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ABSTRACT

We propose an amplitude-phase representation of the dual-tree complex wavelet transform (DT-CWT) which
provides an intuitive interpretation of the associated complex wavelet coefficients. The representation, in partic-
ular, is based on the shifting action of the group of fractional Hilbert transforms (fHT) which allow us to extend
the notion of arbitrary phase-shifts beyond pure sinusoids. We explicitly characterize this shifting action for a
particular family of Gabor-like wavelets which, in effect, links the corresponding dual-tree transform with the
framework of windowed-Fourier analysis.

We then extend these ideas to the bivariate DT-CWT based on certain directional extensions of the fHT. In
particular, we derive a signal representation involving the superposition of direction-selective wavelets affected
with appropriate phase-shifts.

Keywords: fractional Hilbert transform, dual-tree complex wavelet transform, amplitude-phase factors, Gabor
wavelets analysis.

1. INTRODUCTION

1.1 The dual-tree transform

WE begin by briefly reviewing the fundamentals of the dual-tree transform. The transform involves a pair of
wavelet bases with a one-to-one ‘quadrature’ correspondence between the basis elements.1,2 Specifically,

one considers a primary wavelets basis {ψi,k}(i,k)∈Z2 of L2(R) generated through the dilation-translations of a
single prototype ψ(x); that is, ψi,k(x) = Ξi,kψ(x) where Ξi,kf(x) = 2i/2f(2ix − k) denotes the (normalized)
dilation-translation operator corresponding to integers i and k. The highlight of the transform is then the con-
struction of a secondary wavelet basis {ψ′

i,k}(i,k)∈Z2 having the correspondence ψ′
i,k(x) = H ψi,k(x), where H

denotes the Hilbert transform (HT) operator:

H f(x) F←→ −j sign(ω)f̂(ω). (1)

The HT acts as a quadrature transform that takes cos(ω0x) into sin(ω0x), and as an orthogonal transform on
L2(R) in the sense that 〈f,H f〉 = 0 for all f(x) in this space. Though this is not at all obvious a priori, it turns
out (as suggested by the notation) that the secondary wavelet basis can also be realized through the dilations-
transations of the HT counterpart ψ′(x) = H ψ(x). This, in fact, is possible thanks to certain fundamental
invariances enjoyed by the HT operator. In particular, following definition (1), one can readily verify that the HT
commutes with translations and dilations; in particular,

H Ξi,k = Ξi,kH ; (2)

and that it is unitary:
‖H f‖L2 = ‖f‖L2 (f ∈ L2(R)). (3)

It is then easily deduced that the functions ψ′
i,k(x) = Ξi,kψ

′(x) indeed constitute a wavelet basis of L2(R), and
that the correspondence ψ′

i,k(x) = H ψi,k(x) holds for every integer i and k.3
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The application of the transform involves the simultaneous analysis of a signal f(x) in L2(R) in terms of the
quadrature wavelet bases {ψi,k} and {ψ′

i,k}. In particular, one considers the wavelet expansions

f(x) =

{∑
(i,k)∈Z2 ai[k]ψi,k(x),∑
(i,k)∈Z2 bi[k]ψ′

i,k(x),
(4)

where the expansion coefficients in (4) are specified by the dual wavelet bases {ψ̃i,k} and {ψ̃′
i,k} through the

projections
ai[k] = 〈f, ψ̃i,k〉, and bi[k] = 〈f, ψ̃′

i,k〉. (5)

In effect, this allows one to identify the complex wavelet coefficients ci[k] = (ai[k]+ jbi[k])/2, and the associated
amplitude-phase factors |ci[k]| and arg(ci[k]) (the use of the factor 1/2 will be justified shortly). As a consequence
of (2) and (3), the dual wavelet bases can also be generated through the dilations-translations of two dual
wavelets, ψ̃(x) and ψ̃′(x), that form a HT pair as well.

