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Background. We describe a set of image processing algorithms and mathematical models 
that can be advantageously used in schemes for the segmentation of thallium-201-single photon 
emission computed tomography (SPECT) images and for computation of left ventricular ejec- 
tion fraction (EF). 

Methods. The system consists of two independent blocs for image segmentation and computation 
of function. The former is based on a multiresolution elliptical coordinate transformation and 
dynamic contour tracking. Computation of EF is formulated on the basis of both the endocardial 
and epicardial contours, and we compare this formulation with that using only the endocardial 
border  for images with low signal-to-noise ratios. The accuracy of border  detection was validated 
against manual border  tracing on FDG-PET images, simulated TI-201-SPECT images where the 
true underlying borders were known, and actual TI-201-SPECT images. Finally, we compared 
EFs computed for FDG-PET, technetium-99m-SPECT and TI-201--SPECT with those obtained 
from planar gated blood pool imaging. 

Results. The automatically obtained results always were within the manual  uncertainty 
range.  Agreement  between myocard ia l  volumes f rom posi t ron emission tomography  and 
automatically obtained values from the simulated TI-201-SPECT images was excellent (r = 0.95, 
n = 32). Agreement between EFs from planar  gated blood pool imaging and the other image 
modalities was good (FDG-PET: y = 5.89 + 1.21x, r = 0.92, see = 6.24, n = 19, Tc-99m-SPECT: 
y = -3.86 + 1.06x, r = 0.88, see = 7.78, n = 9, TI-201-SPECT: y = 17.8 + 0.81x, r = 0.77, see = 7.44, 
n = 26). For  noisy input data the combined use of information from epicardial and endocardial 
contours gives more accurate EF values than the traditional formula on the basis of the endo- 
cardial contour only. 

Conclusions. Alternate approaches for segmentation and computation of function have been 
presented and validated. They might also be advantageously incorporated into other existing 
techniques. (J Nucl Cardiol 1999;6:286-97.) 
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Gated perfusion single photon emission computed 
tomography (SPECT) studies are important because they 
permit simultaneous measurement of both function and 
perfusion. A considerable body of research has shown 
that technetium-99m-mibi SPECT can be used for auto- 
matic computation of ejection fraction (EF).I-5 The high 
noise present in gated thallium-201-SPECT studies has 
made global function measurements more problematic, 
and although some data are available supporting its use 
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for functional measurements, 6 gating has not been wide- 
ly adopted for T1-201-SPECT. In this study we focus on 
these more noisy T1-201-SPECT images. We introduce 
an image processing methodology and new mathematical 
models for segmentation and computation of function 
that might be advantageously incorporated into other 
(already existing) algorithms as well. We investigate a 
method that has two unique features. First, the technique 
uses a set of robust and general image processing algo- 
rithms that rely on a minimal number of user-defined 
input parameters, and therefore no parameter adjustments 
are necessary for input data over a large range of noise 
levels. We have tested the method by comparing its 
results with those obtained from manually drawn con- 
tours and with the results obtained from gated blood pool 
(GPB) imaging. Second, we investigate a method for 
computation of EF on the basis of a combined use of both 
endocardial and epicardial border information. It is 
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Figure 1. Block diagram of image processing system. 
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hypothes ized  that by  inc luding the epicardia l  border  
information,  a more re l iable  est imate of  EF might  be 
obtained, because much of  the epicardial  surface has bet- 
ter contrast than the corresponding endocardial  surface, 
because  of  the absence of  left  ventr icular  (LV) cavity 
activity. Moreover,  there are fewer confounding struc- 
tures (eg, papil lary muscles) that influence the epicardial  
border. We test this hypothesis by comparing results with 
and without the additional epicardial  information. 

METHODS 

Image Processing System 

The purpose of this section is to present the different com- 
ponents of the image processing system depicted in Figure 1. 
The following nomenclature has been chosen to describe the 
images at the various stages of processing: ft(k,1): original, dis- 
crete image; gt(i,j): area of interest in the transformed coordi- 
nate system; qt(i,j): image of enhanced endocardial or epicar- 
dial boundaries; st(k,I): segmented image. 

The subscript t denotes the gating interval. The variables k 
and I denote the pixel coordinates in the Cartesian coordinate 
system, whereas the variables i and j describe the location in a 
transformed coordinate system. In what follows, we will first 
describe the principal elements of the segmentation bloc, 
explain how they are used for a successful segmentation, and 
then describe the functionality bloc. 

Elliptical Coordinate Transformation 

The main purpose of a change of coordinate system is to 
present the data in a form suitable for the contour tracking algo- 
rithm described below and to provide a system in which true 
count profiles across the myocardium can be measured. These 
profiles should be perpendicular to the heart wall. 

In our study, we have used long-axis views because they 
contain maximal information in the apical region. In this view 
the shape of the myocardium suggests the use of an elliptical 
coordinate system. If the myocardium were indeed elliptical, 
this coordinate transformation would project it into an image 

A B 
Figure 2. Comparison between (A) polar and (B) elliptic coordi- 
nate system. 

where the endocardial and epicardial boundaries were straight 
lines. Note that the accuracy of the proposed algorithm does not 
depend on the myocardium actually being elliptical--it is sim- 
ply a mathematical convenience. The horizontal representation 
will facilitate the subsequent steps of filter matching and con- 
tour tracking in the processing system because the algorithms 
can rely on operators that act along lines and columns instead 
of radial parameters. The geometrical transformation maps the 
original imagef/k,1), k, laZ into an area of interest gt(i,j), i,jeZ in 
the transformed coordinate system (Z is the set of all integers). 
The parameter i relates to the radial angle, andj is an index pro- 
portional to the distance from the ellipse center along an ellipti- 
cal path r(p,q). This path is computed such that it is perpendicu- 
lar at all times to the ellipse. This is in contrast to the traditional 
radial path that computes count profiles across the myocardium 
at oblique angles (Figure 2). Such a feature is potentially useful 
in all applications measuring perfusion profiles. 7-14 

