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Abstract

It is well-known that the Gaussian functions and, more generally, their modulations-translations
(the Gabor functions) have the unique property of being optimally localized in space and
frequency in the sense of Heisenberg’s uncertainty principle. In this thesis, we address the
construction of complex wavelets modeled on the Gabor function, and smoothing kernels
based on the Gaussian. We proceed by relaxing the exact form of the Gaussian and Gabor
function, and by approximating them using spline functions. In particular, we construct a
family of spline wavelets, termed Gabor-like wavelets, which provide arbitrary close approx-
imations of the Gabor function. On the other hand, we introduce a family of compactly
supported box splines to approximate the Gaussian, both isotropic and anisotropic. The
attractive feature of these spline wavelets and kernels is that we are able to develop fast and
efficient algorithms for implementing the associated transforms.

The Gabor-like wavelet is obtained within the framework of multiresolution analysis
by combining Hilbert transform pairs of B-spline wavelets. To begin with, we provide a
rigorous understanding of why the Hilbert transform goes well with wavelets. We show
that at the heart of this is the characteristic vanishing-moment property of wavelets and
certain fundamental invariances of the Hilbert transform. The former allows us to ensure
that the Hilbert transform (which is non-local) of a localized wavelet is again well-localized
provided that it has sufficient number of vanishing moments, while the latter allows us to
seamlessly integrate it into the multiresolution framework of wavelets. Guided by these facts,
we formulate a general recipe for constructing a pair of wavelet bases that form a Hilbert
transform pair. Using this recipe, we are able to identify a pair of B-spline wavelets that are
related through the Hilbert transform. We show that the complex wavelet derived from this
pair converges to a Gabor function as its order gets large. We next extend the construction
to higher dimensions using the directional Hilbert transform and tensor-products wavelets.
This results in a system of complex wavelets that closely resemble the directional Gabor
functions. We develop an efficient numerical algorithm for implementing the associated
complex wavelet transforms on finite periodic data.

We next identify the complete family of transforms which share the fundamental in-
variances of the Hilbert transform. Based on this family of transforms and its particular
properties, we are able to provide an amplitude-phase interpretation of the signal represen-
tation associated with the Gabor-like wavelet transform. This allows us to understand the
significance of the amplitude and phase information associated with the transform.

As an application, we develop a coarse-to-fine stereo-matching algorithm that does
dynamic programming on the sub-sampled Gabor-like wavelet pyramid instead of the raw
pixel intensities. The crucial feature of our pyramid was that it provides near translation-
invariance at the cost of moderate redundancy. The translation-invariance is absolutely
essential for encoding the local spatial translations between the stereo pair. Based on the
particular Gabor-like form of our wavelets, we also provided a mathematical explanation
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of the near translation-invariance of our pyramid. From a computational standpoint, we
show that a significant reduction of the run time is achieved in comparison with the standard
dynamic programming algorithm.

In the second half of the thesis, we introduce a particular bivariate box spline termed
the radially-uniform box spline. As an application of the Central Limit Theorem, we show
that it converges to a Gaussian as its order gets large. For a fixed order, we show how the
parameters of the box spline can be tuned to approximate a fixed anisotropic Gaussian. In
particular, we develop a simple root-finding algorithm for controlling the anisotropy of the
elliptical box splines.

We next investigate the efficient realization of space-variant (or non-convolution) Gaus-
sian filters using these box splines. The realization of even the simple convolution Gaussian
filter is known to be computationally challenging, particularly when the size of Gaussian is
large. The number of computations required per pixel for a direct implementation of the
filter scales linearly with the size of the filter. We demonstrated that it is possible to filter
an image with Gaussian-like box splines of varying size, elongation and orientation using
a fixed number of computations per pixel (constant-time implementation). The associated
algorithm is easy to implement and uses simple pre-integrations and local finite-differences.

As an application of the Gaussian-like box splines and the associated filtering algorithm,
we develop two algorithms for space-variant filtering. The first of these is inspired by
anisotropic Gaussian diffusion. The space-variance in this case is in terms of the size, elonga-
tion, and orientation of the box splines, which are controlled using the local image features.
The other scheme is based on a space-variant form of the Gaussian bilateral filter. The spatial
adaptability in this case was in terms of the size of the spatial Gaussian filter. The highlight is
that we are able to develop a constant-time algorithm for implementing the bilateral filter by
approximating the variable spatial filter using isotropic box splines, and by approximating
the fixed range filter (locally) using a class of shiftable kernels. We demonstrate their usage by
developing smoothing algorithms for signal-adaptive denoising of images. As an application
in a different direction, we develop box spline filters resembling the Laplacian-of-Gaussian.
Using this particular detector, and by appropriately modifying the basic filtering algorithm,
we develop a fast template-matching algorithm for the detection of bright cells and nuclei in
fluorescence images.

Keywords

Gaussian, Gabor function, Optimal localization, Complex wavelets, Hilbert transform,
Invariances, Multiresolution analysis, Shiftability, Amplitude-phase representation, Stereo
matching, Space-variant filter, Box splines, Gaussian diffusion, Bilateral filter, Cell detection,
Constant-time algorithm, O(1) complexity.



Résumé

Les fonctions Gaussiennes, et plus généralement les versions modulées et décalées de celles-ci
(i.e., fonctions de Gabor), sont connues notamment en vertu de leur propriété unique d’être
optimalement localisées dans les domaines spatial et fréquentiel, au sens du principe d’in-
certitude d’Heisenberg. Dans le cadre de cette thèse, nous considérons ainsi la construction
d’ondelettes complexes et de noyaux de lissage basés sur les fonctions de Gabor et sur les
Gaussiennes, respectivement. Pour ce faire, nous relaxons la forme exacte de ces fonctions et
les approximons par des splines. Spécifiquement, nous construisons d’une part une famille
d’ondelettes de type spline, appelées ondelettes ‘à la Gabor’, qui fournissent une approxima-
tion contrôlable des fonctions éponymes. D’autre part, nous introduisons des familles de
splines ‘box’ à support compact, aussi bien isotropes qu’anisotropes, permettant d’approxi-
mer la Gaussienne. L’intérêt de ces ondelettes et noyaux de type spline réside entre autres
dans la possibilité de développement d’algorithmes rapides implémentant les transformées
associées.

Dans le cadre de l’analyse multi-résolution, l’ondelette ‘à la Gabor’ est obtenue en combi-
nant des paires de Hilbert d’ondelettes B-splines. Tout d’abord, nous proposons une explica-
tion rigoureuse quant à la compatibilité de la transformée de Hilbert avec les transformées
en ondelettes. Nous montrons qu’au coeur de cette compatibilité résident les moments nuls
spécifiques aux ondelettes, ainsi que certaines invariances fondamentales de la transformée
de Hilbert. Etant donné une fonction d’ondelette localisée comportant un nombre suffisant
de ces moments nuls, il est ainsi possible de garantir que sa transformée de Hilbert (dont
l’effet associé est généralement non-local) sera également localisée. De plus, les invariances
susmentionnées impliquent de par leur nature l’intégration directe de ladite fonction dans
la représentation multi-résolution propre aux ondelettes. Forts de ces résultats, nous déve-
loppons une méthodologie globale permettant de construire une paire de bases d’ondelettes
formant une paire de Hilbert. Ce cadre nous permet de définir une paire d’ondelettes B-spline
liées par la transformée de Hilbert. Nous montrons qu’une ondelette complexe ainsi obtenue
converge vers une fonction de Gabor lorsque son ordre croît. Puis, nous étendons cette
construction unidimensionnelle aux dimensions supérieures en utilisant la transformée de
Hilbert directionnelle et les produits tensoriels d’ondelettes. Les ondelettes complexes résul-
tantes forment un système d’analyse proche des fonctions de Gabor directionnelles. Nous
développons un algorithme numérique efficace implémentant les transformées associées sur
des données finies et périodiques.

Nous identifions ensuite la famille complète de transformées partageant les invariances
fondamentales de la transformée de Hilbert. Basés sur cette famille et ses propriétés propres,
nous sommes à même de fournir une interprétation de la représentation du signal en termes
de phase et d’amplitude qui soit associée à la transformée en ondelettes ‘à la Gabor’. Cela
nous permet ainsi de donner une signification aux valeurs d’amplitude et de phase résultant
de la transformée en ondelettes complexes.
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En tant qu’application de ces méthodes, nous développons un algorithme hiérarchique
(‘coarse-to-fine’) de correspondance stéréo. Son fonctionnement repose sur une programma-
tion dynamique utilisant une pyramide ‘à la Gabor’ sous-échantillonnée plutôt que l’intensité
brute des pixels. La caractéristique clef de notre pyramide est sa quasi-invariance par transla-
tion en dépit de sa faible redondance ; l’invariance par translation étant indispensable pour
encoder les translations spatiales locales entre les paires d’images stéréo. Nous fournissons de
plus une explication mathématique de la quasi-invariance par translation de notre pyramide
en se basant sur la forme ‘à la Gabor’ de nos ondelettes. D’un point de vue computationnel,
nous montrons que le temps de calcul pour notre méthode est substantiellement réduit par
rapport à l’algorithme standard de programmation dynamique.

Dans la seconde moitié de cette thèse, nous introduisons une forme bivariée de la spline
‘box’ que nous appelons spline ‘box’ radialement uniforme. Appliquant le théorème central
limite, nous prouvons que cette dernière converge vers une Gaussienne lorsque son ordre
croît. Nous montrons en outre comment les paramètres d’une spline ‘box’ d’ordre donné
peuvent être ajustés afin d’approximer une fonction Gaussienne anisotrope donnée. En
particulier, nous développons un algorithme simple de recherche de racines ayant pour but
de contrôler l’anisotropie des splines ‘box’ elliptiques.

A partir de ces splines ‘box’, nous nous intéressons ensuite à la construction de filtres
Gaussiens variables spacialement (i.e., non-convolutifs). L’application d’un filtre Gaussien -
fût-il convolutif - est notoirement coûteuse en temps de calcul, surtout lorsque la taille du
filtre en question est importante. Dans une implémentation directe de ce filtre, le nombre
correspondant de calculs par pixel est en effet proportionnel à cette taille. Nous démontrons
cependant qu’une opération de filtrage utilisant des splines ‘box’ de type Gaussien ne nécessite
qu’un nombre fixe d’opérations par pixel (implémentation à temps constant), et ce pour une
taille, une élongation et une orientation variables. L’algorithme associé est aisé à implémenter ;
il utilise de simples pré-intégrations et différences finies locales.

Ces splines ‘box’ de type Gaussien ainsi que l’algorithme de filtrage associé nous ont
conduit au développement de deux algorithmes effectuant un filtrage spatialement variable. Le
premier de ces algorithmes s’inspire du phénomène de diffusion Gaussienne anisotrope. Dans
ce contexte, la variabilité spatiale s’exprime en termes de taille, d’élongation et d’orientation
des splines ‘box’, ces paramètres s’adaptant aux caractéristiques locales des images. Le second
algorithme est basé sur une extension spatialement variable du filtre Gaussien bilatéral. Dans
ce cas-ci, la variabilité spatiale est paramétrée par la taille du filtre Gaussien. Soulignons que
notre algorithme de filtrage bilatéral a pour point fort d’être à temps constant. Dans ce but,
le filtre spatialement variable est approximé par des splines ‘box’, tandis que le filtre fixe de
gamme d’intensité est (localement) approximé à l’aide d’une classe de noyaux spatialement
invariants. Nous illustrons l’utilisation de ces méthodes en développant des algorithmes de
lissage appliqués au débruitage adaptatif d’images. En tant qu’application distincte, nous
construisons des filtres splines ‘box’ approchant le Laplacien d’une Gaussienne. En utilisant
ce détecteur particulier, et en modifiant en conséquence l’algorithme de filtrage initial, nous
développons un algorithme rapide de correspondance de modèle que nous utilisons pour la
détection de cellules et de noyaux dans des images de fluorescence.

Mots-clé

fonction Gaussienne, fonction de Gabor, localisation optimale, ondelettes complexes, trans-
formée de Hilbert, invariances, analyse multi-résolution, ‘shiftability’, représentation en
amplitude-phase, correspondance stéréo, filtrage spacialement variable, splines ‘box’, dif-
fusion Gaussienne, filtre bilatéral, détection de cellules, algorithme en temps constant, la
complexité O(1).
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General notation

We collect the general notations and terminology used in the thesis.
The set of integers and real numbers are denoted by Z and R, respectively. We

use bold letters to distinguish vectors from scalars. For example, f (x) denotes a
function of the real-valued variable x, while f (x) is a function of the multivariate
x = (x1, . . . , xd ) which lives in Rn . We use round brackets (·) for continuous
variables, and square brackets [·] for discrete variables. For example, f [n] will
denote a sequence defined on the integers, while f [n] will typically be defined on
Zn . We use bold capital letters to represent matrices, while their entries will either
be denoted by subscripted lower case letters, e.g., A= (ai , j ), or with brackets, e.g.,
B= (B(i , j )). We denote the identity matrix by I.

We use j to denote the unit
p
−1. The conjugate of a complex number z is

denoted by z∗. The real and imaginary components of z are denoted by Re(z)
and Im(z), while the modulus and argument (phase) are denoted by |z | and arg(z)
(or ∠z). We use zγ to denote the γ -th power of some complex number z, which
is defined to be |z |γ e jγ arg(z) where −π < arg(z) < π is the principal argument
of z. On this principal branch, the basic identity (z1z2)

γ = zγ1 zγ2 holds only if
arg(z1)+ arg(z2) ∈ (−π,π).

We use f̂ (ω) to denote the Fourier transform of a function f (x) on Rn . This is
defined by

f̂ (ω) =
∫

Rn
f (x)exp (− jωTx) d x (ω ∈Rn)

whereωTx =
∑n

i=1ωi xi is the inner-product between the frequency variableω =
(ω1, . . . ,ωd ) and the space variable x = (x1, . . . , xd ). We suppress the domain of an
integral (or summation) if this is obvious from the context.

We use f (· − s) to denote the function obtained by translating f (x) by s. The
convolution of functions f (x) and g (x) is given by

( f ∗ g )(x) =
∫

f (s)g (x − s)d s.

We often simply write this as f ∗ g (x). The notation þN
k=1

fk (x) is used to
denote the convolution of a collection of functions f1(x), . . . , fN (x). The order of
the convolutions will be immaterial for the functions of interest.
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We denote the first derivative of f (x) by one of the following symbols: f ′(x), D f (x),
or d f (x)/d x. In general, the k-th derivative is denoted by f (k)(x). We say that
f (x) is n-times continuously differentiable if all its derivatives up to order n exists
and are continuous. For a multivariate function f (x) = f (x1, . . . , xn), the partial
derivative along xi is often represented by ∂i f (x). A function f (x) is said to be
Lipschitz continuous (or simply Lipschitz) if there exists a constant K such that

| f (x)− f (y)| ≤K |x − y| (x, y ∈R).

The smallest such constant is the Lipschitz norm of f (x) and is denoted by ‖ f ‖Lip.
We write f (x) =O(g (x)), x ∈A, to signify that | f (x)| ≤C g (x) for all x ∈A, where
C is an absolute constant.

We use Mn to denote the (n − 1)-fold matrix multiplication of M with itself.
The integral

∫

M(x) f (x) d x , corresponding to a real-valued function f (x) and a
matrix-valued function M(x), represents a matrix of the same dimension as M(x),
whose (i , j )-th component is given by

∫

Mi , j (x) f (x) d x . If P and Q are constant
matrices, we then have

∫

PM(x)Q f (x) d x = P(
∫

M(x) f (x) d x)Q.
We use T1 ◦T2 (often simply T1T2) to denote the composition of two transforma-

tions (or operators) T1 and T2, that is, (T1 ◦T2)( f ) = T1(T2( f )) for every element f
in that domain. The order of the composition is important; in general, T1T2 6= T2T1.
We use I to denote the identity operator on function spaces.

We define the function sinc(x) to be sin(x)/x at all non-zero x, and as zero at
the origin (non-conventional definition). The Dirac delta distribution is denoted
by δ(x). The Kronecker delta function is denoted by δ[n]. The signum function,
denoted by sign(x), equals 1 when x > 0, equals −1 when x < 0, and zero when
x = 0.

We use standard notations for norms, that is,

‖ f ‖p =
�∫

| f (x)|p d x
�1/p

(1≤ p <∞)

and
‖ f ‖∞ = ess sup

n

| f (x)| : x ∈R
o

.

The space of functions having finite p-norm is denoted by Lp (Rn), or simply,
by Lp . We explicitly use `p (Z), or `p , to denote the Lp spaces corresponding to
sequences. An operator T which takes an Lp function into an Lq is said to be
bounded if, for some absolute constant C ,

‖T f ‖q ≤C‖ f ‖p ( f ∈ Lp ).

We almost always work in L2(Rn), the Hilbert space of finite-energy (or square-
integrable) functions. This is equipped with the inner product

〈 f , g 〉=
∫

f (x)g (x) d x .



11

Two functions f (x) and g (x) are said to be orthogonal if 〈 f , g 〉= 0. The notation
W2,γ (R) is used to denoted the fractional Sobolev space of order γ , namely, the
functions in L2(R) for which

∫

(1+ |ω|2)γ | f̂ (ω)|2 dω<∞.

The corresponding norm is given by the square-root of the above quantity, and is
denoted by ‖ f ‖W2,γ . For integer γ , this is simply the collection of functions having
(weak) derivatives up to order γ , such that the function along with all its derivatives
are in L2.

The class of infinitely differentiable functions that are rapidly decreasing at
infinity along with all partial derivatives (Schwartz class) is denoted by S= S(R).
The space of continuous functionals on S is denoted by S′.

We denote a countable sequence of functions by ( fn)n∈Z or simply by ( fn). The
`2-span, or simply the span, of a sequence ( fn) is the set of all linear combinations
of ( fn) weighted with `2 sequences, that is,

span( fn) =
n
∑

n∈Z

cn fn , where
∑

n∈Z

|cn |
2 <∞

o

.

A sequence ( fn) is said to be a basis for L2 if L2 = span( fn), and if
∑

i ci fi = 0 implies
c = 0 for every finite sequence c = (cn).

A sequence ( fn) is said to be a Riesz basis for L2 if it is topologically isomorphic
to some (and hence every) orthonormal basis of L2. Equivalently, this means that it
is complete in L2 (i.e., span( fn) = L2), and that there exists positive constants A and
B such that

A
N
∑

n=1

|cn |
2 ≤





N
∑

n=1

cn fn





2
2 ≤ B

N
∑

n=1

|cn |
2

for every integer N and scalars c1, . . . , cN .
We use fi ,k (x) to denote the combined operations of (dyadic) dilation and

translation used in wavelet theory,

fi ,k (x) = 2i/2 f (2i x − k) (i ∈ Z, k ∈ Z).
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Chapter 1

Introduction

1.1 Natural atoms for signal processing

THe Uncertainty Principle in signal theory loosely refers to the principle that
“the more we locate a signal in the space domain, the less we can locate it in the

frequency domain, and vice versa”. While an exact mathematical interpretation of
this principle can be formulated in different ways, the most significant is the one due
to Heisenberg [1]. In its simplest form, the principle asserts that for any unit-energy
waveform f (x),

�∫

|x f (x)|2 d x
��∫

|ω f̂ (ω)|2 dω
�

≥
1

4
.

The first and the second terms on the left are respectively the measure of the
localization (concentration) of the waveform in space and frequency. Their product
quantifies the localization of the waveform in the joint space-frequency domain. It
is well-known that the functions which attain the lower bound is the Gaussian, and
more generally, its space-frequency translates, the so-called Gabor functions [2]:

1

σ
p

2π
exp

 

−
(x − x0)

2

2σ2

!

exp
�

jω0(x − x0)
�

.

Apart from this optimality criterion, there is also considerable evidence that images
in primary visual cortex are represented in terms of hierarchically arranged Gabor
functions [3]. Due to these reasons, the Gabor function is used as the natural atom
for signal processing. The lowpass Gaussian, on the other hand, is ubiquitously used
as a smoothing kernel in image processing.

1



2 Introduction

1.1.1 Spatial adaptability

A shortcoming of standard Gabor analysis and Gaussian smoothing is that they
use a window of fixed size for processing signals. The former uses the translates
of a fixed Gaussian window in space and frequency, while smoothing amounts to
translating the window in space.

This thesis aims at providing better spatial adaptability in either case. We improve
the spatial adaptability of Gabor analysis using the framework of multiresolutions
and wavelets. This is achieved through the realization of a family of complex
wavelets that provide arbitrary close approximations of the Gabor function. Using
the associated wavelet transform, we are able to analyze signals using the dilations
and translations of these Gabor-like wavelets, and then reconstitute them back from
the analysis coefficients using a fast and stable algorithm. The final point is particu-
larly important from a computational standpoint, since the reconstruction process
in Gabor representations is known to be computationally expensive and often
unstable [4, 5]. The key aspect of our scheme is that, instead of the uniform space-
frequency tiling used in Gabor analysis, we use the non-uniform space-frequency
tiling used in wavelet theory. As is well-known, the latter “variable-window” analy-
sis has the advantage that it allows us to locate high-frequency components more
accurately in space.

On the other hand, to improve the adaptability of Gaussian smoothing, we introduce
a family of bivariate splines called box splines [6]. We show that they can be use to
approximate both isotropic and anisotropic Gaussians, and that we can control their
shape and size using a small number of parameters. In particular, we demonstrate
that it is possible to filter an image using these Gaussian-like box splines of variable
shape and size at a remarkably low complexity.

1.1.2 Fast algorithms using B-splines

It is well-known that B-splines yield fast algorithms for signal processing [7, 8]. The
common point of our construction is that we relax the exact Gabor or Gaussian
form of the kernel, and instead approximate them using B-splines. This is based
on the idea that one can arbitrarily approximate the Gaussian using higher order
B-splines, which are obtained by the repeated convolution of the box function with
itself [7]. This can well be seen as a manifestation of the Central Limit Theorem
in that one can approximate a Gaussian by convolving a sufficiently large number
of regular “bump” functions. The Gabor-like wavelets, in turn, are obtained by
appropriately modulating the Gaussian-like B-splines. The advantage with this
relaxation is that we are able to derive fast and efficient algorithms for implementing
the variable-window Gabor analysis and Gaussian smoothing.

Before explaining the main ideas in more detail, we demystify a characteristic
“scaling” property of B-splines that lies at the heart of the thesis. The simplest
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B-spline is the box (or rect) function, given by

β0(x) =

(

1 if 0≤ x < 1
0 otherwise .

(1.1)

This is the B-spline of degree 0. Higher-degree B-splines, having better smoothness,
are obtained from the box function through convolutions [9]. In particular, the
B-spline of degree m is specified by the induction

βm(x) = (βm−1 ∗β0)(x) (m ≥ 1). (1.2)

The scaling properties that we are alluding to can be read-off easily from the Fourier
transform of (1.1):

β̂0(ω) =
1− exp(− jω)

jω
. (1.3)

This shows us that

β̂0(2ω) =
1

2

�

1+ exp(− jω)
�1− exp(− jω)

jω
=

1

2

�

1+ exp(− jω)
�

β̂0(ω). (1.4)

Expressed in space domain, this translates in to the so-called “two-scale” relation:

1

2
β0
� x

2

�

=
1

2

�

β0(x)+β0(x − 1)
�

.