1.2 Multiresolution Gabor-like transforms
A framework for constructing HT-pairs of wavelets (within Mallat’s multiresolution framework) was recently
proposed based on a spectral factorization result for scaling functions.3 In particular, it was shown that a mul-
tiresolution form of Gabor-like analysis could be achieved within the framework of the dual-tree transform. This
was founded on the two vital observations. The first one was that the extended (α, τ) family of B-spline wavelets
ψ(x;α) (indexed by the approximation order α + 1) is closed with respect to the action of the HT operator (the
corresponding discrete wavelet transform has an efficient FFT-based implementation). Secondly, it was shown
that the complex spline wavelet Ψ(x) = ψ(x;α) + jH ψ(x;α) asymptotically converges to a Gabor function:

Ψ(x;α) ∼ ϕ(x) exp
(
jω0x+ ξ0

)
(α→ +∞),

where ϕ(x) is a Gaussian window, and ω0, ξ0 are appropriate modulation parameters. As a consequence, a
Gabor-like transform, involving the computation of the sequence of projections

f(x) 
→ 1
2
〈f(x),Ξi,kΨ(x;α)〉 (i, k ∈ Z) (6)

with the dilates-translates of the Gabor-like wavelet Ψ(x;α), could be realized using the dual-tree transform
corresponding to the spline wavelets ψ(x;α) and H ψ(x;α) (sufficiently large α). These ideas were also extended
for the realization of a direction-selective Gabor-like transform.

1.3 Present Contribution
In this paper, we provide a characterization of the dual-tree transform, and the Gabor-like transforms in particu-
lar, from the perspective of multiresolution windowed-Fourier analysis. In particular, we link the multiresolution
wavelet-framework of the former with the intuitive amplitude-phase representation associated with the latter.
Complex wavelets, derived from the combination of non-redundant wavelet bases, provide an attractive means
of encoding the relative signal “displacements” using the phase relation between the components. The DT-CWT
is a particular instance where the components are related through the HT.

In §2, we derive a representation of the dual-tree transform using the group of fractional Hilbert transform
(fHT) operators:

Hτ = cos(πτ) I − sin(πτ) H (τ ∈ R) (7)

(I is the identity operator). In particular, we are able to interpret the phase factors associated with the dual-
tree transform in terms of the action of this group. However, it is the fundamental invariances (2) and (3)
inherited by this extended family of operators that play a decisive role in establishing the windowed-Fourier-like
representation (cf. (11)).

The proposed windowed Fourier-like representation admits a straightforward extension to the bivariate set-
ting by introducing an appropriate multi-dimensional extensions of the HT. In particular, we arrive at a rep-
resentation (cf. (15)) involving the superposition of the direction-selective synthesis wavelets affected with
appropriate phase-shifts. This provides an explicit understanding of the phase-shift action of the fdHT opera-
tors for a the particular family of 2D Gabor-like wavelets derived through the tensor products of 1D Gabor-like
wavelets.
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2. DUAL-TREE GABOR WAVELET ANALYSIS

2.1 Signal representation: interpretation of the amplitude-phase factors

Our objective is to derive a representation of f(x) in terms of the amplitude-phase factors ci[k] = |ci[k]|ejφi[k].
Clearly, the transformation

f(x) 
→ {
ci[k]

}
(i,k)∈Z2

constitutes a overcomplete representation of f(x). In particular, given the coefficients ci[k], there exists non-
unique ways of reconstructing the input f(x). We consider the simplest inversion procedure involving the in-
version of both the forward transforms, as in (4), followed by the averaging of the reconstructed signals. In
particular, by combining the expansions in (4) and by invoking the dilation-translation invariance of the fHTs,
we arrive at the following representation:

f(x) =
1
2

∑
(i,k)∈Z2

(
ai[k]ψi,k(x) + bi[k]ψ′

i,k(x)
)

=
∑

(i,k)∈Z2

|ci[k]|Hφi[k]/π

{
ψi,k(x)

}
=

∑
(i,k)∈Z2

|ci[k]| Ξi,k

{
ψ(x; τi[k])

}
. (8)

Here the synthesis wavelet ψ(x; τi[k]) is derived from the mother wavelet ψ(x) through the action the fHT cor-
responding to the shift τi[k] = φi[k]/π. The unitary nature of the fHT ensures that these fractionally-shifted syn-
thesis wavelets have identical norms. In particular, while the amplitude |ci[k]| indicates the strength of wavelet
correlation, the local signal displacement gets encoded in the shift τi[k] which specifies the most “appropriate”
wavelet within the family {Hτψi,k}τ∈R.

