify our notation, let us define

y(x) =
I(x,∆z)− I(x,−∆z)

J0
(5.7)

as our measurement, obtained by a centered finite difference around z = 0 for
∂I/∂z. We then specify TIE in the Fourier domain as

ŷ(ω) = 4πν∆z‖ω‖22φ̂0(ω), (5.8)

2The real part provides us with the so-called transport-of-phase equation (TPE). However,
TPE requires the measurement of the axial derivative of the phase ∂φ/∂z. This makes TPE
impractical as φ itself is unknown.
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where the Fourier transform of a function f : R2 → C is given by

f̂(ω) = F {f} (ω)

=

∫
R2

f(x)e−j2πωTx dx. (5.9)

Consequently, the sought phase is obtained by

φ0 = F−1
{
ŷ ĥ−1

TIE

}
, (5.10)

where

ĥTIE(ω) =

{
ζ, ω = 0
4πν∆z‖ω‖22, otherwise,

(5.11)

with ζ > 0 being introduced to deal with the singularity at the origin. This makes
the inverse filter ĥ−1

TIE well-defined. In practical terms, (5.10) explains that a con-
ventional reconstruction of the phase requires one to capture three images (the
infocus image recorded at z = 0 and the two defocus images recorded at z = ±∆z),
and to use a Fourier-domain filtering operation.

We now would like to discuss how the defocus distance affects the reconstruction
performance. From a mathematical point of view, ∆z should be as small as possible
so that ∂I/∂z is well-approximated. However, in practice, the intuitive appeal of
choosing a very small defocus is suboptimal. To see this, let us assume that the
measurement y contains some amount of additive white noise that does not depend
on ∆z. The spectrum of the noise in the reconstructed phase φ0 is shaped by
ĥ−1

TIE which is essentially a two fold integrator (since ĥTIE ∝ ‖ω‖22). Therefore, the
phase image (especially the lower spatial frequencies) is perturbed more as ∆z gets
smaller (see Figure 5.3). This aspect of TIE is well-known and discussed in several
works [11, 130, 124, 131].

In summary, the key observation is that TIE-based methods resolve lower spatial
frequencies better by increasing the defocus distance since noise-induced artifacts
are reduced. However, for large ∆z, the implicit linearity in the finite difference ap-
proximation breaks and one obtains coarser ∂I/∂z estimates. It is thus reasonable
to use large defocus measurements for reconstructing low frequencies as we rely on
small defocus measurements for the high ones. Unfortunately, (5.8) by itself does
not provide us with further hints about how to combine these two regimes. To have
a better understanding, we shall explore a complementary formulation.
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ω1(µm−1)0 1 2

noise
power spectrum

∆z = 0.1 µm ∆z = 0.6 µm

Figure 5.3: Radial profile of the inverse transfer function ĥ−1
TIE for ν =

632 nm using two distinct defocus distances. For simplicity, the profile is
shown only for positive spatial frequencies.

5.3.2 Contrast Transfer Function

In the sequel, we base our approach on the principles of wave propagation. Under
the paraxial approximation, the intensity of the wave field is expressed as

I(x, z) = |U(x, z)|2

= |O(x) ∗ p(x, z)|2, (5.12)

where ∗ denotes the convolution operator and

p(x, z) =
ejkz

jνz
exp

(
jk

2z
‖x‖22

)
(5.13)

represents the impulse response of the Fresnel propagation [132]. We remark that

p̂(ω, z) = ejkze−jπνz‖ω‖22 . (5.14)

In effect, the term exp(−jπνz‖ω‖22) represents the optical transfer function for the
propagation. The complex amplitude is given by

ÛA(ω, z) = Ô(ω, z)e−jπνz‖ω‖22 .
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As we are interested in imaging thin biological samples, we assume that φ0

is small. Further, we continue with the assumption that the object is uniformly
illuminated. This enables us to approximate the object field O(x) by its first-order
Taylor expansion that is given by

O(x) ≈
√
J0 (1 + jφ0(x)) . (5.15)

Then,

ÛA(ω, z) ≈
√
J0

(
δ(ω) + φ̂0(ω)

(
j cos(πνz‖ω‖22) + sin(πνz‖ω‖22)

))
.

Also, we remark that

Î(ω, z) =
(
ÛA
∗
(−·, z) ∗ ÛA(·, z)

)
(ω) (5.16)

and that φ̂0 is Hermitian-symmetric since φ0 is real-valued. Then, by develop-
ing (5.16) up to the first-order term in φ0 (i.e., neglecting the higher-order terms

that include the convolution φ̂0 ∗ φ̂0), we obtain

Î(ω, z) = J0

(
δ(ω) + 2 sin(πνz‖ω‖22)φ̂0(ω)

)
, (5.17)

which is known as the contrast transfer function (CTF) [133]. As suggested by its
name, the CTF explains how the phase and the propagation distance is changing the
image contrast. For instance, in the present case, it points out that the visibility of
phase-only objects is increased by introducing a suitable defocus (see Figure 5.8(a)).
Evaluating (5.17) at points z = ∆z and z = −∆z yields the TIE-like equation

b̂(ω) = 4 sin(πν∆z‖ω‖22)φ̂0(ω). (5.18)

Similar to ĥTIE in (5.10), we define

ĥCTF(ω) =

{
ζ, ω = 0
4 sin(πν∆z‖ω‖22), otherwise.

(5.19)

Considering ĥTIE and ĥCTF, let us further develop our approach for the phase
retrieval problem. We make two essential observations:
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ω1(µm−1)0 1 2

large defocus (∆z = 0.6 µm)

Region 1

ω0 ωmax

ω1(µm−1)0 1 2

small defocus (∆z = 0.1 µm)
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ω0 ωmax

ĥTIE ĥCTF

Figure 5.4: Radial profile of the transfer functions for ν = 632 nm. For
simplicity, the profile is shown only for positive spatial frequencies.

– We notice that the models are indistinguishable since

4 sin(πν∆z‖ω‖22) ≈ 4πν∆z‖ω‖22,

when ∆z is sufficiently small. Therefore, if small defocus distances are con-
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sidered for imaging weak phase objects, both TIE and CTF models result
in similar frameworks. This implies that finite difference approach—used for
linearization of the intensity variation along z—is consistent with the CTF
formulation. In plain words, the mathematical approximation incorporated
in the TIE has a physical correspondence based on the paraxial wave propa-
gation.

– In contrast, as ∆z gets larger, the models agree up to a certain frequency
ω0, and differ afterwards (see Figure 5.4). The validity of utilizing TIE with
large defocus measurements is hence enforced in the region where it agrees
with the CTF model. Above ω0, the two models tend to disagree and it is
therefore safer to exclude these frequencies.

Based on this, we shall formulate a joint approach for the phase reconstruction
problem that takes the best of two worlds. Large defocus intensity images are used
to recover low frequencies up to ω0 (denoted as Region 1 in Figure 4). For the rest
of the spectrum (denoted as Region 2 in Figure 4), we rely on the small defocus
images.

5.4 Reconstruction Algorithm

In this section, we put our phase recovery problem in a variational framework.
Our effort towards this aim is initiated by the formulation of the data fidelity
term. Guided by our developments in the previous section, we shall work with two
defocus distances and formulate a weighted reconstruction. The derived data term
is then combined with a regularization functional which will be chosen in accordance
with our investigations in Chapter 4. In the sequel, we start our developments by
constructing the spectral weighting filters to effectively combine low- and high-
frequency components of the phase.

5.4.1 Spectral Weighting Filters

Considering the physical principles explained in Section 5.3, we introduce two
isotropic functions that are appropriate for the spectral weighting of the under-
lying phase image. We denote these functions by WLP and WHP, for low-pass and



90 Variational Phase Imaging

high-pass weighting, respectively. They are defined as follows:

WLP(ω) =


1, ‖ω‖2 < ω0 − L

2

g(ω), ω0 − L
2 < ‖ω‖2 < ω0 + L

2

0, ‖ω‖2 > ω0 + L
2 ,

(5.20)

where

g(ω) =
1

2

(
1 + cos

(
π

L

(
‖ω‖2 − ω0 +

L

2

)))
(5.21)

and

WHP(ω) = 1−WLP(ω). (5.22)

The parameter ω0 denotes the cutoff frequency; the values of WHP and WLP are
equal for ‖ω‖2 = ω0. Note that (5.21) provides a smooth transition zone of width
L around ω0. A graphical representation of our filters is seen in Figure 5.5.

It is noteworthy that ω0 specifies the limit spatial frequency up to which the
phase reconstruction based on a large defocus is reliable. For the frequencies that
are higher than ω0, we shall rely on the measurements obtained with a small defocus.
Considering (5.11) and (5.19), we define ω0 as

ω0 =

√
θ0

πν∆z
, (5.23)

where θ0 is the critical value after which the difference between ĥTIE and ĥCTF is
not negligible. A typical choice is θ0 = π/10.

5.4.2 Discrete Formulation

We consider that two distinct defocus values, ∆z1 and ∆z2, with ∆z1 < ∆z2, are
used. Let y1 and y2 represent the corresponding measurements computed via (5.7)
for ∆z1 and ∆z2, respectively. Since the measurements are only known at dis-
crete pixel locations, we collect their sample values in the vectors3 y1, y2 ∈ RN
with N being the total number of pixels on the detector. Then, in the noise-free

3The vectorization of the measurements are assumed to be lexicographically ordered.
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Figure 5.5: Radial profile of the spectral filters used to weight low and
high frequencies of the measurements, computed for two defocus distances.

scenario, (5.8) implies that

y1 = H1Φ,

y2 = H2Φ, (5.24)

where Φ ∈ RN is the discretized version of the original phase map and H1,
H2 ∈ RN×N correspond to hTIE for ∆z1 and ∆z2, respectively (thus, they rep-
resent Laplacian operators up to different multiplicative factors). Note that these
operators are self-adjoint in the sense that HT

1 = H1 and HT
2 = H2.

We then define our weighting matrices as

W1 = F−1ΣHPF,

W2 = F−1ΣLPF, (5.25)

where F is the DFT matrix and ΣLP, ΣHP ∈ RN×N are diagonal matrices whose
entries are the discrete samples of WLP and WHP, respectively. In practice, a small
positive constant can be added to the diagonal elements. We remark that such
construction makes W1 and W2 positive-definite matrices.

We propose the data-fidelity term

D(Φ; y1; y2) =
1

2
‖H1Φ− y1‖2W1

+
1

2
‖H2Φ− y2‖2W2

, (5.26)
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where ‖ · ‖2Wj
is the weighted norm defined as 〈Wj ·, ·〉 for j = 1, 2. This corre-

sponds to a maximum-likelihood (ML) functional under the hypothesis that the
measurements are degraded by Gaussian noise [134].

Based on this formalism, we aim at obtaining a phase reconstruction Φ? such
that

Φ? = arg min
Φ

(D(Φ; y1; y2) + τR(Φ)). (5.27)

In (5.27), R is the regularization functional of the form

R(Φ) =
∑
k∈Ω

‖[LΦ]k‖p2, (5.28)

where Ω is the index set of all pixel locations, p is a positive scalar value, and L
is the discrete analogue of the transverse gradient operator. Thus, [LΦ]k ∈ R2

represents the first-order finite differences of Φ along the vertical and horizontal
directions at location k. We note that (5.28) is in line with the discrete regularizer
given in (4.2). The proposed data term selectively incorporates the high- and low-
frequency information coming from the measurements taken at ±∆z1 and ±∆z2,
respectively. The regularizer imposes smoothness on the reconstructions, where the
strength of the smoothness is controlled by the regularization parameter τ > 0.