This tells us that we can dilate the box function simply by taking the linear combi-
nation of its translates. The more subtle fact is that this generalizes directly to the
higher-degree B-splines in (1.2). This is seen by noting that

dβm(ω) =
�

1− exp(− jω)

jω

�m+1

,

and that
dβm(2ω) =

1

2m+1

�

1+ exp(− jω)
�m+1

dβm(ω).

As a result, we have the two-scale relation

1

2
βm
� x

2

�

=
m+1
∑

n=0

h[n]βm(x −m) (1.5)

where

h[n] =







1

2m+1

�m+ 1

n

�

for n = 0,1, . . . , m+ 1

0 otherwise.

The filter h[n] is referred to as the binomial filter.



4 Introduction

The two-scale relations can be used to derive fast algorithms for rescaling signals
expressed in a B-spline basis [8]. In particular, it is these two-scale relations that
allow us to conceive the B-spline multiresolution, and subsequently, the B-spline
wavelets. The B-splines, in fact, are part of a larger class of functions that satisfy
relations similar to (1.5). They form the fundamental constructs in wavelet theory,
and are termed as “scaling functions”. We discuss this connection in detail in §1.2.

There is also a complementary form of the scaling relation in (1.4), which we use
for deriving fast algorithms for filtering images using Gaussians of variable shape
and size. This is precisely the relation

β̂0(aω) =
1− exp(− j aω)

a

�

1− exp(− jω)
�−1β̂0(ω), (1.6)

where a > 0 is any arbitrary real number. In the space domain, this can be expressed
as

1

a
β0
� x

a

�

=∆a∆
−1β0(x) (1.7)

where

∆a f (x) =
1

a

�

f (x)− f (x − a)
�

and ∆−1 f (x) =
∞
∑

k=0

f (x − k).

We call ∆a f (x) the finite-difference of f (x), and ∆−1 f (x) the running-sum or
pre-integration.

The significance of (1.7) is that we can rescale the box function by any arbitrary
factor simply by taking its (non-local) running-sum followed by its (local) finite-
difference. The crucial point is that it is only the local operation that depends on
the scale. As a result, by pre-integrating a signal in a B-spline basis, we are able to
rescale it by different factors simply by applying appropriate finite-differences. As
explained in detail in §1.3, this can be used to derive fast and efficient algorithms for
space-variant filtering in which the scale (shape or size) of the filter is changed from
point-to-point.

1.2 Multiresolution approximation and wavelets

Our construction of Gabor-like complex wavelets, and the associated algorithm for
analyzing and reconstituting the signal, is based on the theory of multiresolution
analysis of Mallat and Meyer [10, 11]. The simplest forms of multiresolution
analyses are generated using splines. They also provide fast algorithms for computing
the multiresolution approximations [12, 13, 14]. To explain this, we considering
the “discrete” box function, and the associated piecewise-constant multiresolution.
This is the system of nested approximation spaces

V0 ⊃ · · · ⊃V1 ⊃ · · · ,
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where the signals in Vi are constant over blocks of the form 2i n, . . . , 2i (n+ 1)− 1,
where n ∈ Z. The information in this case is precisely the height of the signal in
each block, and we denote it by fi[n]. The signals in Vi are said to be of resolution
2i .

Given a signal f0[n] in V0, we want to approximate it by a signal having resolution
2i . The signal at this resolution which is “closest” to f0[n] in the least-square sense
is given by the orthogonal projection of f0[n] onto Vi . It is straightforward to
verify that the projected signal fi[n] is given by

fi[n] =
1

2i

2i−1
∑

k=0

f0[2
i n+ k] (n ∈ Z). (1.8)

Note that, a direct computation of the multiresolution approximation using (1.8)
requires a total of 2i basic operations per sample. In other words, the computational
complexity scales exponentially with the level of the approximation. The remarkable
fact is that we can bring down the complexity from O(2i ) to O(1) using the pyramid
algorithm1 [15, 16, 17]. The connection of this algorithm with (1.8) is seen by
observing that the approximations at successive resolutions are related through

fi+1[n] =
1

2
( fi[2n]+ fi[2n+ 1]). (1.9)

Thus, starting from the signal approximation at some arbitrary resolution, we can
obtain the approximation at the next resolution using exactly two operations per
sample (cf. Figure 1.1). In other words, we can recursively compute the multires-
olution approximations f1[n], f2[n], . . . using a fixed number of operations per
sample.

1.2.1 B-spline multiresolution

The multiresolution we just discussed involved discrete signals. It can be extended
to the class of continuously-defined finite-energy signals. This results in the famous
Haar multiresolution [18]. In this case, Vi is the space of functions which are
constant over the interval [n2i , (n+1)2i ], n ∈ Z. We can write every f0(x) belonging
to V0 as

f0(x) =
∑

n∈Z

f0[n]β
0(x − n)

It can be verified that the orthogonal projection of f0(x) onto Vi is given by

fi (x) =
∑

n∈Z

fi[n]β
0(2−i x − n)

1The pyramid algorithm was introduced between 1981-1983 by Burt, Adelson, and Crowley in
computer vision to represent real-world signals and images at different resolutions or scales. The idea
was to adapt the signal resolution to process only the relevant details for a given task.
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where the coefficients fi[k] are derived from f0[k] using (1.8).

In the present case, the signal approximations are given by discontinuous functions.
We can extend this framework to include smooth approximations as follows. To
do so, we fix some m ≥ 1, and let Vi be the space of (m− 1) times continuously
differentiable and square-integrable functions, whose restriction on any interval
of the form [n2i , (n + 1)2i] is a polynomial of degree m. Clearly, Vi+1 ⊂ Vi .
A fundamental result in spline theory is that a (Riesz) basis of V0 is given by
the translates of the B-spline βm(x) of degree m [9]. This gives us the B-spline
multiresolution

{0} ⊂ · · · ⊂V1 ⊂V0 ⊂V−1 ⊂ · · · ⊂ L2(R)
where

Vi = span
n

βm(2−i x − k) : k ∈ Z
o

.

The nested structure of the approximation spaces is confirmed by the two-scale
relation in (1.5). Starting from the approximation

f0(x) =
∑

n∈Z

f0[n]β
m(x − n)

the multiresolution approximations (orthogonal projections) in V1,V2, · · · can be
obtained through the fast pyramid algorithm described earlier. For m = 0, we
exactly recover (1.9). When m > 0, the simple averaging in (1.9) must be replaced
by a more general filtering [12].

1.2.2 Gabor-like wavelets

In going from the original to the coarser resolution, we incur a loss of information.
This is given by the projection error f0(x)− f1(x). Instead of keeping the signals
at both resolutions, it is possible to encode the error (or residual) using a difference
pyramid [15, 17, 19]. The problem with such representations is that they have more
degrees of freedom than is necessary. An optimal representation is, in fact, provided
by the wavelet construction of Mallat and Meyer [10].

This brings us to the so-called B-spline wavelet ψm(x) [12]. A fundamental result is
that the projection error can be encoded in terms of the translates of the wavelet
ψm(2−1x):

f0(x)− f1(x) =
∑

n∈Z

d1[n]ψ
m(2−1x − n).

In other words, we have the decomposition

f0(x) =
∑

k∈Z

f1[k]β
m(2−1x − k)+

∑

n∈Z

d1[n]ψ
m(2−1x − n).

We can now iterate this up to a given resolution 2J . This results in the wavelet
representation

f0(x) =
∑

k∈Z

fJ [k]β
m(2−J x − k)+

J
∑

i=1

∑

n∈Z

di[n]ψ
m(2−i x − n).
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The wavelet coefficients di[n], 1≤ i ≤ J , are obtained from the coefficients fi−1[k]
of the finer multiresolition using Mallat’s filterbank algorithm [12].

The attractive property of the B-spline wavelet ψm(x) is that it converges to the real
part of the Gabor function as m gets large. This was established by Unser et al. in
[20]. In this thesis, we show how the imaginary part of the Gabor function can
be approximated using a larger class of wavelets called fractional B-spline wavelets
[21, 22]. The imaginary part is obtained by applying the Hilbert transform to the
B-spline wavelet. This does not come as a surprise since it is well-known that the
real and imaginary components of the Gabor function form (approximate) Hilbert
transform pairs. By combining the B-spline wavelet and its Hilbert transform, we get
complex wavelet, termed Gabor-like wavelet, that has near-optimal space-frequency
localization.

There is also a complementary aspect about the Gabor-like wavelet. It is a well-
known fact that real wavelet transforms lack translation-invariance—simple trans-
lation of the input signal does not produce a simple translation of the wavelet
coefficients [23, 14]. It was shown by Kingsbury and Selesnick [24, 25, 26] that
the poor translation-invariance of standard wavelet bases can be improved by con-
sidering a quadrature pair of wavelet bases, where the mother wavelets are related
through the Hilbert transform. The idea was to realize a complex wavelet trans-
form by combing the pair of “matched” wavelets. It was empirically found that
modulus of the coefficients of the resulting complex wavelet transform had better
translation-invariance than the standard wavelet transform [27]. This also holds for
the complex wavelet transform associated with the Gabor-like wavelets. We provide
a mathematical explanation of the improvement of the translation-invariance using
the fact that the wavelets in our case closely resemble the Gabor function. This is
used to develop an efficient coarse-to-fine algorithm for stereo matching .

1.3 Space-variant filtering

The crucial property of B-splines which leads to multiresolutions, and eventually
to wavelets, is the two-scale relation (1.5). Using similar “scaling” properties, one
can also derive fast algorithms for fast Gaussian filtering [28, 29, 30]. This exploits
the fact that the averaging process uses translates of the filter which have significant
overlaps. To convey the idea, we consider the averaging of a signal f (x) using the
symmetric box function

βa(x) =

(

1/a if − a/2≤ x < a/2
0 otherwise .

This has a total mass of unity. The averaged signal is given by

f (x) =
1

a

∫ a/2

−a/2
f (y) d y. (1.10)
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Pyramid decomposition

Figure 1.1: Schematic of classical pyramid algorithm for the simplest mul-
tiresolution approximation, the “piecewise-constant” or Haar multiresolu-
tion. A 3-level decomposition of an 8-point signal is computed in this case.
The black bars denote the signal samples. The topmost level corresponds
to the signal at the original resolution (i = 0). At every successive level,
the sample at each point is derived by averaging two samples (within the
blue window) from the finer resolution. Note that the signal at a coarse
resolution i ≥ 1 is, in fact, given by the average of 2i samples of the original
signal. This direct computation of the coarse resolution, however, requires
2i basic operations per sample. As against this, the pyramid algorithm
recursively computes the samples at every coarse resolution using just two
operations per sample.
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Figure 1.2: Computation of moving-average by convolving it with the
box function. To compute f̄ (x), we first localize the signal using the box
function translated to x. We then compute the area of overlap (hatched
zone). The total number of computations is clearly proportional to the size
of support a. The non-trivial fact is that this can be done in constant-time
by first computing the primitive of f (x) and then taking its finite-difference
as per (1.11) and (1.12). This idea is also reflected in (1.7).

Note that the number of operations required per pixel for a direct computation of
(1.10) is proportional to a. The non-trivial fact is that we can compute (1.10) using
a fixed number of computations per position, independent of a. This is clear once
we write (1.10) as

f (x) =
1

a

h

F (x + a/2)− F
�

x − a/2)
i

(1.11)

where

F (x) =
∫ x

−∞
f (y) d y. (1.12)

Clearly, the computation of F (x) is independent of a, while (1.11) requires one
addition and multiplication per position (cf. Figure 1.2). This is the basic idea
behind constant-time averaging. We note that this can also be read-off from (1.7)—
the running-sum in (1.7) is precisely the indefinite integral in (1.12) applied to
piecewise-constant functions in the B-spline basis.

As in the case of the pyramid, the above idea can directly be generalized to the
higher-order splines, which closely resemble the Gaussian function. The important
point is that the complexity of the algorithm remains the same for higher-order
splines. The idea can also be extended to higher dimensions using the tensor-product
of B-splines. In this case, the reduction in the complexity is even more significant.
In d -dimensions, the complexity can be reduced from O(W d ) to O(1) using tensor-
product B-splines.
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1.3.1 Gaussian-like box splines

The drawback with tensor-product B-splines is that they lack spatial adaptivity.
While it is possible to control their size and elongation along the image axes, it is
difficult to control their elongation along arbitrary orientations.

In this thesis, we show how this can be overcome in 2-dimensions using a larger
class of bivariate splines called box splines [6]. These are derived from B-splines,
and include the tensor-product B-splines as special instances. We show that the
box splines have better spatial adaptivity in the sense that we can independently
control their size, elongation, and orientation. We can do so simply by controlling
the width of the constituent B-splines. Importantly, as in the case of the tensor-
product B-splines, we can derive fast algorithms for averaging the image using O(1)
computations per pixel, irrespective of the size of the box spline. The focus of the
thesis is on space-variant filtering in which the kernel used to filter the image is
varied from pixel to pixel. The overall transformation thus cannot be expressed
as a convolution in this case. Nevertheless, we demonstrate that it is possible to
formulate an algorithm which realizes the transformation using a constant number
of operations per pixel.

1.4 Contributions

The contributions of this thesis can be grouped into the following categories.

§Theory
(A) Towards multiresolution Gabor atoms: Complexification via the Hilbert
transform.

• We provide a rigorous understanding of why the Hilbert transform goes
well with wavelets. We show that at the heart of this is the characteristic
vanishing-moment property of wavelets. We formulate certain basic theo-
rems concerning the localization, smoothness, and the number of vanishing
moments of the Hilbert transform of a wavelet.

• We show how the fundamental invariances of the Hilbert transform can be
used to seamlessly integrate it into the multiresolution framework of wavelets.
By applying the B-spline factorization theorem, we formulate a recipe for
constructing a pair of wavelet bases that form Hilbert transform pairs. In
particular, we are able to identify particular spline wavelets and their Hilbert
transforms. By taking their complex combination, we get analytic wavelets
of varying order. We show that the analytic wavelet converges to a Gabor
function as its order get large.

• We identify the complete family of transforms which share the fundamental
invariances of the Hilbert transform. Based on this family of transforms and
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its properties, we provide an amplitude-phase interpretation of the signal rep-
resentation associated with our Gabor-like wavelet transform. This provides
a shiftable characterization of the transform.

(B) Beyond tensor-product B-splines for Gaussian filtering.

• We introduce a particular bivariate box spline termed the radially-uniform
box spline. As an application of the Central Limit Theorem, we show that
it converges to a Gaussian as its order gets large. For a fixed order, we show
how the parameters of the box spline can be tuned to approximate a fixed
anisotropic Gaussian.

§Fast Algorithms
(A) Coherent multiscale analysis and reconstitution using Gabor atoms.

• We provide a fast numerical implementation of the Gabor-like wavelet trans-
form for finite periodic data in one and two dimensions.

(B) Algorithms for space-variant filtering.

• We propose a fast algorithm for space-variant image filtering using elliptical
radially-uniform box splines of various shapes and sizes. The complexity of
the algorithm is O(1) per pixel (constant time) in the sense that it requires a
fixed number of computations per pixel irrespective of the shape and size of
the box splines.

• We develop an efficient root-finding algorithm for controlling the anisotropy
of the four-directional box spline.

• We develop two fast algorithms for space-variant filtering, one modeled on
anisotropic diffusion and the other on the bilateral filter.

• We show how the implementation of the non-linear bilateral filter can be
accelerated using a particular class of shiftable range kernels.

§Specific Applications
The theory developed in this thesis was originally motivated by the following
applications.

(A) Application of a near translation-invariant wavelet pyramid.

• We develop a coarse-to-fine stereo-matching algorithm by combining the
dynamic programming algorithm with the sub-sampled Gabor-like wavelet
pyramid. The crucial property that is exploited by the algorithm is the near
translation-invariance of the amplitude of the Gabor-like wavelet pyramid.
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(B) Processing and analysis of biological images.

• We develop some efficient techniques for edge-preserving smoothing of bio-
logical images using box spline filters.

• We develop a fast and accurate template-matching algorithm for detecting cells
in fluorescence images using a continuously-scalable box spline detector. The
algorithm returns an estimate of the number of cells along with their centers
and radii. It outperforms standard convolution-based template-matching
algorithms in terms of speed and accuracy.

1.5 Organization and summary

The rest of the thesis is organized as follows. In Chapter 2, we study the mathemati-
cal properties of the Hilbert transform. We introduce basic definitions and theorems
which are freely used in the subsequent Chapters. We provide a self-contained expo-
sition of some of the established results concerning the local and global behavior of
transform. In particular, we study the existence, decay, and smoothness properties
of the transform, its interaction with harmonics, and its behavior on the space of
finite-energy signals. We go on to introduce a complete family of transforms, the
so-called fractional Hilbert transforms, that share the fundamental invariances of
the Hilbert transform. We also study a particular directional extension of these
transforms to two and higher dimensions

In Chapter 3, we provide precise arguments as to why the Hilbert transform of a
wavelet is again a wavelet. In particular, we give sharp estimates of the localization,
vanishing moments, and smoothness of the transformed wavelet. We also explain
why it is possible to construct a pair of (biorthogonal) wavelet bases of L2(R), where
the wavelets in one system are the Hilbert transform of those in the other system.

The problem of constructing Hilbert transform pairs of wavelet bases of L2(R) is
studied in Chapter 4. The focus is on how we can address this problem within
the framework of multiresolution approximation of Mallat and Meyer. We show
that the construction can be realized using a pair of multiresolutions generated by
two “matched” scaling functions having identical approximation order. Inspired
by the wavelet construction of Kingsbury et al. [24, 26], we extend this scheme to
higher dimensions to realize two systems of wavelets that are related through the
directional Hilbert transform.

Next, using the framework developed in the Chapter 4, we identify two spline
multiresolutions where the wavelet bases are related through the Hilbert transform.
In effect, this gives us a family of analytic spline wavelets which are continuously
indexed by their order. The remarkable property is that these analytic spline
wavelets converge to a Gabor function as their degree gets large. This gives us a
finite-order approximation of the Gabor function, which is known to be optimally
localized in the joint space-frequency domain. In higher dimensions, we construct a
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family of complex spline wavelets that resemble the directional Gabor functions
proposed by Daugman [3]. We also present an efficient numerical implementation
of the associated complex wavelet transform using the fast Fourier transform

In Chapter 6, we provide an interpretation of the amplitude and phase information
obtained from the complex Gabor-like transform. This interpretation is particularly
relevant when we reconstruct the signal from the redundant wavelet coefficients,
given that there exists several non-unique ways of doing so.

State-of-the-art algorithms used for dense stereo-matching use global optimization
on graphs. Graph-based algorithms, however, tend to be rather slow when the size
of the image and the range of the disparities are large. Image pyramiding provides
an attractive means of accelerating such algorithms. In Chapter 7, we propose a
“coarse-to-fine” algorithm that does narrow-band dynamic programming on the
Gabor-like wavelet pyramid. The crucial feature of our pyramid is that it provides
near translation-invariance at the cost of moderate redundancy. We show that a
significant reduction of the computation time is obtained in comparison to the
standard dynamic programming algorithm.

In Chapter 8, we demonstrate that it is possible to filter an image with a Gaussian-
like elliptic window of varying size, elongation and orientation using a fixed number
of computations per pixel. The filtering algorithm is based on a family of compactly
supported piecewise-polynomials, and is realized using pre-integration and local
finite-differences. Based on this algorithm, we develop two signal-adaptive denoising
schemes in Chapter 9. The first of these is modeled on anisotropic Gaussian
diffusion [31]. To approximate the anisotropic Gaussian, we use the four-directional
box spline. The spatial-adaptivity in this case is in terms of the size, elongation,
and orientation of the box splines. The other denoising scheme is based on a
space-variant version of the Gaussian bilateral filter [32]. The spatial variability
in this case is in terms of the size of the spatial Gaussian filter. We develop a fast
algorithm for implementing this filter by approximating the spatial filter using the
four-directional box spline, and the range filter (locally) by appropriate polynomials.

Finally, in Chapter 10, we propose a fast template-matching algorithm for the
detection of cells in fluorescence images. The algorithm estimates the number
of cells and their respective centers and radii. It relies on the fast computation of
intensity-based correlations between the cells and a near-isotropic box spline detector.
We provide experimental results on both simulated and real data to demonstrate the
speed and accuracy of the algorithm.
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Chapter 2

The Hilbert transform

Abstract — In this chapter, we study the mathematical properties
of the Hilbert transform. We provide a self-contained exposition of
the some of the established results concerning the local and global
behavior of transform. In particular, we study the existence, decay, and
smoothness properties of the transform, its interaction with harmonics,
and its behavior on the space of finite-energy signals. We will require
these results in the next few chapters.

Later in the chapter, we introduce a complete family of transforms,
the so-called fractional Hilbert transforms, that share the fundamental
invariances of the Hilbert transform. We also study a particular direc-
tional extension of these transforms to two and higher dimensions1.

2.1 Introduction

INtegral transforms are commonly of the form

T f (x) =
∫ b

a
k(x, t ) f (t ) d t . (2.1)

The function k(x, t ) is called the kernel of T . The most famous example is the
Fourier transform where k(x, t ) = exp(− j t x), a =−∞, and b =+∞.

An integral transform is said to be of the convolution type if k(x, t ) =K(x − t ) for
some function K(t ). In this case, K(t ) is called the kernel of the transform. When a
and b are infinite (i.e., the integral is over the real line), we can express T f (x) in

1Some of the results in §2.6 are from the article [33]: K. N. Chaudhury, M. Unser, "On the shiftability
of dual-tree complex wavelet transforms," IEEE Transactions on Signal Processing, vol. 58, no. 1, pp.
221-232, January 2010.

17
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either of the following forms:
∫ ∞

−∞
K(x − t ) f (t ) d t , or

∫ ∞

−∞
f (x − t )K(t ) d t .

A singular integral transform is an integral transform in which k(x, t ) has a singular-
ity along the diagonal x = t [34]. Under additional constraints on the kernel, it is
possible to contain the singular behavior by appropriately extending definition (2.1)
.

In one-dimension, the archetypal singular integral transform of the convolution
type is the Hilbert transform [35, 34, 36]. This is defined by

H f (x) =
1

π
lim
ε−→0

∫

|t |>ε
f (x − t )

d t

t
. (2.2)

The kernel in this case is 1/πx, which has a singularity at the origin. To contain the
singularity, an infinitesimally small truncation around the origin is used in (2.2).

It is not immediately clear thatH f (x) is well-defined even for nice functions. The
kernel fails to be integrable both at the origin (due to the singularity) and at infinity
(due to the slow decay). Thus, it is not at all obvious that the truncated Hilbert
transform

Hε f (x) =
1

π

∫

|t |>ε
f (x − t )

d t

t
. (2.3)

converges for ε > 0, and that the sequence of such integrals tends to a limit as ε
gets infinitesimally small. In fact, the non-trivial task in the study of the Hilbert
transform is the specification of the class of functions for which (2.2) can be given a
precise meaning, either pointwise or in the norm sense. In particular, we will focus
on the following behaviors.