2.2 Characterization of the Gabor-like transform

It turns out that the shifted wavelets ψ(x; τi[k]) in (8) can be explicitly characterized when ψ(x) is a (real)
Gabor-wavelet,

ψ(x) = ϕ(x) cos
(
ω0x+ ξ0

)
. (9)

This formula describes the asymptotic form of the Gabor-like wavelet Ψ(x;α) in (6). For reasons that will be
evident shortly, we choose to flip the roles of the analysis and synthesis wavelets: we will analyze the signal
using the dual complex wavelet Ψ̃(x;α) = ψ̃(x;α) + jψ̃′(x;α), while the Gabor-like wavelet Ψ(x;α) will be used
for reconstruction.

If the window function ϕ(x) is bandlimited to [−Ω,Ω] with Ω < ω0, we can make precise statements on the
dual-tree representation in (8). To do so, we will need the following result:

PROPOSITION 2.1. Let ϕ(x) in (9) be bandlimited to (−ω0, ω0). Then

Hτ

{
ϕ(x) cos(ω0x)

}
= ϕ(x) cos(ω0x+ πτ). (10)

That is, the fHT acts on the phase of the modulating sinusoid while preserving the Gaussian envelope. In
particular, we can then rewrite (8) as

f(x) =
∑

(i,k)∈Z2

fixed window︷ ︸︸ ︷
ϕi,k(x) Ξi,k

{ variable amp−phase oscillation︷ ︸︸ ︷∣∣ci[k]∣∣ cos
(
ω0x+ ξ0 + πτi[k]

) }
(11)

where ϕi,k(x) = Ξi,kϕ(x) denotes the (fixed) Gaussian-like window at scale i and translation k. This provides an
explicit interpretation of the parameter τi[k] as the phase-shift applied to the modulating sinusoid of the wavelet.
In effect, the oscillation is shifted to best fit the underlying signal singularities/transitions while the localization
window ϕi,k(x) is kept fixed. In this light, one can interpret the associated dual-tree analysis as a multiresolution
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form of the windowed-Fourier analysis, with the fundamental difference that, instead of analyzing the signal at
different frequencies, it resolves the signal over different scales (or resolutions).

Figure 1 shows quadrature pairs (Hτψ(x;α),Hτ+1/2ψ(x;α)) of Gabor-like spline wavelets corresponding to
different τ . Each of the pairs are localized within a common Gaussian-like window, and the modulating oscilla-
tions are driven to a relative quadrature through the action of the pair (Hτ ,Hτ+1/2).

3. BIVARIATE EXTENSION

The amplitude-phase representation derived in §2 can also be extended to the 2D setting where the dual-tree
wavelets exhibit better directional selectivity than the conventional tensor-product (separable) wavelets.4

3.1 Directional HT pairs of wavelets
We briefly recall the construction framework for the bivariate DT-CWT based on the tensor-products of one-
dimensional analytic wavelets.3 Specifically, let ϕ(x) and ϕ′(x) denote the scaling functions associated with the
analytic wavelet ψa(x) = ψ(x) + jψ′(x), where ψ′(x) = H ψ(x). The 2D dual-tree construction then hinges on
the identification of four separable multiresolutions of L2(R2) that are naturally associated with the two scaling
functions: the approximation subspaces V (ϕ) ⊗ V (ϕ), V (ϕ) ⊗ V (ϕ′), V (ϕ′) ⊗ V (ϕ) and V (ϕ′) ⊗ V (ϕ′), and
their multiscale counterparts. The corresponding separable wavelets – the ‘low-high’, ‘high-low’ and ‘high-high’
wavelets – are specified by:

ψ̄1(x) = ϕ(x)ψ(y), ψ̄4(x) = ϕ(x)ψ′(y),
ψ̄2(x) = ψ(x)ϕ(y), ψ̄5(x) = ψ(x)ϕ′(y),
ψ̄3(x) = ψ(x)ψ(y), ψ̄6(x) = ψ(x)ψ′(y),

ψ̄7(x) = ϕ′(x)ψ(y), ψ̄10(x) = ϕ′(x)ψ′(y),
ψ̄8(x) = ψ′(x)ϕ(y), ψ̄11(x) = ψ′(x)ϕ′(y),
ψ̄9(x) = ψ′(x)ψ(y), ψ̄12(x) = ψ′(x)ψ′(y). (12)

The dual wavelets ˜̄ψ1(x), . . . , ˜̄ψ12(x) are similarly defined in terms of ψ̃(x) and ψ̃′(x) (here x = (x, y) denotes
the planar coordinates). As far as the identification of the complex wavelets is concerned, the main issue is the
poor directional selectivity of the ‘high-high’ wavelets along the diagonal directions. This problem can, however,
be mitigated by appropriately exploiting the one-sided spectrum of the analytic wavelet ψa(x), and, in effect, by
appropriately combining the wavelets in (12). In particular, the complex wavelets specified by

