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ABSTRACT

We suggest a continuous-domain stochastic modeling of images that
is invariant to spatial resolution. Specifically, we are proposing an
estimator that is calibrated with respect to the sampling step, and that
can potentially handle aliased data. Motivated by Markov random
fields, we assume a continuous-domain ARMA model and suggest
an algorithm for estimating the continuous-domain parameters from
the sampled data. The continuous-domain parameters we estimate
provide features that can further be used for image classification,
segmentation and interpolation, regardless of sampling interval val-
ues and of aliasing effects that may appear in the digital image. Ex-
perimental results indicate that the proposed approach is preferable
over a discrete-domain ARMA modeling.

Index Terms— Sampling, ARMA Identification.

1. INTRODUCTION

Image modeling is fundamental to many image processing tasks
such as classification, segmentation, interpolation, and compres-
sion. Discrete Markov random-field models have been successfully
applied to inverse problems, texture synthesis and optical-flow anal-
ysis [1, 2, 3, 4, 5]. The key point in such a modeling approach is to
properly estimate the underlying Markov parameters, i.e. features,
from the digital data. Nevertheless, discrete stochastic models are
resolution dependent, and this is the problem we are considering
in this work. For example, two snapshots of the same image will
result in different discrete models and would be misclassified if the
Markov parameters are used as features. Interpolation and scaling
tasks cannot be carried out either, as discrete models do not comply
with a continuous-domain formulation.

The solution we suggest here to this problem is to consider
continuous-domain ARMA models and to estimate the model pa-
rameters from the pixel values of the image. Continuous-domain
ARMA estimators from sampled data have been suggested in the
past for the one-dimensional case [6, 7], requiring relatively high
sampling rate values in order to avoid aliasing effects. An alternative
estimator, however, was recently suggested in [8]. This estimator
minimizes the likelihood function of the sampled data, and is de-
signed to be resolution invariant as it overcomes aliasing.

In this work, we focus on resolution-invariant estimation of two-
dimensional continuous-domain stochastic processes. Our motiva-
tion is to identify specific image characteristics that are robust to dis-
cretization. To do so, we extend the one-dimensional estimator of [8]
and assume a continuous-domain two-dimensional separable ARMA
model. This kind of modeling allows for a flexible parameterization
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of the power spectrum of the image. Furthermore, it allows one to
better approximate continuous-domain operations such as differen-
tiation or integral transforms. We derive an algorithm for estimating
the underlying continuous-domain parameters of a two-dimensional
stochastic process from the sampled data; the acquisition can be car-
ried out at any spatial resolution. The continuous-domain parameters
we estimate provide feature descriptors that can further be used for
classification or interpolation, regardless of sampling-interval values
and aliasing effects that may appear in the digital image. Texture
identification is then demonstrated as a potential application.

2. THE ESTIMATION ALGORITHM

In this section, we propose a maximum-likelihood estimation ap-
proach for continuous 2D separable ARMA processes with Gaussian
innovation. In order to do so, we extend the log-likelihood function
introduced for the one-dimensional case in [8] accordingly. We uti-
lize the lexicographic representation of images and identify the block
Toeplitz structure of the corresponding covariance matrix. We then
approximate the likelihood function of the given data by identifying
the horizontal and the vertical 1D digital filters that correspond to
the ARMA properties of the sampled process.

2.1. Mathematical Preliminaries

Let us consider continuous 1D ARMA(p, q) processes determined
by their real polynomial coefficients in the Laplace domain. Each
of these processes of variance o3 is labeled by the subscript k and
defined as
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Imposing o7 = |o| given the common variance parameter o2, let us
define 2D separable ARMA processes
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whose labels £ = 1,2 correspond to the horizontal and vertical di-
rections, respectively. Any process of the form (4) is thus fully de-
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termined by the non-redundant parameter set of interest, which is

2
0= {65 00,1, ap—1,1,b0,1, .-, bg—1,1,
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Therefore, the subsequent estimation task amounts to finding the set
of coefficients (5) minimizing the log-likelihood function derived be-
low, given a sampled realization of the corresponding ARMA pro-
cess. Note that 6 is equivalently decomposed into the redundant 1D-
ARMA -parameter sets 61 and 02, to which we shall refer below.
Given one realization of the process parameterized by (5), we
denote its sampled sequence of size N x N as f[-, -]. The associated
sampling step is 7" in each dimension, while each sample index is
referred to as {0, ..., N — 1} by convention. For convenience, this
sequence can be equivalently expressed as the N2 x 1 vector