(1) Local behavior. The concern here is that the integral in (2.3) must be absolutely
convergent for all ε > 0, and thatHε f (x)must converge as ε goes to zero for every
x. This provides a pointwise specification ofH f (x). In this case, f (x) is required to
be sufficiently “nice”; that is, it must have suitable smoothness and decay properties.

(2) Global behavior. Here one is given a function with the single global constraint
∫

| f (x)|p d x <∞

for some 1≤ p <∞, and is required to give a precise meaning to (2.2). Unlike the
previous case, one has no explicit information about the smoothness and decay of
the function. In particular, f (x) could be very rough and of slow decay.

A standard way to approach this problem is to consider a dense subclass D of Lp ,
and approximate the original function using a sequence ( fn) from D [36, 35]. The
main point is that the functions in D are chosen to be of suitable smoothness and
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decay, so thatH fn(x) is well-defined and is again in Lp . In particular, one tries to
show thatH maps D continuously into Lp , that is,

‖H g‖p ≤C‖g‖p (g ∈D). (2.4)

Using density and continuity, one is then able to defineH f (x) as the (unique) limit
of the sequenceH fn(x). Of course,H f (x) is defined only almost everywhere in
this case.

We first address the local behavior along with the decay and smoothness properties
of the transform. The global behavior is discussed next.

2.2 Local behavior

2.2.1 Existence

The Hilbert transform does not go well with rough functions. This can be readily
appreciated by looking at the transform of the discontinuous function in Figure 2.2.
In this case, the transform explodes in the vicinity of the points of discontinuity,
and is in fact not even well-defined at these points. Therefore, the natural question
is: Under what assumptions on f (x) isH f (x) well-defined?

Of course, we would want to have as little assumptions as possible. The basic result
in this direction is the following [36].

Proposition 1 (Existence). Suppose that f (x) is Lipschitz continuous and integrable.
ThenH f (x) is well-defined and bounded.

In particular, this holds true if f (x) is continuously differentiable and of compact
support, since

| f (x)− f (y)| ≤ ‖ f ′‖∞|x − y|

by the mean value theorem. In this case, ‖ f ‖Lip ≤ ‖ f ′‖∞.

Proof. Note that the integrand in (2.2) is the product of the bounded function 1/t
(on |t |> ε) and the integrable function f (t ). Therefore, the integral is absolutely
convergent for all ε > 0. All we need to show is that the integral remains convergent
as ε−→ 0. To this end, we split the integral, and use the anti-symmetry of 1/t to
write

H f (x) =
1

π
lim
ε→0

∫

ε<|t |<1
f (x − t )

d t

t
+

1

π

∫

|t |≥1
f (x − t )

d t

t

=
1

π
lim
ε→0

∫

K(ε, t )
�

f (x − t )− f (x)

t

�

d t +
1

π

∫

|t |≥1
f (x − t )

d t

t
.

where K(ε, t ) = 1 when ε < |t |< 1 and zero otherwise.



20 The Hilbert transform

1 0.5 0 0.5 1
100

80

60

40

20

0

20

40

60

80

100

Figure 2.1: The convolution kernel of the Hilbert transform, 1/πx. It has
a singularity at the origin and its tails decay slowly. The former pathology
can be overcome provided that the function on which the transform is
applied is sufficiently smooth, while the slow decay can be overcome if the
signal is of compact support, or at least, of sufficient decay.

Clearly, the second integral is convergent. On the other hand, since f (x) is Lipschitz,

K(ε, t )
�

�

�

f (x − t )− f (x)

t

�

�

�≤ ‖ f ‖Lip

for t and for all ε > 0. Therefore, by dominated convergence,

lim
ε→0

∫

K(ε, t )
�

�

�

f (x − t )− f (x)

t

�

�

� d t ≤ ‖ f ‖Lip.

This shows thatH f (x) is well-defined for every x. Note that, we also get the bound

|H f (x)| ≤
1

π

�

2‖ f ‖Lip+‖ f ‖1

�

. (2.5)

This establishes the proposition.

2.2.2 Decay

Having resolved the issue of existence, our next question is the following: How fast
doesH f (x) decay?

A good guess is that it decays as fast as the kernel, namely, as 1/|x|. This is indeed
the case, at least if f (x) is of compact support. The main idea is that if f (x) is of
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Figure 2.2: The Hilbert transform of the discontinuous rect(x) function
(shown in BLUE) and its transform (in RED). The transformed function
explodes in the vicinity of the discontinuities and is, in fact, not even defined
at the points of discontinuity. It also has a slow decay.

compact support, then for all points outside the support of f (x), we can avoid the
singularity and simply write (2.2) as

H f (x) =
1

π

∫ f (t )

x − t
d t .

Proposition 2 (Decay). Suppose that f (x) is Lipschitz continuous and of compact
support. ThenH f (x) is well-defined and decays as 1/|x|.

Proof. Clearly, the transform is well-defined. Let f (x) be supported within [−T ,T ].
Then, for |x|> 2T ,

|H f (x)| ≤
1

π

∫ T

−T

| f (t )|
|x − t |

d t <
C

|x|

∫ T

−T
| f (t )| d t =

2C T

|x|
‖ f ‖∞

since |x − t |> |x|/2 when |x|> 2T and |t | ≤ T . Thus,H f (x) decays as 1/|x| for
all large x.

We will show in a Chapter 3 that by appropriately modifying the assumptions, we
can extend the above result to functions of non-compact support.

2.2.3 Smoothness

The kernel of the Hilbert transform is not continuous at the origin. However,
H f (x) turns out to be continuous if f (x) is sufficiently smooth.
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Proposition 3 (Continuity). Suppose that f ′(x) is bounded and Lipschitz continuous,
and that f (x) is integrable. ThenH f (x) is uniformly continuous.

In particular, if f (x) is a compactly supported and f ′(x) is Lipschitz, thenH f (x)
is uniformly continuous. The proof is provided in Appendix A.

The unsatisfactory fact about this result, however, is that the smoothness of the
function and its transform are not comparable—the transform is less smooth than
the original function. Moreover, extending the result to higher orders of smoothness
is not straightforward. We will provide a more satisfactory characterization of the
smoothness using global properties of the transform in the sequel.

2.3 Global behavior

Having addressed the local behavior, namely, the pointwise specification, the decay,
and the smoothness of the transform, we now turn to the global behavior. Our
main concern is the following: Is the Hilbert transform of an Lp -function again in
Lp ? If so, is it bounded on Lp ?

The answer is in the affirmative when 1 < p <∞ [34, 35]. We discuss the case
p = 2 in detail. We will require this results frequently in the sequel. For the sake of
completeness, we briefly motivate and state the results when p 6= 2.

2.3.1 L1 theory

We begin with an example. Consider the function shown in Figure 2.2,

f (x) =

(

1 for 0≤ x ≤ 1,
0 otherwise.

Clearly, this belongs to every Lp space. A straightforward computation shows that

H f (x) = log

�

|x|
|x − 1|

�

. (2.6)

Note thatH f (x) is not defined at the discontinuities x = 0 and x = 1, and that
it decays as 1/|x| at infinity. Moreover, it explodes logarithmically around the
discontinuities; it is unbounded there. However, it can be shown that, for every
interval I around any of the discontinuities,

∫

I

�

�

� log

�

|x|
|x − 1|

�

�

�

� d x <∞

To see this, note that the integrand behaves as | log |x|| in the neighborhood of 0,
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and as | log |x − 1|| in the neighborhood of 1, and that, for every 0< ε< 1/2,

∫

|x|<ε
| log |x|| d x = 2

∫

0<x<ε
| log x| d x ≤ 2

∫ ∞

0
t e−t d t <∞. (2.7)

However, since (2.6) behaves as 1/|x| at the tails, the transform fails to be in L1.
What holds true instead is the following. Under some smoothness hypothesis, it
can be shown that, for every f ∈ L1,

|H f (x)| ≤
C

1+ |x|
. (2.8)

This means that

µ
�

�

x : |H f (x)| ≥ λ
	

�

≤
C

λ
(2.9)

where µ(A) denotes the Lebesgue measure of A. Technically, we say thatH f (x) is
in weak-L1, the space of functions satisfying the condition2

µ
�

{x : | f (x)| ≥ λ}
�

≤
C

λ
. (2.10)

The following result shows that (2.9) is true for L1 functions in general.

Theorem 4 (L1 characterization). The Hilbert transform of an L1 function is defined
almost everywhere but does not necessarily belong to L1. In fact, it belongs to weak-L1,

µ
�

�

x : |H f (x)| ≥ λ
	

�

≤
C

λ
|| f ||1 ( f ∈ L1). (2.11)

The converse, however, is not true. This is exactly the case for the function in
(2.6), which is in weak-L1 but not in L1. In the next chapter, we will show how this
situation can be improved using additional functional properties.

The original proof of this result is due to Kolmogorov [37]. The derivation is rather
involved, and we refer the readers to [35] for a proof using the Calderón-Zygmund
decomposition.

Sketch of the proof. As noted in the Introduction, functions in L1 can be quite rough
and of slow decay. In reference to Proposition 1, the existence of the transform is
thus not at all obvious.

2Note that weak-L1 is larger than L1. Indeed, if f ∈ L1, then

|| f ||1 ≥
∫

{x: f (x)≥λ}
| f (x)| d x ≥ λµ

�

{x : | f (x)| ≥ λ}
�

.
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The idea is to approximate a given f ∈ L1 by a sequence ( fn) from the Schwartz
class. It is clear that (2.8), and hence (2.9), holds for every fn(x). The more difficult
task is to establish the estimate

µ
�

�

x : |H fn(x)| ≥ λ
	

�

≤
C

λ
|| fn ||1.

Using this and the fact that || fn − f ||1 −→ 0 as n gets large, one can readily verify
that the sequence (H fn) is a Cauchy sequence in measure. That is, for every ε > 0,

lim
m,n−→∞

µ
�

�

x : |H fm(x)−H fn(x)| ≥ ε
	

�

= 0.

Thus, the limit of this sequence is an unique measurable function, which is defined
to beH f (x). One can verify thatH f (x) satisfies (2.11).

We note that a necessary condition forH f (x) to be in L1 provided that f (x) is in
L1 is that

∫

f (x) d x = 0. (2.12)

This result is due to Kober [38]. That the condition is not sufficient is seen by
considering the function

f (x) =

(

x−1(log x)−2− 2(log2)−1 for 0< x < 1/2
0 otherwise.

It can be verified that f ∈ L1, and that (2.12) holds. However, it can be shown that

∫ 0

−1/2
|H f (x)| d x =∞

so that the transform cannot be in L1.

2.3.2 L2 theory

We again return to (2.6). It can be verified that

∫

�

�

� log

�

|x|
|x − 1|

�

�

�

�

2
d x <∞.

Indeed, since the integrand behaves as 1/|x|2 at infinity, the integral converges at the
tails. On the other hand, using an argument similar to the one used in (2.7), it can
be shown that the integral converges in the neighborhoods of 0 and 1. Thus, while
the transform is not integrable, it is in L2. The above observation is in fact part of a
more general occurrence.
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Theorem 5 (L2 characterization). The Hilbert transform of an L2 function is again
in L2. Moreover, the following holds almost everywhere

ÔH f (ω) =− j sign(ω) f̂ (ω) ( f ∈ L2). (2.13)

It is clear that the main conclusion follows from (2.13) by Parseval’s theorem.
Moreover, we also conclude the following from (2.13).

Corollary 6 (Properties on L2). The Hilbert transform has the following properties:

(i) It is unitary, ‖H f ‖2 = ‖ f ‖2 for all f ∈ L2.

(ii) −H 2 acts as the identity operator on L2. This means thatH is invertible on L2,
whereH −1 =−H .

(iii) It is skew-adjoint,H ∗ =−H .

Before proceeding to the rigorous proof, we begin with a symbolic calculation of
the Fourier transform ofH f (x). Note that, formally,

H f (x) = f (·) ∗
1

πx
.

Therefore, by the convolution-multiplication property of the Fourier transform,

ÔH f (ω) = f̂ (ω)
d1

πx
(ω).

Now, applying the differentiation-multiplication property to the identity

d

dω
[sign(ω)] = 2δ(ω),

we get
d1

πx
(ω) =− j sign(ω).

This gives us (2.13).

Note that, all we know in this case is that
∫

| f (x)|2 d x <∞.

The main problem in calculating the Fourier transform ofH f (x) directly from
(2.2) is that we do not know a prior whether the transform exists at all in this case,
and whether it is in L1 or L2. Indeed, f (x) could be very irregular and of slow decay.
We thus proceed as in the case of Theorem 4.
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Proof of Theorem 5. We first derive (2.13) on a dense subclass of L2, namely, the
Schwartz class S, before uniquely extending it to entire L2. To this end, given some
f ∈ L2, we approximate it by a sequence ( fn) from S,

‖ fn − f ‖2 −→ 0 as n −→∞. (2.14)

It is clear from the discussion on the local behavior ofH that each of theH fn(x)
are well-defined. In fact, one can show thatH fn(x) is bounded and decays as 1/|x|
asymptotically (cf. Proposition 1 of next Chapter), so that

∫

|H fn(x)|
2 d x <∞.

What we exactly require is a boundedness estimate as in (4.24). To this end, we
compute the Fourier transform ofH fn(x); this is well-defined sinceH fn ∈ L2. In
Appendix B, we show that

ÕH fn(ω) =− j sgn(ω) f̂n(ω). (2.15)

This, along with Parseval’s theorem, gives

‖H fn‖2 = ‖ÕH fn‖2 = ‖ f̂n‖2 = ‖ fn‖2. (2.16)

From (10.1), the linearity ofH , and the fact that ( fn) is a Cauchy sequence in L2, it
follows that

‖H fn −H fm‖2 = ‖ fn − fm‖2 −→ 0 as m, n −→∞.

That is, (H fn) is a Cauchy sequence in L2 norm. Since L2 is complete, it must
converge to some function. We defined this function to be H f (x). Note that
H f (x) is unique—it is independent of the particular choice of the approximation
sequence.

Finally, using (2.15) and applying Parseval twice, we have

ÔH f (ω) = lim
n−→∞

ÕH fn(ω) = lim
n−→∞

− j sign(ω) f̂n(ω) =− j sign(ω) f̂ (ω)

where the equality holds almost everywhere. This establishes (2.13).

Note that the main tool that is repeatedly used in the above proof is the Parseval’s
theorem for L2 functions. Indeed, this is the single important reason why the
argument used in the proof breaks down for other Lp spaces. However, as suggested
by (2.13),H essentially behaves like a multiplication by ± j in some sense. Since
multiplication by± j does not change the norm, one might expectH to be bounded
on Lp for other p as well. This is indeed the case.
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Theorem 7 (Lp characterization). The Hilbert transform is bounded on Lp for 1<
p <∞,

||H f ||p ≤Cp || f ||p ( f ∈ Lp ).

For 1 < p ≤ 2, the above result can be deduced from Theorems 4 and 5 using
interpolation. This can further be extended to 2 < p <∞ using duality and the
skew-adjoint property ofH ; e.g., see [34, 36]. This result was originally derived by
M. Riesz using techniques from complex analysis [39].

2.3.3 Smoothness revisited

Using (2.13) and the fact that the smoothness of a function is related to the decay of
its Fourier transform, we now provide a result on the smoothness of the Hilbert
transform. This generalizes Proposition 3 to higher orders of smoothness.

We recall that a function f (x) is said to belong to the Sobolev space W2,γ (R),γ ≥ 0,
if

∫

(1+ |ω|2)γ | f̂ (ω)|2 dω<∞

The Sobolev embedding theorem (see Appendix C) asserts that every f (x) belonging
to W2,γ (R) can be identified (almost everywhere) with a function which is n-times
continuously differentiable provided that γ > n + 1/2 [14]. From (2.13), we
immediately conclude the following.

Proposition 8 (Comparable smoothness). If f (x) belongs to W2,γ (R), thenH f (x)
also belongs W2,γ (R). Moreover, if γ > n + 1/2, then both f (x) and H f (x) are
n-times continuously differentiable (almost everywhere).

2.4 Hilbert transform of harmonics

One fundamental property of the Hilbert transform is the phase-shift action

H [cos(ω0x)] = sin(ω0x). (2.17)

The intuitive explanation is that if we assume (2.13), then the Fourier transform of
the left hand of (2.17) is

− j sign(ω)
�

δ(ω−ω0)+δ(ω+ω0)

2

�

=
δ(ω−ω0)−δ(ω+ω0)

2 j
.

But this is exactly the Fourier transform of sin(ω0x).

The problem with this argument, however, is that (2.13) strictly applies for functions
in L2, and cosines are not in this space. To make sense of (2.17), we need to
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appropriately interpret the integral in (2.2), namely as

lim
ε−→0

∫

ε<|t |<1/ε
f (x − t )

d t

t
. (2.18)

One can verify that this is equivalent to the integral in (2.2) for the class of functions
considered earlier.

Now, when f (x) = cos(ω0x), we can write (2.18) as

cos(ω0x) lim
ε−→0

∫

ε<|ξ |<1/ε

cosξ

ξ
dξ + sin(ω0x) lim

ε−→0

∫

ε<|ξ |<1/ε

sinξ

ξ
dξ .

Now it can be verified, e.g., using Cauchy’s integral formula and the analytic nature
of e j z/z on the complex plane excluding the origin, that

lim
ε−→0

∫

ε<|ξ |<1/ε

e jξ

ξ
dξ = jπ. (2.19)

Putting these together, we get (2.17).

We note that the basic formula (2.19) plays an important role in the derivation of
the frequency response (2.13); see Appendix B.

2.4.1 Amplitude-phase modulation

We next turn to a remarkable property of the Hilbert transform concerning lo-
calized harmonics. Let g (x) be a finite-energy signal whose Fourier transform is
supported within [−Ω,Ω]. Then, it can verified using (2.13) that ifω0 >Ω,

H [g (x)cos(ω0x)] = g (x) sin(ω0x). (2.20)

This, in fact, is a particular instance of the theorem of Bedrosian for product
functions [40]. We will derive this result in a more general setting in the sequel.

This property is widely used in amplitude and phase modulation (AM-FM) in
communication systems. In the former case, the problem is one of recovering the
information a(x) from the transmitted AM signal f (x) = a(x)cos(ω0x +φ). The
modulation frequency ω0 is typically much higher than the frequencies of a(x).
From (2.20), we can recover the information using the formula

a(x) =
Æ

f (x)2+[H f (x)]2.

In contrast to AM, in which the amplitude of the carrier is varied while its frequency
remains constant, FM conveys the information m(x) over a carrier wave by varying
its instantaneous frequency. The transmitted signal in this case is given by

f (x) = g (x)cos
�

ω0x + 2π
∫ x

0
m(τ) dτ

�

.
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At the receiver, the signal m(x) is recovered by from the instaneous frequency
(derivative of the phase) of the complex signal

f (x)+ jH f (x) = g (x)exp
�

jω0x + 2 jπ
∫ x

0
m(τ) dτ

�

.

2.5 Multidimensional extension

As an extension of the Hilbert transform in higher dimensions, we consider the
directional Hilbert transform [35, 36]. Let Sn−1 denote the unit sphere in Rn . Then
corresponding to some u ∈ Sn−1, we define the directional Hilbert transform by

Hu f (x) =
1

π
lim
ε−→0

∫

|t |>ε
f (x − t u)

d t

t
.

This amounts to averaging the function at position x ∈Rn with the Hilbert kernel
1/πt along the affine subspace {x + t u : t ∈R}.

Using the technique used to prove Theorem 5, it can be shown thatHu takes L2(Rn)
into L2(Rn), and that

ÕHu f (ω) =− j sign(ωTu) f̂ (ω). (2.21)

That is, the transformation is performed with respect to the half-spaces {ω :ωTu >
0} and {ω :ωTu < 0} in the Fourier domain.These play a role analogous to that
played by the half-lines 0 ¶ ω < ∞ and −∞ < ω ¶ 0 in case of the Hilbert
transform.

It is clear that the transform is invariant to (i.e., commutes with) translations and
dilations, and is unitary. The key feature of the directional Hilbert transforms is
that they extend the phase-shift action in (2.17) to plane waves:

Hu[cos(ΩuTx)] = sin(ΩuTx). (2.22)

Again, the proof of (2.22) is identical to that of (2.17).

2.6 The class of fractional Hilbert transforms

It is clear from (2.2) thatH is invariant to translations,

H [ f (· − s)](x) = (H f )(x − s) (s ∈R).

Moreover, note that, for λ > 0,
∫

|t |>ε
f (λ−1x − t )

d t

t
=
∫

|t |>ε
f
�

λ−1(x −λt )
� d (λt )

λt
=
∫

|t |>λ−1ε

f
�

λ−1(x − t )
� d t

t
.
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−H

−I

H

I

Hτ

θ = πτ

0

Figure 2.3: Geometrical representation of the group of fractional Hilbert
transforms using the isomorphic unit-circle group S1 (the multiplicative
group of complex numbers having unit modulus). The correspondence is
Hτ←→ (cos(πτ), sin(πτ)).

Letting ε−→ 0, we conclude that

(H f )(λ−1x) =H [ f (λ−1·)](x).

Thus,H is also invariant to dilations. Finally, note that the transform also exhibits
energy-invariance—it is unitary on L2.

Then the natural question is: Which other operators on L2 simultaneously exhibit
the three fundamental invariances? Of course, there is always the trivial identity
operator. The following result tells us that these are essentially the only operators.

Theorem 9 (The complete family). A unitary linear operator T on L2(R) is invariant
to translations and dilations if and only if it can be represented as

T = cosθ I − sinθH (2.23)

where θ ∈ (−π,π] is unique.

In view of this result, we define the fractional Hilbert transform (fHT) corresponding
to the real-valued shift parameter τ as

Hτ = cos(πτ) I − sin(πτ)H . (2.24)

This definition is equivalent to the ones introduced in optics [41, 42], but differs
from the ones introduced in signal processing [43, 44] up to a complex chirp.
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Proof of Theorem 9. The sufficiency part of the theorem follows from the properties
of the identity and Hilbert transform operator. Indeed, sinceI andH are invariant
to both translations and dilations, so must their linear combinations. On the other
hand,

‖T f ‖2
2 = cosθ2‖ f ‖2

2− 2〈 f ,H f 〉+ sinθ2‖H f ‖2
2 = ‖ f ‖2

2− 2〈 f ,H f 〉.

Now, using (2.13) and the symmetry | f̂ (ω)|= | f̂ (−ω)|, we have

〈 f ,H f 〉= 〈 f̂ ,ÔH f 〉

=− j
∫ 0

−∞
| f̂ (ω)|2 dω+ j

∫ ∞

0
| f̂ (ω)|2 dω

=− j
∫ ∞

0
| f̂ (ω)|2 dω+ j

∫ ∞

0
| f̂ (ω)|2 dω

= 0.