Ψ1(x) = ψa(x)ϕ(y) = ψ̄2(x) + jψ̄8(x),
Ψ2(x) = ψa(x)ϕ′(y) = ψ̄5(x) + jψ̄11(x),
Ψ3(x) = ϕ(x)ψa(y) = ψ̄1(x) + jψ̄4(x),
Ψ4(x) = ϕ′(x)ψa(y) = ψ̄7(x) + jψ̄10(x),

Ψ5(x) =
1√
2
ψa(x)ψa(y) =

(
ψ̄3(x)− ψ̄12(x)√

2

)
+ j

(
ψ̄6(x) + ψ̄9(x)√

2

)
,

Ψ6(x) =
1√
2
ψ∗

a(x)ψa(y) =
(
ψ̄3(x) + ψ̄12(x)√

2

)
+ j

(
ψ̄6(x)− ψ̄9(x)√

2

)
, (13)

exhibit the desired directional selectivity along the primal orientations θ1 = θ2 = 0, θ3 = θ4 = π/2, θ5 = π/4,
and θ6 = 3π/4, respectively.3 The dual complex wavelets Ψ̃1(x), . . . , Ψ̃6(x) are specified in an identical fashion
using the dual wavelets ˜̄ψp(x), and are oriented along the same set of directions.

Akin to the HT correspondence, the complex wavelet components are related through the directional HT
(dHT):

Hθf(x) F←→ −jsign(uT
θ ω)f̂(ω) (0 � θ < π), (14)
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(a) τ = −1 (b) τ = − 3
4

(c) τ = − 1
4

(d) τ = 0 (e) τ = 1
3

(f) τ = 1
2

Figure 1. Quadrature pairs of Gabor-like spline wavelets obtained by the action of fHT group. Blue (solid line): Hτψ(x; 8),
Red (broken line): Hτ+ 1

2
ψ(x; 8), and Black (solid line): Common localization window given by |Hτψ(x; 8) + jHτ+ 1

2
ψ(x; 8)|

(http://dx.doi.org/10.1117/12.824863.1).

where uθ = (cos θ, sin θ) denotes the unit vector along the direction θ. In particular, we have the correspondences

Im(Ψ�) = Hθ�
Re(Ψ�) (� = 1, . . . , 6),

so that, by denoting the real component of the complex wavelet Ψ�(x) by ψ�(x), we have the convenient repre-
sentation Ψ�(x) = ψ�(x) + jHθ�

ψ�(x) that is reminiscent of the 1D analytic representation.

3.2 Directional amplitude-phase representation

Let us denote the dilated-translated copies of the each of the six analysis wavelets Ψ̃�(x) by Ψ̃�,i,k(x), so that

Ψ̃�,i,k(x) = Ξi,kΨ̃�(x) (i ∈ Z,k ∈ Z2),

where Ξi,k is specified by Ξi,kf(x) = 2if(2ix− k). The corresponding dual-tree transform involves the analysis
of a finite-energy signal f(x) in terms of the sequence of projections

c�i [k] =
1
4
〈
f, Ψ̃�,i,k

〉
.

The representation of f(x) in terms of the analysis coefficients c�i [k] is based on the following fractional extension
of the directional HT operator:

Hθ,τ = cos(πτ) I − sin(πτ) Hθ (τ ∈ R).

These operators allow us to capture the notion of direction-selective phase-shifts. The key properties of the fHT,
which played a decisive role in establishing the representation for the 1D counterpart, carry over directly to the
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fractional directional HT (fdHT) operators: they are invariant to translations and dilations and are unitary. In
particular, based on the above properties, we derive the representation

f(x) =
∑

(�,i,k)

∣∣c�i [k]
∣∣ Ξi,k

{
ψ�

(
x; τ �

i [k]
)}

(15)

involving the superposition of direction-selective synthesis wavelets affected with appropriate phase-shifts.5 The
wavelets ψ�

(
x; τ �

i [k]
)

are derived from the reference wavelet ψ�(x) through the action of fdHT, corresponding to
the direction θ� and shift τ �

i [k] = arg(c�i [k])/π As in the 1D setting, further insight into the above representation
is obtained by considering wavelets resembling windowed plane waves.