The ellipse is characterized by 5 parameters: center coor- 
dinates (x o, Yo), long- and short-axis (ao, bo), and orientation 
(00). Because of its ability to detect complex patterns, we have 
chosen the Hough transform 14 for the detection of the ellipse. 
Every variable in the analytical curve model defines 1 dimen- 
sion in the multidimensional Hough space. The Hough space is 
then scanned for all possible parameter values. Hence, each bin 
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Figure 3. (A) Original non-gated image, (B) multi-resolution Hough algorithm: size of original image is divided by 2 at 
each level. Ellipse is detected in smallest image, the result up-projected onto next larger image, refined, up-projected again 
onto original image, and refined, (C) transformed image. Numbered points (1 to 3) illustrate mapping of three distinct points. 

in the 5-dimensional Hough space represents the parameters of 
exactly 1 ellipse. One increments each bin with the gray-level 
value of the image pixels covered by the model. The bin with 
the maximal count represents the parameters of the unknown 
curve model. The main computational difficulty is the huge size 
of the Hough parameter space. To circumvent this problem, we 
have implemented the algorithm within a multiresolution envi- 
ronment. 15 With this implementation, the Hough space is 
scanned in a spatially reduced image. The parameters of the 
best fit ellipse at the coarse resolution level are detected and are 
then symmetrically up-projected onto the next finer image 
level, where the optimal result is situated in the neighborhood 
of the up-projected pixels. Hence, it is not necessary anymore 
to search through the entire image, but only through a small 
portion of it. We have optimized the pyramid decomposition by 
use of centered cubic spfines, which provide a faithful repre- 
sentation of the original image at coarse pyramid levels. 
Without a multiresolution approach, computation time is 2.8 
hours for a 128 x 128 image on a PowerPC, model 7600, 120 
MHz. This time compares to 53 seconds, when two coarser res- 
olution levels are used (ie, number of columns and fines divided 
by 4 [22]). In addition, the multiresohition approach favorably 
smoothes the images and reduces noise. The results of the var- 
ious processing Steps are illustrated in Figure 3. 

Matched Filter 

Because of finite resolution acquisition devices and partial 
volume effects, 16 the perfusion profiles are bell-shaped rather 
than rectangular. The mid-myocardial contour must be assumed 
to lie close to the maximum of the bell shape, the epicardial 
contour lies between the transition from dark to bright, and the 
endocardial boundary lies between the transition from bright to 
dark, assuming one moves in the direction of decreasing radii. 

We will treat the detection of each of the contours as a sep- 
arate problem. The matched filtering problem is to find a linear 
filter that enhances the transition to be detected. 17 Because the 
change of coordinate system is intended to flatten the 
myocardium horizontally, the filtering is performed selectively 
in the vertical dimension in the transformed image. 

We chose to use the simplest possible enhancement filters: 
convolution operators of the form 

Endocardial contour: qt(i, j )  = gt(L J - 1) - gt(L J + 1) (1) 

Epicardial contour: qt(i, j )  = gt(i, j + 1) - gt(i, j - 1) (2) 

with equation 1 = -equation 2. These simple gradient operators 

enhance transitions from high to low pixel for the endocardial 
boundary and transitions from low to high pixel values for the 
epicardial boundary. Other enhancement schemes could have 
been used, such as through an experimental determination of 
the transition characteristics for a particular boundary. 18 
However, such procedures would yield different convolution 
operators for image acquisitions of different types (ie, T1- 
201-SPECT, Tc-99m-SPECT, or FDG-PET) or for different 
pre-reconstruction filters. The contour tracking algorithm 
described below is by design very robust, and the exact shape of 
the convolution operator has little effect on the segmentation 
result. Therefore, by use of the simple enhancement operators 
in equations 1 and 2 above, a single tracking algorithm can be 
used on a large class of images, as will be demonstrated in the 
Results section. 

Contour Tracking 

Segmentation and wall thickening measurements of perfu- 
sion SPECT images have almost exclusively been based on one 
of the following three techniques: (1) Counts-based segmenta- 
tion, used in positron emission tomography (PET) 12 and 
SPECT, 19-21 relating maximal counts in a radial count profile to 
the wall thickness. The technique is linear only for small wall 
thickness with respect to the point spread function of the acqui- 
sition device. 8 (2) Geometry-based segmentation, 7 performing 
a local threshold at half maximum of the count profile. This 
technique operates in the linear domain for wall dimensions 
larger than the resolution of the acquisition device. 
Unfortunately, both techniques are highly nonlinear precisely in 
the heart's dimensions. 16 Variations and combinations of both 
techniques 22 or model-based techniques 10 may be used to 
obtain more stable and consistent segmentation results. (3) 
Global thresholding, which gives only incomplete and very 
inaccurate boundaries because of nonhomogeneous count pro- 
files. All three techniques require images with relatively good 
uptake, which is often not the case in practice. 

For our application, we must design an algorithm that is 
robust in noisy environments and detects a single, smooth, and 
connected contour (endocardial and epicardial boundaries are 
considered as two separate problems). The contour detection is 
carried out in the transformed coordinate system and consists 
basically in finding a path that goes from the left side of the 
image to the right side, maximizing some criterion. We use the 
simplest possible figure of merit, that is, the cumulative sum of 
gray level values along the contour segment, denoted by ~(Tk). 
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Figure 4. Black points indicate contour segment T = [(1,Jl), (2, 
j2),...,(i,ji),...,(N,jN)] in transformed coordinate system. 