This shows that T is unitary.

Next, we investigate the necessary part. It is well-known that a unitary linear
operator T on L2 is translation invariant if and only if there exists a bounded
(complex-valued) function m(ω) such that

ÓT f (ω) = m(ω) f̂ (ω),

for all f ∈ L2 [45, Chapter 1]. This Fourier domain characterization reduces the
problem to one of specifying a bounded function m(ω) such that T has the desired
invariances. It is readily demonstrated that dilation-invariance is equivalent to

m(aω) = m(ω) (a > 0). (2.25)

Moreover, since the real and imaginary components of m(ω)must independently
satisfy (2.25), one even has m1(aω) = m1(ω) and m2(aω) = m2(ω), where m1(ω)
and m2(ω) are the real and imaginary components of m(ω).

Next, observe that the (Hermitian) symmetry requirement

m∗(ω) = m(−ω) (2.26)

require m1(ω) and m2(ω) to be even and odd symmetric, respectively. One can
easily verify that the only bounded functions (up to a scalar multiple) that satisfy
(2.25) and (2.26) are the constant function m1(ω) = 1, and its “skewed” counterpart
m2(ω) = sign(ω). Thus, it is both necessary and sufficient that

m(ω) = γ1+ jγ2 sign(ω),

for some real γ1 and γ2.
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Now, by Parseval’s theorem,

||T f ||2 =
1

2π

∫

|m(ω)|2| f̂ (ω)|2 dω = (γ 2
1 + γ

2
2 )

2|| f ||2.

Therefore, the unitary requirement is equivalent to γ 2
1 + γ

2
2 = 1. In other words,

m(ω) = cosθ+ j sinθ sign(ω) for some θ ∈ (−π,π], whereby we conclude that

T = cosθ I − sinθH .

Finally, since 〈I f ,H f 〉= 0, −π< θ≤π must necessarily be unique.

2.6.1 Properties

The characteristic features of the constituent operatorsI andH carry over directly
to the family of fractional Hilbert transforms. In particular, we have the following
properties:

• Translation invariance.

• Scale (or dilation) invariance.

• Unitarity (energy-preservation).

• Composition lawHτ1
Hτ2
=Hτ1+τ2

.

• Phase-shift propertyHτ[cos(ω0x)] = cos(ω0x +πτ).

The first three properties were described in Theorem 9. The composition law
follows from the relation −H 2 =I and basic trigonometric identities:

Hτ1
Hτ2
=
h

cos(πτ1) I − sin(πτ1)H
ih

cos(πτ2) I − sin(πτ2)H
i

= cos
�

π(τ1+τ2)
�

I − sin
�

π(τ1+τ2)
�

H .

Finally, by (2.17),

Hτ[cos(ω0x +φ)] = cos(πτ)cos(ω0x +φ)− sin(πτ)H [cos(ω0x +φ)]
= cos(ω0x +φ). (2.27)

The composition law tells us that the family of fHT operators is closed with respect
to composition. Moreover, as the identityHτH−τ =H0 =I suggests, the inverse3

operator is again a fHT operator, given byH −1
τ
=H−τ . These closure properties

can be summarized as follows.
3Note that, for a given τ, there exists infinitely many τ′ such that identity HτHτ′ = I holds.

One can however factor out the periodic structure by identifying τ1 and τ2 if and only ifHτ1
=Hτ2

,
which results in the specification of an equivalence classes of fHTs. For simplicity of notation, we shall
henceforth useHτ to denote both the equivalence class and its representatives.
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Proposition 10 (Symmetric family). The family of fHT operators forms a commuta-
tive group on L2(R), 1< p <∞.

In this respect, note the marked resemblance between the family of fHT operators
and the commutative group of translation operators that play a fundamental role in
Fourier analysis. Also note the finite subgroup {I ,H ,−I ,−H } of self-adjoint4

operators (see Fig. 2.3). This is the smallest subgroup containing the in-phase and
quadrature transforms.

We now record an important property concerning product functions.

Theorem 11 (Generalized Bedrosian identity). Suppose that the Fourier transform
of f (x) is supported within (−ω0,ω0), and that the Fourier transform g (x) vanishes
inside (−ω0,ω0). Then

Hτ

�

f (x)g (x)
�

= f (x)Hτ g (x). (2.28)

In other words, the fHT of the product of a lowpass signal and a high pass signal
(with non-overlapping spectra) is entirely determined by the fHT of the high pass
signal. Note that, when τ =−1/2, we recover the classical result of Bedrosian for
the Hilbert transform [40].

In particular, if g (x) = cos(ω0x) and f̂ (ω) is supported within (−ω0,ω0), then

Hτ[ f (x)cos(ω0x)] = f (x)cos(ω0x +πτ).

Proof of Theorem (2.28). Note that if f ∈ L2, then

ÕHτ f (ω) = m
�

sign(ω)
�

f̂ (ω)

where m(x) = exp(− jπτx). This is immediate from (2.13).

The multiplication-convolution property of the Fourier transform shows that (2.28)
is equivalent to

∫ ∞

−∞
f̂ (ω− ξ ) ĝ (ξ )

h

m(sgn(ω))−m(sgn(ξ ))
i

dξ = 0. (2.29)

Now suppose thatω ≥ 0. Then (2.29) becomes
∫ 0

−∞
f̂ (ω− ξ ) ĝ (ξ )

h

m(1)−m(sgn(ξ ))
i

dξ = 0. (2.30)

Now, as per the assumptions, the supports of f̂ (ω− ·) and ĝ (·) are disjoint over
(−∞, 0). Therefore, (2.30) holds. An identical argument shows that (2.29) holds
whenω< 0, which establishes the theorem.

4self-adjoint up to a sign: T ∗ =±T for each T in the subgroup.
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2.6.2 Directional extensions

The fractional directional Hilbert transforms corresponding to direction u ∈ Sn−1

is defined by
Hu,τ = cos(πτ) I − sin(πτ)Hu (τ ∈R).

By construction, the complete family of such operators, {Hu,τ : u ∈ Sn−1,τ ∈R},
are invariant to translations and dilations, and have the property

Hu,τ[cos(ΩuTx)] = sin(ΩuTx +πτ).

In particular, we have the following modulation property as an extension of (2.28).

Proposition 12. Let the window function ϕ(x) be bandlimited to the disk of radius
Ω. Then

Hu,τ

�

ϕ(x)cos(ΩuTx)
�

= ϕ(x) sin(ΩuTx +πτ). (2.31)

Thus the transform acts only on the phase of the plane wave, while the window
remains fixed.

For the sake of completeness, we characterize the complete family of unitary oper-
ators on L2(Rn) which are invariant to the fundamental operations of translation
and scaling (dilation) on Rn . The following result shows the resemblance of this
family of operators with the fractional directional Hilbert transforms.

We call mT (ω) the (Fourier) multiplier of an operator T on L2(Rn) if

ÓT f (ω) = mT (ω) f̂ (ω).

Theorem 13 (Invariant operators in higher dimensions). A unitary linear operator
T on L2(Rn) is invariant to both translations and scaling if and only if for every u
belonging to the unit sphere Sn−1, there exists τ = τ(u) such that

mT (λu) = cos(πτu )+ j sin(πτu ) sign(λ) (λ ∈R).

Note that, from (21),

ØHu,τ f (ω) =
�

cos(πτu )+ j sin(πτu ) sign(ωTu)
�

f̂ (ω).

Therefore, for a given u ′ ∈ Sn−1,

ØHu,τ f (λu ′) =
�

cos(πτu )± j sin(πτu ) sign(λ)
�

f̂ (ω)

where the sign depends on the angle between u ′ and u.

Thus, loosely speaking, Theorem 13 tells us that every such invariant operator
acts as a fractional Hilbert transform along every one-dimensional subspace in the
Fourier domain. For the fractional directional Hilbert transform, the shift τ is
constant over every hemisphere of Sn−1.

The proof of this result is along the lines of the proof of Theorem 9, and is provided
in Appendix D.
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Appendix A

Consider the quantity

W ( f ) =
1

π
lim
ε→0

∫

|t |>ε
f (t )

d t

t
. (2.32)

Note thatH f (x) =W (Tx f ), where Tx f (t ) = f (x − t ). Since f (x) is Lipschitz
and integrable, W ( f ) is well-defined by Proposition 1. Moreover, from (8.29),

|W ( f )| ≤
2

π
‖ f ′‖∞+

1

π
‖ f ‖1.

To establish the uniform continuity, we need to show thatH f (x + h) approaches
H f (x) at a uniform rate for all x as h approaches zero.

Fix some x and an arbitrary ε > 0. By linearity,

H f (x + h)−H f (x) =W (Tx+h f −Tx f ).

Hence,

|H f (x + h)−H f (x)| ≤
2

π
‖Tx+h f ′−Tx f ′‖∞+

1

π
‖Tx+h f −Tx f ‖1.

Now, since the map x 7→ Tx f from R into L1 is uniformly continuous, we can find
δ1 such that

‖Tx+h f −Tx f ‖1 ≤
ε

2
(|h|<δ1).

On the other hand, f ′(x) being Lipschitz,

|Tx+h f ′(t )−Tx f ′(t )|= | f ′(x + h − t )− f ′(x − t )| ≤K |h|

In particular, if δ2 = ε/2K , then

‖Tx+h f ′−Tx f ′‖∞ ≤
ε

2
(|h|<δ2).

Letting δ =min(δ1,δ2), we conclude that |H f (x + h)−H f (x)| ≤ ε uniformly
in x provided that |h|<δ. This establishes the desired result.

Appendix B

Consider the distribution W on S defined by

W ( f ) =
1

π
lim
ε→0

∫

|t |>ε
f (t )

d t

t
.
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Clearly, W is linear. Moreover, by modifying the derivation of (8.29), we can show
that

|H f (x)| ≤
1

π

�

2‖ f ′‖∞+‖x f (·)‖∞
�

. (2.33)

This shows that the map f 7→W ( f ) is continuous from S to R, so that W is in S′.

Note that the Hilbert transform of some f ∈ S is given by its convolution with W .
Therefore, in the sense of distributions,

ÔH f (ω) = cW (ω) f̂ (ω) ( f ∈ S).

We now show that the distribution cW (ω) is in fact a function.

Let f ∈ S. Then, by the definition of cW ,

cW ( f ) =W ( f̂ )

=
1

π
lim
ε→0

∫

ε<|ω|<1/ε
f̂ (ω)

dω

ω

=
1

π
lim
ε→0

∫

ε<|ω|<1/ε

�
∫ ∞

−∞
f (x)e− jωx d x

�

dω

ω
.

Now, clearly,
∫ ∞

−∞

∫

ε<|ω|<1/ε

�

�e− jωx f (x)

ω

�

� dω d x <∞,

and it can be verified that, for every ε > 0,

�

�

�

∫

ε<|ω|<1/ε

e− jωx

ω
dω
�

�

�< 3.

Therefore, interchanging the integrals (using Fubini) and applying dominated con-
vergence, we get

cW ( f ) =
1

π
lim
ε→0

∫ ∞

−∞
f (x)





∫

ε<|ω|<1/ε

e− jωx

ω
dω



 d x

=
1

π

∫ ∞

−∞
f (x)



lim
ε→0

∫

ε<|ω|<1/ε

e− jωx

ω
dω



 d x.

Finally, using (2.19), we obtain

cW ( f ) =−
j

π

∫ ∞

−∞
f (x) π sign(x) d x =

∫ ∞

−∞
− j sign(x) f (x) d x.

This shows that the Fourier transform of W is in fact the function − j sign(ω).
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Appendix C

We prove the following Sobolev embedding: If f ∈W2,γ ,γ > n+ 1/2, then there
exists a function g ∈Cn such that f (x) = g (x) almost everywhere. Here Cn denotes
the space of functions having n continuous derivatives. On this space, we have the
norm

‖g‖∞,n= max
1≤r≤n

sup |D r g (x)|.

Note that if g (x) belongs to S, then

D r g (x) =
1

2π

∫

( jξ )r ĝ (ξ )e j xξ dξ ,

so that

|D r g (x)| ≤
1

2π

∫

|ξ |r | ĝ (ξ )| dξ .

Now if r ≤ n, then by Holder’s inequality,

|D r g (x)| ≤
�
∫ |ξ |2r

(1+ ξ 2)γ
dξ
�1/2�∫

(1+ ξ 2)γ | ĝ (ξ )|2 dξ
�1/2

=Cr‖g‖W2,γ

where

Cr =
�
∫ |ξ |2r

(1+ ξ 2)γ
dξ
�1/2

<∞.

Note that ‖g‖W2,γ is the Sobolev norm of g (x). Setting C =max(C1, . . . ,Cn), we
have the estimate

‖g‖∞,n≤C‖g‖W2,γ .

We now leverage this result using the fact that S is dense in W2,γ . Consider a
sequence gk (x) in S which converge to f (x) in W2,γ . For each gk (x), we have

‖gk‖∞,n≤C‖gk‖W2,γ .

We thus conclude that the sequence gk (x), which is Cauchy in W2,γ , is also Cauchy
in Cn . By completeness, we can then find a g ∈Cn , such that ‖gk − g‖∞,n −→ 0 as
k −→∞.

Finally, using the fact that gk (x) converges to f (x) in L2, and that gk (x) converges
to g (x) in Cn , one can deduce that f (x) = g (x) almost everywhere.

Appendix D

A continuous linear operator T on L2(Rn) is translation-invariant if and only if

ÓT f (ω) = mT (ω) f̂ (ω) (2.34)
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where the Hermitian symmetric multiplier mT (ω) is such that ‖T ‖= ‖mT ‖∞. The
unitary requirement is equivalent to having ‖mT ‖∞ = 1.

Let mT (ω) = m1(ω) + j m2(ω). Note that the Hermitian nature of mT (ω) is
equivalent to the even and odd symmetries

m1(−ω) = m1(ω) and m2(−ω) =−m2(ω). (2.35)

On the other hand, based on (2.34) and the scaling property of the Fourier transform,
we see that scale-invariance requirement is equivalent to

m1(aω) = m1(ω) and m2(aω) = m2(ω) (a > 0). (2.36)

Fix some u ∈ Sn−1, and consider the function

%u (λ) = mT (λu) (λ ∈R).

We claim that there exists constants c1 = c1(u) and c2 = c2(u) such that

%u (λ) = c1+ j c2sign(λ).

This is because (2.35) and (2.36) are equivalent to the requirements that the real part
of %u (λ) is a multiple of the constant function, and that the imaginary part of %u (λ)
is a multiple of the sign(λ) function.

Now, using (2.34) along with Parseval’s theorem, we can express the unitary require-
ment on T in polar co-ordinates as

∫ ∞

0

∫

Sn−1
|%u (λ)|

2| f̂ (λu)|2 dσ(u)λdλ=
∫ ∞

0

∫

Sn−1
| f̂ (λu)|2 dσ(u)λdλ

where dσ(u) denotes the surface measure on Sn−1. The above identity obviously
holds true if |%u (λ)| = 1. In fact, this condition is also necessary: Consider a
radially symmetric function f ∈ L2(Rn), and observe that the modulus of %u (λ) is
independent of λ. Therefore,

�∫

Sn−1
|%u |

2 dσ(u)
��∫ ∞

0
| f̂ (λ)|2 λdλ

�

= 2π
�∫ ∞

0
| f̂ (λ)|2 λdλ

�

,

so that
∫

Sn−1
(1− |%u |

2) dσ(u) = 0.

Since |%u |2 ≤ ‖m‖2
∞ = 1, the integrand is non-negative, and hence |%u |= 1 (almost

everywhere), as desired.

Therefore, we conclude that, for some −1≤ τu ≤ 1,

%u (λ) = cos(πτu )+ j sin(πτu ) sign(λ).



Chapter 3

Hilbert transform and
wavelets: From non-local to
local

Abstract — A wavelet is a localized function having a prescribed
number of vanishing moments. In this chapter, we provide precise
arguments as to why the Hilbert transform of a wavelet is again a
wavelet. In particular, we give sharp estimates of the localization (decay),
oscillations (vanishing moments), and smoothness of the transformed
wavelet.

We also explain why it is possible to construct a pair of (biorthogo-
nal) wavelet bases of L2(R), where the wavelets in one system are the
Hilbert transform of the wavelets of the other system1.

3.1 Introduction

THe advantages of using Hilbert transform pairs of wavelets for signal analysis
was recognized quite early on by Abry and Flandrin [46]. More recently, it

has been shown that the poor translation-invariance of standard wavelet bases can
be improved by considering a pair of wavelet bases, whose mother wavelets are
related through the Hilbert transform [24, 27, 47]. Hilbert pairs of wavelets have
also been used to improve the direction-selectivity of separable wavelet transforms
in two and higher dimensions [26]

It is known for quite some time that the Hilbert transform of a wavelet is again a

1The results in this chapter are from the draft: K. N. Chaudhury, M. Unser, "On the Hilbert
transform of wavelets," IEEE Transactions on Signal Processing, accepted.
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40 Hilbert transform and wavelets: From non-local to local

wavelet. In this chapter, we are concerned with the precise understanding of the
sense in which this holds true. In particular, we formulate certain basic theorems
concerning the localization, smoothness, and the number of vanishing moments of
the Hilbert transform of a wavelet. Our main objective was to provide self-contained
and straightforward proofs of these results along with some concrete examples.

3.2 Hilbert transform and (wavelet) bases of L2

The fundamental reasons why the Hilbert transform (in general, the fractional
Hilbert transforms) can be seamlessly integrated into the multiresolution framework
of wavelets are its scale and translation invariance, and its invertibility and unitarity.

The invariances of scale and translation provide coherence. The Hilbert transform
of a wavelet basis generated from the mother wavelet ψ(x) is simply the wavelet
basis generated from the mother waveletH ψ(x).

We recall from Chapter 2 thatH −1 =−H , and that

‖H f ‖2 = ‖ f ‖2 ( f ∈ L2). (3.1)

This means that bothH and its inverse are continuous mappings of L2 onto L2.
Technically, such a map or transformation is called a topological isomorphism [5]. It
is straightforward to verify that if T is a topological isomorphism, then

( fn)n∈Z an orthonormal basis ⇐⇒ (T fn)n∈Z an orthonormal basis.

More generally, this is true for any Riesz basis of L2. We recall that ( fn)n∈Z is a Riesz
basis if and only if, for every orthonormal basis (en)n∈Z of L2,

fn(x) = T en(x) (n ∈ Z)

where T is a topological isomorphism. Since the composition of topological iso-
morphisms is again a topological isomorphism, we conclude that

( fn)n∈Z Riesz basis of L2 ⇐⇒ (H fn)n∈Z Riesz basis of L2. (3.2)

The crucial fact in connection with wavelet bases of L2 is that the Hilbert transform
preserves biorthogonal bases of L2. We recall that the system of functions,

( fn)n∈Z and ( f̃m)m∈Z,

together form a biorthogonal Riesz basis of L2 if and only if they individually form
Riesz bases of L2, and satisfy the duality criterion

〈 fn , f̃m〉= δ[n−m] (m, n ∈ Z).

Now, it is clear that the each of the system of functions

(H fn)n∈Z and (H f̃m)m∈Z (3.3)
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121Figure 3.1: Scaling functions and their Hilbert transforms: (a) The dis-
continuous Haar scaling function (BLUE) and its transform (RED), (b )
The smooth cubic B-spline (BLUE) and its transform (RED). In either case,
the transformed function is “broken-up” and, as a consequence, loses its
approximation property. In particular, the transform no longer exhibits
the partition-of-unity property, which is characteristic of scaling functions.
Also, note the slow decay of the transform, particular for the smooth spline
function. In fact, both the transforms decay as 1/|x|—the smoothness of
the original function has no effect on the decay of the transform.
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form a Riesz basis of L2. Moreover, it can be shown using (3.1) that

〈H fn ,H f̃m〉= 〈 fn , f̃m〉= δ[n−m].

Therefore the pairs in (3.3) also form a biorthogonal basis of L2.

3.3 Interaction with oscillating waveforms

Our main observation is that the Hilbert transform goes well with oscillatory
patterns, and wavelets in particular. The archetypal relation in this regard is its
action on pure sinusoids:

H [cos(ω0x)] = sin(ω0x).

That is, it tends to preserve oscillations. The nature of the interaction with localized
oscillations is suggested by the relation

H [ϕ(x)cos(ω0x)] = ϕ(x) sin(ω0x) (3.4)

which holds true if the localization window ϕ(x) is bandlimited to (−ω0,ω0); see
Chapter 2. The crucial observation is that the transformed function is again smooth
(in fact, infinitely differentiable) and oscillatory, and importantly, has the same
localization as the input.

We will introduce the family of B-spline wavelets in Chapter 5. Their remarkable
property is that they converge to functions of the form ϕ(x)cos(ω0x +φ) with the
increase in the order of the spline. We will show that the Hilbert transform has com-
parable localization, smoothness, and vanishing moments as the original wavelet for
sufficiently large orders; see Figure 3.2. We will also show that transformed wavelet
in fact approaches the function ϕ(x) sin(ω0x +φ) as the order increases, which is
consistent with (6.7). More generally, since wavelets with sufficient smoothness and
vanishing moments can be made to closely approximate the form in (6.7), we could
in fact arrive at a similar conclusion for a larger class of wavelets.

Using the above instances as guidelines, we attempt to answer the following funda-
mental questions in the sequel:

• Why does the Hilbert transform of a wavelet decay faster than 1/|x|, the decay of
the Hilbert kernel?

• How good is the localization of the transformed wavelet? How many vanishing
moments does it have?

3.4 A basic result

As noted in Chapter 2, the Hilbert transform goes well only with smooth functions.
This can be readily appreciated by looking at the transform of the discontinuous
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Haar wavelet in Figure 3.2. In this case, the transform “blows-up” in the vicinity of
the discontinuities, and is not even well-defined at these points. It was explained in
Proposition 1 of Chapter 2 how this problem can be fixed, namely, by adding some
smoothness constraint. We now present the same result under somewhat different
hypotheses, which will be used as a basis for deriving further results.

For convenience, we introduce the mixed norm2 ‖ f ‖1,∞ = ‖ f ‖1+‖ f ′‖∞ which
measures both the local smoothness and the global size of f (x).

Proposition 14 (Basic estimate). Let f (x) be a differentiable function such that both
‖ f ‖1,∞ and ‖x f (·)‖1,∞ are finite. ThenH f (x) is well-defined, and

|H f (x)| ≤
C

1+ |x|
�

‖ f ‖1,∞+ ‖x f (·)‖1,∞

�

=O(|x|−1). (3.5)

Proof. Since f ′(x) is bounded, f (x) is Lipschitz continuous. Then, by Proposition
1 of Chapter 2, we conclude thatH f (x) is well-defined, and that

|H f (x)| ≤
1

π

�

2‖ f ′‖∞+‖ f ‖1
�

. (3.6)

As for the decay, note that

xH f (x) =
1

π
lim
ε→0

∫

|t |>ε
(x − t ) f (x − t )

d t

t
+

1

π

∫

f (t ) d t

=H g (x)+
1

π

∫

f (t ) d t

where g (x) = x f (x). Since ‖g‖1,∞ is finite,H g (x) is well-defined, and

|H g (x)| ≤
1

π

�

2‖g ′‖∞+‖g‖1
�

.