£ = (f[0,0],..., f[0,N = 1], f[1,0],..., f[I, N — 1]
oy fIN=1,0),.. . fIN-=LN—1]). (6
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2.2. Exact 2D Likelihood Function

As an extension of [8], our log-likelihood function depends on the
samples of the 2D Gaussian ARMA process, the 2D ARMA param-
eters, and the sampling step 7'. Using matrix notation, its generic
expression (including a sign inversion) is

1(0;£) = In || + £727'F, @)

where X is a block Toeplitz matrix (associated to 2D separable fil-
tering) that implicitly depends on 0 and f. The entries of that matrix
correspond to the sampled version of the inverse Laplace transform
of (1), which is the autocorrelation function. Let us now define the
unitary matrix S that swaps row and column ordering for a given
N? x 1 vector. It is defined as

Sij:{ L j=0-N)[F]+Nit+(1-N)

®)

0, otherwise.

For N = 2, for instance, the explicit expression of that matrix is

1 0 0 O
0 01 0
01 0 O

1

S= O]
0 0 O
Given (8), the Toeplitz matrix 3 can be decomposed as
¥ =8S¥,83, (10)

where the matrix expressions 3 and SX45S are associated to 2D
row-wise and column-wise filtering performed with the same 1D fil-
ters, respectively. The N? x N2 matrix 3}, has the structure

Xk 0 0

, 0 e ... 0
Xk = : S : ’ (1)

0 0 R 7%

where the diagonal element 3, repeated N times is a conventional
Toeplitz matrix of size N x N associated with 1D filtering. From
the above, the determinant of 3 can be decomposed as

=] = [SZ:83
DRRE RS (12)
Using (12), we can rewrite the log-likelihood (7) as
1(6;£) = N(In |Z1| + In [Z2]) + f7 7' (13)

2.3. Approximate 2D Likelihood Function

Our goal is to obtain a simpler log-likelihood expression that can be
easily computed as an explicit function of known parameters. To do
s0, we propose the approximate log-likelihood

10;£) = N(k(61) + r(62)) + N*In(03(01)03(62))
+ IS * (90, ® go,)lI7, (14)

where the scalar functions «(-), o3(-) and the 1D whitening filters
go,, are defined as in [8], given our parameter vectors and the sam-
pling step 7. The Kronecker product between the two whitening
filters generates the 2D separable whitening filter go, ® go,.

Theorem 1. When the number of samples N tends to infinity, the
expectation of the difference between the exact and approximate log-
likelihoods (7) and (14) tends to zero.

Proof. The Szeg6 Theorem for infinite Toeplitz matrices [9] implies

A}Lmoo {In|Xx| = N - ¢[0; 6]} = chk[n; Or]ck[—n; 0k], (15)

n=1

where c[n; 0] is determined analytically according to [8]. Specif-
ically, these values correspond to the Fourier coefficients of the log-
arithm of the discrete-domain power spectrum @q(w; 6y ) associated
to 6. According to the definition of [8], we can expand (0 ) as

k(0k) = chk [n; Ok )ck[—n; Ok). (16)

n=1

Given the definition of ci[n; 0], and by the Residue Theorem,

27
ck[0,0k] = / In ¢ (w; Bk )dw = In o3 (0). (17)
0

From the above, we obtain the asymptotical relation

Jim NIn|Si| = lim Nk(0y) + N*Inoj(6y). (18)

Now, the term 3 can be approximated by Lka, where Ly, is a
lower-triangular matrix which is associated to the filter go, by defi-
nition. Following [10], the two matrices 3! and LL” are asymp-
totically equivalent as N grows. Therefore, given the commutativity
of the corresponding operations, we obtain

lim 7' = lim LL%, (19)

N —oo N—oo

where L corresponds to 2D filtering with the separable filter
(g6, ® 9o, ). Since these asymptotically-equivalent matrices describe
asymptotically-equivalent random processes, (19) also implies that

lim E{f"S"'f} = lim E{f"LL"f}, (20)
N —oco N—oo
where E denotes the expectation. Taking the limit of the expectation

of (13), and using (18) for both dimensions and (20), we obtain

Jlim_EQ1(6:5))

Jim E{Nk(61) + Nr(62)}

Jim E{N”In(03(61)) + N In(03(62))}

+ o+

Jim E{fTLL”f}. (21)
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Fig. 1. Realizations of continuous-domain ARMA(2, 1) processes discretized with sampling intervals 7" = 1 (left images), 2 (middle images),
and 3 (right images). The first and second image rows correspond to the first and second experiments of Tab. 1, respectively. These pictures
illustrate how the aliasing phenomena affects the visual appearance of each continuous-domain image model at distinct resolutions.

