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Abstract—Because more output data must be created than
is available from the input, magnification is an ill-posed prob-
lem. Traditional magnification relies on resampling an interpo-
lation model at the appropriate rate; unfortunately, this simple
solution is blind to the presence of the analog filter that was im-
plicitly present when the samples of the function to be magnified
were acquired. Consistent resampling has been introduced to
take this into account, but it turns out that this solution is still
under-constrained. In this paper, we propose regularization as
a way to devise a deterministic magnification method that fully
satisfies consistency constraints in the absence of noise, and at
the same time that produces an output that best fulfills a wide
class of criteria for regularity. Contrarily to many other meth-
ods, ours has been designed without ever leaving the continuous
domain. We conduct experiments that show the benefit of our
approach.

Index Terms—Generalized sampling, Consistency constraint,
Projection operator, Ill-posed problem.

1. INTRODUCTION

The capacity to magnify digital images is often desirable, for exam-
ple in the context of medical imaging or forensics. The challenging
issue is the accuracy of the details at high magnification, which is
especially important in the examples mentioned. All the available
information from the original image has to be retained in its magni-
fied version; moreover, the additional pixels introduced by the mag-
nification process must remain as compatible as possible with the
provided data.

Interpolation-based magnification methods are popular, where
the output image g with p dimensions corresponds to the input image
f magnified by an integer factorM . By hypothesis, the input image
belongs to the space spanned by the integer translates of an ana-
log generating (or synthesis) function ϕ, or, more precisely, so that
∀x ∈ R

p : f(x) =
P

k∈Zp w[k] ϕ(x − k). The sequence of coef-
ficients w that are used as weights for the shifted synthesis functions
ϕ is obtained by a discrete convolution between the sampled image
values f [k] at the original resolution, and a uniquely defined digi-
tal filter q0, the latter being the identity for synthesis functions that
satisfy ϕ[k] = δ[k], and a less-trivial filter otherwise [1]. Then, we
simply have that ∀x ∈ R

p : g(x) = f(x/M). Since the synthesis
function ϕ is continuously defined, so is g, and this method allows
for straightforward operations on the magnified image that include
rotation, sub-pixel translation, gradient computation, and more. In
practice, unfortunately, the samples must be acquired with the aid
of some device with impulse response ϕ0, which is discounted by
the hypothesis that f ∈ span{ϕ}. Moreover, the prefilter (or anal-
ysis function ϕ0) exhibits non-idealities, which results in blurred,
aliased, or even distorted magnified images.

Recently, a better method has been proposed in [2, 3] to mag-
nify images while retaining the notion of a functional space. It
uses the generalized-sampling theory, which takes simultaneously
into account the analysis and synthesis functions ϕ0 and ϕ, respec-
tively. It takes advantage of a consistency constraint that states that
the magnified signal f̃ , after having been de-magnified in the con-
tinuous domain, filtered by ϕ0, and subsequently re-sampled, must
lead to the same measurements than the original signal f . This again
requires a digital correction filter q, which plays a role similar to q0.
This concept has been applied to image magnification in [4]. Al-
though magnification is an ill-posed problem, no regularization was
used; therefore, no constraints were directly imposed on the mag-
nified image. In addition, the method was not well-defined for an
arbitrary number of dimensions.

Simply put, image magnification is an ill-posed problem because
the outcome contains more pixels than the input can provide. Thus,
arbitrary constraints are necessary to devise a deterministic magni-
fication algorithm. One of these constraints goes by the name of
consistency. But, as it turns out, this constraint is not sufficient to
uniquely determine the magnified image, as several data configura-
tions exist that lead to the same discrete set of filtered and re-sampled
values. In this paper, we propose to take advantage of regularization
to further constrain the algorithm. We show that a wide class of reg-
ularizers can be used and offer a generic solution to determine the
discrete filter q so that the continuously defined signal f̃ is at the
same time regular, and consistent with the original continuously de-
fined signal f . Our approach can be applied in an arbitrary number
of dimensions.

2. CONSISTENCY

We present in Figure 1 the overall magnification scheme. The sig-
nals f , f0, and f̃ are continuously defined, while the sequences f1,
f2, and c are discrete. The filter with impulse response ϕ0 op-
erates in the continuous domain, while the filter with impulse re-
sponse q operates in the discrete domain. Upsampling by M must
be understood as the insertion of (M − 1) zeroes between samples.
A Dirac’s comb portrays sampling, while the synthesis function ϕ
links the discrete world to the analog one. Overall, this results in
∀k ∈ Z

p : f1[k] = (ϕ0 ∗ f) (x)|x=k. Finally, the chain of oper-
ations that transform the sequence of samples f1 into the magnified
output signal f̃ can be formalized as

∀x ∈ R
p : f̃(x) =

X
n∈Zp

({f1}↑M ∗ q) [n] ϕ(x− n).