T(2,1) T(3, 2) 

Figure 5. (A) Enhanced epicardial image in transformed coordi- 
nates system (negative values set to black), (B) tracked contour, 
(C) epieardial contour in original image, (D) epicardial contour with 
base line. 

The problem can be reformulated as an optimization problem. 
We search for a contour segment r = [(1, Jl), (2, J2) ..... (i, 
Ji),...,( N, JN)], satisfying the constraints and maximizing ~(Tk). 
An example of a contour T is given in Figure 4. The horizontal 
coordinate in the transformed coordinate system of the contour 
increases by one as we move from one point on T to the next. 
The vertical coordinate displacement is restricted to some max- 
imal value Ay pixels. Typically, 1 < Ay < 3 pixels are adequate. 
This restriction defines our smoothness constraint. This same 
procedure--maximizing the sum of gray level values along the 
contour (ie, maximizing ~[Tk])--is also applied to "gaps" 
formed by perfusion or metabolism defects. This procedure, 
combined with the smoothness constraint above, is designed to 
make the contour track smoothly across even severe defects 
(even severe defects usually contain >30% of normal uptake). 
In the limiting case of zero activity in the gap (a situation that 
never occurs in practice), the smoothness constraint would still 
force the algorithm to smoothly interpolate across the defect to 
the neighboring non-zero portions of the contour. 

Given these definitions, the optimal path can in principle 
be determined by enumerating all allowable contour segments, 
evaluating their respective figure or merits and choosing the one 
that maximizes ~(Tk). Such a procedure would quickly result in 
unfeasible computational requirements. A better solution is 
found through dynamic programming. 23 The technique exploits 
the fact that if the best path goes through a given point (i,j), then 
this path includes as a portion of it, the best path to the point 
(i,j). Hence, for each point (i,j), one stores the predecessor point 
such that ~(Tk) is maximized and records the updated value of 
~(Tk). At the end of the cycle, the optimal figure of merit is 
found by searching for the maximum of ~*i = N,j and retrieving 
the optimal trajectory by backtracking. Such an algorithm is 
extremely efficient and requires a fraction of a second of com- 
putation time for an image of size 128 × 128. Although the 
algorithm produces globally smooth contours, it may still pre- 
sent local spikes of maximal deviation of Ay. We eliminate 
those by a post-processing smoothing of the contours in the 
transformed coordinate system by use of a Gaussian filter. An 
example for the tracking of the epicardial contour is given in 
Figure 5. 

Putting it All Together 

On the basis of the three image processing elements, 
computation of the endocardial and epicardial boundaries is 
as follows. For each slice the nongated image is computed by 
summing all gating intervals. On this image the elliptical param- 
eters (center, axis length, orientation) are computed, which are 
assumed to be identical for all frames within 1 slice. For con- 
tour tracking, we chose a smoothing value Ay = 2 pixels. If Ay 
were zero, we would find a straight line corresponding to a 
perfect ellipse. Contour tracking is carried out in the 
images obtained from the respective matched filters to 
enhance endocardial and epicardial contours. The dynamic 
contour tracking algorithm with its built-in smoothing proper- 
ties ensures excellent performance over perfusion defects by 
interpolation between the surrounding more normal segments 
(see http://picasso.ncrr.nih.gov/brigger/Spect for practical 
,examples). 

Finally, to prevent erroneous segmentation in frames with 
very low perfusion uptake, we first compute the endocardial 
and epicardial boundary in the summed, nongated image. We 
expand the epicardial contour by one pixel, and we shrink the 
endocardial contour by one pixel. Those contours then serve as 
outer and inner limits for all contours in the slice. 

For each slice and at each time point, the valve plane has 
been determined manually. In this study, we were mainly inter- 
ested in studying the ability of the proposed concept to accu- 
rately determine contours of the left ventricle and to demon- 
strate reproducibility and reliability of the proposed techniques. 
Although valve plane selection is important, 24 automatic valve 
plane selection methods are already available and have been 
described elsewhere.4, 5 

Functionality Bloc 

The functionality bloc receives as input the absolute values 
of the volume of the endocardium and epicardium for each time 
point t. Ejection fraction can then be computed as 

EF = Vend°(tD) -- Vend°(ts) (3) 
Vendo(tD) 
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Figure 6. Illustration of interference of perfusion profiles of oppo- 
site myocardial walls during systole. 

where Vendo(tD) = t ax [Vendo(t)] and  Vendo(tS) = ~ n  [Vendo(t)] 
are the end-diastolic and -systolic volumes. 

Equation 3 is not optimal for two reasons: (1) It is 
extremely sensitive to noise because the result is based on only 
two values out of the N t gating intervals (the maximum and 
minimum value, respectively). (2) The endocardial boundary is 
difficult to identify accurately. This is because at low resolution, 
perfusion profiles of opposite walls may spill over when the 
walls are close (eg, at systole) and also because of the possible 
presence of papillary muscle and bloodpool activity in the LV 
cavity. A schematic illustration is given in Figure 6. 

We can reduce the effect of noise in the data (such as found 
in data from T1-201-SPECT images) by considering all gating 
intervals. It has been reported elsewhere 25 that for computation 
of EF, use of 2 Fourier harmonics to fit the volume curve gave 
<3% bias and minimum total error compared with other num- 
bers of harmonics over a wide range of noise levels in the vol- 
ume curve. Hence, systole and diastole were taken here as the 
minimum and maximum of the 2 Fourier harmonic fitted data. 