Let us explain some special cases of the proposed framework. Discarding the
spectral weighting (i.e., W1 and W2 are identity operators) and setting p = 2, one
obtains the classical Tikhonov regularization, which can be seen as the conventional
way of solving TIE. More importantly, if weighting is nontrivial and Tikhonov
regularization is considered, the solution is given by

Φ?
Tik =

(
H1W1H1 + H2W2H2 + 2τLTL

)︸ ︷︷ ︸
A

−1
(H1W1y1 + H2W2y2)︸ ︷︷ ︸

b

. (5.29)

Assuming periodic boundary conditions, the good news is that the matrix A be-
comes BCCB by construction so that the solution Φ?

Tik = A−1b is computed
directly by using FFTs as we have explained in Section 4.3.1. More specifically, as
τ → 0 (i.e., no regularization), one recovers a linear phase reconstruction method
that is in spirit of [123, 124, 125, 126]. We note that the matrix inversion in (5.29)
is well-defined, even in the absence of regularization.
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In cell imaging applications, it is highly desirable that the specimens be well-
isolated from the background and that the background itself is homogeneous [115].
As we have highlighted in Section 4.4, TV regularization—obtained by setting
p = 1—is known to preserve the discontinuities better than Tikhonov-type reg-
ularizations as it provides us with piecewise smooth reconstructions. To attain the
mentioned attributes in the final phase image, we combine our data-fidelity term
with a TV regularizer and propose the nonlinear optimization problem

Φ? = arg min
Φ

(1

2
‖H1Φ− y1‖2W1

+
1

2
‖H2Φ− y2‖2W2

+ τ
∑
k∈Ω

‖[LΦ]k‖2
)

. (5.30)

In the sequel, we are going to solve our specific phase reconstruction problem
using generic optimization tools such as ADMM and proximal mapping, which have
been discussed in Chapter 4.

5.4.3 Optimization Algorithm

We first cast (5.30) as a constrained optimization problem given by

Φ? = arg min
Φ

(1

2
‖H1Φ− y1‖2W1

+
1

2
‖H2Φ− y2‖2W2

+ τ
∑
k∈Ω

‖u[k]‖2
)

s.t. u = LΦ, (5.31)

where u is an auxiliary variable. To solve (5.31), we introduce the associated
augmented Lagrangian functional

LA(Φ,u,α) =
1

2
‖H1Φ− y1‖2W1

+
1

2
‖H2Φ− y2‖2W2

+ τ
∑
k∈Ω

‖u[k]‖2

−αT(u− LΦ) +
µ

2
‖u− LΦ‖22, (5.32)

where α is the Lagrange multiplier and µ > 0 is the penalty parameter. We then
use ADMM and individually treat LA over each of its arguments while the others
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are assumed to be fixed. This results in an iterative framework whose steps are

ut+1 = arg min
u

LA(Φt,u,αt), (5.33a)

Φt+1 = arg min
Φ

LA(Φ,ut+1,αt), (5.33b)

αt+1 = αt − µ(ut+1 − LΦt+1). (5.33c)

We note that the minimization over u in (5.33a) is separable and amounts to the
proximal operator associated with ‖ · ‖2. This implies that the solution is obtained
by solving the N minimization problems

ut+1[k] = arg min
u[k]

(
τ‖u[k]‖2 +

µ

2
‖u[k]− zt[k]‖22

)
, ∀k ∈ Ω, (5.34)

with the closed-form solution being (see Section 4.3.3)

ut+1[k] = max

(
||zt[k]||2 −

τ

µ
, 0

)
zt[k]

||zt[k]||2
, (5.35)

where zt = LΦt + αt

µ . As the minimization is implemented for each pixel location

in parallel, ut+1 is computed efficiently.

The second sub–problem (5.33b) has the form of a standard quadratic mini-
mization. Investigating first-order optimality conditions yields that

Φt+1 =
(
H1W1H1 + H2W2H2 + µLTL

)−1
bt, (5.36)

where

bt =

(
H1W1y1 + H2W2y2 + µLT

(
ut+1 − α

t

µ

))
. (5.37)

It is actually seen that a Tikhonov-type minimization is computed. Similar to (5.29),
this problem is solved directly using FFTs. The last step (5.33c) is a standard re-
finement of the Lagrange multiplier.
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Algorithm 6: Proposed phase reconstruction algorithm according to (5.30)

input : First defocus value ∆z1, second defocus value ∆z2,
∂I/∂z approximations y1, y2 (at ∆z1 and ∆z2, respectively),
maximum spatial frequency ωmax, critical value θ0, wavelength ν,
transition width L, regularization parameter τ , penalty parameter µ

output: Reconstructed phase map Φ?

H1 ← constructTieKernel(∆z1);
H2 ← constructTieKernel(∆z2);

ω0 ←
√
θ0/(πν∆z);

(W1,W2)← constructSpectralFilters(ω0, L, ωmax); (see (5.20))

ÊA ← computeEigenvalues(H1W1H1 + H2W2H2 + µLTL);
t← 0; st ← 0; ut ← 0; αt ← 0; b← H1W1y1 + H2W2y2;
repeat

zt ← Lst +αt/µ;
for k ∈ Ω

ut+1[k]← max
(
||zt[k]||2 − τ

µ , 0
)

zt[k]
||zt[k]||2 ; (proximal mapping)

end for
bt ← b + µLT

(
ut+1 −αt/µ

)
;

Φt+1 ← A−1bt; (use Algorithm 4)
αt+1 ← αt + µ(Lst+1 − ut+1);
t← t+ 1;

until stopping criteria
return Φt;
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5.5 Experiments

We illustrate the utility of our phase reconstruction method by performing exper-
iments in simulated and practical configurations. In every experiment, the images
are extended using periodic boundary conditions. The ζ parameter in (5.11) is set

to 1 so that the filter ĥTIE is mean-preserving. The θ0 parameter in (5.23) is set
to π/10, and the associated width L is manually tuned according to the maximal
frequency present in the signal. For synthetic data, this maximal frequency is set
to the inverse of the pixel size; for real data experiments, it is the minimum of
the inverse effective pixel size (i.e., the camera pixel size divided by the magnifica-
tion) and the resolution imposed by the diffraction limit (i.e., twice the numerical
aperture divided by the wavelength). For ADMM-based reconstructions, we fix
µ = 10τ . We also fix the stopping criterion as reaching either a relative `2-normed
difference of 10−4 between two successive iterates, or a maximum of 250 iterations.

5.5.1 Synthetic Data

The original object field is assumed to have a unit intensity, and the spatial phase
map is given by the set of two-dimensional images shown in Figures 5.6 and 5.7. 4

All the ground-truth phase maps are of size (256×256) pixels and have values in the
range of [0, 1] radians. We set the pixel size to 2 µm and the wavelength ν to 632 nm.
The original object field is propagated to axial distances of ±50 µm (small defocus)
and ±300 µm (large defocus) by using a Fresnel diffraction kernel [135]. We generate
the observed intensities by taking the square modulus of the propagated complex
fields. Finally, the intensity images are degraded by various levels of AWGN. The
standard deviation of the noise is chosen such that a given signal-to-noise ratio
(SNR) is achieved. An example defocus stack is illustrated in Figure 5.8(a).

We measure the quality of the reconstructed phase maps by computing the
regressed SNR—the regression is there to get rid of additive and multiplicative
constants. Between the ground-truth map Φ and a reconstructed one Φ?, this
measure is defined as

SNR(Φ,Φ?) = max
a,b∈R

10 log

( ‖Φ‖22
‖Φ− (aΦ? + b)‖22

)
. (5.38)

4The biological images originate from the cell image database and are available at
http://www.cellimagelibrary.org.



5.5 Experiments 97

rad

0.0

1.0

0.5

rad

0.0

1.0

0.5

Figure 5.6: The set of standard images representing the ground-truth
spatial phase maps used in the simulations. From left to right, they are
referred to as 1) Boat, 2) Bridge, 3) Cameraman.
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Figure 5.7: The set of cell images representing the ground-truth spatial
phase maps used in the simulations. From left to right, they are referred
to as, 1) CIL214, 2) CIL38921, and 3) CIL39789.

The performance of our nonlinear method is compared against the following algo-
rithms:

1. Tikhonov regularization based TIE (TIE-Tik): We adapt a linear reconstruc-
tion scheme that incorporates a Tikhonov regularization (i.e., p = 2 in (5.28)).
The method uses three images (the infocus image and two symmetrically de-
focused images) and does not apply any spectral weighting scheme. We apply
the method separately with each set of measurements acquired at ±50 µm
and ±300 µm defocus.
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Table 5.1: Reconstruction performance of TIE-based phase retrieval al-
gorithms: Simulation results for the set of standard test images. Numbers
are given in decibel unit.

∆z = 50 µm ∆z = 300 µm
Input

TIE-Tik TIE-TV TIE-Tik TIE-TV
Composite Proposed

SNR TIE-Tik method

B
o
a
t

20 10.72 12.26 12.85 14.52 13.47 15.22
25 11.64 13.86 14.52 15.63 15.94 17.19
30 12.34 15.24 15.84 16.32 18.10 18.70
35 14.16 16.74 16.78 16.88 19.88 20.01
40 16.09 17.98 17.09 17.11 20.69 20.73
45 18.08 19.20 17.19 17.20 20.95 20.96
50 19.99 20.19 17.23 17.23 21.04 21.04

B
ri
d
g
e

20 8.59 10.56 10.91 11.99 11.69 13.11
25 9.51 11.68 12.39 12.99 13.95 14.88
30 10.30 12.40 13.27 13.44 15.43 15.80
35 12.40 13.73 13.99 14.01 16.77 16.84
40 13.67 14.74 14.20 14.22 17.24 17.28
45 15.68 15.96 14.28 14.28 17.39 17.40
50 16.86 16.89 14.30 14.31 17.44 17.44

C
a
m
e
ra

m
a
n

20 8.00 13.83 13.17 13.91 14.37 15.89
25 9.77 15.54 14.11 14.26 16.00 16.67
30 12.57 16.38 14.43 14.48 16.82 17.08
35 14.77 16.79 14.56 14.55 17.09 17.18
40 16.46 17.23 14.61 14.60 17.18 17.24
45 17.52 17.60 14.63 14.62 17.25 17.29
50 17.70 17.72 14.63 14.62 17.24 17.27

2. TV regularization based TIE (TIE-TV): The method is similar to TIE-Tik
except that we make the reconstruction nonlinear by using a TV regularizer
(i.e., p = 1 in (5.28)). Similarly, the algorithm uses three images (without
spectral weighting) and is tested with both small and large defocus cases.

3. Composite TIE-Tik: We adapt the reconstruction scheme given in (5.29).
Composite TIE-Tik uses five images. It linearly combines high and low fre-
quency components (together with a Tikhonov regularization) of the phase
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maps obtained by using small and large defocus measurements, respectively.The
algorithm is compatible with the ones proposed in [123, 124, 125, 126].