Therefore,

|xH f (x)| ≤
1

π

�

2‖g ′‖∞+‖g‖1+‖ f ‖1
�

. (3.7)

Combining (3.6) and (3.7), we obtain (8.29).

Note that the above estimate holds true if f (x) is continuously differentiable and is
of compact support. This estimate also confirms the fact that although the Hilbert
transform of a Schwartz function is in general not in L1, it does belong to L2. We
recall that in Chapter 2, we derived this result using the theory of Fourier transforms
on L2. The main objective there was to derive (3.1).

2It is clear that ‖ f ‖1,∞ is non-negative, and satisfies the triangle-inequality and the homogeneity
property of a norm. Moreover, it also separates functions, since ‖ f ‖1,∞=0 necessarily implies that
f (x) = 0 identically.
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3.5 Vanishing moments and decay

The derivation of Proposition 14 shows that the 1/|x| decay cannot be improved by
requiring f (x) to be more smooth (cf. transform of the cubic spline in Figure 3.1),
or to have a better decay. However, it does suggest the following: IfH g (x) goes to
zero as |x| goes to infinity (which is the case if g (x) is sufficiently nice), then

lim
|x|−→∞

xH f (x) =
1

π

∫

f (x) d x.

In particular, if f (x) has zero mean, then xH f (x) goes to zero at infinity. Therefore,
the decay of H f (x) must be better than 1/|x| in this case. This alludes to the
connection between the zero-mean condition and the improvement in decay. To
make this more precise, we consider the concrete example of the Haar wavelet

ψ(x) =

(

+1 for − 1≤ x < 0
−1 for 0≤ x < 1.

Let |x|> 2. Since ψ(x) has zero mean, we can write

H ψ(x) =
1

π
lim
ε→0

∫

|t−x|>ε
ψ(t )

� 1

x − t
−

1

x

�

d t

=
1

π
lim
ε→0

∫

|t−x|>ε

tψ(t )

x(x − t )
d t .

Now |x − t | ≥ |x|/2 for |x|> 2, and t ∈ [−1,1]. Hence,

|H ψ(x)| ≤
2

π |x|2

∫ 1

−1
|tψ(t )| d t ≤

1

π |x|2
.

Thus, while the Hilbert transform of the Haar scaling function decays only as 1/ |x|,
the transform of the Haar wavelet has a better decay of 1/ |x|2. This is clearly seen
by comparing the plots in Figures 3.1 and 3.2.

We can now generalize the above observation by requiring that, for some n ≥ 1,
∫

xkψ(x) d x = 0 (0≤ k < n).

This vanishing moment property is in fact a characteristic of wavelets, which are
often parametrized by the number n [14]. The following result explains how
higher vanishing moments can contribute to the increase in the decay of the Hilbert
transform. The main idea is that the kernel of the Hilbert transform effectively
behaves as 1/πxn+1 in the presence of n vanishing moments.

We also use the augmented decay is used to estimate the number of vanishing
moments of the transformed wavelet.
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(a) Degree 0 (Harr wavelet) (b) Degree 3 (Cubic spline wavelet)

Figure 3.2: B-spline wavelets (shown in BLUE) and their Hilbert trans-
forms (shown in RED). The wavelets are ordered (left to right) by increasing
smoothness and vanishing moments; both are compactly supported. Notice
how the decay of the Hilbert transform increases with the increase in van-
ishing moments—the transform of the cubic spline wavelet appears to have
an almost identical localization. Moreover, it is as smooth as the original
wavelet. It is shown in the text that, in the presence of some minimal
smoothness, the Hilbert transform is as smooth and oscillating as the spline
wavelet.
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Theorem 15 (Decay and vanishing moments). Let ψ(x) be a differentiable wavelet
having n vanishing moments. Also, assume that ‖ψ‖1,∞,‖xn+1ψ(·)‖1,∞, and ‖xnψ(·)‖1
are finite. ThenH ψ(x) is well-defined, and

|H ψ(x)| ≤
C

1+ |x|n+1

�

‖ψ‖1,∞+‖x
n+1ψ(·)‖1,∞+‖x

nψ(·)‖1

�

=O(|x|−n−1). (3.8)

Moreover,H ψ(x) has n vanishing moments.

Before proceeding to the proof, we make some comments. Note that, under the
assumptions on the vanishing moments, (3.8) holds true for compactly supported
wavelets provided it is continuously differentiable. This in fact is the case for the
cubic spline wavelet shown in Figure 3.2. More generally, (3.8) holds if ψ(x) is
continuously differentiable, has n vanishing moments, and satisfies the mild decay
conditions

ψ(x) =O(1/ |x|n+3+ε), ψ′(x) =O(1/ |x|n+2+ε′) (|x| −→∞)

where ε and ε′ are arbitrarily small positive numbers. The significance of the above
result is that by requiringψ(x) to have a large number of vanishing moments, we can
effectively makeH ψ(x) as localized as ψ(x). This had been observed qualitatively
early on in connection with the wavelet localization of the Radon transform [48].

Now, we show that (3.8) is sharp, by considering the special case of B-spline wavelets.
It is known that if ψ(x) is a B-spline wavelet of degree n− 1, thenH ψ(x) is again a
(fractional) B-spline wavelet of the same degree, and hence has the same decay of
1/|x|n+1 [49, 50]. This is exactly what is predicted by (3.8), since ψ(x) is known to
have n vanishing moments.

Proof of Theorem 15. It follows from Theorem 14 thatH ψ(x) is well-defined, and
that

|H ψ(x)| ≤
1

π

�

2‖ψ′‖∞+‖ψ‖1
�

. (3.9)

As for the decay, fix any x away from zero, and let

P (t ) =
1

x
+

t

x2
+ · · ·+

t n−1

xn .

It is clear that
∫

P (t )ψ(t ) d t = 0.

Using this, we can write

H ψ(x) =
1

π
lim
ε→0

∫

|t−x|>ε

ψ(t )

x − t
d t

=
1

π
lim
ε→0

∫

|t−x|>ε
ψ(t )

� 1

x − t
− P (t )

�

d t .
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A simple computation shows that

1

x − t
− P (t ) =

1

xn+1

�

t n +
t n+1

x − t

�

,

so that

H ψ(x) =
1

πxn+1





∫

t nψ(t ) d t + lim
ε→0

∫

|t−x|>ε

t n+1ψ(t )

x − t
d t





=
1

xn+1

� 1

π

∫

t nψ(t ) d t +H g (x)
�

where g (x) = xn+1ψ(x). From Theorem 14 and the assumptions on ψ(x), it follows
that

|xn+1H ψ(x)| ≤
1

π

�

‖xnψ(·)‖1+ 2‖g ′‖∞+ ‖g‖1

�

.

Combining this with (3.9), we obtain (3.8).

As for the vanishing moments ofH ψ(x), note that, since ψ(x) has n vanishing
moments,

∫

|xkψ(x)| d x <∞ (0≤ k < n).

One can then verify, e.g., using the dominated convergence theorem, that ψ̂(ω) is
n-times differentiable, and that

ψ̂(k)(0) = (− j )n
∫

xnψ(x) d x (0≤ k < n). (3.10)

Therefore, ψ̂(k)(0) = 0 for 0≤ k < n.

Now, it can be verified (cf. Appendix A) that ψ ∈ L2. Therefore,

ÕH ψ(ω) =− j sign(ω)ψ̂(ω).

From this, it can be shown thatÕH ψ(ω) is differentiable n-times , and thatÕH ψ
(k)
(0) =

0 for 0≤ k < n (cf. Appendix B). To arrive at the desired conclusion, we note that
|H ψ(x)| ≤C/(1+ |x|n+1), so that

∫

|xkH ψ(x)| d x <∞ (0≤ k < n).

This is sufficient to ensure that (3.10) holds forH ψ(x), thus completing the proof.

We note that the specialized form of this result is well-know for the particular
case of n = 1, that is, when the function is of zero mean. For example, along
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with the classical Caldéron-Zygmund decomposition (a wavelet-like decomposition),
this is used to derive certain boundedness properties of the transform on the class
of integrable functions [36]. To the best of our knowledge, there is no explicit
higher-order generalization of this result in the form of Theorem 15 in the harmonic
analysis or signal processing literature.

Appendix A

Assume that f (x) is integrable and that f ′(x) is bounded. We show that this implies
that f (x) is square-integrable.

Note that it is sufficient to show that f (x) is bounded, since

∫

| f (x)|2 d x ≤ ‖ f ‖∞
∫

| f (x)| d x = ‖ f ‖∞‖ f ‖1.

Since f (x) is continuous, a straightforward means of establishing boundedness is
to show that f (x) is decaying, that is, f (x) −→ 0 for sufficiently large x. The
difficulty however is that integrability alone does not guarantee decay. Indeed, there
exists integrable functions which have no decay at all. Such pathological functions
can be eliminated by enforcing smoothness. What we need exactly is uniform
continuity: We claim that if f (x) is integrable and uniformly continuous, then it
must necessarily decay.

Assume the contrary, that f (x) has no decay. Then, for some ε > 0, we can find
points x1, x2, · · · , xn , · · · such that | f (xn)|> ε. By uniform continuity, there is some
δ > 0 such that

| f (x)− f (xn)|<
ε

2
(n = 1,2, · · · ).

This means that, for all x ∈ (xn −δ, xn +δ), | f (x)|> ε/2. Therefore

∫

| f (x)| d x ≥
∞
∑

n=1

∫ δ/n

−δ/n
| f (xn + y)| d y > εδ

∞
∑

n=1

1

n
=∞

which contradicts integrability.

Finally, note that f (x) is indeed uniformly continuous: since f ′(x) is bounded, by
the mean-value theorem,

| f (x)− f (y)| ≤ ‖ f ′‖∞|x − y|

whereby uniform continuity is immediate.
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Appendix B

Let f (x) be n-times differentiable, and f (k)(0) = 0 for 0≤ k < n. Let

g (x) =







−c f (x) for x > 0
+c f (x) for x < 0
0 at x = 0

where c is some constant. We show that g (x) is n-times differentiable, and that

g (k)(x) =







−c f (k)(x) for x > 0
+c f (k)(x) for x < 0
0 at x = 0.

(3.11)

This is conveniently done using induction. It is clear that g (x) is n-times differen-
tiable away from the origin; all we need to show that g (k)(0) = 0 for 0 ≤ k < n.
This is vacuously true for k = 0. Assume that (3.11) holds for some k = m < n− 1.
Then, g (m+1)(x) =−c f (m+1)(x) for x > 0, and g (m+1)(x) = +c f (m+1)(x) for x < 0.
At the origin,

g (m+1)(0) = lim
h−→0

g (m)(h)− g (m)(0)

h
.

The left-sided limit is

g (m+1)(0−) = lim
h−→0,h<0

g (m)(h)− g (m)(0)

h

= lim
h−→0,h<0

c f (m)(h)− c f (m)(0)

h
,

which is simply f (m+1)(0−) = 0. Similarly, for the right-sided limit, g (m+1)(0+) = 0.
But this means that g (m+1)(0) = 0, which completes the induction.
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Chapter 4

Hilbert transform pairs of
wavelet bases

Abstract — We address the problem of constructing a pair of
(biorthogonal) wavelet bases of L2(R) where the wavelets in one system
are the Hilbert transform of the wavelets of the other system. The
reason why this can be realized at all is because the Hilbert transform
commutes with the ax + b group used in the construction of wavelet
bases.

The focus of the present chapter is on how we can tackle this prob-
lem within the framework of multiresolution analysis of Mallat and
Meyer. We show that the construction can be realized using a pair of
multiresolutions generated by two “matched” scaling functions hav-
ing identical approximation orders. Within this setting, we show that
the wavelets of one multiresolution are the Hilbert transform of the
wavelets of the other multiresolution provided that the corresponding
wavelet filters are related through a discrete form of the continuous
Hilbert transform1.

Inspired by the construction of Kingsbury [24, 26], we extend the
idea to higher dimensions to realize two systems of wavelets that are
related through the directional Hilbert transform.

4.1 Introduction

THe basic problem that we address in the chapter is the following:

1The present chapter is based on the article [49]: K. N. Chaudhury, M. Unser, "Construction of
Hilbert transform pairs of wavelet bases and Gabor-like transforms," IEEE Transactions on Signal
Processing, vol. 57, no. 9, pp. 3411-3425, September 2009.
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Starting from a given wavelet basis (ψi ,k ), construct another wavelet basis (ψ′i ,k ), such
that

ψ′i ,k (x) =H ψi ,k (x) (i , k ∈ Z). (4.1)

We call the former the primary wavelet basis and the latter the secondary wavelet
basis. We say that the primary and secondary wavelets form Hilbert pairs. The
eventual goal is to realize a system of complex wavelets by combining these wavelets.

We recall that a wavelet basis of L2(R) is obtained by dilations and translations of a
localized oscillating waveform called the mother wavelet. That is, the basis consists
of the functions

ψi ,k (x) = 2−i/2ψ(2−i x − k).

where ψ(x) is the mother wavelet. It was remarked in Chapter 3 that (4.1) can be
realized simply by identifying a wavelet basis (ψ′i ,k ) where the mother wavelet ψ′(x)
satisfies the condition

ψ′(x) =H ψ(x). (4.2)

In this chapter, f ′(x) should not be confused with the derivative of f (x).

4.2 Multiresolution analysis

The recipe for constructing wavelet bases is given by the framework of multiresolu-
tion approximation proposed by Mallat and Meyer [51, 14]. We briefly recall the
essential aspects of this framework.

A sequence of closed subspaces

{0} ⊂ · · · ⊂V1 ⊂V0 ⊂V−1 ⊂ · · · ⊂ L2(R)

is said to be a multiresolution approximation of L2(R) provided that

(i) f (x) belongs to Vi if and only if f (x − 2i k) is in Vi for every k ∈ Z.

(ii) f (x) belongs to Vi if and only if f (2−1x) is in Vi+1 for every i ∈ Z.

(iii) The only function which belongs to every Vi is the zero function, that is,
⋂

i∈Z

Vi = {0}.

(iv) The system (Vi )i∈Z is dense in L2,

closure
�
⋃

i∈Z

Vi

�

= L2.

This means that every function in L2(R) can be approximated arbitrary closely
using functions from (Vi ).
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(v) There exists ϕ(x) such that the system of translates ϕ(x− k), k ∈ Z, form a Riesz
basis of V0. This provides a stable and unique representation of functions in V0
using coefficients from `2(Z).

The final criterion brings us to the key concept of a scaling function. We call ϕ(x) a
scaling function if there exists a sequence h[k] such that

1

2
ϕ
� x

2

�

=
∑

k∈Z

h[k]ϕ(x − k). (4.3)

This is called the two-scale relation, and h[k] is referred to as the refinement filter.
Note that conditions (i) and (ii) are satisfied if we set2

Vi = span
n

ϕ(2−i x − k) : k ∈ Z
o

.

On the other hand, it can be shown that if the translates of ϕ(x) form a partition-of-
unity, that is,

∑

k∈Z

ϕ(x − k) = 1, (4.4)

then the multiresolution is dense in L2(R), that is, (iv) is satisfied [14].

Henceforth, we will call ϕ(x) a valid scaling function if it satisfies the Riesz basis
property along with (4.3) and (4.4).

4.2.1 Wavelet basis

Let W0 be the complement (not necessarily orthogonal) of V0 in V−1. A wavelet
ψ(x) is defined to be the function whose translates span the space W0, that is,

W0 = span
n

ψ(x − k) : k ∈ Z
o

.

In particular, ψ ∈V−1. By the multiresolution property (ii), ψ(2−1x) belongs to V0.
Thus, there exists a sequence g[k] such that

1

2
ψ
� x

2

�

=
∑

k∈Z

g[k]ϕ(x − k). (4.5)

We call g[k] the wavelet filter.

In general, it follows from (i) and (ii) that if Wi is the complement (not necessarily
orthogonal) of Vi in Vi−1, then the wavelets

ψi ,k (x) = 2−i/2ψ(2−i x − k)

2Technically, it is the closure of the span.
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span the space Wi . From (iii) and (iv), it is straightforward to verify that the system
(ψ)i ,k , i , k ∈ Z, forms a Riesz basis of L2. This was a brief overview of how wavelet
bases are created using multiresolutions.

In the particular case of an orthonormal system, the sequences h[k] and g[k] are
so chosen that

〈ψi ,k ,ψi ′,k ′〉= δ[i − i ′]δ[k − k ′].

This means that the system (ψi ,k ) forms an orthonormal basis of L2. The corre-
sponding wavelet representation is given by

f (x) =
∑

(i ,k)∈Z2

〈 f ,ψi ,k〉ψi ,k (x) ( f ∈ L2).

4.2.2 Biorthogonal wavelet bases

The condition of orthonormality often turns out to be rather restrictive for wavelet
design. More generally, one can also have biorthogonal wavelet bases of L2 where
distinct analysis and synthesis wavelets are used [14].

We recall that if ( fn) is a basis of L2, then a system (gn) in L2 is said to be its dual
basis if

〈 fn , gm〉= δ[n−m] (m, n ∈ Z). (4.6)

It can be shown that (gn) is unique and forms a basis of L2 [5]. We call the pair ( fn)
and (gn) a biorthogonal basis of L2. We represent the dual of ( fn) by ( f̃n).

For constructing biorthogonal wavelet bases, we require two distinct multiresolu-
tions

{0} ⊂ · · · ⊂V1 ⊂V0 ⊂V−1 ⊂ · · · ⊂ L2(R)

and
{0} ⊂ · · · ⊂ Ṽ1 ⊂ Ṽ0 ⊂ Ṽ−1 ⊂ · · · ⊂ L2(R).

These are generated by two distinct scaling functions ϕ(x) and ϕ̃(x). Let the
complementary spaces be

Wi =Vi−1	Vi and W̃i = Ṽi−1	 Ṽi .

As before, we consider a wavelet ψ(x) whose translates span W0, and another
wavelet ψ̃(x) whose translates span W̃0. The wavelets are specified by

1

2
ψ
� x

2

�

=
∑

k∈Z

g[k]ϕ(x − k) (4.7)

and
1

2
ψ̃
� x

2

�

=
∑

k∈Z

g̃[k]ϕ̃(x − k). (4.8)
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The fundamental feature of the construction is that ensembles (ψi ,k ) and (ψ̃i ′,k ′)
form a dual basis of L2. The corresponding wavelet representation is given by

f (x) =
∑

(i ,k)∈Z2

〈 f , ψ̃i ,k〉ψi ,k (x).

The wavelets (ψi ,k ) and (ψ̃i ,k ) are respectively referred to as the synthesis and analysis
wavelets, or also as the primal and dual wavelets. Clearly, their roles are reversible
in that

f (x) =
∑

(i ,k)∈Z2

〈 f ,ψi ,k〉ψ̃i ,k (x).

4.3 Hilbert transform and multiresolutions

As explained in Chapter 3, the Hilbert transform goes well with oscillatory wave-
forms, wavelets in particular. The difficulty with the transform in the context
of multiresolution analyses is that it is incompatible with scaling functions, the
building block of multiresolutions. The causes of difficulty are the following.

(i) Poor localization. We recall from Chapter 2 that the Hilbert transform of a
function decays as 1/|x| in general. This results in the spatial de-localization of a
scaling function, particularly, if it is of compact support. On the other hand, as
shown in Chapter 2, the localization of the Hilbert transform of a wavelet can
effectively be matched with that of the original wavelet if it has a large number of
vanishing moments. This leads to an unbalanced situation where the scaling function
and wavelet (derived from the scaling function) of the secondary multiresolution
are not comparable.

(ii) Loss of approximation property. The other difficulty with the transform is
that it “breaks-up” bump functions. The culprit in this case is the “oscillating” form
of the Hilbert kernel. This results in the loss of the crucial approximation property
of scaling functions. Indeed, it can be verified that both ϕ(x) andH ϕ(x) cannot
satisfy (4.4), which is essential for the multiresolution to be dense in L2.

Starting from a given multiresolution with associated wavelet basis (ψn)n∈Z, (i) and
(ii) present difficulties in realizing a dual multiresolution with basis (H ψn)n∈Z.
In the sequel, we show how this can be overcome by a careful design of the dual
multiresolution in which the Hilbert transform is applied only on the wavelet, and
never explicitly on the scaling function.

First, we consider a particular class of scaling functions whose Hilbert transform
can be well-characterized. In doing so, we introduce a discrete form of the Hilbert
filter.
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4.4 Fractional B-splines

The family of fractional B-splines introduced was introduced and studied by Blu
and Unser in [21, 22]. These are the fractional extensions of the Schoenberg’s
family of polynomial B-splines [9]. We recall that the fractional B-spline βα

τ
(x),

corresponding to a non-negative degree α ∈ R and a shift τ ∈ R, is given by the
Fourier transform

β̂α
τ
(ω) =

 

1− e− jω

jω

!p 
1− e jω

− jω

!q

(4.9)

where

p =
1

2
(α+ 1)+τ and q =

1

2
(α+ 1)−τ.

The parameters α and τ control the width and the group delay of the function,
respectively. To see the connection with the polynomial B-splines, note that when
τ = (α+ 1)/2,

β̂α
τ
(ω) =

 

1− e− jω

jω

!α+1

.

This is the Fourier transform of the conventional polynomial B-spline when α is an
integer [9]. Following the notation in [22], we denote this by βα+(x).

4.4.1 Basic properties

The fractional B-splines do not have a compact support, except when α is an integer
(polynomial B-splines). They are bounded and have a polynomial decay. In fact, as
shown in [22, Theorem 3.1],

|βα
τ
(x)| ≤

C

1+ |x|α+2
(α≥ 0).

This ensures their inclusion in all Lp spaces. It is clear that the modulus of (4.9) is
independent of τ; it only influences the phase term in (4.9). We will use this fact
frequently in the sequel.

The crucial property of the fractional B-splines is that they are valid scaling functions.
It is seen from (4.9) that the corresponding refinement filter is given by

Hα
τ
(e jω) =

�1+ e− jω

2

�p�1+ e jω

2

�q
. (4.10)

The fractional B-splines are in fact intimately related with every valid scaling func-
tion. This is the so-called B-spline factorization theorem. It requires the notion of
approximation order which will be discussed in detail shortly.
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4.4.2 Hilbert transform of B-splines

A direct computation of the Hilbert transform of a function is not straightforward.
To compute the transform for the fractional B-splines, we take a different route
which is based on the following observation.

A well-known fact in spline theory is that the derivative of a polynomial B-spline is
given by the finite-difference of B-splines of lower degree. This is easily seen in the
Fourier domain by noting that the multiplier for the derivative operator, jω, and
that for the finite-difference operator, 1− e− jω, are built into (4.9) . In particular,

( jω)β̂n
+(ω) = ( jω)

 

1− e− jω

jω

!n+1

= (1− e− jω)

 

1− e− jω

jω

!n

= (1− e− jω)β̂n−1
+ (ω).