Addressing the second point above, we propose a method 
that uses both the endocardial and epicardial contour to com- 
pute EF. The epicardial border is easier to identify than the 
endocardial one--outside influence from structures such as 
right ventricle or spleen may still alter septal perfusion, but in 
general, in the long axis, the epicardial free wall and apical wall 
have better contrast, and there are fewer confounding structures 
such as papillary muscles. The endocardial volume can be 
rewritten as Venao(t) = Vepi(t) - m ,  where m is the volume of the 
myocardium, and therefore EF is 

EF = Vepi(tD) - Vepi(ts) (4) 
Vepi(tD) -- m 

Myocardial mass is conserved over the cycle. Assuming 
tissue density is also nearly constant, myocardial volume m is 
also conserved and was obtained by averaging the difference 
between epicardial and endocardial volume over the entire 
cycle. The percent standard deviation from the mean was 10% 
in average (n = 30). Therefore the effect of outliers in the endo- 
cardial volume is reduced, and the precision of measuring m is 
increased by as much as a factor of ~fNt - 2. It requires exper- 
imental verification (performed below) to determine the net 
effect of using this epicardial-based method (equation 4) rather 

than the usual endocardial method (equation 3) on the variance 
in EE The reduction in variance in EF caused by use of the 
(hypothesized easier to measure) epicardial rather than the 
endocardial surface is partially offset by an additional variance 
term resulting from variance in m. It was hypothesized that 
because this variance in m could be reduced by averaging over 
the cardiac cycle, as described above, that the net error in EF 
would be reduced. 

Image Acquisition, Image Processing, and Patient 
Population 

To test the algorithm and evaluate its performance, 3 dif- 
ferent image modalities with different image characteristics 
were considered. (1) Gated FDG-PET images were obtained for 
19 subjec ts  (16 men,  3 women)  with 5 mCi  of 18F- 
fluorodeoxyglucose (FDG), with a GE-Advance PET scanner 
used in 3-dimensional (ie, septa out) mode with scatter and 
attenuation correction. Images were acquired for 30 minutes 30 
minutes after injection. Slice separation was 4.25 mm, inplane 
resolution ~7 ram, and pixel size was 2 mm. All subjects treat- 
ed with FDG had known or suspected coronary artery disease. 
Only 2 of the 19 subjects had no FDG defects. Seventeen of 19 
subjects had a total of 23 defects, with 13 of these 23 being cat- 
egorized as nonviable tissue (<50% FDG uptake). (2) Gated Tc- 
99m-sestamibi SPECT images were obtained for 9 individuals 
(6 men, 3 women) with known or suspected coronary artery dis- 
ease, with a triple-detector Trionix Co "Triad" camera (~10 
mCi, studied at rest). In-plane reconstructed resolution was ~12 
mm with 3.6 mm pixel size (Butterworth filter, cutoff 0.76, rolloff 
3.0). Four of the 9 had abnormal rest perfusion studies with 6 
defects in all. (3) Gated T1-201 SPECT images were obtained for 
26 subjects on a 90-degree, 2-headed ADAC Vertex with 3.2 mm 
pixels and an image resolution of ~14.5 mm, (Butterworth filter, 
cutoff 0.50, rolloff 3.0, with ~2 to 3 mCi injected during peak 
stress, and imaged shortly thereafter). All 26 subjects treated with 
T1 SPECT (20 men, 6 women) had known or suspected coronary 
artery disease and were being evaluated with the following pro- 
tocol: 3 mCi T1-201 injection at peak exercise - redistribution (~3 
to 4 hours after injection) - 1 mCi reinjection (15 minutes later 
still). The 26 gated T1 image sets used in this study were all from 
the reinjection studies. Eight of the 26 subjects had no defects at 
reinjection, whereas 18 of 26 had significant defects. Among the 
18 subjects with significant defects, there were 22 defects in all, 
of which 9 (in 8 different subjects) were categorized visually as 
severe irreversible defects. 

Note that both T1-201 and Tc-99m-MIBI used higher res- 
olution reconstruction filters than was used in many laborato- 
ries. Acquisition consisted of 8 or 10 gating intervals over each 
RR cycle for T1-201 and Tc-99m-MIBI, and 16 for PET. Four 
long-axis slices were created by slicing the short-axis set at 
-22.5 °, 22.5 °, 67.5 °, and 112.5 ° degrees, where 0 degrees = 12 
o'clock. The first two of these could be considered vertical 
long-axis slices, the second two horizontal long-axis slices. 
This resulted in a total of 32 or 40 images (64 for PET). 
Rotation of each slice about its vertical axis in the original 
image and averaging of the four slices allows computation of 
cavity volumes from the contours. The patient population con- 
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Figure 7. (A) FDG-PET, (B) SPECT noise, (C) PET-SPECT: typical example of smoothed FDG-PET image with 
rescaled SPECT noise added. Note that noise is so great that it is difficult to discern myocardium. Noise in PET-SPECT 
data was chosen to represent worst-case noise in actual T 1 study. 

sisted of patients of age range 40 to 65 years, mean = 58, 50% 
men and women, who were studied because of severe heart 
pain. All patients were abnormally perfused, with either 
enlarged or hypoperfused myocardium. 