To enforce consistency, we shall ask that a de-magnified version
of f̃ result in the same set samples, after re-acquisition by ϕ0 and
re-sampling. We therefore write this recursive condition as
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∀ω ∈ R
p : J(ω) =

˛̨̨
˛̨̨M2 p −

X
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A(ej (ω+ 2 π m
M )) Q(ej (ω+ 2 π m

M ))

˛̨̨
˛̨̨
2

Lϕ̂(ω)

+
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˛̨̨
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M
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Fig. 1. Magnification system. The continuously defined function
f is submitted to an acquisition device ϕ0 before being sampled at
unit intervals. The resulting discrete sequence of samples f1 is then
upscaled by M and digitally filtered by q. The magnified and con-
tinuously defined output signal is f̃ .

∀k ∈ Z
p : f1[k] = 
ϕ0 ∗

X
n∈Zp

({f1}↑M ∗ q) [n] ϕ(M · −n)

!
(x)

˛̨̨
˛̨
x=k

,

where we identify a discrete convolution between sequences a and b
by putting its argument into brackets, like in (a ∗ b) [·], and where we
identify a continous convolution between signals a and b by putting
its argument into parentheses, like in (a ∗ b) (·).

After some calculations, we conclude that the consistency con-
dition can be satisfied for any sequence f1, provided the filter with
discrete impulse response q satisfies the condition

∀ω ∈ R
p : M2 p =

X
m∈[0...M−1]p

A(ej 2 π m+ω
M ) Q(ej 2 π m+ω

M ),

where Q(z) =
P

k∈Zp q[k] z−k is the p-dimensional z-transform
of the sequence q, and where A is the z-transform of the sampled
continuous cross-correlation between the magnified analysis func-
tion and the synthesis function given by

∀k ∈ Z
p : a[k] =

“
ϕ0(

·
M

) ∗ ϕ
”

(x)
˛̨̨
x=k

.

3. REGULARIZATION

Because the consistency constrain M2 p =
P

A Q is a single lin-
ear equation in terms of as many as Mp unknowns, the null-space
of the system described up to this point is far from being empty. In
other words, one can find many functions η such that η̃ = 0. This
means that the functions (f + η) are consistent with f in the sense
of Section 2, and so there are many consistent solutions to the mag-
nification problem. To reclaim unicity, among all these solutions we
are going to pick the most regular one, in the sense defined below.

To measure the regularity of a function, we first apply an opera-
tor L that can take any form which can be described as a convolution
by a filter with impulse response h, so that ∀x ∈ R

p : L{f}(x) =
(h ∗ f) (x). Typical choices for L involve gradients and Laplacians,
in which case h relates to the derivatives of Dirac’s δ, in the sense
of distributions. Then, we take the L2-norm of the outcome. Af-
ter the appropriate calculations, we conclude in our case that the
roughness—the opposite of the regularity—of the magnified signal
must be measured as

‚‚‚L{f̃}‚‚‚2

=
1

(2 π)p

Z
[0, 2 π

M
]p

˛̨̨
˛F1(e

j M ω )

A(ej ω )

˛̨̨
˛
2

J(ω) dpω, (2)

where F1 is the z-transform of the sequence f1, where the auxiliary
function J is defined as in (1), and where the function Lϕ̂ depends
on the synthesis function and on the regularization filter, but neither
on the signal nor on the analysis filter. More precisely, Lϕ̂ is defined
as

∀ω ∈ R
p : Lϕ̂(ω) =

X
m∈Zp

˛̨̨
ĥ(ω + 2 πm) ϕ̂(ω + 2 πm)

˛̨̨2
,

where ĥ(ω) =
R∞
−∞ h(x) e−j 〈ω,x〉 dpx, and ϕ̂, are the Fourier

transforms of the regularization filter and of the synthesis function,
respectively.

By hypothesis, the functions ϕ, ϕ0, and h are given. Therefore,
only q can be tuned to minimize our measure of roughness. As the
two terms |F1/A|2 and J in (2) are nonnegative, and since only J
depends on q, we can concentrate on minimizing J , independently
for each pulsation ω. This has the advantage of yielding a simple
algorithm with the same filter q for all signals f . One distinguish-
ing feature of our proposed method is that this optimization process
can be conducted through analysis in the continuous domain. Af-
ter several pages of tedious calculations that we once more skip in
the interest of space, we determine the z-transform of the optimal
compensation filter to be given by

∀ω ∈ R
p : Q(ej ω ) =

M2 p A∗(ej ω )

Lϕ̂(ω)
P

m∈[0...M−1]p

˛̨̨
A(ej (ω+ 2 π m

M ))
˛̨̨2

1

Lϕ̂(ω+ 2 π m
M

)

.