This provides an algebraic explanation of the connection between the derivative and
the finite-difference. This easily generalizes to the Hilbert transform for which the
multiplier can be written as

− j sign(ω) = ( jω)−1/2(− jω)1/2. (4.11)

Indeed, whenω> 0,
± jω = |ω|e±π/2.

Therefore,

( jω)−1/2(− jω)1/2 = (|ω|eπ/2)−1/2(|ω|e−π/2)1/2 =− j .

On the other hand, whenω< 0, the right side of (4.11) equals j .

Note that the right side of (4.11) is exactly the factor that appears in the denominator
of (4.9). Proceeding as before, we have

( jω)−1/2(− jω)1/2β̂α
τ
(ω) = ( jω)−1/2(− jω)1/2

 

1− e− jω

jω

!p 
1− e jω

− jω

!q

= (1− e− jω)−1/2(1− e jω)1/2β̂α
τ+1/2(ω). (4.12)

Let us define

D(e jω) =

(

(1− e− jω)−1/2(1− e jω)1/2 forω ∈ (−π,π)\{0}
0 whenω = 0.

(4.13)

A simple computation shows that

D(e jω) =− j sign(ω)exp(− jω/2)
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By Parseval’s theorem, we can defined a bounded operator∆ on L2 by

d∆ f (ω) =D(e jω) f̂ (ω). (4.14)

In fact, similar to the Hilbert transform,∆ is also unitary. Moreover, since D(e jω)
is periodic, we can associate with it a digital filter d[k] such that

∆ f (x) =
∑

d[k] f (x − k).

The inverse Fourier transform gives

d[k] =
1

2π

∫ π

−π
D(e jω)e j kω dω

=
1

2π

∫ π

−π
− j sign(ω)e j (k+1/2)ω dω

=
1

π(k + 1/2)
.

The filter d[k] can be interpreted as a discrete form of the continuous Hilbert filter
1/πx. It acts as an unitary operator on L2(R) when applied to functions, and as a
digital filter on `2(Z) when applied to sequences.

From (4.12) and (4.14), we have the following formula.

Proposition 16 (The key formula). The Hilbert transform of a B-spline is given by

H βα
τ
(x) =

∑

k∈Z

d[k]βα
τ+1/2(x − k). (4.15)

As discussed earlier, the theoretical difficulty with the Hilbert transform stems from
the fact that its frequency response has a discontinuity at the origin. This creates a
discontinuity of the Fourier transform of the resultant function at the origin. In the
space domain, the effect is that we have a poor 1/|x| decay.

The remarkable feature of (4.15) is that we have been able to express the slowly
decaying transform as a linear combination of better-behaved B-splines. By doing so,
we have, in effect, moved the discontinuity onto the digital filter. In the sequel, we
apply this to the wavelet filter g[k] where its effect is much more innocuous, since
the Fourier transform of g[k] vanishes in a neighborhood of the origin. This can
be seen as the “discrete” counterpart of the ideas developed in Chapter 3 concerning
the “continuous” Hilbert transform.

4.5 Hilbert pairs of wavelet bases

Before stating the main result, we recall a spectral factorization result for scaling
functions due to Unser et al. [52]. To do so, we need the notion of approximation
order (or simply order) that characterizes its approximation power.
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Corresponding to a scaling function ϕ(x), consider the spaces

Ua = span
n

ϕ(a−1x − k) : k ∈ Z
o

(a > 0).

When a = 2i , i ∈ Z, these correspond to the multiresolution subspaces of Mallat’s
construction.

Given some f (x) in L2, consider its orthogonal projection Pa f (x) onto Ua . That is,
Pa f (x) is the “best” representation of f (x) in Ua in the sense of minimum L2 error.
From the density of (Ua)a>0 in L2, it is clear that

lim
a−→0
|| f − Pa f ||2 = 0.

The approximation order provides a characterization of this rate of decay in terms of
the scale a for sufficiently regular functions. We say that ϕ(x) has an approximation
order γ if and only if

‖ f − Pa f ‖2 ≤C aγ‖∂ γ f ‖2 ( f ∈W2,γ ). (4.16)

Here ∂ γ f (x) is the (distributional) derivative of order γ , defined by

Ô∂ γ f (ω) = ( jω)γ f̂ (ω).

Note that ‖∂ γ f ‖2 is finite since f ∈W2,γ .

4.5.1 B-spline factorization

Akin to their polynomial counterparts, the order of fractional B-splines is entirely
controlled by their degree. In particular, it can be shown that γ = α+ 1 [22].

A fundamental result in wavelet theory is that it is always possible to express a valid
scaling function as a convolution between a fractional B-spline and a distribution.
The result in [52] involves causal B-splines. This can, however, be readily extended
to the more general fractional B-splines since the shift parameter τ does not influence
the order of the scaling function. Note that the theorem in [52] asserts that H (e jω)
is the refinement filter corresponding to a valid scaling function of order α+ 1 if
and only if

H (e jω) =

 

1+ e− jω

2

!α+1

Q(e jω) (4.17)

where Q(e jω) is bounded. We recognize the first term as the refinement filter of the
causal fractional B-spline. Now, we can write (4.17) as

H (e jω) =
�1+ e− jω

2

�p�1+ e jω

2

�q
P (e jω) (4.18)

where

P (e jω) = exp
�

− jω
�α+ 1

2
−τ
�

�

Q(e jω).
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Note that P (e jω) is again bounded. Thus, H (e jω) is the refinement filter of a valid
scaling function of order α+ 1 if and only if it admits a factorization as in (4.18).

By noting that the leading term in (4.18) is simply the filter in (4.10), we have the
following conclusion.

Theorem 17 (B-spline factorization). A valid scaling function ϕ(x) is of order α+ 1
if and only if, for some real τ,

ϕ̂(ω) = β̂α
τ
(ω)ϕ̂0(ω)

where ϕ̂0(ω) is bounded on every compact interval, and equals unity at the origin.

In the space domain, this corresponds to a well-defined convolution

ϕ(x) =βα
τ
∗ϕ0(x). (4.19)

The technical part of the statement is that ϕ̂0(ω) does not necessarily correspond
to some true function in the space domain—it is essential to interpret ϕ0 as a
distribution. This requires the convolution in (4.19) to be interpreted appropriately.

A deep implication of Theorem 17 is that all desirable features of the scaling function,
including its approximation property, can be explained using the properties of the
constituent B-splines [52].

4.5.2 The basic construction

We now propose a method for realizing the Hilbert transform of a given wavelet
within the multiresolution framework. Let the primary wavelet be given by

1

2
ψ
� x

2

�

=
∑

g[k]ϕ(x − k).

We need to specify a secondary scaling function ϕ′(x) and a wavelet filter g ′[k] such
that the corresponding wavelet

1

2
ψ′
� x

2

�

=
∑

g ′[k]ϕ′(x − k) (4.20)

such that
ψ′(x) =H ψ(x). (4.21)

Since the concerned systems are linear, a trivial means of realizing (4.21) would be
by setting

ϕ′(x) =H ϕ(x) and g ′[k] = g[k].

This, however, leads to a paradoxical situation. Suppose that ϕ(x) and ψ(x) decay as
1/|x|3, and that ψ(x) has two vanishing moments. Then ϕ′(x) will have a decay of
1/|x|, while the corresponding wavelet ψ′(x) will decay as 1/|x|3.
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The other problem is that we assume that the Hilbert transform of a scaling function
is again a scaling function. As explained in §4.3, this is not true in general.

Our main observation is that (4.21) can be realized by identifying a secondary
scaling function ϕ′(x) whose approximation properties are comparable to that of
ϕ(x). This is exactly where we require the B-spline factorization theorem. Of
course, we require a knowledge of the approximation order to use the theorem.

Let ϕ(x) be of order α+ 1. Then by (4.19), for some τ and distribution ϕ0,

ϕ(x) =βα
τ
∗ϕ0(x). (4.22)

Consider the function
ϕ′(x) =βα

τ+1/2 ∗ϕ0(x). (4.23)

Clearly, ϕ′(x) is a valid scaling function and has the same order as ϕ(x). Let ψ′(x)
be any arbitrary wavelet within the multiresolution analysis of ϕ′(x) given by (4.20).
In this setting, the following result provides a necessary and sufficient condition for
(4.21) to hold.

Theorem 18 (Hilbert pair of wavelets). Within the above settings, the wavelets ψ(x)
and ψ′(x) satisfy (4.21) if and only if g ′[k] = d ∗ g[k].

Proof. By linearity and continuity ofH ,

H ψ(x/2) =
∑

k∈Z

g[k]H ϕ(x − k).

Using (4.22) and (4.15), and formally commuting the convolutions, we have

H ϕ(x) =
�

H βα
τ

�

∗ϕ0(x)

=
∑

n∈Z

d[n]βα
τ+1/2 ∗ϕ0(x − n).

Combining the above relations and applying (4.23), we get

H ψ(x/2) =
∑

k∈Z

d ∗ g[k]ϕ′(x − k). (4.24)

The sufficiency of the condition g ′[k] = d ∗ g[k] is now immediate from (4.20)
and (4.24). Conversely, if we assume (4.21), then by (4.20) and (4.24),

∑

k∈Z

g ′[k]ϕ′(x − k) =
∑

k∈Z

d ∗ g[k]ϕ′(x − k).

Since the translates of ϕ′(x) form a Riesz basis of its span, every element in it must
necessarily have a unique representation. Therefore, g ′[k] = d ∗ g[k].
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We make the following remarks about our construction.

(1) System conditioning. Note that both ϕ(x) and ϕ′(x) have the same Riesz
bounds. This is because the autocorrelation sequences in either case, 〈ϕ(·),ϕ(· − k)〉
and 〈ϕ′(·),ϕ′(· − k)〉 are identical.

(2) Localization. Since the B-splines in (4.22) and (4.23) have the same decay, the
same is true for ϕ(x) and ϕ′(x). Importantly, this means that the scaling filters of
the primary and secondary multiresolution have similar localizations.

On the other hand, wavelets filters are typically required to be in `1, which gives
the best localization in terms of `p spaces. In this context, the main difficulty (as
with the continuous counterpart) is that the filter d[k] decays only as 1/|k|—it is
not integrable. The best we can say is that it belongs to `2. This is however not
sufficient to guarantee the inclusion of d ∗ g[k] in `1 even when g[k] is rapidly
decaying.

This is where the role of vanishing moments proves useful. It is seen from (4.5) that
the zero-mean property of a wavelet is equivalent to the condition

∑

k∈Z

g[k] = 0.

Using arguments similar to the ones used in Chapter 3, one can show that
∑

k∈Z

|d ∗ g[k]|<∞.

This guarantees that the wavelet filters g[k] and g ′[k] have comparable localiza-
tions.

(4) Uniqueness. Finally, note that althoughH ψ(x) is unique, the choice of the
scaling function ϕ′(x) and the wavelet filter g ′[k] that generateH ψ(x) is by no
means unique. For example, if ϕ′(x) and g ′[k] are such that (4.21) holds, then so
does the choice

ϕ′′(x) =
∑

r [k]ϕ′(x − k) and g ′′[k] = g ′ ∗ rinv[k],

where r [k] is such that its convolutional inverse rinv[k] is well-defined.

On the other, it was observed by Kingsbury that (approximate) Hilbert pairs of
wavelets were obtained if one forced the lowpass filters of one channel to interpolate
the lowpass filters of the second channel midway between its samples [24]. In the
context of quadrature-mirror filter banks, this was later mathematically verified
by Selesnick by considering wavelets as the limit functions defined by the infinite-
product formula for the iterated filter bank [25].

4.5.3 Biorthogonal wavelet bases

The above construction can be directly extended to biorthogonal wavelet bases of
L2, which includes orthonormal bases as a particular instance.
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We recall from §4.2 that a biorthogonal wavelet basis is associated with a pair of
distinct scaling functions ϕ(x) and ϕ̃(x). These are respectively the primal and dual
scaling functions. Let primal and dual wavelets be given by (4.7) and (4.8). These
together constitute the primary wavelets.

As before, we are required to identify a secondary biorthogonal basis corresponding
to the primal-dual scaling function3 ϕ′(x) and ϕ̃′(x) such that the corresponding
primal-dual wavelets satisfy the criteria

ψ′(x) =H ψ(x) and ψ̃′(x) =H ψ̃(x). (4.25)

Let the approximation order of ϕ(x) and ϕ̃(x) be α1+ 1 and α2+ 1. Therefore, for
some τ1 and τ2, and distributions ϕ1 and ϕ2,

ϕ(x) =βα1
τ1
∗ϕ1(x) and ϕ̃(x) =βα2

τ2
∗ϕ2(x).

We consider the scaling functions

ϕ′(x) =βα1

τ1+1/2
∗ϕ1(x) and ϕ̃′(x) =βα2

τ2+1/2
∗ϕ2(x)

and the associated multiresolutions. Let the primal-dual wavelets be given by

1

2
ψ′
� x

2

�

=
∑

g ′[k]ϕ′(x − k)

and
1

2
ψ̃′
� x

2

�

=
∑

g̃ ′[k]ϕ̃′(x − k).

The following result is then immediate from Theorem 18.

Corollary 19 (Hilbert pair of biorthogonal wavelets). The following properties are
equivalent.

(i) The wavelets satisfy (5.5), and (ψ̃′i ,k ) and (ψ′i ,k ) constitute a biorthogonal wavelet
basis.

(ii) The wavelet filters are related as g̃ ′[k] = d ∗ g̃[k] and g ′[k] = d ∗ g[k].

The above construction also has the following properties:

(1) System conditioning. The biorthogonal systems have the same order, and hence
the same Riesz bounds.

(2) Biorthognality. If the pair ϕ(x) and ϕ̃(x) form a biorthogonal pair, that is, if
〈ϕ̃,ϕ(· − k)〉= δ[k], then so do the pair ϕ′(x) and ϕ̃′(x). To see this, note that

H βα
τ+1/2(x) =−∆β

α
τ
(x),

3We use ˜ to distinguish the primal and dual components of a given multiresolution, while we use ′

to distinguish the primary and secondary multiresolutions.
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and that bothH and∆ are unitary. Therefore, at least formally,

〈ϕ̃′,ϕ′(· − k)〉=
∫

(βα2

τ2+1/2
∗ϕ2)(x) (β

α1

τ1+1/2
∗ϕ1)(x − k) d x

=
∫

H (βα2

τ2+1/2
∗ϕ2)(x)H (β

α1

τ1+1/2
∗ϕ1)(x − k) d x

=
∫

∆(βα2
τ2
∗ϕ2)(x) ∆(β

α1
τ1
∗ϕ1)(x − k) d x

= 〈ϕ̃,ϕ(· − k)〉.

This establishes the assertion.

(3) Relation between filters. The refinement filters on the primal and dual side are
related as

H ′(z) =D(−z−1)H (z) and H̃ (z−1) =D(−z−1)H̃ ′(z−1). (4.26)

where D(z) is the z -transform of the filter in (4.13). On the other hand, the wavelet
filters on the primal and dual side are related as

G′(z) =D(z)G(z) and G̃(z−1) =D(z)G̃′(z−1). (4.27)

(4) Perfect reconstruction. If the analysis and synthesis filters of the original
biorthogonal system satisfy the perfect reconstruction conditions,

G(z−1)G̃(z)+H (z−1)H̃ (z) = 1

and
G(z−1)G̃(−z)+H (z−1)H̃ (−z) = 0,

then so do the filters of the HT pair. Note that this is obvious when z = 1. On the
other hand, for z 6= 1, we have from (4.26) and (4.27),

G′(z−1)G̃′(z)+H ′(z−1)H̃ ′(z)

=D(z−1)D(z)G(z−1)G̃′(z)+D(−z)D(−z−1)H (z−1)H̃ (z)

=G(z−1)G̃(z)+H (z−1)H̃ (z).

The first condition now follows from the identity D(z)D(z−1) = 1 which holds
when z 6= 1. The other condition can be similarly verified.

4.6 Hilbert pairs in higher dimensions

We now extend the one-dimensional constructing to two-dimensions. This is
inspired by the construction of the dual-tree wavelets by Kingsbury et al. [27,
24, 26]. In particular, we use the conventional separable basis functions, that is,
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DWT: Checker-Board Effect

Figure 4.1: Wavelets associated with a separable basis. The figure shows
the LH, HL and HH wavelets in the space domain.

functions realized using tensor products of one-dimensional scaling functions and
wavelets. We use the directional Hilbert transform introduced in Chapter 2 as
the two-dimensional extension of the Hilbert transform. It will be clear form the
foregoing discussion that the construction can be extended to higher dimensions.

We recall that biorthogonal wavelet bases of L2(R) can be combined to realize sepa-
rable biorthogonal wavelet basis of L2(R2) using straightforward tensor-products.
The underlying principle is the following [14].

Theorem 20 (Separable biorthogonal bases). Let ψp (x) and ψ̃p (x) be the primal
and dual wavelets of a biorthogonal wavelet basis of L2(R), where the corresponding
scaling functions are respectively given by ϕp (x) and ϕ̃p (x). Similarly, let ψq (x) and

ψ̃q (x) be the wavelets of another biorthogonal basis with scaling functions ϕq (x) and
ϕ̃q (x). Consider the following system of wavelets

ψ1(x) = ϕp (x1)ψq (x2), ψ̃1(x) = ϕ̃p (x1)ψ̃q (x2),

ψ2(x) =ψp (x1)ϕq (x2), ψ̃2(x) = ψ̃p (x1)ϕ̃q (x2),

ψ3(x) =ψp (x1)ψq (x2), ψ̃3(x) = ψ̃p (x1)ψ̃q (x2). (4.28)

Then the dilations and translations of the wavelets on the left (primal wavelets) and
the dilations and translations of the wavelets on the right side(dual wavelets) together
constitute a biorthogonal wavelet basis of L2(R2).

The functions ψ1(x),ψ2(x) and ψ3(x) are popularly referred to as the “low-high”
(LH), “high-low” (HL) and “high-high” (HH) wavelets to emphasize the directions
along which the “low pass” scaling functions and the “high pass” wavelets operate.
In particular, note that if we denote the subspace

span
n

f (x1−m)g (x2− n) : (m, n) ∈ Z2
o

by V ( f )⊗V (g ), then the primal and dual approximation spaces for the above
construction are respectively given by V (ϕp )⊗V (ϕq ) and V (ϕ̃p )⊗V (ϕ̃q ).



66 Hilbert transform pairs of wavelet bases

4.6.1 Motivation

Our construction of the two-dimensional wavelets is motivated by the concept of
analytic functions and its connection with Hilbert transforms. A complex-valued
function is said to be analytic if its Fourier transform (or spectrum) vanishes on one
half of the real axis. For example, consider the function

ψa(x) =ψ(x)+ jH ψ(x). (4.29)

Since

ψ̂a(ω) = [1+ sign(ω)]ψ̂(ω),

it vanishes on the negative frequency axis. That the Hilbert transform appears in
(4.29) is not a coincidence. It can be shown that (under appropriate hypothesis)
the real and imaginary components of every function whose Fourier transform
vanishes on the negative frequency axis form a Hilbert pair. This is the so-called
causality-analyticity property.

In two-dimensions, we can have four equal partitions of the frequency plane called
the quadrants, or two equal partitions called the half-planes. These are the natural gen-
eralizations of the concept of positive and negative frequencies in two-dimensions.
We thus call a two-dimensional function analytic if its Fourier transform vanishes
on the quadrants or the half-planes. Our main observation is that the real and
imaginary components of such functions are related through the directional Hilbert
transform. We recall that, corresponding to a unit vector u, the directional Hilbert
transformHu has the property that

Hu f (ω) =− j sign(ωTu) f̂ (ω). (4.30)

In two-dimensions, we useHθ to denote the directional Hilbert transform corre-
sponding to the unit vector where uθ = (cosθ, sinθ). Note that if

Ψθ(x) =ψ(x)+ jHθψ(x) (4.31)

then

Ψ̂θ(ω) =
�

1+ sign(ωTuθ)
�

ψ̂(ω).

Thus, the Fourier transform vanishes on the half space corresponding to frequencies
ω for whichωTuθ < 0. It is not hard to see that every function which vanishes on
some half-space or even a quadrant is of the form (4.31). This analytic property al-
lows us to extend several key ideas associated with the one-dimensional construction
to the higher dimensions.

We now show how such analytic wavelets can be designed in two-dimensions
by combining conventional biorthogonal bases. The main idea is based on the
construction given by Kingsbury et al. [26].
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4.6.2 Analytic wavelets

We begin by setting up four separable biorthogonal wavelet bases using Theorem
20. The scaling functions of concern are ϕp (x) = ϕ(x) and ϕq (x) = ϕ

′(x) that
are associated with the analytic wavelet ψa(x) in (4.29), where ψ′(x) = H ψ(x).
This naturally leads to the possibility of four separable biorthogonal wavelet bases
corresponding to the four approximation spaces, namely, V (ϕ)⊗V (ϕ),V (ϕ)⊗
V (ϕ′),V (ϕ′)⊗V (ϕ) and V (ϕ′)⊗V (ϕ′). We will in fact use all of these to obtain a
balanced construction.

The separable wavelets corresponding to the four scaling spaces are respectively

ψ1(x) = ϕ(x1)ψ(x2), ψ4(x) = ϕ(x1)ψ
′(x2),

ψ2(x) =ψ(x1)ϕ(x2), ψ5(x) =ψ(x1)ϕ
′(x2),

ψ3(x) =ψ(x1)ψ(x2), ψ6(x) =ψ(x1)ψ
′(x2),

ψ7(x) = ϕ
′(x1)ψ(x2), ψ10(x) = ϕ

′(x1)ψ
′(x2),

ψ8(x) =ψ
′(x1)ϕ(x2), ψ11(x) =ψ

′(x1)ϕ
′(x2),

ψ9(x) =ψ
′(x1)ψ(x2), ψ12(x) =ψ

′(x1)ψ
′(x2). (4.32)

This gives us the ensemble of primal wavelets ψ1(x), · · · ,ψ12(x). The dual wavelets

ψ̃1(x), · · · , ψ̃12(x) (4.33)

are specified identically, except using the dual wavelets instead of the primal ones.
By judiciously using the one-sided spectrum of ψa(x), and by combining the four
separable wavelet bases in (4.32), we arrive at the following wavelet specifications

Ψ1(x) =ψa(x1)ϕ(x2) =ψ2(x)+ jψ8(x)

Ψ2(x) =ψa(x1)ϕ
′(x2) =ψ5(x)+ jψ11(x)

Ψ3(x) = ϕ(x1)ψa(x2) =ψ1(x)+ jψ4(x)

Ψ4(x) = ϕ
′(x1)ψa(x2) =ψ7(x)+ jψ10(x)

Ψ5(x) =
1
p

2
ψa(x1)ψa(x2) =

�

ψ3(x)−ψ12(x)p
2

�

+ j
�

ψ6(x)+ψ9(x)p
2

�

Ψ6(x) =
1
p

2
ψ∗a(x1)ψa(x2) =

�

ψ3(x)+ψ12(x)p
2

�

+ j
�

ψ6(x)−ψ9(x)p
2

�

. (4.34)

The dual complex wavelets Ψ̃1(x), · · · , Ψ̃6(x) are specified in an identical fashion
using the wavelets in (4.33). Note that the construction is complete in the sense that
it involves all the 4× 3= 12 separable wavelets of the four multiresolutions. The
factor 1/

p
2 in (4.34) is used to ensure normalization—all the six complex wavelets

have the same L2(R2) norm. The key feature of the construction is the following.
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Proposition 21 (Hilbert pairs). The real and imaginary components of the complex
wavelets in (4.34) form directional Hilbert transform pairs. In particular,

Im[Ψl (x)] =Hθl
Re[Ψl (x)] (4.35)

where
θ1 = θ2 = 0, θ3 = θ4 =π/2, θ5 =π/4, and θ6 = 3π/4.