As described in Section 5.4, all linear reconstructions are computed directly. The
nonlinear ones are solved iteratively using the proposed ADMM-based algorithm.
For each reconstruction algorithm, we tune the regularization parameter to achieve
the best-possible SNR performance using an oracle. The output SNRs given in
Tables 5.1 and 5.2 are averaged over 10 realizations for a reliable comparison.

For the simulated measurements, we see that the proposed method outperforms
the other algorithms in almost all of the cases. Especially for moderate and high
levels of noise, our framework significantly improves the reconstruction quality. A
visual inspection of the reconstructed phase maps (see Figure 5.8) demonstrates
that our method is able to reconstruct the high-frequency components accurately.
However, the reconstructions using intensity images taken at large defocus distances
are notably blurred. We also see that our algorithm produces much fewer artifacts
in the low-frequency regions. Reconstruction errors are more visible for the other
methods. As one gets to very low levels of noise, TIE-TV (for small defocus) and
composite TIE-Tik methods become competitive, and TIE-TV reconstruction can
yield the best results for certain configurations. This is explained by the decreased
presence of noise-induced errors (i.e., low-frequency artifacts). Next, we assess our
method in experimental settings to corroborate our simulations.

5.5.2 Real Data

We imaged5 paraformaldehyde-fixed and unstained HeLa cells at room temperature
(∼ 22◦C). Acquisitions were performed on a Zeiss Axio Observer Z1 microscope
(Carl Zeiss AG, Jena, Germany) equipped with a Leica HCX PL Fluotar 40×0.75
NA objective (Leica Microsystems GmbH, Wetzlar, Germany). The camera pixel
size is 6.5 µm and the illumination wavelength is 684.5 nm. The defocus images
were recorded with distances of ±2 µm and ±10 µm from the best focal position.

A ROI of size (512 × 512) pixels is chosen. Based on the previous results, we
compare the reconstruction performance of TIE-Tik, TIE-TV, composite TIE-Tik,
and the proposed method in a qualitative manner. We note that both TIE-Tik and

5We would like to thank Benjamin Rappaz from the Biomolecular Screening Facility, EPFL,
and Etienne Shaffer from the Microsystems Laboratory 1, EPFL, for their help in acquiring the
experimental data.
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Figure 5.8: Illustrative example of a phase-reconstruction simulation,
where the object field (at z = 0) has unit intensity and the phase is en-
coded by the CIL38921 image: (a) Simulated measurements (SNR is 20
dB), (b) TIE-Tik reconstruction using the measurements at 50 µm (SNR
is 4.01 dB), (c) TIE-Tik reconstruction using the measurements at 300 µm
(SNR is 8.67 dB), (d) composite TIE-Tik reconstruction (SNR is 9.72 dB),
(e) TIE-TV reconstruction using the measurements at 50 µm (SNR is 8.31
dB), (f) TIE-TV reconstruction using the measurements at 50 µm (SNR is
11.25 dB), and (g) proposed method (SNR is 13.20 dB).
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Table 5.2: Reconstruction performance of TIE-based phase retrieval al-
gorithms: Simulation results for the set of cell images. Numbers are given
in decibel unit.

∆z = 50 µm ∆z = 300 µm
Input

TIE-Tik TIE-TV TIE-Tik TIE-TV
Composite Proposed

SNR TIE-Tik method

C
IL

2
1
4

20 9.52 11.87 13.18 14.82 13.54 15.12
25 10.60 13.52 14.59 15.86 15.72 16.94
30 12.06 14.86 16.05 16.73 18.46 19.22
35 13.34 15.87 17.22 17.37 21.16 21.42
40 15.81 17.81 17.92 17.96 23.23 23.35
45 18.11 19.68 18.08 18.07 24.05 24.09
50 21.82 21.97 18.20 18.19 24.48 24.49

C
IL

3
8
9
2
1

20 3.85 8.30 8.49 11.15 9.43 12.63
25 5.30 10.89 10.64 12.11 13.13 15.55
30 7.10 13.41 11.51 12.48 15.41 17.88
35 9.75 15.51 12.46 12.80 18.52 19.77
40 13.06 17.54 12.87 12.95 20.65 21.11
45 15.34 18.86 12.96 12.99 21.35 21.53
50 18.33 20.51 13.02 13.02 21.81 21.84

C
IL

3
9
7
8
9

20 11.92 14.64 16.29 18.89 16.57 19.24
25 12.79 17.22 18.17 20.46 19.18 22.15
30 14.22 19.44 19.81 21.34 21.77 24.58
35 16.12 21.47 21.56 22.14 24.96 26.22
40 18.48 23.67 22.35 22.48 27.09 27.38
45 21.42 25.55 22.61 22.65 28.25 28.40
50 25.93 27.67 22.73 22.75 28.65 28.68

TIE-TV methods use the measurements recorded at ±2 µm. Since the ground-truth
phase is not available, the regularization parameters are manually tuned (by paying
attention to image contrast and physiological relevance) for all considered methods.
The algorithmic settings of Section 5.5.1 are kept the same for the reconstruction.

All TIE reconstructions improve the visibility of the cell compared to the in-
focus bright-field image. However, a closer examination reveals that the proposed
approach enhances the homogeneity of the background better than its competitors.
It allows one to better distinguish the cell membrane (see Figure 5.9). These aspects
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suggest that the proposed TIE-based approach is suitable for imaging phase-only
objects.

5.5.3 Validation

Our final step is to compare different phase imaging techniques. To have a ref-
erence, the HeLa cells are imaged with a digital holographic microscope (DHM)
that allows to directly obtain the complex object field. The hologram image is ac-
quired in off-axis configuration on a T-1001 microscope (LynceeTec SA, Lausanne,
Switzerland) using a Leica HI PLAN I 10×0.22 NA objective (Leica Microsystems
GmbH, Wetzlar, Germany). The DHM image is then reconstructed numerically us-
ing the algorithm in [114]. A stack of bright-field images is acquired using the same
objective. We then choose to apply our TIE formalism to differential interference
contrast (DIC) images. The applicability of TIE to DIC imaging has been proposed
in [120], where the authors consider DIC image formation together with thin phase-
only object assumption (see [120] for further details). Therefore, we also acquire
DIC images using an A-Plan 10×0.25 NA with a DIC analyser II. Both image stacks
include the infocus image as well as images recorded at ±2 µm and ±10 µm defocus
distances. Since the DHM measurements are performed on a different setup, we
have been unable to align the exact same ROI. Instead, we choose a common ROI
of size (256×256) in all images. We perform TIE reconstructions using our method
on the chosen ROI.

We remark that the bright-field image has very low contrast, as explained in
Section 5.2. Meanwhile, DIC microscopes increase the contrast (also the visibility)
of the cells; the final image can be roughly seen as the directional derivative of
the phase. Note that DHM records a hologram of the object (i.e., single image
acquisition) and produces the phase image by demodulating the hologram, which is
a linear operation. However, DHM requires dedicated hardware and is much costlier
compared than bright-field and DIC microscopes. By qualitatively looking at the
results given in Figure 5.10, we see that the two TIE reconstructions render the
morphology of the cells faithfully in accordance with the DHM image. We remark
that TIE with DIC images produces sharper results than its counterpart using
bright-field images. It is also seen that the TIE reconstructions have homogeneous
backgrounds. Hence, TIE can be considered as a cost-effective alternative to DHM.

As last illustration of the potential of our technique, we consider the problem of
cell segmentation (i.e., automatic delineation of the cell boundaries). We choose a
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(a)

Bright-field image (infocus)

(b) (c)

(d) (e)

TIE Reconstructions

Figure 5.9: TIE reconstruction results of different algorithms for experi-
mentally acquired bright-field images of a HeLa cell: (a) Infocus bright-field
image, (b) TIE-Tik reconstruction with defocus images acquired at ±2 µm,
(c) composite TIE-Tik reconstruction, (d) TIE-TV reconstruction with de-
focus images acquired at ±2 µm, and (e) the proposed phase reconstruction
method.
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larger ROI and use the bright-field images for phase reconstruction. We apply the
watershed segmentation algorithm.6 The segmentation results given in Figure 5.11
are seen to be satisfactory. By applying this basic segmentation algorithm to bright-
field images, it is not possible to achieve the same results as the bright-field images
lack contrast.

5.6 Summary

The purpose of this chapter has been to utilize our grasp of sparse image recon-
struction algorithms for the optical phase retrieval problem. The main effort has
concentrated on the development of the data fidelity term. Our problem-specific
design has been initiated by the implications of using TIE with measurements at
different defocus distances—in terms of the spatial frequencies of the reconstructed
phase map–and has led to the formulation of a weighted phase-reconstruction al-
gorithm. Combined with a TV regularizer, the proposed approach nonlinearly
combines two phase map that originate from a set of measurements at distinct de-
focus distances. We have illustrated that our method improves the performance
of phase reconstruction, as compared to previous algorithms. We have also shown
that the scheme is applicable to experimental data. An important aspect is that
obtained real data reconstructions are observed to be in line with the ones produced
by DHM which is a well-established dedicated phase microscope. In this regard,
our numerical phase reconstruction algorithm is appreciated a practical low-cost
substitute since it operates with a bright-field microscope.

6Available at http://bigwww.epfl.ch/sage/soft/watershed/
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(a)

DHM (detail)

DHM image

(b)

TIE reconstruction

Bright-field image (infocus)

(c)

TIE reconstruction

DIC image (infocus)

Figure 5.10: Validation of the proposed TIE reconstruction method on
the same sample: (a) Reference digital holographic microscope (DHM)
image of HeLa cells, (b) result of the TIE reconstruction using bright-
field images, and (c) result of the TIE reconstruction using differential
interference contrast (DIC) images.
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(b)
(b)

(a)

(b)

(c)

Figure 5.11: Delineation of HeLa cells: (a) Infocus bright-field image, (b)
phase image obtained by using the proposed TIE reconstruction, and (c)
result of watershed algorithm.



Chapter 6

Sparse Reconstruction of
Vector Fields

6.1 Overview

In this chapter,1 we consider regularized reconstruction of vector fields, extending
our previous considerations which have capitalized on scalar-valued images. Mo-
tivated by the TV regularization, we propose a class of regularization functionals
that penalize the singular values of the Jacobian of a given vector field. Our frame-
work generalizes some well-known variants of TV for vector-valued functions and
is invariant with respect to fundamental transformations such as translation, scal-
ing, and rotation. We put special emphasis on the use of a particular member of
our class of regularizers—called the nuclear total variation (TVN)—that imposes
sparsity on the singular values. Using Legendre-Fenchel duality arguments, we
derive an efficient algorithm to solve the consequent optimization problem. Our
numerical experiments on phantom data show that TVN improves the denoising
performance in comparison to existing vectorial extensions of total variation and
curl-divergence regularizations. Finally, we illustrate the practical relevance of the
proposed scheme by enhancing the streamline visualization of an experimentally-
acquired phase-contrast MRI recording.

1This chapter is based on our paper [136].