The vector expression on the last line of the above expression is
strictly equivalent to the expectation of the ¢2-norm expression of
(14). This implies that the whole right-hand side of (21) is the limit
of the expectation of (14), which completes the proof. O

2.4. Optimization

The continuous-domain ARMA parameters can then be estimated
by minimizing (14) as a function of the real coefficients (5). Since
several local minima potentially appear in the mere 1D case [8],
and given the increased complexity of our 2D case, we resort to a
general-purpose global-optimization approach. Specifically, we use
the standard genetic algorithm of MATLAB (version R2009a) with
some specific parameters (population of 200, elite count of 1, Gaus-
sian mutation, two-point crossover, migration fraction of 1/2, and
uniform creation function) for optimization. Unlike in [8], no spe-
cific initialization scheme is then required.

2.5. Discussion

In contrast with the continuous-domain ARMA coefficients es-
timated with our method, the discrete-domain models are not
resolution-invariant. This means that two snapshots of the same im-
age will result in two different sets of discrete-domain coefficients
if taken at different resolutions. As the discrete-domain ARMA
model does not take the zero-pole coupling of the sampled process

into account, the two sets of parameters introduce no mathematical
relation that incorporates the sampling interval values.

Mapping discrete-domain parameters to their continuous-domain
counterparts introduces two main difficulties. Continuous-domain
ARMA parameters associated (through sampling) to a given set of
discrete-domain ARMA parameters are not guaranteed to exist. This
stems from the fact that the sampled process introduces an ARMA
for which the zeros and poles are coupled in a non-trivial manner
[6]. For example, an ARMA(1,0) model with a pole at z = —0.5
has no continuous-domain ARMA(1,0) counterpart. Another diffi-
culty is uniqueness of the continuous-domain parameters, as there
are many continuous-domain processes which upon sampling re-
sult in the same discrete-domain ARMA model. For instance, one
continuous-domain ARMA pole £ is linked to its discrete-domain
version through &' = exp(T¢). Given the logarithm properties, &
is determined from £’ in a non-unique way, up to an additive multi-
ple of 2m¢. Similarly, the zeroes of the continuous-ARMA process
cannot be recovered from their discrete counterparts in general, as
there is sometimes no valid solution. Indirect continuous-ARMA
estimation (i.e., subsequent to conventional discrete-domain ARMA
estimation) is therefore not possible in general. This observations
further call for the use of direct continuous-domain recovery, as
such problems are circumvented by properly exploiting the available
sampled data.

Continuous-domain ARMA models also have a deterministic
interpretation as they correspond to the Sobolev regularity criterion
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[T | Zero (X) Poles(X) [ Zero(Y) Poles(Y) |

Exp. 1 | -1 -0.08+0.21 -1 -0.4+1

1 -1.02 -0.08+0.21i | -0.84 -0.44+1.044
1.5 -0.80 -0.1040.141 | -1.07 -0.4240.98i
2 -0.99 -0.08+0.221 | -1.55 -0.43+0.891
2.5 -0.81 -0.0940.251 | -1.18 -0.424+0.91i
3 -0.96 -0.08+0.21i | -1.57 -0.39+1.061
Exp. 2 | -1 -0.241 -3 -0.05, -0.02
1 -0.89 -0.21£1.01i | -2.96 -0.07, -0.02
1.5 -0.88 -0.2041.011 | -3.57 -0.06, -0.01
2 -1.01 -0.19£1.001 | -4.40 -0.06, -0.01
2.5 -0.91 -0.224+1.52i | -2.83 -0.07, -0.03
3 -0.20 -0.21+1.11i | -3.54 -0.05, -0.03

Table 1. Oracle and estimated ARMA parameters for the first and
second experiments. The columns display the continuous poles and
zeroes in each dimension (denoted as X and Y) estimated according
to our method. The first line associated to each experiment reports
the corresponding oracle values, while the following lines report the
corresponding estimates for the given set of sampling intervals 7.
Unlike in discrete ARMA, these estimates are resolution-invariant,
and closely follow the oracle values even for prominent aliasing con-
ditions that are introduced by the sampling-interval values. These
two experiments introduce continuous-domain power spectra that
occupy both low and high frequencies compared to 7.

that is often imposed by image-processing algorithms that involve
partial-differential equations or differential operators such as the
total-variation regularizer [3]. Once the continuous-domain ARMA
parameters are estimated from the pixel values, the continuous-
domain image can be represented by exponential B-splines [11].
Such finite-support functions are extremely beneficial for interpo-
lating or scaling an image from a computational complexity point
of view. In that regard, our estimator could be applied as a prior
step to image interpolation. The exponential B-spline model has
then both a deterministic and a stochastic interpretation, providing
a possible link between stochastic and deterministic approaches to
image processing and analysis.