For the validation experiments, we constructed a simulat- 
ed T1-201-SPECT image sequence from FDG-PET images. 
The FDG-PET images have good resolution and low noise, and 
the segmentation results could be taken as "truth" for compari- 
son with the simulated TI-201 data. To simulate the T1-201 data, 
the PET data were first smoothed to 14 mm with a Gaussian fil- 
ter to obtain the typical T1-201 image resolution. Next, real 
tomographic SPECT noise was obtained by acquiring images of 
a uniform cylindrical phantom by the same SPECT scanner and 
at the same resolution as was used for the T1-201-SPECT 
image acquisitions. Multiple acquisitions were collected at 
multiple time points to give 50 different realizations of the same 
uniform noise. We chose the level of noise to produce a more 
noisy than average scenario (ie, 

_ _  ~ tb loodpool  ~trnyocardium glung = 62%, = 49%, 
( rno i s  e = 36%, lYnois e lYnois  e 

g and ~r denote mean and standard deviation, respectively). The 
simulated T1-201-SPECT sequences will be called PET- 
SPECT, and an example is shown in Figure 7. 
All 54 subjects (19 PET, 9 Tc-99m-MIBI-SPECT and 26 T1- 
201-SPECT) underwent resting planar gated blood pool imag- 
ing (20 to 25 mCi Tc-99m-labled red blood cells) within 
approximately 1 week of SPECT perfusion or metabolism 
imaging. Imaging was performed in list mode, with 44 images 
per cycle, reverse framing, and 10% to 15% RR window for bad 
beat rejection. Six million counts were obtained over a -15 cm 
× 15 cm field of view, in a modified (10- to 15-degree caudal 
tilt) left anterior oblique projection. Ejection fraction was com- 
puted from the resultant 44-point LV volume curve and a back- 
ground region (manually defined) as previously described. 26 All 
EF computations were performed by individuals who had no 
knowledge of the gated SPECT results. 

Experiments 

In a first experiment, we proposed to assess accuracy of 
automatically determined LV contours with respect to manual- 
ly obtained ones. We compared automatically obtained epicar- 

dial volumes versus volumes obtained through manual border 
tracing by two physicians for PET, T1-201-SPECT and PET- 
SPECT images. We also compared borders manually obtained 
by physician 1 with borders manually obtained by physician 2 
and verified that the automatically obtained values lay within 
the range of uncertainty of the manual tracers. The experiment 
was repeated on a second day, several weeks after the first, with 
no possibility to refer to the previous experiment or to the draw- 
ing of the other physician. Hence, we were also able to study 
the intraobserver variability of the physicians. We further com- 
pared manually and automatically obtained volumes from the 
PET-SPECT images with the ones from the true underlying 
contours. We estimated the "true" values by averaging the val- 
ues obtained from the underlying FDG-PET images by auto- 
matic and by manual border tracing by the 2 physicians. For all 
experiments, the physicians used a public domain image pro- 
cessing software (NIH Image V.1.60) to trace the boundaries 
using the mouse of a Macintosh computer. Also, the same 
(manually determined) valves planes were used on both days 
and for both manually and computer-generated results to avoid 
introducing valve plane location variability. The epicardial con- 
tour was chosen because of its importance for EF computation 
in equation 4. 

The next two experiments were designed to test the effec- 
tiveness of incorporating epicardial boundary information in EF 
computation. First, we tested the hypothesis that epicardial con- 
tours would exhibit less variability than endocardial contours. 
For this purpose we constructed 50 replicates of a PET-SPECT 
sequence with the same amount but with different samples of 
noise. We then compared the endocardial and epicardial vol- 
umes at one gating interval over all 50 replicates to determine 
the relative variability of the epicardial and endocardial borders. 

Next, a second experiment was performed to evaluate the 
effectiveness of computing EF on the basis of the epicardial 
contour and myocardial volume (equation 4) versus a computa- 
tion based only on the endocardial contour (equation 3). For 
this purpose we compared both methods of EF computation for 
the noise-free PET images and the noisy PET-SPECT images. 
It is also of interest to compare EF values for the PET images 
versus EF values obtained for the PET-SPECT images (both, of 
course, have the same underlying data and EF) for both equa- 
lions 3 and 4. The better the correlation, the more stable is the 
EF computation. Finally, we compared EFs obtained from rest 
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Table 1. C o m p a r i s o n  o f  a b s o l u t e  ep i ca rd i a l  v o l u m e s  o b t a i n e d  by  m a n u a l  a n d  a u t o m a t i c  s e g m e n t a t i o n  

PET TI-SPECT PET-SPECT 

Day 1 

p l  vs  p2 

auto vs  p 1 

auto vs  p2 

Day 2 

p l  vs  p2 

auto v s  p 1 

auto vs  p2 

Days 1 and 2 

p l  vs  p l  

p2 vs  p2 

y =  t9 .2  + 0.86x; r = 0.84 

y = 3.24 + 0.94x; r = 0.93 

y = - 3 . 9 2  + 0.94x; r = 0.90 

i 

y = - 1 2 . 4  + 0.96x; r = 0.78 

y : 30.8 +0.75x; r : 0.83 

y : ~0.76 + 0.87x; r = 0.79 

y = --0.84 + 0.89x; r = 0.75 

y = 40.8  + 0.76x; r = 0.76 

y = 5.95 + 0.91x; r = 0.77 

y = 24.6 + 0.89x; r = 0.80 

y = 14.7 + 0.98x; r = 0.90 

y = - 1 2 . 8  + 1.0x; r = 0.75 

y = 25.2 + 0.81x; r = 0.79 

y = - 4 5 . 6  + 1.14x; r = 0.80 

y = 24.6 + 0.78x; r = 0.71 

y = 18.8 + 0.93x; r = 0.78 

y = 6 .64 + 0.95x; r = 0.73 

y = 58.8 + 0.77x; r = 0.67 

y = 31.3 + 0.84x; r = 0.93 

p l ,  Physician 1; p2, physician 2; auto, automatically obtained contour. 
Three test images (PET, 32 images, TI-SPECT, 40 images and PET-SPECT, 32 images) were analyzed on two different days separated by sev- 
eral days. Two independent and experienced physicians outlined the manually drawn contours. Comparison of the linear agreement 
between contours obtained by human beings and between contours obtained by a human beings versus automatically. 