107
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6.2 Introduction

Regularized reconstruction of vector data is becoming a prominent subject of re-
search in image processing. This is partially due to the appearance of vector fields
as the appropriate mathematical representation of objects of interest (such as the
displacement field in motion estimation, or the deformation field for image regis-
tration). More importantly, vector quantities are also measured directly thanks
to recent advances in imaging technologies. Particularly, the development of new
modalities and techniques has centered around flow fields, putting emphasis on flow-
sensitive imaging. For instance, the optical measurement technique known as the
particle image velocimetry (PIV) provides instantaneous velocity vector measure-
ments in fluid flows [137]. Tomographic extensions of PIV are capable of measuring
three-dimensional velocity fields and are functional tools for analyzing organiza-
tion of complex turbulent flows [138]. For in-vivo medical imaging, phase-contrast
MRI (PC MRI) 2 is used for the acquisition of time-dependent blood flow with full
volumetric coverage [12]. PC MRI is non-invasive and can be set to measure the
blood flow in a specific vascular region of interest. This makes it highly suitable for
developing diagnostic strategies for cardiovascular diseases by assessing the gener-
ation of complex physiological flow phenomena [139]. The acquired data can also
be combined with computational fluid dynamics (CFD) simulations for evaluating
surgical outcomes and unfavorable shear stress along the aged or diseased central
arteries [140]. By virtue of the increasing presence of flow-sensitive imaging de-
vices (and their important applications in medical imaging), we shall specifically
be interested in flow field imaging.

As for all imaging systems, the quality of the measurements are degraded by
noise and other imperfections (these could be background phase contributions from
eddy-currents or velocity aliasing in case of PC MRI). This brings to the forefront
the need for efficient denoising algorithms that can remove these perturbations
efficiently. Further, these algorithms are useful for data visualization and quantita-
tive analysis (if further need be). In the development of algorithms for flow maps,
the fundamental importance of computational efficiency is far more pronounced
than the case of scalar image reconstruction problems. For example, if a three-
dimensional flow field regularization is considered, we have three components per
voxel, which requires one to store 3N3 values for a volume of size (N ×N ×N).

2In MRI community, different names such as 4D flow MRI and velocity-encoded MRI are used
for the same imaging system.
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Variational denoising algorithms have been investigated noticeably from two
main perspectives:

– Since the flow field measurements are typically related in a fundamental way
to some physical phenomenon, one approach has been to impose certain phys-
ical constraints on the solution. Following this reasoning, curl and divergence
operators are frequently used since they control the rotational and laminar
characteristics, respectively. In the context of quadratic regularization, these
regularization operators have been considered in combination with `2-norms
for a wide span of applications [141, 142, 143]. Similar to Tikhonov-type image
regularization methods, these methods are found to oversmooth the flow dis-
continuities occurring at interfaces between different fluids and object bound-
aries. Consistent with the recent trend in biomedical image processing—which
favors sparse regularization—researchers also combined these operators with
vector `1-norms [144]. The latter have been effectively used for regularizing
flows that exhibit discontinuities [145, 146]; and they are found to typically
overperform their quadratic counterparts in terms of denoising performance.

– In the second type of approach, the multi-channel data (for example, color
and hyperspectral images) is simply viewed as a vector-valued function. Fol-
lowing the success of TV regularization for scalar images, penalization of the
variations of every component of the vector field in a separable way has been
considered [147]. While this framework is easy to work with (in terms of
algorithm design), it is limited by the fact that it does not take into account
the dependencies (whether they are physical or not) that might exist among
the different components of the vector data. The pivotal design goal is then
set to effectively couple the information coming from different channels as the
discontinuities are preserved. Researchers have investigated alternative vec-
torial extensions of TV regularization that introduce a coupling between the
components. Among them, the most popular has been the so-called vecto-
rial total variation (VTV) [148]. More recently, the authors have introduced
another regularizer that extends TV by penalizing only the maximum varia-
tion of the field at each spatial location [149]. Other methods have used the
structure tensor as the regularization operator [150].
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6.2.1 Contributions

In the present chapter, we are interested in a reconstruction framework that is
well-suited for flow fields with discontinuities. Our guiding principle is to penalize
the vector-variations through the consideration of local geometry. To that end,
we propose a family of regularizers that penalizes the singular values of the Jaco-
bian operator. The generic numerical problem to solve in our setting is therefore
nonlinear. Thus, we identify the need for efficient algorithms.

The main contributions of this chapter are:

� The formulation of a generalized regularization scheme that is appropriate
for flow-field denoising. We show that the proposed class of regularizers are
invariant to translation, scaling and rotation, and we highlight connections
with some well-known vectorial TV extensions.

� The proposal of a particular regularizer (termed nuclear total variation) that
penalizes the nuclear norm of the Jacobian evaluated at every spatial location
of the flow.

� The derivation of an efficient optimization algorithm based on duality princi-
ples. This yields an algorithm that is sufficiently fast to process large volumes
of data.

� The experimental demostration that TVN achieves better denoising perfor-
mance than the existing vectorial TV and curl-divergence models. We further
apply the framework to a real PC MRI data of blood flow in the human aorta.

6.2.2 Outline

The chapter is organized as follows: In Section 6.3, we present the relevant math-
ematical framework for flow-field regularization and revisit the existing schemes.
Next in Section 6.4, we introduce a class of regularization functionals that involves
the Schatten p-norms of the Jacobian operator. After showing invariance proper-
ties, we establish connections between our framework and the previous approaches
on vectorial TV. Following this, we specify TVN regularization and explain its effect
on the reconstructed flow. We then provide a numerical algorithm that handles the
occurring optimization problem in Section 6.5. Finally, we perform experiments on
simulated and real data in Section 6.6.
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6.3 Flow-Field Regularization

We represent a flow field as a d-dimensional vector field with d components. Such
an object is denoted by the vector function f(x) = (f1(x), . . . , fd(x)) over Rd.

Similar to our developments in previous chapters, we consider the generic linear
observation model, where a vector field f : Rd → Rd is measured by a system (its
physical response is given by the linear operator H) to produce noisy vector-valued
measurements

y = Hf + n, (6.1)

where n represents the measurement noise. The reconstructed flow is obtained by
minimizing an energy so that the problem at hand takes the form of the optimization
problem

f? = arg min
f

D(f ; y) + τR(f). (6.2)

For the rest of this chapter, we consider the simplest measurement operator (that
is the idendity), corresponding to y = f + n. We specify a quadratic functional
for the fidelity term D and ultimately consider the generic regularized least-squares
problem:

f? = arg min
f

1
2‖y − f‖22 + τR(f). (6.3)

The general framework established above provides us with a convenient setting
for assessing the regularization functional R (whose contribution is weighted via
the regularization parameter τ > 0). Next, we review the existing regularization
schemes.

6.3.1 Curl- and Divergence-Based Methods

When the measurements of a flow field is related to some physical phenomenon,
it is preferable to formulate a reconstruction framework that controls the physical
properties of reconstructed flow. This can be achieved by separately imposing
constraints on curl and divergence of the solution. Fundamentally, the irrotational
and incompressible characteristics of fluid flows are governed by these operators.
For regularization purposes, recent applications concentrate on combining them
with L1-norms3 following the sparsity-promoting techniques [144]. This results in

3Vector L1-norms are defined as the scalar L1-norm of the magnitude of the vector field. We
refer the reader to [144] for further details.
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the regularization functional that is of the form

RCD(f) = τc

∫
Rd
|curl f(x)|dx+ τd

∫
Rd
|div f(x)|dx, (6.4)

where | · | denotes the absolute value of a scalar, or the magnitude of a vector, as
appropriate.

6.3.2 Gradient-Based Methods

We have emphasized many times in the thesis that TV regularization is a popular
choice for a wide range of imaging applications. The most favorable property of TV
is that it tends to preserve signal discontinuities. Let us remind that the classical
version of TV for scalar fields, f : Rd → R, is

TV (f) =

∫
Rd
‖∇f (x)‖2 dx. (6.5)

The commonality of all extensions of TV is that the definition for vector fields
should coincide with the scalar one (6.5) for d = 1. The simplest and most straight-
forward extension of TV involves the penalization of the total intensity variation
of every vector component in a separable manner. This leads to the following
definition of the so-called separable TV [147]:

TVS (f) =

d∑
i=1

∫
Rd
‖∇fi (x)‖2 dx. (6.6)

While (6.6) is easy to work with, it does not take into account the dependencies
(whether they are physical or not) that might exist among the different components
of the vector data. Alternative extensions that provide a coupling between the
components have also been studied. Among them, the most popular one is the
vectorial total variation (VTV) [148] which is defined as

VTV (f) =

∫
Rd

(
d∑
i=1

‖∇fi (x)‖22

)1/2

dx. (6.7)



6.4 Jacobian-Based Regularization 113

6.4 Jacobian-Based Regularization

After reviewing previous attempts, we now propose a class of regularization func-
tionals to solve the flow field denoising problem in (6.3). To establish the desired
connection with the standard TV functional, let us first note that the main compo-
nent of TV is the magnitude of the image gradient which essentially captures the
intensity variations that are later penalized. This basically brings the task of choos-
ing the appropriate regularization operator for the flow field case. The Jacobian
operator defined as

Jf = [∇f1 . . .∇fd]T ,
provides us with the natural extension of the gradient in regards to the following
proposition which specifies the Taylor’s theorem for vector-valued functions:

Proposition 5. Let x0 be a point in RN and f : RN → RN be differentiable at x0.
Then the Jf(x0) is the best linear approximation of near x0 in the sense that

f(x) = f(x0) + Jf(x0)(x− x0) + o(‖x− x0‖2)

for x close to x0.

For flow fields, the Jacobian evaluated at a spatial location x corresponds to
a matrix of size d × d that embodies all possible first-order derivatives of all field
components at that specific point. It hence carries the information encoded in
the divergence and curl of the field. More importantly, the information about the
strength of the flow field variations is encoded in the d singular values of Jf . To
see this, we remark that √

σ (JTJf) = σ (Jf) ,

where σ denotes the singular values. Note that the expression JTJ reduces to
the squared magnitude of the gradient (essentially the key element of TV) if f is
considered to be a scalar function. Accordingly, the directions of these variations
are encoded in the corresponding singular vectors. The crucial outcome is that
a vectorial extension of TV should penalize the singular values of the Jacobian.
Secondly, since the Jacobian is a matrix-valued operator, it is natural to work with
the matrix norms in the design of the regularizer. In line with these remarks, we
propose the generic regularizer of the form

TVp (f) =

∫
Rd
‖Jf (x)‖Sp dx, ∀p ≥ 1 (6.8)
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where ‖·‖Sp is the Schatten p-norm of a matrix.

Definition 6. Let A ∈ RN1×N2 be a matrix with the singular value decomposition

A = UΣVT,

where U ∈ RN1×N1 and V ∈ RN2×N2 are unitary matrices containing the singular
vectors of A, and Σ ∈ RN1×N2 with non-negative real numbers on the diagonal
consisting of the singular values of A. Then the Schatten p-norm of A is defined
as

‖A‖Sp =

min(N1,N2)∑
j=1

σj(A)p

 1
p

, (6.9)

where p ≥ 1 and σj(A) denotes the jth singular value of A corresponding to the
(j, j) entry of Σ.

By looking at Definition 6, we see that Schatten p-norms correspond to com-
puting the standard `p-norm of a vector that is composed of the singular values of
the matrix argument. One major advantage of (6.8) is that it is a convex function
of f since Schatten p-norms are convex [151].