In other words, the components of the complex wavelets in (4.34) are related
by directional Hilbert transforms along the four primal directions, namely, the
horizontal, the vertical, and the two diagonals.

Proof. Note that it is sufficient to establish the correspondences for the wavelets
Ψ1(x) and Ψ5(x); the rest follows from symmetry. The correspondence for the
former is direct,

H0Re[Ψ1(x)] =H [ψ(x1)]ϕ(x2) =ψ
′(x1)ϕ(x2) = Im[Ψ1(x)].

We now show that
Im[Ψ5(x)] =Hπ/4Re[Ψ5(x)]. (4.36)

Note that

ÚRe[Ψ5](ω) =
1
p

2

�

ψ̂3(ω)− ψ̂12(ω)
�

=
1
p

2

�

1+ sign(ω1) sign(ω2)
�

ψ̂(ω1)ψ̂(ω2),

and that

ÚIm[Ψ5](ω) =
1
p

2

�

ψ̂6(ω)+ ψ̂9(ω)
�

=−
j
p

2

�

sign
�

ω1)+ sign(ω2)
�

ψ̂(ω1)ψ̂(ω2).

Therefore, by (4.30), the Fourier transform of the right side of (4.36) is

− j sign(ω1+ω2)
1
p

2

�

1+ sign(ω1) sign(ω2)
�

ψ̂(ω1)ψ̂(ω2).

But this is exactly the Fourier transform of the left side of (4.36), since

sign(ω1)+ sign(ω2) = sign(ω1+ω2)
�

1+ sign(ω1) sign(ω2)
�

This establishes (4.36), and hence the theorem.
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4.6.3 Orientation selectivity

Separable wavelets have limited orientation selectivity. As shown in Figure 4.1, the
wavelets are oriented along the horizontal, vertical, and the two diagonals. The
main difficulty is that the HH wavelet is not oriented purely along one direction.
It has a checkerboard appearance with simultaneous pulsation along the diagonal
directions. To decouple these directions, we use the causality-analyticity property.

Note that the difficulty is due to the fact that the HH wavelet is realized as the
tensor product ψ(x1)ψ(x2). As a result, its spectrum is not localized to any fixed
quadrant or half-plane. On the other hand, note that if analytic wavelets of the
form ψa(x1)ψa(x2) is used, then it spectrum will be supported on a quadrant. As a
result, the real and imaginary components of these wavelets have better orientation
selectivity.
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Chapter 5

Gabor-like wavelet transforms

Abstract — In this chapter, we use the framework developed in
the previous chapter to identify two spline multiresolutions where the
wavelet bases are related through the Hilbert transform. In effect, this
gives us a family of analytic spline wavelets which are continuously
indexed by their order. The remarkable property is that these analytic
spline wavelets converge to a Gaussian-windowed complex exponential
(Gabor function) as their order gets large. This gives us a finite-order
approximation of the Gabor function, which is known to be optimally
localized in the joint space-frequency domain.

In higher dimensions, we construct a family of complex spline
wavelets that resemble the directional Gabor functions proposed by
Daugman [3].

We also present a fast filterbank implementation of the associated
complex wavelet transform using the fast Fourier transform1.

5.1 Introduction

The need for combined space-frequency representations stemmed from the inade-
quacy of either space or frequency domain analysis to fully describe the nature of
non-stationary signals. This led Gabor and others to consider the space-frequency
representation of signals as a tool for measuring the frequency content of the signal
at different points in space [2, 53]. One of the first steps in this direction was Ga-
bor’s reformulation of Heisenberg’s Uncertainty Principle in terms of the so-called
quantum law for information, the principle that “the joint space-frequency domain of
signals is quantized and the support of signals in this domain always exceed a certain

1Parts of this chapter is based on the article [49]: K. N. Chaudhury, M. Unser, "Construction
of Hilbert transform pairs of wavelet bases and Gabor-like transforms," IEEE Transactions on Signal
Processing, vol. 57, no. 9, pp. 3411-3425, September 2009.
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minimum”. He went on to discover that it is the Gaussian-windowed complex
exponentials (and their translates) which attain this minimum.

This discovery led him to introduce the Gabor transform in his famous 1946 paper
[2]. The idea was to represent a non-stationary signal using the space and frequency
translates of a Gaussian window. These Gabor atoms were of the form

Gm,n(x) =
1

σ
p

2π
exp



−
(x −mX )2

2σ2



exp
h

j nΩ(x −mX )
i

where the parameters X and Ω controlled the space and frequency resolution,
respectively. The ultimate goal was to have the representation

f (x) =
∞
∑

m=−∞

∞
∑

n=−∞
cm,nGm,n(x).

While Gabor did give an iterative method for estimating the coefficients cm,n , an
analytic method for computing them was not known until Baastians provided a
solution in 1980 [4]. The main difficult in computing the coefficients stems from
the fact that the system (Gm,n) is not orthogonal in L2. Unfortunately, as predicted
by the Balian-Low theorem, it does not even form a stable Riesz basis of L2 [54].
One can, of course, have Gabor frames. In this case, the reconstruction process,
however, involves the computation of the dual frame, and this turns out to be
computationally expensive and often unstable [4, 5].

5.2 Gabor-like wavelets

As an application of the ideas developed in Chapter 4, we now construct two wavelet
bases (ψi ,k ) and (ψ′i ,k ) within the framework of multiresolution analysis, where

ψ′i ,k (x) =H ψi ,k (x).

These wavelets are indexed by their order (or degree). The key feature of the analytic
wavelet

Ψ(x) =ψ(x)+ jψ′(x)

is that it asymptotically converges to a Gabor function as the order gets large.
This allows us to realize a fast Gabor-like transform using the standard filterbank
algorithms. The difference is that, instead of the uniform space-frequency tiling used
in Gabor analysis, we use the non-uniform space-frequency tiling used in wavelet
theory. As is well-known, the latter “variable-scale” analysis has the advantage that
it allows us to locate high-frequency components more accurately in space.
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5.2.1 The B-spline multiresolution

We recall from Chapter 4 that the fractional B-spline βα
τ
(x) is specified by the

Fourier transform

β̂α
τ
(ω) =

 

1− e− jω

jω

!p 
1− e jω

− jω

!q

(5.1)

where

p =
1

2
(α+ 1)+τ and q =

1

2
(α+ 1)−τ.

It is a valid scaling function for all α≥ 0 and τ. It satisfies the two-scale relation

1

2
βα
τ

� x

2

�

=
∑

k∈Z

hα
τ
[k]βα

τ
(x − k)

where

Hα
τ
(e jω) =

�1+ e− jω

2

�p�1+ e jω

2

�q
.

Consider the multiresolution generated byβα
τ
(x), namely, the sequence of subspaces

{0} ⊂ · · · ⊂V1 ⊂V0 ⊂V−1 ⊂ · · · ⊂ L2(R)

where
Vi = span

n

βα
τ
(2−i x − k) : k ∈ Z

o

.

The important observation is that the translates of βα
τ
(x) are not orthogonal,

excepting when α= 0 and τ = 1/2 (Haar system). However, the translates of βα
τ
(x)

do form a Riesz basis of V0. To see this, consider the autocorrelation sequence

aα
τ
[k] =

∫

βα
τ
(x)βα

τ
(x − k) d x (k ∈ Z)

and its Fourier transform

Aα
τ
(e jω) =

∑

k∈Z

aα
τ
[k]e− jωk =

∑

n∈Z

|β̂α
τ
(ω+ 2πn)|2.

It can be verified that B <Aα
τ
(e jω)<C for constants B ,C > 0, e.g., see [22]. This

is sufficient for the translates to form a Riesz basis of their span [14].

Within this multiresolution, the B-spline wavelet is given by

1

2
ψα
τ

� x

2

�

=
∑

k∈Z

gα
τ
[k]βα

τ
(x − k) (5.2)
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where
Gα
τ
(e jω) = e jωA(−e jω)Hα

τ
(−e− jω).

The wavelet filter is so chosen that ψα
τ
(x) is orthogonal to the translates of βα

τ
(x)

(and its dilates), but not to its own translates [55]. Thus, the translates of the wavelet
form a Riesz basis of W0, which, in this case, is the orthogonal complement of V0
in V−1.

The dual multiresolution is specified using the dual β̃α
τ
(x). This is specified by the

biorthogonality requirement
∫

β̃α
τ
(x)βα

τ
(x − n) = δ[n] (n ∈ Z).

Clearly, β̃α
τ
(x) is non-unique. However, by requiring it to be in V0, we recover an

unique dual given by
ˆ̃
βα
τ
(ω) =Aα

τ
(e jω)−1β̂α

τ
(ω). (5.3)

Note that the expression on the right is well-defined since Aα
τ
(e jω) is non-vanishing.

Notice that the choice of the dual scaling function fixes the dual refinement filter.
The wavelet filter for the dual multiresolution is then automatically fixed by the
perfect-reconstruction conditions [56]. In particular, the complete system of filters
is given by

Hα
τ
(e jω) =

�1+ e− jω

2

�
α+1

2 +τ
�1+ e jω

2

�
α+1

2 −τ

Gα
τ
(e jω) = e jωAα

τ
(−e jω)Hα

τ
(−e− jω)

H̃α
τ
(e jω) =

Hα
τ
(e jω)Aα

τ
(e jω)

Aα
τ
(e j 2ω)

G̃α
τ
(e jω) =

Gα
τ
(e jω)

Aα
τ
(e j 2ω)Aα

τ
(−e jω)



















































(5.4)

This gives us the dual wavelet

1

2
ψ̃α
τ

� x

2

�

=
∑

k∈Z

g̃α
τ
[k]β̃α

τ
(x − k).

5.2.2 Hilbert pairs of spline wavelets

For every fixed α and τ, we have the above multiresolution structure involving
the B-spline wavelet and its dual. From Corollary 4 of Chapter 4, we deduce the
following.
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Theorem 22 (Hilbert pairs). The Hilbert transform of a B-spline wavelet is again a
B-spline wavelet of same order, but with a different shift. In particular,

H ψα
τ
(x) =ψα

τ+1/2(x). (5.5)

Similarly, for the dual wavelet,

H ψ̃α
τ
(x) = ψ̃α

τ+1/2(x). (5.6)

Proof. Following the notations of Corollary 4 (Chapter 4), we have

ϕ(x) = (βα
τ
∗ϕ1)(x) and ϕ′(x) = (βα

τ+1/2 ∗ϕ1)(x)

where ϕ1(x) is simply the Dirac distribution. Similarly,

ϕ̃(x) = (βα
τ
∗ϕ2)(x) and ϕ̃′(x) = (βα

τ+1/2 ∗ϕ2)(x)

where

ϕ2(x) =
∑

q[k]δ(x − k) and
∑

q[k]e− jωk =Aα
τ
(e jω)−1.

Here we have used the fact that Aα
τ
(e jω), and hence q[k], does not depend on τ. By

Corollary 4, we know that (5.5) and (5.6) holds if

g ′[k] = d ∗ g[k] and g̃ ′[k] = d ∗ g̃[k].

It is straightforward to verify from (5.4) that this is indeed the case.

The importance of this result is that it gives us the family of analytic B-spline
wavelets

Ψα
τ
(x) =ψα

τ
(x)+ jψα

τ+1/2(x) (α≥ 0,τ ∈R). (5.7)

Note that α controls the smoothness and the number of vanishing moments (os-
cillations) of ψα

τ
(x) [55]. In particular, when α is sufficiently large, ψα

τ
(x) satisfies

the hypothesis of Theorem 2 in Chapter 2. In this regime, the prediction is that its
Hilbert transform has comparable localization, oscillation and smoothness. The
following asymptotic analysis confirms this symmetry.

5.2.3 Asymptotic behavior

The asymptotic nature of ψα
τ
(x) can be readily guessed from that of the symmetric

polynomial B-spline wavelets for which α is an integer and τ = 0. It was shown in
[20] that these wavelets asymptotically behave as modulated Gaussians as α gets
large:

ψα0 (x)∼ ϕ(x)cos(ω0x +φ), (5.8)
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where ϕ(x) is Gaussian, and ω0 and φ are appropriate modulation parameters.
Now, it can be shown that

ψα
τ
(x) =H−τψ

α
0 (x)

where H−τ is the fractional Hilbert transform of shift −τ (we will derive this
in Chapter 6 in a different context). Form the modulation property ofH−τ (cf.
Chapter 2), it follows that

lim
α−→∞

ψα
τ
(x)≈ ϕ(x)cos

�

ω0x +φ−πτ
�

.

For the analytic wavelets in (5.7), we conclude that

lim
α−→∞

Ψα
τ
(x)≈ ϕ(x)cos

�

ω0x +φ−πτ
�

+ϕ(x)cos
�

ω0x +φ−π(τ+ 1/2)
�

= ϕ(x)exp
�

ω0x +φ−πτ
�

.

Note that we use the approximation symbol because the modulation property holds
only approximately for Gaussian windows. The following result shows that this
approximation is quite accurate.

Theorem 23 (Gabor-like wavelets). The analytic B-spline wavelet Ψα
τ
(x) converges to

a Gabor function as α get large. In particular,

Ψα
τ
(x)∼

2M α+1σ
p

2π(α+ 1)
exp

�

−
σ2(x − 1/2)2

2(α+ 1)

�

exp
h

j (ω0x−ω0/2−πτ)
i

(α−→∞)

(5.9)
where M = 0.670,ω0 = 5.142, and σ = 2.670.

We provide a proof in Appendix A. This is adapted from the proof in [20].

The above convergence in fact happens quite rapidly. For instance, we have observed
that the joint time-frequency resolution of the complex cubic B-spline wavelet
(α = 3) is already within 3% of the limit specified by the uncertainty principle.
Figure 5.1 depicts the complex wavelets generated using Hilbert pairs of B-spline
wavelets. Also shown in the figure is the envelope of the complex wavelet which
closely resembles the well-localized window of the Gabor function.

Note that while the B-spline wavelets tend to be optimally localized in space, they
are not orthogonal to their translates. The reconstruction therefore requires the
use of dual (synthesis) functions. The flip side is that these dual-spline wavelets
have a comparatively poor spatial localization, that deteriorates with the increase
in degree. This is evident from Figure 5.2, which shows quadrature pairs of such
wavelets of different degrees. However, the dual wavelets have the same rate of
decay as their analysis counterpart, and the reconstruction algorithm is fast and
numerically stable.
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Figure 5.1: Hilbert pairs of B-spline wavelets. In either case, Blue (solid
line): ψα0 (x), Red (broken line): ψα1/2(x), Black (solid line): |ψα0 (x)+ψ

α
1/2(x)|
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(a) α = 3

(b) α = 6

Figure 5.2: Hilbert pairs of dual-spline wavelets. Blue (solid line): ψα0 (x),
Red (broken line): ψα1/2(x).
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5.3 Gabor-like transform

We now discuss the implementation of the discrete wavelet transforms correspond-
ing to the Hilbert pairs in (5.5). We take the order to be sufficiently large α, say,
α= 6, while we arbitrarily set τ. Our eventual goal is to combine the coefficients
of the two transforms to realize the coefficients

ci[k] =
∫

f (x)Ψi ,k (x) d x (i , k ∈ Z).

In view of (5.9), we call this the Gabor-like wavelet transform. The main difference
with (??) is that instead of the uniform space-frequency tiling provided by the Gabor
transform, we use the logarithmic space-frequency tiling provided by the wavelet
transform.

Note that this requires two biorthogonal multiresolutions generated by the B-spline
and its dual. In particular, the primary multiresolutions are generated by

ϕ(x) =βα
τ
(x) and ϕ̃(x) = β̃α

τ
(x).

The secondary multiresolutions are generated by

ϕ(x) =βα
τ+1/2(x) and ϕ̃(x) = β̃α

τ+1/2(x).

The perfect-reconstruction filters associated with these biorthogonal systems are
given by (5.4). While the degree α is same in either case, we set the shifts as τ and
τ+ 1/2 for the primary and secondary systems, respectively.

5.3.1 Pre-filter

To achieve a coherent analysis, we need to project the input signal onto the approxi-
mation spaces V0(ϕ) and V0(ϕ

′). In particular, given a finite-energy signal f (x), we
consider its orthogonal projection onto V0(ϕ) given by

f0(x) =
∑

k∈Z

c0[k]ϕ(x − k)

where

c0[k] =
∫

f (x)ϕ̃(x − k) d x. (5.10)

We take ϕ̃(x) to be the unique dual in V0(ϕ) specified by (5.3).

The wavelet decomposition of f0(x) at resolutions j = 1, · · · , J is then given by

f0(x) =
∑

k∈Z

cJ [k]ϕJ ,k (x) +
∑

1≤ j≤J

∑

k∈Z

d j [k]ψ j ,k (x) (5.11)
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where d j [k] and cJ [k] are obtained from c0[k] using the standard filterbank al-
gorithm of Mallat [51]. Here d j [k] are the wavelet coefficients, and cJ [k] are the
approximation coefficients corresponding to the coarsest scale.

In practice, one only has access to the discrete samples of the signal. Let f [k] be
such (uniform) samples. It turns out that by assuming the signal to be bandlimited,
a particularly simple filtering algorithm for computing the projection coefficients is
obtained. This is given by

c0[k] = ( f ∗ p)[k] (5.12)

where
C0(e

jω) = ˆ̃ϕ(ω)∗ (−π<ω ≤π).

That is,

P (e jω) =
∑

n∈Z

rect
�

ω+ 2πn

2π

�

ˆ̃ϕ(ω+ 2πn)∗. (5.13)

To see this, note that, applying Poisson’s summation formula to (5.10), we have

C0(e
jω) =

∑

n∈Z

f̂ (ω+ 2πn) ˆ̃ϕ(ω+ 2πn)∗.

Let F (e jω) be the Fourier transform of f [k]. Since f (x) is bandlimited,

f̂ (ω) = F (e jω)rect
� ω

2π

�

.

Therefore, by (5.13),

C0(e
jω) = F (e jω)

∑

n∈Z

rect
�

ω+ 2πn

2π

�

ˆ̃ϕ(ω+ 2πn)∗ = F (e jω)P (e jω).

This is exactly (5.12). For the secondary multiresolution, we use the pre-filter

c ′0[k] = ( f ∗ p ′)[k] (5.14)

where
P ′(e jω) = ˆ̃ϕ′(ω)∗ (−π<ω ≤π).

Note that both P (e jω) and P ′(e jω) are non-vanishing on (−π,π]. This means that
the projection operations are perfectly reversible.

5.3.2 Analysis

Henceforth, we confine our analysis to discrete periodic signals. We denote such a
signal of size N by f= ( f1, . . . , fN ). The orthogonal projections are then given by

cL
0 = Pf and c ′L0 = P′f
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where P and P′ are the circulant matrices that correspond to the discrete versions
of the pre-filters in (5.12) and (5.14). In practice, these are only specified implicitly,
since we do the pre-filtering in the frequency domain. The reason for using the
notation cL

0 instead of c0 will be clear shortly.

Let Uh denote the composition of the circulant matrix corresponding to the filter
h[k] and the downsampling matrix. For the primary system, the low pass and the
high pass subbands at successive scales i = 1, . . . , J are given by the recursion

cL
i =Uh̃ cL

i−1 cH
i =U g̃ cL

i−1 (i = 1,2, . . . , J ).

Similarly, for the secondary system,

c ′Li =Uh̃ c ′Li−1 c ′Hi =U g̃ c ′Li−1.

The complex wavelet subbands are then given by

wi = cH
i + j c ′Hi (1≤ i ≤ J ).

We remark that the projection filters play a crucial role as far analyticity is concerned.
The Fourier transform of the analytic wavelet is one-sided by construction. The
corresponding complex wavelet filter,

G̃(e jω)+ j G̃′(e jω),

however does not inherit this property naturally. It is only for the combination of
the projection and wavelet filters,

Ga(e
jω) = P (e jω)G̃(e jω)+ j P ′(e jω)G̃′(e jω),

that Ga(e
jω) = 0 when −π<ω ≤ 0. Figure 5.3 shows the one-sided response of the

filter.

5.3.3 Reconstruction

Clearly, the transformation

T : f 7→ (cL
J ,c′LJ ,w1, . . . ,wJ ) (5.15)

is redundant by a factor of two. However, note that T is realized by concatenating
two bases, and is hence one-to-one, that is, Tf1 = Tf2 if and only if f1 = f2. This
means that T has non-unique left-inverses T† for which

f= T†(Tf).

Let Vh denote the composition of the upsampling matrix and the circulant matrix
corresponding to the filter h[k]. In our case, we use the simple left-inverse

T† : (cL
J , c ′LJ ,w1, . . . ,wJ ) 7→ f=

1

2
[P−1cL

0 +P′−1c ′L0 ].
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Figure 5.3: Transfer function of the analytic wavelet filter Ga(e
jω).

where cL
0 and c ′L0 are obtained through the recursion

cL
i =Uh cL

i+1+Vg Re(wi+1)

c′Li =Uh ′c
′L
i+1+Vg ′Im(wi+1) (i = J − 1, . . . , 0).

In short, the reconstruction amounts to inverting the two wavelet transforms and
averaging the outputs.

We implement the transform for finite periodic data using the fast Fourier transform.
The basic algorithm is the same as the one used in [57]. This is briefly explained in
Appendix C.

5.4 Directional Gabor-like wavelets

We are interested in two-dimensional Gabor functions of the form

G(x) =
1

2πσ1σ2
exp



−
(x1− u)2

2σ2
1

−
(x2− v)2

2σ2
2



exp
h

j (ξ1x1+ ξ2x2)
i

. (5.16)

This are simply complex plane waves localized using Gaussian window. The di-
rection of the plane wave (or oscillation) is determined by ξ1 and ξ2. The cases of
interest are the following: ξ2 = 0 (wave along x1), ξ1 = 0 (wave along x2), ξ1 =±ξ2
(wave along one of the diagonals).
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We now approximate such direction-selective Gabor functions using the spline
multiresolution introduced in §5.2. To do so, we use the two-dimensional complex
wavelets of Chapter 4. In view of the correspondence in (5.5), we fix some α and τ,
and set

ϕ(x) =βα
τ
(x) and ϕ′(x) =βα

τ+1/2(x).

The corresponding wavelets are

ψ(x) =ψα
τ
(x) and ψ′(x) =ψα

τ+1/2(x).