3.1. Implementation

Obtaining explicit expressions for q often proves to be difficult. For
those many difficult cases, we advocate the use of discrete Fourier
transforms as a practical way to implement the system described in
Figure 1. The most delicate issue is the computation of the term
Lϕ̂(ω)/Lϕ̂(ω + 2 π m

M
) found in Q. How to best approximate this

quantity depends on the interplay between the decays in frequency
of ĥ and ϕ̂.
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4. EXPERIMENTS

In this section, our purpose is to assess the visual performance of our
algorithm, as compared to traditional magnification by interpolation.
In both cases, the type and maximum extent to which images are
detailed is governed by the synthesis function ϕ of Figure 1. To
ensure a fair comparison, we have imposed the sameϕ for traditional
interpolation and for our proposed method; presently, we have set
∀x ∈ R

p : ϕ(x) =
Qp

i=1 max(0, 1 − |xi|), which is generally
called linear interpolation. Then, one difference between our method
and the traditional one is the application of the filter with impulse
response q. This filter takes into account—and compensates for—
the existence of ϕ0, which traditional interpolation does not.

The specification of the filter q requires that some regularizer
has been chosen a priori. In the present case, we have opted for
the Laplacian-like form ∀ω ∈ R

p : ĥ(ω) =
`Pp

i=1 ω2
i

´8. This
regularizer penalizes abrupt transitions in the image, which tends
to suppress high-frequency noise. Meanwhile, piecewise constant
areas or gentle transitions such as shadows are not penalized, which
tends to maintain a natural aspect to the resulting magnified images.
Once more, let us insist that the role of regularization is only to pick
one consistent solution out of many; it is not to be understood as a
tradeoff factor.

Finally, the analysis function has been assumed to correspond to
∀x ∈ R

p : ϕ0(x) = rect(x). This is the model of an idealized
CCD sensor, where the sensing area of each pixel would be a small
square, and where all these squares would be contiguous to cover the
whole sensor. We have set the up-sampling factor to beM = 4.

4.1. Barbara

In our first visual experiment, the input image f is the fragment the
classical Barbara image that we show in Figure 2. It depicts the long
and tight stripes of Barbara’s trousers, which have a strong grayscale
contrast. We show in Figure 3 a version of f magnified by traditional
linear interpolation, while we present in Figure 4 the outcome of our
algorithm. We observe that consistent and regularized magnification
results in an image that is sharper than that resulting from standard
magnification by interpolation. Edge details are more accurate and
better distinguishable, especially when the stripes get tighter on the
image. We have attempted to enhance Figure 3 by post-processing
with sharpening operations (results not shown), but obtained only
poorer results, with a significant amount of added noise.

The improvement over edge details can be explained in part by
the high-order Laplacian used for regularization, which allows for
an accurate magnification of oscillating patterns. Indeed, when we
observe plot profiles from the image of Figure 4, only very smooth,
almost sine-like oscillating patterns appear, contrarily to those found
in Figure 3. We therefore claim that such a regularization operator,
along with the fact that the analysis function has been taken into
account, allows for the efficient recovery of those oscillating patterns
during magnification.

4.2. MRI

In our second experiment, the input image f is the magnetic reso-
nance image (MRI) that we show in Figure 5. Keeping the same
order as in Section 4.1 for Figures 5–7, we observe that our method
produces more accurate textures, and transition patterns with less
perceptible staircases.

In case of regularized magnification, reduced blur is due to the
fact that we resist assuming the analysis function to be ideal; instead,

Fig. 2. Detail of the Barbara image, at the original size 128× 128.

Fig. 3. Detail of the Barbara image after magnification by standard
interpolation, with size 512× 512.

Fig. 4. Detail of the Barbara image after our consistent and regular-
ized magnification, with size 512× 512.
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we assume it is a rect low-pass filter, which is realistic when con-
sidering most image acquisition devices. Thus, the correction filter q
restores some attenuated details. Moreover, since the linear operator
chosen for regularization is the high-order Laplacian Δ8, which is
rotation-invariant, all high-frequency elements are heavily penalized
in all directions. This explains the high continuity of the transition
patterns in the magnified images, and the absence of staircase effects
which are predominantly found at high-frequencies.

5. CONCLUSION

We have developed a high-quality magnification method that com-
bines consistency and regularization constraints. We deal with the
regularization term in the continuous domain, yet the solution takes
the form of a digital filter. Our method is linear, in the sense that
magnifying the sum of two images or summing two magnified im-
ages produces the same outcome. It shows interesting results when
compared to magnification using standard interpolation. Texture de-
tails as well as transitions are more accurate, and blur is reduced. In
addition, our method does not depend on the number of dimensions.
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Fig. 5. MRI image, at the original size 128× 128.

Fig. 6. MRI image magnified by standard interpolation, with size
512× 512.

Fig. 7. MRI image after our consistent and regularized magnifica-
tion, with size 512× 512.
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