It is noteworthy that if a scalar-valued function is considered in (6.8), the Jaco-
bian reduces to the gradient and the `p norm (for any p ≥ 1) of its singular value
is equal to the gradient magnitude. Therefore, all the regularizers of the form (6.8)
are valid vectorial TV extensions. Next, we show that the TVp regularizers satisfy
the following invariance properties, which are essential for any regularizer applied
on flow fields.

Proposition 6. The regularizer TVp, defined as in (6.8), is invariant under trans-
lation, scaling (up to a multiplicative factor), and rotation, where the rotation of a
flow field f by some orthogonal matrix ξ is given by f 7→ ξTf(ξ ·).

Proof. First, we observe that the Fourier transform of the Jacobian operator is

F{Jf}(ω) = f̂(ω)jωT,

where f̂(ω) = (f̂1(ω), . . . , f̂d(ω)) is the Fourier transform of f . For the scaling
invariance, we note that the scaling operator Sa : f 7→ f(·/a) commutes with the
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Jacobian (up to a multiplicative constant) as it holds that

F{J{Saf}}(ω) = |a|df̂(aω)jωT

= (1/a)
(
|a|df̂(aω)j(aω)T

)
= (1/a)F{Sa{Jf}}(ω).

Since the Schatten p-norms are 1-homogeneous functions, we obtain that

TVp(Saf) =
1

|a|

∫
Rd
‖{Jf}(x/a)‖Sp dx

= |a|d−1

∫
Rd
‖Jf(q)‖Sp dq

= |a|d−1 TVp(f),

where the second equality follows from a simple change of variables.
As for rotation by a matrix ξ, we have (Rξ is the d× d rotation matrix)

F{J{Rξf}}(ω) = ξf̂(ξω)jωT

= ξf̂(ξω)jωTξTξ

= ξf̂(ξω)j(ξω)Tξ

= F{Rξ{Jf}ξ}(ω).

Then, we write that

TVp(Rξf) =

∫
Rd
‖J{Rξf}(x)‖Sp dx

=

∫
Rd

∥∥ξT{Jf}(ξx)ξ
∥∥
Sp

dx

=

∫
Rd
‖Jf(ξx)‖Sp dx,

since the Schatten norms are unitarily invariant [151]. Now, applying a change of
variable q = ξx, with dq = |det ξ|dx = dx, we arrive at the desired result:

TVp(Rξf) = TVp(f)

Translation invariance is straight forward to show by using a change of variable.
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6.4.1 Connections with the Existing Methods

Having built the foundations of our regularizers, we now point out some interesting
connections with the existing versions of vectorial TV regularizers. Essentially, we
shall be investigating the most popular cases of the family in the sequel. That
being said, let us start our consideration by setting p = 2 in (6.8). In this case, one
operates with S2-norm which is also called the Frobenius norm.

Proposition 7. Let TVp defined as in (6.8). Then, for p = 2, we recover the
VTV [148] given in (6.7).

Proof. The proof is immediate. We write that

TV2 (f) =

∫
Rd
‖Jf (x)‖F dx

=

∫
Rd

 d∑
j=1

σj(Jf(x))2

1/2

dx

=

∫
Rd

 d∑
j=1

eig(JTJf(x))

1/2

dx

=

∫
Rd

trace
(
JTJf(x)

)1/2
dx

=

∫
Rd

 d∑
j=1

‖∇fj(x)‖22

1/2

dx

= VTV (f),

where ‖·‖F is the Frobenius norm.

As a second case, we consider p =∞ and use S∞-norm (also called the spectral
norm). We then obtain the so-called natural vectorial TV (TVJ) of [149].

Proposition 8. Let TVp defined as in (6.8). Then, for p = ∞, we recover the
TVJ defined as

TV∞ (f) =

∫
Rd
‖Jf (x)‖S dx = TVJ (f), (6.10)
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with ‖·‖S being the spectral norm.

Proof. The result is attained by definition. See Proposition 3.1 in [149].

6.4.2 Nuclear Total Variation

We see that the introduced TVp family provides key links with the already-known
methods. Based on our preceding progression, it is further possible to identify
another vectorial extension of TV by choosing p = 1.We call this regularization
functional the nuclear total variation (TVN); it is given by

TV1 =

∫
Rd
‖Jf (x)‖N dx = TVN (f), (6.11)

where ‖·‖N is the nuclear norm.
From definition (6.11), we observe that TVN exerts a coupling between the flow

field components by imposing an `1-penalty on the singular values of the Jacobian.
This leads to the deduction that TVN promotes flow field reconstructions with
sparse singular values for the Jacobian at each spatial location. To see why the
nuclear norm is expected to be a better choice than the other norms, we first need
to understand more the attributes enforced on the reconstructed flow. Let us first
state the following which are relevant to gain the desired understanding.

Definition 7. Let g be a scalar-valued function whose domain is convex. The
convex envelope of g (on its domain) is defined as the largest convex function genv

such that genv(x) ≤ g(x) for all x ∈ dom(g).

Theorem 5 (Convex envelop of rank [152]). Let g(A) = rank(A) and dom(g) =
{A ∈ RN1×N2 |‖A‖S ≤M}. Then the convex envelope of g on its domain is given
by the scaled-form of the nuclear norm that is genv(A) = 1

M ‖A‖N .

First of all, as a result of imposing sparsity on the singular values of the Jaco-
bian, we anticipate that the variation at the dominant orientation (this is expected
to be the flow itself) will be kept, whereas the small variations (they are expected
to be the noise) will be reduced. In other words, directional features at the domi-
nant orientation are preserved in the reconstructions. Secondly, we see that TVN
regularization favors flow field reconstructions where the Jacobian matrix at each
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location is of low rank as a result of Theorem 5. We note that the rank of the
Jacobian (i.e., the number of linearly independent columns) is directly related to
the gradient vector of each component since they form the columns of the Jaco-
bian matrix. TVN promotes solutions for which the gradient vectors of the flow
components are aligned, which also implies that directional behavior of the flow is
preserved. What is more important is that TVN preserves the discontinuities at
the flow boundaries since Jacobian matrix of low rank is also appropriately satisfied
at fluid interfaces. This behavior is illustrated in Figure 6.1.

The discussed properties of TVN make it convenient for applications in blood
flow imaging as we shall demonstrate in our numerical experiments. We note that
nuclear norm minimization is frequently used for rank minimization and matrix
completion problems on account of Theorem 5 [153]. Before, we proceed with the
derivation of the optimization algorithm, we would like to comment on the use of
TVN for multi-channel images.

TVN for Multi-Channel Images

Let us consider a two-dimensional image with two channels that is represented
by the vector function f(x) = (f1(x), f2(x)). Knowing that TVN encourages the
gradient vectors of each channel to be aligned (i.e., low rank Jacobian), we gain a
straightforward intuition on the implications of using such regularizer.

For illustrative purposes, we consider a spatial location that is located on an
edge in f1. In the present case, TVN regularization encourages ∇f2 to be parallel
to ∇f1. This means that it encourages an edge in f2 that is correlated with the
one in f1 in terms of the location. Also, this behavior is not strict as ∇f2 = 0
(i.e., f2 is smooth at the considered location) is also linearly dependent on ∇f1 (see
Figure 6.2). This qualifies TVN as suitable regularizer for multi-channel images
if common edge locations are desired. We remark that TVN can be derived as a
special case of the regularization family introduced in [150], which penalizes the
rooted eigenvalues of the structure tensor of an image. In the specific context
of multi-channel image restoration problems, we also note that TVN has been
independently proposed and investigated in [154].
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6.5 Reconstruction Algorithm

In the sequel, we consider the discrete version of TVN and describe a fast algorithm
for solving (6.3). Specifically, we obtain the denoised flow field as the minimizer of
the following strictly convex energy functional

f? = arg min
f

1
2 ‖y − f‖22 + τ ‖Jf‖1,N , (6.12)

where f has been vectorized and is of size Rk·d, with k denoting the cardinality of
the discrete index set (e.g. the number of voxels in 3-D). Further, we introduce

‖Jf‖1,N =

k∑
j=1

∥∥∥(Jf)j

∥∥∥
N

as a compact notation for the discrete TVN that employs the mixed `1-nuclear
norm and the discrete Jacobian J : Rk·d 7→ Rk×d×d , X . Invoking [150, Lemma
1] and considering Legendre-Fenchel duality [43, 39], we derive the following dual
definition for the discrete TVN:

TVN (f) = max
ξ∈X ,ξj∈Bd×dS

〈f , J∗ξ〉

= max
ξ∈X ,ξj∈Bd×dS

d∑
i=1

k∑
j=1

(fi)j (∇∗ξi)j (6.13)

where∇∗ and J∗ are the adjoints of the discrete gradient and Jacobian, respectively.
In (6.13), ξ = (ξ1, . . . , ξk) ∈ X is a dual variable with (ξi)j referring to the ith row

of the matrix ξj ∈ Rd×d, while Bd×dS =
{
A ∈ Rd×d : ‖A‖S ≤ 1

}
is the spectral

unit-norm ball.
Using the min-max theorem, we rewrite (6.12) in the equivalent form

max
ξ∈X ,ξj∈Bd×dS

min
f

1
2

(
‖f − u‖22 + ‖y‖22

)
− ‖u‖22 (6.14)

where u = (y − τJ∗ξ). Based on this development, the solution is derived in closed
form as f? = (y − τJ∗ξ?), where ξ? corresponds to the maximizer

ξ? = arg max
ξ∈X ,ξj∈Bd×dS

‖y‖22 − ‖y − τJ∗ξ‖
2
2 . (6.15)
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Algorithm 7: Proposed TVN denoising algorithm according to (6.12)

input : Noisy field y, regularization parameter τ > 0, and the projection
onto BSd×d projectionDualNormBall()

output: Denoised flow field f?

ψ1 ← 0, ξ0 ← 0, t1 ← 1, n← 1;
repeat
ξn ← projectionDualNormBall(ψn + (1/(12τ))J (y − τJ∗ψn));

tn+1 ← 1+
√

1+4t2n
2 ;

ψn+1 ← ξn +
(
tn−1
tn+1

)
(ξn − ξn−1);

n← n+ 1;
until stopping criteria
return (y − τJ∗ξn−1);

Since the function in (6.15) is smooth with well-defined gradient we compute ξ?

using an accelerated projected gradient ascent based on Nesterov’s method [47].
The details of the approach are given in Algorithm 1. We note that in Algorithm
1 the operation ΠS refers to the independent projection of each of the k matrices
onto the Bd×dS unit ball. To perform this operation, we rely on the result of [150,
Proposition 1] which provides a connection between matrix and vector projections.
For a matrix X with singular value decomposition SVD(X) = USVT, the pro-
jection is performed as ΠS (X) = XVS+S̃VT. Here, S+ is the pseudo-inverse of
S and S̃ is the diagonal matrix which contains the projected singular values of S
onto the `∞ unit-norm ball. This projection sets to one the singular values that
exceed this value while leaving the rest untouched. It is noteworthy that SVD can
be performed very efficiently for 3D flow fields.