Table 2. Comparison of a b s o l u t e  v o l u m e s  o b t a i n e d  

f r o m  t h e  " t rue"  con tou r s  a n d  manua l ly  a n d  a u t o m a t i -  

cally d e t e r m i n e d  c o n t o u r s  

PET-SPECT 

Day 1 

True vs  auto 

True vs  p 1 

True vs  p2 

Day 2 

True vs  p 1 

True vs  p2 

y = 4.72 + 1.01x; r = 0.95; s e e  = 5.2 

y = 19.2 + 0.87x; r = 0.79; s e e  = 10.3 

y =  - 4 8 . 2  + 1.20x; r = 0.77; s e e  = 15.1 

y = 25.0 + 0.93x; r = 0.76; s e e  = 12.7 

y = - 5 . 2 8  + 0.98x; r = 0.70; s e e  = 15.1 

p l ,  Physidan 1; 192, physician 2; auto, automatically obtained contour. 
Manual contours were drawn by two independent physicians on 2 
different days. 

GPB imaging with those obtained from the automatic algorithm 
(using equation 4) for FDG-PET, Tc-99m-SPECT, and T1- 
201-SPECT images. 

For all experiments, standard linear regression was per- 
formed, where r denotes the correlation coefficient 

cov(x,y) 
r =  Ox. (~y 

with o x and Oy denoting the standard deviation of x and y. 
Also root mean square errors are given and denoted by see. 

RESULTS 

Accuracy and Robustness Assessment 

Table I summar izes  the results for  assessment  o f  the 

a lgor i thm's  accuracy. Expe r imen t  1 (day 1) and experi-  

m e n t  2 (day 2) c o m p a r e  abso lu te  ep ica rd ia l  v o l u m e s  

obta ined  by phys ic ian  1 versus  phys ic ian  2; au tomat ic  

computa t ion  versus physic ian  1; and automat ic  computa-  

t ion versus phys ic ian  2 for the PET, T1-SPECT, and PET- 

S P E C T  data. R o w  3 presents  the in t raobserver  ag reement  

be tween  day 1 and 2 for  each human  tracer. In all exper-  

iments ,  the results f rom the automat ic  segmenta t ion  algo- 

r i thm lie wi thin  the range o f  uncer ta inty  o f  the interob- 

server  agreement .  The  results g iven  in co lumns  2 and 3 o f  

Table I (T1 -201-SPECT and PET-SPECT)  indicate  that 

the human  uncer ta inty  increases for noisy  images ,  but the 

automat ic  a lgor i thm still exhibits  good  relat ive accuracy 

with  respect  to manua l  results. The  h igh  corre la t ion coef-  

f icients in co lumn  1 o f  Table I (PET image)  suggest  that 

for these h igher  resolut ion,  less noisy  images ,  all o f  the 

contours  are c lose to the true under ly ing contour. Hence ,  

we  cons idered  the average  o f  these three contours  as the 

" t rue"  contour  for the compar isons  descr ibed below. 

Nex t  we  compared  automat ic  and manua l  segmenta-  

t ion results on the P E T - S P E C T  images  to the true under-  

lying contours  as obtained f rom the far less noisy  P E T  

image.  The  cor responding  results are g iven  in Table II. 

The  automat ica l ly  obta ined contours  show a better  l inear 

ag reemen t  than the manua l ly  obta ined  ones,  indicat ing 

bet ter  consis tency.  The  cor re la t ion  coef f ic ien ts  for  the 

human  tracers are quite low, presumably  because  of  the 

very high noise level in the P E T - S P E C T  images  (Figure 7). 

The  root  mean  square residual  values ( sees )  for the auto- 

mat ic  a lgor i thm are m u c h  better  than for the human  trac- 

ers. A graphical  representat ion o f  the true vo lumes  versus 

automat ica l ly  obta ined ones is g iven  in F igure  8. 

One  of  the mos t  valuable  features o f  our  me thod  is 

its abil i ty to handle  Very different  types o f  images  in an 

au tonomous  fashion. For  all o f  the results presented  in 
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Figure 8. Comparison of "true" (average from FDG-PET) and automatically computed volumes. 

Table 3. C o m p a r i s o n  of  va r i ances  in endoca rd i a l  
and  epicardial  v o l u m e  computa t ion  with 50 repl icates  
of  the  s a m e  PET-SPECT s e q u e n c e  wi th  different  noise  
rea l iza t ions  

Endocardial Epicardial 
Estimate of  volume volume 

Number of n = 50 n = 50 
samples 

Mean value ~t= 97.5, ~r~= 1.24 ~t= 226.5, ~ =  0.79 

Variance V(Z) = 77.4, ~r s = 0.89 V(Z) = 31.2, crs = 0.56 

this article, the exact same parameters were used in all 
steps of  the segmenta t ion  and computa t ion  process ,  
regardless of  modali ty or image noise. 