3.3 Directional Gabor-like analysis

Akin to the 1D setting, further insight into the above representation is obtained by considering wavelets resem-
bling windowed plane waves. A distinctive feature of the dHT, that comes as a direct consequence of (14), is its
phase-shift action in relation to plane-waves: it transforms the directional cosine cos(uT

θ x) into the directional
sine sin(uT

θ x). Moreover, what turns out to be even more crucial in the current context, is that the above action
is preserved for windowed plane waves of the form

ϕ(x) cos(ΩuT
θ x). (16)

In particular, as a straightforward directional extension of (10), we have the following generalization for the
fractional extensions:

PROPOSITION 3.1. Suppose that ϕ(x) in (16) is bandlimited to the disk {ω : ||ω|| < Ω}. Then we have that

Hθ,τ

{
ϕ(x) cos(ΩuT

θ x)
}

= ϕ(x) sin(ΩuT
θ x + πτ). (17)

Thus, the fdHT acts only on the phase of the oscillation while the window remains fixed. In particular, if the
dual-tree wavelets are of the form ψ�(x) = ϕ�(x) cos

(
Ω�u

T
θ�

x
)
, we can then rewrite (15) as

f(x) =
∑

(�,i,k)

fixed window︷ ︸︸ ︷
ϕ�,i,k(x) Ξi,k

{ variable amp−phase directional wave︷ ︸︸ ︷∣∣c�i [k]
∣∣ cos

(
Ω�u

T
θ�

x + πτ �
i [k]

) }
, (18)

where ϕ�,i,k(x) represent the dilated-translated copies of ϕ�(x). The above representation explicitly highlights
the role of τ �

i [k] as a “scale-dependent” measure of the local signal displacements along certain preferential
directions. This is the scenario for the spline-based Gabor-like transforms3 where the dual-tree wavelets asymp-
totically converge to directional Gabor functions.

4. CONCLUDING REMARKS

We presented an amplitude-phase representation of the dual-tree transform in general, and a windowed-Fouier-
like characterization of the Gabor-like transforms in particular. The signal representation was centered around
one crucial construction, namely the HT correspondence between the wavelet bases. Indeed, the identification of
the fHT-transformed wavelets in (11) followed as a direct consequence of this particular relation; the subsequent
developments were then based on two crucial properties of the fHT, namely

• its intrinsic invariances with respect to translations, dilations and norm-evaluations, and

• its particular phase-shifting action on the Gabor wavelet.

These observations could be of potential interest in applications involving the dual-tree transform, particularly
signal denoising, where a rigorous mathematical model linking the reconstructed signal to the processed complex
wavelet coefficients is desirable.
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Appendix: Proof of Proposition 2.1

Proof. The result follows directly from definition (7) and the following action of the HT:

H {ϕ(x) cos(ω0x)} = ϕ(x) sin(ω0x). (19)

Indeed, we see that

Hτ

{
ϕ(x) cos(ω0x)

}
= cos(πτ) ϕ(x) cos(ω0x)− sin(πτ) H {ϕ(x) cos(ω0x)}
= cos(πτ) ϕ(x) cos(ω0x)− sin(πτ) ϕ(x) sin(ω0x)
= ϕ(x) cos(ω0x+ πτ).

To establish (19), we note that the Fourier transform∗ of ϕ(x) cos(ω0x) is given by π(ϕ̂(ω − ω0) + ϕ̂(ω + ω0)).
Following definition (1), we then have that

H {ϕ(x) cos(ω0x)} F←→− j sign(ω) · π(ϕ̂(ω − ω0) + ϕ̂(ω + ω0)
)

= −jπ(ϕ̂(ω − ω0)− ϕ̂(ω + ω0)
)

F←→ ϕ(x) sin(ω0x),

since −jπ(ϕ̂(ω−ω0)− ϕ̂(ω+ω0)) is the Fourier transform of ϕ(x) sin(ω0x). Note that, in going from the first to
the second step, we have used the crucial fact that the supports of ϕ(ω+ω0) and ϕ(ω−ω0) are entirely restricted
to the half-lines {ω < 0} and {ω > 0}, respectively.
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∗we use f̂(ω) =
R
R
f(x) exp (−jωx)dx as the definition of the Fourier transform of f(x).

Proc. of SPIE Vol. 7446  74460T-7

Downloaded from SPIE Digital Library on 13 Oct 2009 to 128.178.48.127. Terms of Use:  http://spiedl.org/terms