6.6 Experiments

Based on the above developments, we now conduct experiments for simulated and
real data, where all visualizations are generated with ParaView (Kitware Inc.) [155].
In all the experiments, the flow fields are extended using periodic boundary condi-
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Table 6.1: Denoising performance of several regularization approaches:
Simulation results for the set of simulated flow fields considered in this
chapter. Numbers are given in decibel unit.

Reconstruction SNR
Input

CDR TVS VTV TVJ TVN
SNR

T
u
b
e

0 14.47 19.66 17.64 16.42 19.19
10 22.67 27.09 24.62 23.37 26.47
20 30.72 34.89 31.96 30.75 34.20
30 39.29 43.38 40.09 39.05 42.89

T
o
ru

s

0 13.49 17.59 16.25 14.63 18.07
10 20.37 25.30 23.63 22.24 26.08
20 29.17 33.66 31.78 30.48 34.63
30 38.28 42.34 40.40 39.42 43.60

G
ra

d
ie
n
t 0 15.19 19.51 19.64 18.43 20.77

10 23.24 26.82 27.72 26.81 28.39
20 31.86 35.30 36.54 35.77 36.80
30 41.07 44.40 45.73 45.03 45.89

B
lo
o
d

0 12.70 15.80 15.33 13.86 16.55
10 19.34 22.44 22.43 21.35 23.45
20 27.44 29.92 30.35 29.62 30.92
30 36.37 38.42 39.01 38.44 39.24

tions and consider regularization of volumetric (d = 3) flows.

6.6.1 Synthetic Data

We generate a dataset composed of four different three-dimensional phantom mod-
els (see Figure 6.3). The measurements are obtained by degrading the data with
different levels of additive white Gaussian noise. The denoising performance of our
TVN regularization is compared against the following methods:

1. Curl and divergence regularization (CDR): We use the regularization given
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in (6.4) that penalizes the `1-norms of the curl and the divergence (thus
rotational and incompressible features) of the field.

2. Separable TV regularization (TVS): This method refers to the regularizer
given in (6.6). It applies scalar TV regularization separately to each flow
component. Hence, it treats these components independently and does not
correlate them.

3. Vectorial TV regularization (VTV): We refer to the regularization given in (6.7).
We note that the method is recovered within our framework by setting p = 2
in (6.8). It introduces a coupling between the flow components unlike TVS .

4. Natural vectorial TV regularization (TVJ): We adopt the regularization given
in (6.10). Similar to VTV, the method is derived by choosing p =∞ in (6.8).
The method penalizes the sum of the maximum singular values of the Jacobian
over the whole set of voxels.

For all methods, we use the same optimization algorithm that combines the
duality arguments with Nesterov’s method [47]. Note that such algorithms have
been developed in [156] for CDR, in [49] for TVS , in [157] for VTV, and in [149]
for TVJ . In all cases, the stopping criterion is set to either reaching a relative
`2-normed difference of 10−4 between two successive estimates, or a maximum of
500 iterations. At each experiment, for all of the algorithms, the regularization
parameter is optimized for the best-possible SNR performance using an oracle.

By inspecting the results given in Table 6.1, we see that the TVN outperforms
CDR and the vectorial TV methods for most of the simulated fields considered
in the experiments. This demonstrates the ability of our regularization scheme to
preserve the discontinuities at the boundaries (see Figure 7.1). One surprising result
provided by the experiments is that the performance of TVS is highly competitive.
Even though, this model simply does not capture the vectorial nature of the flow
data, it achieves the best SNR performance for the Tube phantom. This is explained
by the fact that Tube is a separable phantom (superposition of 2D flow fields)
by construction. We also see that TVS is outperformed by TVN for the Torus
flow (which essentially encapsulates Tube with a circular flow). This observation
further supports that TVS provides better denoising results (compared to the other
algorithms) for Tube due to the particular structure of the underlying flow.
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6.6.2 Real Data

As a supplement to our in silico experiments, we considered a multidirectional
phase-contrast MRI dataset in the region between the proximal and thoracic aorta
of a 25-year-old healthy male volunteer. PC MRI data was acquired with a sagittal
oblique 3D slab covering the entire aorta, using a navigator-gated, ECG-gated
RF-spoiled gradient echo (GRE) sequence [158]. The dataset was acquired on
a 3T clinical MR scanner (MAGNETOM Trio, Siemens AG, Healthcare Sector,
Erlangen, Germany). The sequence was motion compensated and the following
imaging parameters were used: TR/TE 5.2/2.59; flip angle 15◦; velocity encoding
150 cm/sec; matrix 224×138×24; field of view 450 mm, and acquired voxel size 2.0
mm3.

To regularize the data, we assess for the time point of peak ascending aortic flow.
We use TVN with 250 iterations where we manually calibrate the regularization
parameter. Streamlines are generated for both pre- and post-regularization states
by using identical number of seed points, seed area and integration length.

A qualitative examination of Figure 6.5 shows that the amount of streamline
artifacts is decreased especially in the ventral side of the arch. Velocity field dis-
continuities are reduced with direct positive impact on the estimation of the first
order velocity derivatives that are required for the calculation of important flow
parameters such as vorticity and flow helicity [158, 159]. Descending-aorta velocity
field becomes less noisy and more coherent, similar to what is expected physiolog-
ically. Furthermore all the above improvements are achieved without affecting the
magnitude of the velocity field. Instantaneous ascending aortic flow for the initial
dataset is 415ml/s and is decreased only by 5 ml/s for the regularized dataset cor-
responding to a minute decrease of 1.2%. These aspects suggest that our method is
beneficial for the visualization of aortic hemodynamic phenomena without affecting
the magnitude of the field.

6.7 Discussion

In this chapter, our main goal has been to extend TV regularization to vector fields.
For this particular goal, we have considered the problem of flow field denoising and
have proposed a regularizer that penalizes the nuclear norm of the Jacobian of
the field. To illustrate the efficiency of our regularizer, we first conducted denois-
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ing experiments on different phantom data involving rapid transitions at the flow
boundaries. We observed that the proposed method is superior in terms of SNR
performance (up to 1.3 dB) than the curl-divergence regularizer and the existing
vectorial extensions of TV in general. We also used our reconstruction algorithm
for enhancing streamline visualizations of a real phase-contrast MRI recording.

As a result of our numerical experiments, we have seen that efficient algorithms
are designed by extending the principles of scalar image reconstruction presented
in the earlier chapters of the thesis. We have also seen that the simplest TV-
based vector field regularizer (namely, separable TV) can provide the best denoising
performance in certain cases. Consistent with our previous remarks in Chapter 4,
this observation emphasizes the point that the regularization functional needs to
be chosen in accordance with the features of the underlying vector field. In simpler
words, prior to any attempt for variational reconstruction of such data (especially
in practical configurations), it is necessary to evaluate whether the characteristics
encouraged by the regularizer match the structure of the data, which is to be
processed, or not.

Our design efforts in this chapter have been driven by deterministic principles.
Similar to case of TV regularization, exact continuous-domain stochastic justifica-
tion of TVN is not straightforward. The reassuring news is that such an inter-
pretation is possible in the case of a quadratic regularization (as in the Tikhonov
case). Based on our explanations in Section 4.5 and Proposition 7, we establish the
following relation:

TV2
2 (f) =

∫
Rd
‖Jf (x)‖2F dx =

d∑
j=1

∫
Rd
‖∇fj(x)‖22dx

=

d∑
j=1

‖∇fj‖22 =

d∑
j=1

‖(−∆)1/2fj‖22,

We see that (once again under the decoupling simplification) the quadratic mem-
ber of the family TV2

2 computes the MAP/MMSE estimation of a self-similar vector
process whose components are independent. For both of these components, the un-
derlying continuous-domain innovation is Gaussian.
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Figure 6.1: Illustrative examples of two-dimensional flow fields where the
rank of the Jacobian is less than 2. Note that the rank of the Jacobian of
the field is 1 at the flow boundaries indicated by dashed lines.
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�f1

�f2

�f2

�f1

Figure 6.2: Illustrative examples of three configurations of ∇f2 being
linearly dependent on the ∇f1. We note that in the last case ∇f2 = 0.
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Min
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Figure 6.3: The set of cell images representing the ground-truth spatial
phase maps used in the simulations. From top-left to bottom-right, they
are referred to as, 1) Blood flow, 2) Gradient, 3) Torus, and 4) Tube.
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Min
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Figure 6.4: Denoising of the simulated blood flow: noisy flow (left, SNR=
0 dB), and the denoised flow (right, SNR= 16.55 dB) by using the proposed
method.
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Figure 6.5: Enhancement of streamline visualizations of a real phase-
contrast MRI recording: Original aortic blood flow data in the aortic arch
(top) and the data after processing with the proposed method (bottom).
See text for further details of the experiment.
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Chapter 7

Non-Iterative Model-Based
Sparse Flow Reconstruction

7.1 Overview

In this chapter,1 we focus on the regularization of incompressible flows that have
zero divergence. In particular, we propose an efficient construction of wavelet frames
in any number of dimensions that are divergence-free. The key mathematical con-
cept of the proposed method is to apply the Leray projector, which is scale-invariant,
to a standard wavelet frame. We prove that the projected wavelets retain the basic
characteristics (decay rate and order of vanishing moments) of the initial wavelets.
Since the Leray projector is also shift-invariant, it is defined as a Fourier multiplier,
and our construction is implemented efficiently using the fast Fourier transform.
Based on these developments, we then formulate a wavelet-based denoising algo-
rithm that is solved directly. In order to illustrate the practicality of the method,
we present vector field denoising experiments, where our simulations show superior
performance compared to the currently used divergence-free wavelet designs.

1This chapter is based on our paper [160].
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7.2 Introduction

As we have mentioned in Chapter 6, phase-contract MRI (PC MRI) provides three-
dimensional and time-resolved blood flow measurements [12], yet often suffers from
noise-induced artifacts. The artifacts are more pronounced when the spatial Fourier
space is heavily sub-sampled to increase the time resolution. To reduce these inac-
curacies, one designs denoising methods based on the physical principles governing
the underlying flow, which are not directly imposed in the raw acquisitions. In this
type of approaches, an often exploited property is the physical prior knowledge of
the blood flow being incompressible in large arteries [146].

The mass conservation principle implies that the velocity fields representing in-
compressible fluid flows have zero divergence. Therefore, these physical systems
are often represented using divergence-free wavelets. Not only are they useful for
the multi-scale analysis of such phenomena, but also fundamentally prominent for
studying the incompressible solutions of the Navier-Stokes equations [161]. Accord-
ingly, they are used for the numerical simulation of incompressible flows [162].

The relevance of divergence-free wavelets for PC MRI imaging has been con-
sidered in [163]. Modeling the blood flow incompressible, noise-like errors are re-
duced by identifying (and eventually suppressing) non-divergence-free components.
Similar ideas have recently been applied to volumetric particle image velocime-
try (vPIV), which is also capable of measuring three-dimensional velocity fields.
In vPIV imaging of incompressible flow, the effects of the measurement noise is
removed by eliminating spurious divergence through a redundant atomic signal
decomposition [164].