In cases where the image consists of non-overlapping regions
with distinct ARMA parameters, the proposed approach is appli-
cable to each segmented region separately. The tradeoff, however,
is number of data points versus estimation accuracy. Indeed, our
approach assumes a large number of pixels regardless of the sam-
pling interval. Such a situation differs from the compressed-sensing
paradigm which requires less data points when increasing the model
sparsity.

3. EXPERIMENTAL RESULTS

In this section, we consider two experiments corresponding to dis-
tinct continuous and separable ARMA(2, 1) processes. In each of
these experiments, our goal is to estimate the corresponding ARMA
parameters of the same continuous process for distinct sampling
steps 7', given one sampled realization of size N = 512 at a time.
For the sake of clarity, the oracle as well as the estimated ARMA
quantities are shown in terms of poles and zeroes. The two sets of or-
acle values are displayed in Tab. 1, while the corresponding sampled
realizations for the three integer sampling steps are shown in Fig. 1.
Notice in this figure that decreasing the sampling step causes alias-
ing, which makes the continuous-estimation problem non-trivial.

The estimation results for both experiments using our extended-
likelihood approach are also shown in Tab. 1. The estimated values
are relatively close to the oracle, despite aliasing of the continuous
data. Up to reconstruction error, the poles and zeroes are invariant to
spatial resolution. Our results indicate that the continuous-domain
approach can be robust for resolution-invariant estimation. In par-
ticular, the zeroes of the continuous-domain ARMA process can be
accurately recovered from the available data.

4. CONCLUSIONS

In this work, we have suggested a continuous-domain stochastic
modeling of images which is resolution-invariant. Focusing on sep-
arable 2D ARMA processes, we have derived a log-likelihood func-
tion for the sampled data, and approximated it by means of digital
filtering. We then numerically minimized our approximate function
using genetic algorithms, allowing us to reach the global minimum.
Our experiments have confirmed that the proposed algorithm recov-
ers the continuous-domain parameters regardless of pixel resolution.
We believe that our approach could be found useful for image clas-
sification, segmentation and interpolation.

5. REFERENCES

[1] Rama Chellappa and Anil K. Jain, Markov random fields: the-
ory and application, Academic Press, 1993.

[2] C. S. Won and R. M. Gray, Stochastic Image Processing, In-
formation Technology: Transmission, Processing and Storage.
Springer, 2004.

[3] T.E. Chan and J. Shen, Image Processing and Analysis: Varia-
tional, PDE, Wavelet, and Stochastic Methods, SIAM, 2005.

Jérome Idier, Ed., Bayesian approach to inverse problems, Wi-
ley and sons, 2008.

Stan Z. Li, Markov Random Field Modeling in Image Anal-
ysis, Advances in Computer Vision and Pattern Recognition.
Springer, 2009.

[6] Erik K. Larsson, Magnus Mossberg, and Torsten Soderstrom,
“An overview of important practical aspects of continuous-
time ARMA system identification,” Circuits Systems Signal
Processing, vol. 25, no. 1, pp. 1746, May 2006.

[7] Jonas Gillberg and Lennart Ljung, “Frequency-domain iden-
tification of continuous-time ARMA models from sampled
data,” Automatica, vol. 45, pp. 1371-1378, 2009.

H. Kirshner, S. Maggio, and M. Unser, “Maximum-likelihood
identification of sampled Gaussian processes,” in Inter-
national Conference on Sampling Theory and Applications,
2011, Available at http://bigwww.epfl.ch/kirshner/sampta-
2011/paper.pdf.

[9]1 G. Szeg6, “On certain Hermitian forms associated with the
Fourier series of a positive function,” Comm. Sém. Math. Uniyv.
Lund, pp. 228-238, 1952.

[10] R. M. Gray, “Toeplitz and circulant matrices: A review,’
Found. Trends Commun. Inf. Theory, vol. 2, no. 3, pp. 155—
239, 2006.

[11] M. Unser and T. Blu, “Cardinal exponential splines: Part [—
Theory and filtering algorithms,” IEEFE Trans. on Signal Pro-
cessing, vol. 53, no. 4, pp. 1425-1438, April 2005.

[4

—

[5

—_—

[8

—

1876