Variability o f  the  M e t h o d  

We correlated epicardial  and endocardial  volumes 
obtained f rom 50 repl icates  of  a smoothed FDG -PE T  
frame to which the same amount, but a different realiza- 
tion, of  SPECT noise was added. We estimated the mean 
and variance for both endocardia l  and epicardia l  vol- 
umes, given in Table III. Variances were computed nor- 
mal ized  to the same dynamic  range in both data sets. 
Although these variances should not be used to estimate 
the true variance of  either method (the same valve planes 
were used in all 50 replicates, no reslicing differences, 

Tab le  4.  Comparison of the  formulas for EF on the  
basis of the  endoca rd i a l  con tours  

Vendo(tD) -- Vendo(tS) ] 
[EFENDO = Vendo(tD ) and on the epicardial contours 

V e p i ( t D )  - -  V e p i ( t S )  ] 
[EFEp I = 

V e p i ( t D )  - -  m 

E F  c o r r e l a t i o n  

PET EFENDO vs EFEp 1 r = 0.92, see = 6.2 
PET-SPECT EFENDO VS EFEp 1 r = 0.78, see = 9.0 
EFENDO PET vs PET-SPECT r = 0.76, see = 8.7 
EFEp I PET vs PET-SPECT r = 0.92, see = 5.3 

Compared are EFs for the low noise PET image and for the noisy 
PET-SPECT image. 

normalization to same dynamic range, etc), they can be 
used to examine differences in variance between the two 
methods. The F distribution 27 was used to establish sig- 
nificant difference between endocardial  and epicardial  
variances. As shown in Table III the epicardial method 
had a significantly (P < .005) smaller variance (over a 
factor of  2 smaller). 

Evaluation o f  EF o n  the  Basis of  Epicardial Contours  

Table IV compares EF computed from endocardial  
boundaries (with equation 3) versus EF computed from 
epicardial  boundaries  (with equation 4). The first row 
compares the results on the basis of  the low noise origi- 
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Figure 9. (A) PET image: EF-endo (equation 3) versus EF-epi (equation 4); (B) EF-endo: PET versus PET-SPECT; 
(C) EF-epi: PET versus PET-SPECT. 

nal  PET image,  and the second  row cons iders  the no i sy  
PET-SPECT image.  

F r o m  row 1, one can see that  the me thod  o f  equat ion  
4 agrees  wi th  the t radi t ional  endoca rd i a l -based  m e t h o d  
when  the s igna l - to-noise  rat io  is h igh ( r  = 0.92). Hence ,  
for  less no isy  images ,  both  formulas  3 and 4 give essen-  
t i a l ly  the s ame  re su l t  (F igu re  9,A, c lo se r  un i ty  s lope  
would  be  poss ib le  by  pa ramete r  ad jus tment  for  ma tched  
filters).  The  second  row of  Table IV  compares  E F  resul ts  
on the basis  of  the no i sy  P E T - S P E C T  images .  A s  could  

be  expected,  the no isy  data  weaken  the l inear  agreement  
be tween  the two methods  o f  measurement .  Rows  3 and 4 
give an indicat ion with regard to which of  the two mea-  
su remen t s - - endoca rd ia l  or epicardial  is responsible  for  
the drop in r value observed between rows 1 and 2 - - t h a t  is, 
which of  the techniques is l ikely to have higher  variability. 
In rows 3 and 4 EFs  ob ta ined  f rom the low-no i se  PET 
images  and obtained f rom the noisy  PET-SPECT images  
are compared  by  use of  the same formula.  Ideally, a unity 
correlat ion coefficient should be obtained. Clearly, compu-  
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tation of EF on the basis of  the epicardial contour (equation 

4) is more  accurate for noisy images (ie, Figure 9,C, is more 
highly correlated than Figure 9,B) the change in r value 

from 0.76 to 0.92 is significant at P < .001). For noiseless 
images, either formula 3 or 4 may be used. 

C o m p a r i s o n  o f  A u t o m a t i c a l l y  O b t a i n e d  EFs w i t h  GBP 

Figure  10 shows the relat ionship be tween  the auto- 

mat ica l ly  compu ted  EF  m e a s u r e m e n t s  on  gated F D G -  
PET,  T c - S P E C T  and  T 1 - S P E C T  i m a g e s  and  EFs  
ob ta ined  f rom p lanar  GPB imaging .  Al l  the sets show a 
good  l inear  ag reemen t  (FDG-PET:  y = 5.89 + 1.21x, r = 

0.92, s e e  = 6.24, n = 19; T c - 9 9 m - S P E C T :  y = - 3 . 8 6  + 

1.06x, r = 0.88, s e e  = 7.78, n = 9; T1-201-SPECT:  y = 
17.8 + 0.81x, r = 0.77; s e e  = 7.44, n = 26). The  differ- 

ence  in  r values  be tween  F D G - P E T  and  T1-201 -SPECT 
were  s i gn i f i c an t  (P  < .001),  whe reas  those  b e t w e e n  

other  pairs were not. 