The design of divergence-free wavelets was considered first by Battle and Feder-
bush [165] and Lemarié-Rieusset [166]. The development in [165] generated orthog-
onal wavelets (in the 2- and 3-dimensional cases) with exponential decay. On the
other hand, the construction in [166] resulted in compactly-supported biorthog-
onal wavelets. Their construction is based on two pairs of wavelets and scaling
functions satisfying certain integration and differentiation relations. An efficient
(tensor-product based) implementation of these wavelets was developed by Deriaz
and Perrier [167]. Stevenson [168] and Kadri-Harouna and Perrier [169] have ex-
tended these constructions to domains with free-slip boundary conditions. Other
basis constructions have also been considered [170].
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7.2.1 Contributions

All of the previous schemes are rather technical as they are concerned with divergence-
free wavelet basis functions. In this chapter, we loosen this constraint by allowing
redundancy.

Based on this relaxation, our contributions are listed as follows:

� We propose a simple yet elegant approach for constructing divergence-free
wavelet frames. Our design involves projecting a wavelet frame onto the
space of zero divergence vector-valued functions.

� We prove that the decay rate and order of vanishing moments of the initial
wavelets are inherited by their divergence-free counterparts.

� We employ our framework for the vector field denoising problem both in the
two- and three-dimensional settings. We show that our method achieves bet-
ter denoising performance than its existing counterpart that is bi-orthogonal
by design.

In the thesis, we shall concentrate on divergence-free tight wavelet frames since
they are advantageous for applications. However our method applies for construct-
ing divergence-free wavelet frames in a more general sense.

7.2.2 Outline

In the remainder of the chapter, we first provide the mathematical notions that
are necessary (especially the Leray projection operator which is the key element
in the construction) in Section 7.3. In Section 7.4, we explain the construction of
divergence-free wavelet frames. This is followed by our proof regarding the decay
rates of the designed wavelets. After providing the implementation details, we
consider wavelet-based sparse denoising of incompressible vector fields and provide
simulation results in Section 7.6.
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7.3 Mathematical Framework

7.3.1 Basic Definitions

We denote the space of square integrable vector fields (or vector-valued func-

tions) on Rd by
(
L2(Rd)

)d
. A vector field f ∈

(
L2(Rd)

)d
is represented as f =

(f1 f2 . . . fd)
T, where each component is a function in L2(Rd). The inner product

is defined as follows:

〈f , g〉 =

d∑
n=1

〈fn, gn〉

=

d∑
n=1

∫
Rd
fn(x)gn(x)dx. (7.1)

The Fourier transform of a vector field is the component-wise Fourier transform

F {f} (ω) = f̂(ω)

=
(
f̂1(ω) f̂2(ω) . . . f̂d(ω)

)T

, (7.2)

where

f̂n(ω) =

∫
Rd
fn(x)e−2πjx·ωdx. (7.3)

The divergence of f ∈
(
L2(Rd)

)d
is given by

div f = ∇ · f

=

d∑
n=1

∂fn
∂xn

=

(
∂

∂x1

∂

∂x2
. . .

∂

∂xd

)
(f1 f2 . . . fd)

T
. (7.4)

We denote the collection of divergence-free, square-integrable vector fields as

H(Rd) =
{
f ∈

(
L2(Rd)

)d
: div f ∈ L2(Rd),div f = 0

}
. (7.5)
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7.3.2 The Leray Projector

After setting up the basic mathematical notions, we now present the central element

of our design that is the Leray projector. This operator P :
(
L2(Rd)

)d → (
L2(Rd)

)d
is the unique orthogonal projector that maps a vector field to its divergence-free
version [171]. It is defined in the Fourier domain as

F {Pf} (ω) = (I− P(ω))f̂(ω), (7.6)

where I is the d× d identity matrix and P is the d× d matrix

P(ω) = |ω|−2(ω1 ω2 . . . ωd)
T(ω1 ω2 . . . ωd). (7.7)

Proposition 9. The Leray projector P is self-adjoint and is invariant to translation
and scaling in the sense that

P{f(·/a− b)}(x) = P{f}(x/a− b),

for any f ∈
(
L2(Rd)

)d
, a ∈ R+, and b ∈ Rd.

The outcome of Proposition 9 is crucial as it implies that the Leray projec-
tor maps a wavelet to another wavelet. In the sequel, we shall use this for our
construction of divergence-free wavelet frames.

7.4 Divergence-Free Wavelets

The construction of a band-limited mother wavelet φ for a tight wavelet frame{
2jd/2φ

(
2jx− k

)
: j ∈ Z,k ∈ Zd

}
(7.8)

of L2(Rd) is straightforward, cf. Theorem 12.2.1 of [172]. Recall that a tight wavelet
frame satisfies an energy preservation relationship

‖f‖2L2(Rd) =
∑

j∈Z,k∈Zd

∣∣∣〈f, 2jd/2φ (2j · −k)〉∣∣∣2 , (7.9)
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and it is dual to itself

f(x) =
∑

j∈Z,k∈Zd

〈
f, 2jd/2φ

(
2j · −k

)〉
2jd/2φ

(
2jx− k

)
. (7.10)

From a scalar-valued frame, we can easily construct band-limited tight frames of(
L2(Rd)

)d
. The vector-valued frames are obtained as follows. For n ∈ N≤d, let en

denote the nth unit vector in Rd.

Proposition 10. The collection{
ψj,k,n := 2jd/2φ

(
2j · −k

)
en : j ∈ Z,k ∈ Zd, n ∈ N≤d

}
(7.11)

is a vector-valued tight frame of
(
L2(Rd)

)d
.

The next step is to derive a divergence-free tight frame by applying the Leray
projector.

Proposition 11. The collection{
Pψj,k,n : j ∈ Z,k ∈ Zd, n ∈ N≤d

}
(7.12)

is a tight frame of H(Rd). In particular,

f(x) =
∑

j∈Z,k∈Zd,n∈N≤d

〈f ,Pψj,k,n〉 Pψj,k,n. (7.13)

Proof. Let f ∈ H(Rd). Since the Leray projector is self-adjoint, we have

‖f‖2H(Rd) = ‖f‖2(L2(Rd))d

= ‖Pf‖2(L2(Rd))d

=
∑

j∈Z,k∈Zd,n∈N≤d

|〈Pf ,ψj,k,n〉|2

=
∑

j∈Z,k∈Zd,n∈N≤d

|〈f ,Pψj,k,n〉|2 . (7.14)
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7.4.1 Decay estimates

An important property of our construction is that we preserve the advantageous
properties of the initial wavelet φ. Both vanishing moments and decay rates remain
unchanged.

Theorem 6. Let φ be a differentiable function with vanishing moments of order
N ≥ 1 such that φ and its derivatives satisfy the decay estimates

1. |φ(x)| ≤ C(1 + |x|)−d−N+ε

2. |Dαφ(x)| ≤ C(1 + |x|)−d−N−1+ε, |α| = 1,

for some C > 0 and 0 ≤ ε < 1. Then the components of the divergence-free wavelets
Pψ0,0,n have the same number of vanishing moments and similar decay to φ, i.e.,
for n = 1, . . . , d

(en · Pψ0,0,n) (x) ≤ C(1 + |x|)−d−N+ε′ (7.15)

for some 0 ≤ ε′ < 1.

Proof. This result follows from the analysis of singular-integral operators that was
presented in [173]. As each component is similar, we only consider n = 1. In the
Fourier domain,

F {Pψ0,0,1} (ω) = (I− P(ω))e1φ̂(ω)

= −φ̂(ω) |ω|−2
d∑

n=1

ω1ωn. (7.16)

Since
∣∣∣|ω|−2∑d

n=1 ω1ωn

∣∣∣ ≤ 1, the vanishing moments are preserved. Furthermore,∑d
n=1 ω1ωn is a homogeneous harmonic polynomial of degree 2, so we can decom-

pose the multiplier in the spherical harmonics of degree 2 {Y2,m}dm=1 as

|ω|−2
d∑

n=1

ω1ωn =

d∑
m=1

cmY2,m

(
ω

|ω|

)
(7.17)

for some coefficients cm. The decay estimates now follow from [174, Theorem
3.2].
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7.4.2 Wavelet Implementation Details

The particular wavelet φ that we use for implementation is a Meyer-type mother
wavelet. It is defined in the Fourier domain by a radial profile function h, i.e.,
φ̂(ω) = h(|ω|), where

h(r) =


cos (2πqm (r)), 1

8 < r ≤ 1
4

sin
(
2πqm

(
r
2

))
, 1

4 < r ≤ 1
2

0, otherwise

(7.18)

and qm is a degree 2m + 1 polynomial satisfying the following: qm(1/8) = 0,

qm(1/4) = 0, and q
(j)
m (1/8) = q

(j)
m (1/4) = 0 for j = 1, . . . ,m, cf. [175]. In our

experiments, we set the parameter m = 2. Our divergence-free wavelets are con-
structed as described above. We generate the scalar-valued tight frame associated
with φ; extend it to a vector-valued frame; and finally, apply the Leray projector to
each frame element. As for the implementation of our frame, we follow the pyramid
construction of [76]. Our method is efficient as it has a complexity of O(N3 log N)
with N3 being the number of voxels.

7.5 Sparse Vector Field Regularization

7.5.1 Variational formulation

We now consider the problem of restoring incompressible fields from noisy mea-
surements. Our goal is to denoise a discrete vector field denoted by f from the
observation

y = f + n,

where n is assumed to be additive white Gaussian noise (AWGN). Using a wavelet
tight frame, the unknown field is expressed as f = WTw, where W expands the
field in the divergence-free frame. Based on the developments in the thesis, we
formulate a sparsity-driven denoising algorithm using our wavelet construction. To
that end, we consider the following optimization problem:
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f? = WT arg min
w

{
1

2
‖w̃ −w‖22 + τ‖w‖1

}
︸ ︷︷ ︸

w?

, (7.19)

where w̃ denotes the wavelet coefficients of the noisy field y and the equality is
obtained since the construction is tight. Note that (7.19) is separable and the
solution is provided by the proximal mapping of the `1-norm, which is a soft-
thresholding function. Thus, we have

w? = ητ (w̃), (7.20)

where ητ (·) (τ > 0 being the threshold value) represents the soft-thresholding that is
applied componentwise [56]. The denoised vector field is then given by f? = WTw̃.

7.6 Numerical Results

For our experiments, we generate two different band-limited vector field phantoms
that have zero divergence (see Figures 7.4 and 7.5). Our 2-dimensional model
(called Circle) is of size 1282 × 2, whereas the volumetric one (called Torus) is of
size 643 × 3. The noisy measurements are obtained by degrading the data with
AWGN to achieve various levels of signal-to-noise ratio (SNR). We measure the
denoising performance of a given denoising method in terms of ∆SNR, which simply
denotes the improvement provided. Also, for each wavelet-based method, the soft-
thresholding operator is applied only to the wavelet (or detail) coefficients. We note
that all visualizations are rendered with ParaView (Kitware Inc.) [155].

7.6.1 Scale-Adapted Thresholding

First, we investigate the effect of suitably modifying the threshold value for multi-
scale decompositions. We use our the divergence-free frame Pψj,k,n with 3-scale
decomposition for denoising the Circle phantom. To make the thresholding scale-
adapted, we compute appropriate multiplicative factors by expanding a white Gaus-
sian noise (with a known variance) and measuring the average signal power at each
scale. We compare this strategy to simply applying the same threshold value to
all scales. By looking at Figure 7.2, we see that the scale-adapted thresholding
significantly improves the denoising performance of our method.
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7.6.2 Comparison with the Bi-Orthogonal Design

In the second part of our experiments, we compare our method against the bi-
orthogonal divergence-free wavelets of [167].2 Since our method is redundant (re-
dundancy factor 3), we also include the cycle-spun version of the bi-orthogonal
divergence-free wavelets (redundancy factor 8). As a baseline method, Leray projec-
tion, which is implemented as a Fourier domain filtering using (7.6), is incorporated
in the comparisons.

The denoising is done as follows. As a pre-processing step, we apply a low-pass
filter to the initial noisy data. Recall that our phantoms are band-limited, and the
pre-filtering is used for all of the algorithms in question to make the comparison
fair. For wavelet methods, 3-scale signal decomposition is performed, scale-adapted
thresholding is used, and the threshold values are optimized for the best-possible
SNR performance using an oracle.

By inspecting the results given in Figure 7.3, we see that the proposed divergence-
free frame outperforms the other methods for the simulated field considered in the
experiment. Since the construction given in [167] is bi-orthogonal, the wavelet trans-
form does not preserve energy. In other words, the minimization of the `2-normed
error in the wavelet domain does not imply the minimization of the `2-normed er-
ror in the signal domain. The noise statistics also change in the transform domain.
However, since our reconstruction is tight, the energy is preserved, and thus the
said drawback of bi-orthogonal methods is not observed. This shows the effective-
ness of our approach for denoising incompressible vector fields (see Figure 7.5 for
visual inspection).

7.7 Summary

We proposed a construction of divergence-free wavelet frames. We based our ap-
proach on the observation that applying the Leray projector P to a standard frame
produces a divergence-free version. Furthermore, we used the singular-integral in-
terpretation of P to show that the derived frame maintains the desirable attributes
(decay rate and order of vanishing moments) of the original wavelets.

Based on a particular collection of wavelet frames of L2(Rd), we proposed
divergence-free frames of (L2(Rd))d. The effectiveness of the two- and three-

2The software is available at http://www.eecs.berkeley.edu/∼mlustig/Software.html.
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dimensional variants was illustrated on generated band-limited phantoms. These
experiments hint at the potential of our wavelets for denoising impressible flow
data, which is modeled as divergence-free.
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Figure 7.1: Two-dimensional divergence-free wavelet frame. Vector plot
representations of ψ1,0,1 (top-left) and its Leray projection Pψ1,0,1 (top-
right) are given. Similarly, ψ1,0,2 (bottom-left) and its Leray projection
Pψ1,0,2 (bottom-right) are also illustrated. Note that the thickness of the
vectors encode the magnitude.
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Figure 7.2: The effect of adapting the threshold parameter with respect
to the decomposition scales. The denoising simulations are performed for
Circle phantom. See text for further details.
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Figure 7.3: Comparison of the denoising performance of different meth-
ods. Simulations are performed for Torus phantom.
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(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Figure 7.4: Illustration of the denoising results. Original Circle phantom
is shown in (a). Noisy vector field (provided in (b) and its SNR value is 0
dB) is reconstructed by using our divergence-free wavelet frame. The SNR
of the reconstructed field is 14.94 dB for (c).
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Figure 7.5: Illustration of the denoising results. Original Torus phantom
is shown in (a). Noisy vector field (provided in (b) and its SNR value is 0
dB) is reconstructed by using our divergence-free wavelet frame. The SNR
of the reconstructed field is 14.08 dB for (c).
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Chapter 8

Conclusion

In the thesis, we have presented a class of novel and competitive methods to
solve linear inverse problems. We have demonstrated the practical aspect of these
ideas in regards to biomedical imaging. In the remainder of the chapter, we first
recapitulate our main contributions and results. This is then followed by an outline
of potential directions for future research.

8.1 Summary of Results

Stochastic justification of sparsity-promoting regularizations: We provided
a consolidating statistical interpretation of the regularized solutions of inverse prob-
lems. In doing so, we combined a proper discretization method and a continuous-
domain stochastic signal model. The crucial theoretical consequence of our frame-
work is that the class of admissible prior distributions (for the discrete representa-
tion of the underlying signal signal) is confined to infinitely divisible distributions.
Remarkably, the MAP estimators based on the proposed formalism justifies the use
of both the classical Tikhonov-type methods and the sparsity-promoting regular-
izations that are currently of use.

In practical terms, we studied the problems of deconvolution, MR image re-
construction from partial Fourier coefficients, and image reconstruction from X-ray

147
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tomograms. We compared the reconstruction performance of regularization mod-
els of increasing sparsity. We emphasized the particular observation that sparsity-
promoting algorithms are powerful tools for solving biomedical image reconstruction
problems.

A novel phase retrieval algorithm for imaging unstained cells: We
presented a practical phase retrieval algorithm for imaging label-free and thin bio-
logical samples by using a standard bright-field microscope. The model uses a focal
stack of intensity images to have an approximation of the intensity variation of the
infocus optical field along the axial direction. The infocus spatial phase is then
obtained by relying on the transport-of-intensity equation (TIE). Our fundamental
contribution is a sparsity-based reconstruction algorithm that nonlinearly combines
different ranges of spatial frequencies depending on the defocus value of the inten-
sity measurements. We showed that the proposed method outperforms commonly
used TIE-based phase reconstruction algorithms in both simulated and real data
configurations. Further, we compared the obtained phase maps with the ones ac-
quired by using a digital holographic microscope (DHM). The latter confirms the
validity of the proposed phase reconstruction technique.

Sparsity-based reconstruction of vector fields: We developed efficient
regularization schemes for vector fields. Particularly, we considered the problem
of flow field denoising and have proposed a regularizer that penalizes the nuclear
norm of the Jacobian of the field. Our simulations illustrate that our regularizer is
significantly superior (in terms of SNR performance) than the curl- and divergence-
based regularizers as well as the well-known vectorial extensions of TV. We also
used our reconstruction algorithm to enhance streamline visualizations of a real 4D
flow MRI recording.

We also provided an efficient construction of divergence-free tight frames of
(L2(Rd))d. Based on our design, we developed a wavelet-based denoising scheme
that is suitable for incompressible flow data, which is modeled as divergence-free.
The effectiveness of the method over its bi-orthogonal variant is illustrated in two-
and three-dimensional simulations.
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8.2 Outlook

New regularization models for image reconstruction: The statistical anal-
ysis of natural images is a subject of research in image processing. In this per-
spective, it is empirically observed that natural images are compressible in wavelet
bases [6] and tend to exhibit fractal properties [176]. Fageot et al. [72] have used
the innovation modeling approach to investigate a general class of (finite-variance)
self-similar and sparse random processes. Further, they have shown that the coarse-
scale wavelet coefficients of these processes are asymptotically Gaussian, provided
the wavelet has enough vanishing moments. The theoretical outcome of the model
can thus be investigated for potentially improving the performance of wavelet-based
image reconstruction schemes. To that end, we can modify the shrinkage functions
(appearing in ADMM-based algorithms) that would take the predicted Gaussianity
property into account.

Three-Dimensional Phase Microscopy: Phase images are of great interest in
biology. In particular, quantitative phase measurements provide the computational
means to calculate the spatial distributions of the refractive index of a cell, which
are essential in morphology studies [109]. Therefore, the need for a technique that
allows one to obtain the refractive index map in three dimensions is emphasized. To
provide a simple and robust solution, one can try to extend the TIE formalism to
a volumetric setting. The first stage of such an extension is to properly formulate
the phase shifts introduced by the thick sample on the incident light field. An
encouraging step towards this direction has already been taken in [177], where the
authors discuss a suitable model under Born approximation. The latter can be used
as the forward model in the context of a regularization approach.

Spatio-Temporal Flow Reconstruction: As mentioned in the thesis, PC MRI
provides us with the time-resolved blood flow measurements with volumetric cov-
erage. This necessitates the formulation of an appropriate spatio-temporal regular-
ization method for denoising PC MRI data. Therefore, the practical importance
of the proposed TVN-based framework can be further improved by adapting it to
time-lapse flow imaging. In the development of the temporal regularization, we can
be guided by [178], where it is explained that the flow velocity waveforms in the as-
cending and descending aorta are varying smoothly through the cardiac cycle. More
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importantly, all ideas developed for the denoising problem can and should be car-
ried over to the general problem of PC MRI data reconstruction from undersampled
Fourier coefficients. In such attempts, we can utilize TVN (and/or divergence-free
wavelets) with our generic ADMM-based image reconstruction algorithm.
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Lévy processes,” IEEE Transactions on Signal Processing, vol. 61, no. 1, pp.
137–147, January 2013.

[59] E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam com-
puted tomography by constrained, total-variation minimization,” Physics in
Medicine and Biology, vol. 53, no. 17, pp. 47–77, August 2008.

[60] J. F. Claerbout and F. Muir, “Robust modeling with erratic data,” Geo-
physics, vol. 38, no. 5, pp. 826–844, October 1973.



BIBLIOGRAPHY 157

[61] H. L. Taylor, S. C. Banks, and J. F. McCoy, “Deconvolution with the `1
norm,” Geophysics, vol. 44, no. 1, pp. 39–52, January 1979.

[62] M. Zibulevsky and M. Elad, “L1-L2 optimization in signal and image pro-
cessing,” IEEE Signal Processing Magazine, vol. 27, no. 3, pp. 76–88, May
2010.

[63] H. Choi and R. Baraniuk, “Wavelet statistical models and Besov spaces,”
in Proceedings of the SPIE Conference on Wavelet Applications in Signal
Processing, Denver CO, USA, July 18, 1999, vol. 3813, pp. 489–501.

[64] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for
sparse reconstruction: Application to compressed sensing and other inverse
problems,” IEEE Journal of Selected Topics in Signal Processing, vol. 1, no.
4, pp. 586–597, December 2007.

[65] D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-Laplacian
priors,” in Proceedings of the 23rd Annual Conference on Neural Information
Processing Systems (NIPS’09), Vancouver BC, Canada, December 7-12, 2009,
pp. 1033–1041.

[66] M. Unser, P. D. Tafti, and Q. Sun, “A unified formulation of Gaussian
versus sparse stochastic processes—Part I: Continuous-domain theory,” IEEE
Transactions on Information Theory, vol. 60, no. 3, pp. 1945–1962, March
2014.

[67] M Unser, “Sampling—50 Years after Shannon,” Proceedings of the IEEE,
vol. 88, no. 4, pp. 569–587, April 2000.

[68] A. Papoulis, Probability, Random Variables, and Stochastic Processes,
McGraw-Hill, 1991.

[69] Q. Sun and M. Unser, “Left-inverses of fractional Laplacian and sparse
stochastic processes,” Advances in Computational Mathematics, vol. 36, no.
3, pp. 399–441, April 2012.

[70] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman, 1983.

[71] J. Huang, Statistics of Natural Images and Models, Ph.D. thesis, Brown
Univesity, May 2000.



158 BIBLIOGRAPHY

[72] J. Fageot, E. Bostan, and M. Unser, “Wavelet statistics of sparse and self-
similar images,” SIAM Journal on Imaging Sciences, vol. 8, no. 4, pp. 2951–
2975, 2015.

[73] I. Gelfand and N. Y. Vilenkin, Generalized Functions Vol. 4. Applications of
Harmonic Analysis, Academic Press, 1964.
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