D I S C U S S I O N  

Only  recent ly have algori thms emerged for a fully 
automatic  exploi tat ion of  the intr insic  quanti tat ive data 

conta ined in gated tomographic  images.  One  of  the first 
publ ica t ions  for CT  images  was by  Dove  et a128 us ing  
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Fuzzy Hough transform combined with region growing 
and border detection techniques. Germano et al 5 present- 
ed an automatic algorithm for EF computation for Tc- 
99m-SPECT images. The images are thresholded and 
clustered to obtain a 3-dimensional binary mask of the 
left ventricular myocardium. Then an ellipsoid is fit to 
normal count profiles, which have been convolved with a 
feature detector, to obtain the heart boundaries. Recently 
the algorithms were extended to T1-201-SPECT. 6 
Nichols et al 4 have proposed another method to compute 
EF for Tc-99m-SPECT images on the basis of LV cen- 
tering, detection of end-diastolic and -systolic frames and 
endocardial segmentation on the basis of count searching 
thresholding values. Threshold values were derived 
empirically from the results obtained by experienced 
physicians. Abstracts of two more examples of automat- 
ic EF computation for Tc-99m-SPECT can be found in 
references 13 and 29 where the underlying algorithms 
seem to be related to references 5 and 4. We have 
described a semiautomatic algorithm that has a reduced 
dependency on empirically determined threshold values. 
A proper representation of the underlying image data and 
the use of stable contour tracking algorithms can meet 
such an objective. We used an elliptical coordinate trans- 
formation and track the contours with dynamic program- 
ming. The method does not require the myocardium to be 
of elliptical shape, however. The proposed method is suit- 
ed for noisy environments, but it can also be used for bet- 
ter quality images. Our experiments show that the auto- 
matic algorithm produces results that lie well within the 
uncertainty of a manual border tracing (Table I). The lin- 
ear agreement (ie, the r value, not the closeness of the 
slope to unity) between the algorithm and each physician 
is better than the interphysician comparison (P < .025). It 
suggests that each physician has a slightly different sub- 
jective perception of the correct boundary and that the 
algorithm tends to be an average of the manual results. 
For images with a high signal-to-noise ratio (PET), results 
for manual and automatic segmentation all agree very 
well, and the relative uncertainties are smaller in all cases. 

The algorithm seems to provide a better representation 
with respect to the true contour than the manual analysis, as 
shown by Table II. The root mean square residual value 
(see)  is significantly lower for the algorithm than for the 
human tracers. The relatively large see  values in Table II 
reflect the extremely noisy nature of the simulated SPECT 
images. A true T1-201-SPECT image sequence is likely to 
be of better quality than the simulated PET-SPECT 
sequence. Hence, we might expect at least similar or better 
correlation values and see  values for the automatic algo- 
rithm and the "truth." On the basis of these reflections and 
the given results, we can also speculate that EF computa- 
tion from T1-201-SPECT images indeed seems feasible. 

To overcome the effect of gaps in the myocardial 

signal, integration of most probable offsets of endocardial 
points to mid-myocardial points is often used. 5,30 The 
dynamic programming approach used here seems to deal 
successfully with this issue. In addition, we also deal with 
high noise in the signal by computation of EF on the basis 
of the epicardial contour, which constitutes a key result of 
our work. From our experimentation we conclude that EF 
based on the epicardial contours is more reliable for noisy 
images when using our algorithm. This EF method might 
also improve variability in other existing techniques. Note 
that results in Figure 9 demonstrate relative accuracy, and 
absolute accuracy is not studied. By adjusting the param- 
eters used for the matched filters, one could obtain closer 
absolute values (ie, better unity slope). The correct cali- 
bration of the filters could be obtained by ascertaining 
optimum contour offsets via comparison of values from 
independent methods such as x-ray contrast angiography. 

We have compared automatically computed EFs with 
EFs obtained from GBP images. Correlation factors for 
FDG-PET and Tc-99m-SPECT images, as well as see val- 

ues, are consistent with those found by references 4 and 5. 
Values for the T1-SPECT images are acceptable and encour- 
age bearing in mind the low signal-to-noise ratio of those 
images. Because the correlation value and see  values reflect 
uncertainties of both the automatically obtained results and 
the values obtained from GBP, we can expect a better corre- 
lation with respect to the true underlying data. The algo- 
rithm copes well with perfusion defects, because of the 
implied smoothness constraint of the dynamic contour 
tracking. In the transformed coordinate system, a perfusion 
defect of length l may only lead to a vertical drift of d </2 
• V y ,  where V y  is the smoothness constraint in pixels. 

The reader should be reminded that all comparisons of 
EFs made above were made with a manually selected valve 
plane. To test the ability of the method to produce robust 
myocardial contours (and therefore EFs), the same valve 
plane was used when comparing the endocardial method of 
equation 3 with the epicardial method of equation 4. By so 
doing, we were able to compare the relative variabilities of 
the two EF methods isolated from other sources of vari- 
ability. It should be noted that to make use of the proposed 
method in clinical practice, one would presumably use any 
of a number of commercially used valve plane selection 
methods.4, 5 It should also be noted that the ability of this 
proposed method to measure absolute volumes has not 
been tested and would, as with all previously described 
methods, depend not only on the accuracy of the contour 
selection, but also on the accuracy of valve plane selection. 

CONCLUSIONS 

We have presented new image processing methods 
for reliable contour segmentation, as well as an alternative 
method for EF computation, from gated PET, Tc-SPECT, 
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and T1-SPECT images. The segmentation uses an ellipti- 
cal coordinate system to facilitate contour enhancement 
and contour detection but does not require an elliptically 
shaped heart. The actual segmentation is performed by 
dynamic programming, which results in very efficient 
computation and produces smooth and connected con- 
tours. The segmentation is visually accurate in practically 
all of the images analyzed and appears to produce reliable 
values of EF even for noisy images. An important feature 
of the algorithm is that there are few parameters, and these 
do not require modification for different image modalities 
or different image qualities (eg, noise or resolution). We 
have proposed an approach for EF computation on the 
basis of both the epicardial and endocardial contour. It 
relies on the physiological constraint of constant myocar- 
dial volume. Our experiments show that this EF method 
produces an excellent correlation with the traditional 
method of EF computation for images with high signal- 
to-noise ratios and reduced variance for images with low 
signal-to-noise ratio. This EF method could easily be 
adapted for use in other existing techniques. 
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