This fixes the six oriented complex wavelets Ψ1(x ;α,τ), . . . ,Ψ6(x ;α,τ). We recall
that the real and imaginary components of these wavelets form Hilbert pairs,

Im[Ψl (x ;α,τ)] =Hθl
Re[Ψl (x ;α,τ)] (5.17)

where
θ1 = θ2 = 0, θ3 = θ4 =π/2, θ5 =π/4, and θ6 = 3π/4.

As argued in Chapter 4, the above correspondences allude to the fact that the
wavelets are selectively oriented along the directions θ1, . . . ,θ6. This becomes
apparent from the following asymptotic characterization.

Proposition 24 (Directional Gabor-like wavelets). The waveletsΨk (x ;α,τ) converge
to Gabor functions as α gets large,

lim
α−→∞

Ψ1(x ;α,τ)∼M1 exp



−
(x − 1/2)2

σ2
1

−
(y −τ)2

σ2
2



exp
�

j (ω0x −πτ)
�

lim
α−→∞

Ψ2(x ;α,τ)∼M1 exp



−
(x − 1/2)2

σ2
1

−
(y −τ− 1/2)2

σ2
2



exp
�

j (ω0x −πτ)
�

lim
α−→∞

Ψ3(x ;α,τ)∼M1 exp



−
(x −τ)2

σ2
2

−
(y − 1/2)2

σ2
1



exp
�

j (ω0y −πτ)
�

lim
α−→∞

Ψ4(x ;α,τ)∼M1 exp



−
(x −τ− 1/2)2

σ2
2

−
(y − 1/2)2

σ2
1



exp
�

j (ω0y −πτ)
�

lim
α−→∞

Ψ5(x ;α,τ)∼M2 exp



−
(x − 1/2)2

σ2
1

−
(y − 1/2)2

σ2
1



exp
�

j (ω0(x + y)− 2πτ)
�

lim
α−→∞

Ψ6(x ;α,τ)∼M2 exp



−
(x − 1/2)2

σ2
1

−
(y − 1/2)2

σ2
1



exp
�

jω0(y − x)
�

,

(5.18)

where M1, M2,σ1,σ2, and ω0 are appropriate parameters.

In Appendix B, we shown that

lim
α−→∞

βα
τ
(x)∼

1

σ
p

2π
exp

�

−
(x −τ)2

2σ2

�

(5.19)
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Figure 5.4: Directional selective Gabor-like wavelets. Left: Real compo-
nent of the complex wavelets. Right: Envelopes of the complex wavelets.
We note that the diagonally placed wavelets are identical, they are repeated
to balance the representation.

where σ =
p

α+ 1/12. Along with (5.24), it is then straightforward to deduce
(5.18).

Figure 5.4 shows these Gabor-like wavelets for α= 6 and τ = 0. The ensemble shows
the modulus |Ψk (x ; 6, 0)| and the real component Re[Ψk (x ; 6, 0)] of the six complex
wavelets. The former clearly shows the pulsations of the directional plane waves,
whereas the latter shows the Gaussian envelopes.

5.5 Implementation

We now discuss the implementation of the discrete wavelet transforms correspond-
ing to the Hilbert pairs in (5.17). As before, we take some sufficiently large α, and
arbitrarily set τ = 0. Our eventual goal is to compute the coefficients of the Gabor
coefficients at dyadic resolutions for every 1≤ l ≤ 6,

cl ,i[k] =
∫

f (x)Ψl (2
−i x − k) d x (i ∈ Z,k ∈ Z2).

This results in a multiresolution, directional analysis of f (x) in terms of the sequence
of projections cl ,i[k].

We recall from Chapter 4 that this involves four multiresolutions. Since each of the
multiresolutions are separable, the associated filters can be implemented efficiently
through successive filtering along either dimension.
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5.5.1 Pre-filter

The signal is projected onto each of the four approximation spaces of the form
V(ϕ1)⊗V(ϕ2) before initiating the wavelet decompositions. The orthogonal pro-
jection is achieved in a separable fashion using an appropriate pre-filter along each
dimension. In particular, if f [k] are the samples of a bandlimited signal, then the
projection coefficients are given by

c LL
0 [k] = ( f ∗ p)[k]

where the pre-filter p[k] = p[k1, k2] is specified by
∑

p[k1, k2]exp
�

− j (k1ω1+ k2ω2)
�

= ˆ̃ϕ1(ω1)
∗ ˆ̃ϕ2(ω2)

∗.

This gives the projections

c LL
0,n[k] = ( f ∗ pn)[k] (1≤ n ≤ 4)

corresponding to the pre-filters p1[k], . . . , p4[k].

5.5.2 Analysis

We consider the implementation aspects for finite periodic data f of size M ×N , e.g.,
an image with periodic boundary conditions. Let us denote the low-low (LL), low-
high (LH), high-low (HL) and high-high (HH) sub-bands of the four decompositions
at resolutions i = 1, . . . , J by

cLL
i ,n [k], cLH

i ,n [k], cHL
i ,n [k] and cHH

i ,n [k] (1≤ n ≤ 4).

The sub-bands cLL
0,n are simply the pre-filtered signals

cLL
0,n = Pnf (1≤ n ≤ 4) (5.20)

where Pn are the (block) circulant matrices associated with the separable pre-filters.

The discrete wavelet transform uses 4 separable discrete wavelet transforms with
different filters applied along the two directions (cf. Table 5.1). Let ULL

n , . . . ,UHH
n

denote the composition of the analysis matrix (with appropriate filters along the two
directions), and the standard downsampling matrix for the subbands LL, . . . , HH
and for each 1≤ n ≤ 4. The subbands at coarser scales i = 1, . . . , J are given by

cLL
i ,n =ULL

n cLL
i−1,n

cLH
i ,n =ULH

n cLH
i−1,n

cHL
i ,n =UHL

n cHL
i−1,n

cHH
i ,n =UHH

n cHH
i−1,n























(1≤ n ≤ 4). (5.21)
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Table 5.1: Components of the separable wavelet filters

n Initial spaces Analysis filters Synthesis filters
x-direction y-direction x-direction y-direction

1 V (ϕ)⊗V (ϕ) h̃, g̃ h̃, g̃ h, g h, g
2 V (ϕ)⊗V (ϕ′) h̃, g̃ h̃ ′, g̃ ′ h, g h ′, g ′

3 V (ϕ′)⊗V (ϕ) h̃ ′, g̃ ′ h̃, g̃ h ′, g ′ h, g
4 V (ϕ′)⊗V (ϕ′) h̃ ′, g̃ ′ h̃ ′, g̃ ′ h ′, g ′ h ′, g ′

Consider the following compound images obtained by the concatenation of appro-
priate sub-bands:

ζi =
�

cHL
i ,1 , cHL

i ,2 , cLH
i ,1 , cLH

i ,3 , cHH
i ,1 , cHH

i ,4

�

,

ξi =
�

cHL
i ,3 , cHL

i ,4 , cLH
i ,2 , cLH

i ,4 , cHH
i ,2 , cHH

i ,3

�

.

These are particular permutations of the 12 high pass sub-bands,

Π :
n

cLH
i (n), cHL

i (n), cHH
i (n)

o

1≤n≤4
7→ (ζi ,ξi ). (5.22)

The complex wavelet sub-bands are then given by

wi =ΛRζi + jΛIξi (1≤ i ≤ J )

where

ΛR =
1
p

2





















p
2I 0 0 0 0 0
0

p
2I 0 0 0 0

0 0
p

2I 0 0 0
0 0 0

p
2I 0 0

0 0 0 0 I −I
0 0 0 0 I I





















and

ΛI =
1
p

2





















p
2I 0 0 0 0 0
0

p
2I 0 0 0 0

0 0
p

2I 0 0 0
0 0 0

p
2I 0 0

0 0 0 0 I I
0 0 0 0 I −I





















.

Note that each wi = (w
1
i , . . . ,w6

i ) is a compound image consisting of the six direc-
tional sub-bands.

In short, the transform can be written as

T : f 7→ (cLL
J ,1 , . . . , cLL

J ,4 ,w1, . . . ,wJ ). (5.23)
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It uses the following transformations in order: four pre-filters, four discrete wavelet
transforms, permutations of the wavelet sub-bands, and two the orthonormal
transformations ΛR and ΛI. Figure 5.5 provides a schematic of these sequence of
transformations.

Complex 
wavelet

 coefficients

Input 
signal

f

Permutations

Orthonormal
transforms

P1

P2

P3

P4

wΠ

U1

U2

U3

U4

ΛR,ΛI

Projection 
filters

Orthonormal
transforms

Discrete wavelet 
transforms

Figure 5.5: Block diagram of the two-dimensional Gabor-like transform.

5.5.3 Reconstruction

Note the Π given by (5.22) is trivially invertible. Also, ΛR and ΛI are orthonormal,
with corresponding inverses given by ΛT

R and ΛT
I . Starting from the wavelet sub-

bands, we first recover the compound images,

ζi =Λ
T
RRe(wi ) and ξi =Λ

T
I Im(wi ).

The 12 high pass sub-bands are retrieved from these compound images vectors at
every scale i = 1, . . . , J using the permutation Π−1.

Let VLL
n , . . . ,VHH

n denote the composition of the upsampling matrix and the separa-
ble synthesis matrix for the LL, . . . , HH sub-bands (specified in Table 5.1) for each
1≤ n ≤ 4. The signals cLL

0,1 , . . . , cLL
0,4 are reconstructed using the recursion

cLL
i ,n =VLL

n cLL
i+1,n +VLH

n cLH
i+1,n +VHL

n cHL
i+1,n +VHH

n cHH
i+1,n (i = J − 1, . . . , 0).
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The input signal samples are finally recovered using the averaging

f=
1

4

4
∑

n=1

P−1
n cLL

0,n

Figure 5.6 shows the magnitude of the complex wavelet sub-bands obtained by ap-
plying our Gabor-like transform to a synthetic and a natural image. The wavelet sub-
bands corresponding to the synthetic image, with directional edges along 0,π/4,π/2
and 3π/4, highlight the directional-selectivity of the transform. The simulation
was carried out in MATLAB 7.5 on a Macintosh 2.66 GHz Intel dual-core system.
The filter bank operations are implemented in a separable fashion in the frequency
domain. The average execution time for one-level wavelet analysis and reconstruc-
tion (including pre- and post-filtering) of a 512× 512 image is 1.2 seconds, and the
reconstruction error is of the order of 10−16.

Six Directional SubbandsInput Images

Figure 5.6: Directional decomposition of a synthetic image (Octagon) and
a natural image (Cameraman) using the Gabor-like transform.



5.5 Implementation 89

Appendix A

To establish (5.9), all we need to show is that

lim
α−→∞

ψα
τ
(x)∼

2M α+1σ
p

2π(α+ 1)
exp
h

−
σ2

2(α+ 1)
(x − 1/2)2

i

cos
�

ω0(x − 1/2)−πτ
�

(5.24)
where M ,ω0 and σ are appropriate parameters (to be determined).

We proceed by taking the Fourier transform of (5.2),

ψ̂α
τ
(2ω) =G(e jω)β̂α

τ
(ω).

It can be verified that

± jω = |ω|exp
�

± jπτsgn(ω)
�

and
1− exp(± jω) = 2| sin(ω/2)|exp

�

±ω/2∓π/2
�

.

We can thus write (5.1) as

β̂α
τ
(ω) = |sinc(ω/2)|α+1 exp

�

jπτ− jτω− jπτsgn(ω)
�

.

Similarly, it can be show that

H (e jω) = |cos(ω/2)|α+1 exp(− jτω)

and

G(e jω) = | sin(ω/2)|α+1
∑

n∈Z

h

sinc
�ω− (2n+ 1)π

2

�i2α+2
exp
�

jω+ jτω− jπτ
�

.

Combining them, we can write

ψ̂α
τ
(ω) = exp

�

jω/2− jπτsgn(ω)
�

∑

k∈Z

sk (ω)
α+1 (5.25)

where

sk (ω) = | sin(ω/4)sinc(ω/4)|


sinc

�

ω− 2(2k + 1)π

4

�





2

.

We now study the behavior of the series

∑

k∈Z

sn(ω)
α+1 = s0(ω)

α+1+ s−1(ω)
α+1+

∞
∑

k=1

h

s2k+1(ω)
α+1+ s2k+1(−ω)

α+1
i
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for large α. We claim that

lim
α−→∞

�

1

M
s0

� ω
p
α+ 1

+ω0

�

�α+1

= exp
�

−
ω2

2σ2

�

, (5.26)

lim
α−→∞

�

1

M
s−1

� ω
p
α+ 1

−ω0

�

�α+1

= exp
�

−
ω2

2σ2

�

, (5.27)

and

lim
α−→∞

∞
∑

k=1

�

1

M
s2k+1

� ω
p
α+ 1

�

�α+1

+
�

1

M
s2k+1

�

−
ω

p
α+ 1

�

�α+1

= 0. (5.28)

Based on these, we conclude from (5.25) that

lim
α−→∞

�

�ψ̂α
τ

� ω
p
α+ 1

±ω0

�

�

�= exp
�

−
ω2

2σ2

�

.

We now put back the phase terms, and undo the centering and normalization, to
obtain

lim
α−→∞

ψ̂α
τ
(ω)∼M α+1e jω/2

�

e− jπτ exp
�

−
(ω−ω0)

2

2σ2

�

+ e jπτ exp
�

−
(ω+ω0)

2

2σ2

�

�

.

We claim that the inverse Fourier transform of both sides are again asymptotically
equivalent. This gives us (5.24).

We now establish the convergences in (5.26), (5.27) and (5.28). For (5.26) and (5.27),
we note that if f (x) is continuously differentiable and has a positive maximum at
x0, then

f (x) = f (x0)
h

1−
(x − x0)

2

2σ2
+ o(|x − x0|

2|
i

where σ = ( f (x0)/| f ′′(x0)|)1/2. This is immediate from Taylor’s theorem and the
fact that f ′(x0) = 0 and f ′′(x0)< 0.

Now consider the functions

µα(x) =
�

1

f (x0)
f
� x
p
α
+ x0

�

�α

(α > 0).

Form the previous result,

logµα(x) = α log
�

1−
x2

2ασ2
+ o(α−1)

�

=
�

−
x2

2σ2
+ o(1)

�
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so that

lim
α−→∞

µα(x) = exp
�

−
x2

2σ2

�

. (5.29)

A simple computation shows that

s0(ω) =
16| sin(ω/2)|2

|ω| (ω− 2π)2
.

It can be verified that this has a global maximum atω0 ≈ 5.14. Therefore, setting

M = s0(ω0)≈ 0.697 and σ = (s0(ω0)/|s
′′
0 (ω0)|)

1/2 ≈ 2.67

we at once deduce (5.26). Moreover, since s−1(ω) = s0(−ω), (5.27) follows by
symmetry.

In this regard, we note that the correct centering of µα(x) is absolutely essential for
(5.29) to hold: If x1 is different from x0, then

lim
α−→∞

�

1

f (x0)
f
� x
p
α
+ x1

�

�α

= 0.

In particular, this means that

lim
α−→∞

�

1

M
s0

� ω
p
α+ 1

−ω0

�

�α+1

= 0.

Now to establish (5.28), we note that

∞
∑

k=1

�

s2k+1(2ω)
α+1+ s2k+1(−2ω)α+1�= |sinc(ω/2) sin(ω/2)|α+1 rα(π−ω) (5.30)

where

rα(ω) =
∞
∑

k=1

�

�sinc
�ω− 2kπ

2

�

�

�

2α+2.

We claim that

rα(ω)≤
∑

k∈Z

�

�sinc
�ω− 2kπ

2

�

�

�

2α+2 = 1 (for allω) (5.31)

and

rα(ω)<
4

π2α+2

�

1−
ω

2π

�−2α−2
(0<ω<π). (5.32)

The bound in (5.31) can be derived using Poisson’s summation formula. Indeed, the
series on the right corresponds to the Fourier transform of the (integer) samples of
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the symmetric B-spline of order 2α+ 1. Since the Fourier transform is uniformly
bounded by the `1 norm of the sequence of samples, the bound is realized by noting
that the `1 norm of the samples of a B-spline function (any arbitrary order) always
equals unity.

On the other hand, (5.32) follows from the estimate

∞
∑

k=1

�

�sinc
�ω− 2kπ

2

�

�

�

2α+2 < 2
∞
∑

k=1

�

�sinc
�

kπ−
ω

2

�

�

�

2α+2

≤
2

π2α+2

∞
∑

k=1

�

k −
ω

2π

�−2α−2

<
2

π2α+2

h

�

1−
ω

2π

�−2α−2+
∫ ∞

1

�

x −
ω

2π

�−2α−2 d x
i

<
4

π2α+2

�

1−
ω

2π

�−2α−2

which holds for all 0<ω<π.

From (5.30) and (5.31), it is seen that

∞
∑

k=1

�

1

M
s2k+1

� 2ω
p
α+ 1

�

�α+1

+
�

1

M
s2k+1

�

−
2ω
p
α+ 1

�

�α+1

≤
�

�

�

2
p
α+ 1

Mω

�

�

�

α+1
.

Therefore, whenω>π
p
α+ 1, the series is bounded by (2/Mπ)α+1. This clearly

goes to zero as α−→∞.

On the other hand, when 0<ω<π
p
α+ 1, the absolute value of π−ω/

p
α+ 1

is less than π. Hence, from (5.30) and (5.32), we obtain that

∞
∑

k=1

�

1

M
s2k+1

� 2ω
p
α+ 1

�

�α+1

+
�

1

M
s2k+1

�

−
2ω
p
α+ 1

�

�α+1

≤ 4
� 2

Mπ

�2α+2
.

This again is bounded by 4(2/Mπ)2α+2 which goes to zero as α−→∞.

Combining these two cases and using symmetry, we conclude that the series con-
verges to zero as α−→∞ for allω. This establishes (5.28).

Appendix B

We give a sketch of the derivation of (5.19). Fix some τ0, and consider the normal-
ized B-splines

ϕα(x) = σβ
α
τ
(σ x) (α > 0) (5.33)

where
σ =

Æ

(α+ 1)/12 and τ = στ0.
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It is sufficient to show that

lim
α−→∞

ϕα(x) =
1
p

2π
exp
h

−
1

2
(x −τ0)

2
i

. (5.34)

By undoing the normalization in (5.33), we then get (5.19).

Note that, by Taylor’s theorem,
 

1− e− jω

jω

!

= e− jω/2
�

1−
ω2

24
+ o(ω2)

�

.

Since log(1+ z) = z + o(z), we have from (5.1),

log β̂α
τ
(ω) = p log

 

1− e− jω

jω

!

+ q log

 

1− e jω

− jω

!

= p
�

−
jω

2
−
ω2

24
+ o(ω2)

�

+ q
� jω

2
−
ω2

24
+ o(ω2)

�

=− jωτ−
α+ 1

24
ω2+(α+ 1)o(ω2).

Therefore, by the scaling property of the Fouier transform,

log ϕ̂α(ω) = log β̂α
τ(α)

�

ω

σα

�

=− jτ0ω−
ω2

2
+ o(1).

In particular,

lim
α−→∞

log ϕ̂α(ω) =− jτ0ω−
ω2

2
.

By the continuity of the logarithm, we conclude that

lim
α−→∞

ϕ̂α(ω) = exp
�

− jτ0−
ω2

2

�

.

Exchanging the Fourier transform and the limit2, we get (8.34).

Appendix C

The natural domain for discrete periodic signals of length N is ZN , the additive
group of integers modulo N . The implementation of discrete wavelet transforms
require the specification of two basic operations on ZN , namely that of convolution

2This is the technical part. One possible way of establishing norm convergence, say L2 convergence,
is to extend the pointwise convergence in Fourier domain to L2 convergence, and then use Parseval’s
theorem to get L2 convergence in space domain.
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and (dyadic) upsampling and downsampling. The downsampling operation, of
course, requires the original group to be of even size.

We implement the pair of discrete wavelet transforms corresponding to the real and
imaginary components of the complex wavelet in the Fourier domain.

Let ωN = exp( j 2π/N ). We recall that the Fourier transform of a function f (k) on
ZN is again a function f̂ (n) on ZN given by

f̂ (n) =
∑

k∈ZN

f (k)ωkn
N (0≤ n <N ).

Finite periodic filters. The discrete filters (the refinement filter and the wavelet
filter) involved in the Gabor-like wavelet transform are initially defined on Z and
not on ZN . To specify the corresponding filters on ZN , we use their continuously-
defined Fourier transforms.

Consider a typical filter given by the sequence s[k]. Its Fourier transform is

S(e jθ) =
∑

n∈Z

s[k]e j nθ (0≤ θ≤ 2π).

To specify the associated filter on ZN , we proceed by uniformly sampling S(e jθ) on
[0,2π], that is, by setting

SN (n) = S(ωn
N ) (0≤ n <N ).

This gives us the function SN (n) and a corresponding filter sN (n), both defined on
ZN , where

SN (n) =
∑

k∈ZN

sN (k)ω
kn
N (0≤ n <N ).

The function sN (n) is in fact the N -periodic version of the sequence s[k],

sN (n) =
∑

k∈ZN

s[n+ kN] (n ∈ ZN ).

Using this periodic filter, we can define the convolution

(sN ∗ f )(n) =
∑

k∈ZN

sN (k) f (n− k) (n ∈ ZN ).

In terms of the Fourier transform,

Ú(sN ∗ f )(n) = SN (n) f̂ (n).

Combined convolution and sampling using FFT. Note that the operations of
upsampling and downsampling (of periodic functions) involve two groups of differ-
ent sizes, namely, ZN and Z2N . The upsampling operation takes a function f (k) on
ZN into a function u(k) on Z2N given by

u(2k) = f (k), u(2k + 1) = 0 (0≤ k <N ).
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The downsampling operation is given by

d (k) = f (2k) (0≤ k <N ).

We efficiently realize the above convolution and dyadic sampling using the fast
Fourier transform (FFT). For the sampling, we use the following formulae:

û(n) =

(

f̂ (n) for 0≤ n <N
f̂ (n−N ) for N ≤ n < 2N .

and

d̂ (n) =
1

2

�

f̂ (n)+ f̂ (n+N/2)
�

(0≤ n <N/2).

Note that û(n) is defined on a group of size 2N , while d̂ (n) is defined on group of
size N/2.

The basic routines for the discrete wavelet transform (convolution and sampling)
are summarized in Algorithms 1 and 2.

Algorithm 1 Downsampling of (sN ∗ f )(n)
1. Input: f (k) of even length N , and SN (k).
2. Compute f̂ (n) using FFT.
3. For 0≤ n <N/2, set

y(n)←− 1
2

�

f̂ (n)SN (n)+ SN (n+N/2) f̂ (n+N/2)
�

.

3. Output: inverse-FFT of y(n).

Algorithm 2 Upsampling of f (k) followed by convolution with s2N (k)
1. Input: f (k) of length N , and S2N (k).
2. Compute f̂ (n) using FFT.
3. For 0≤ n <N , set y(n)←− S2N (n) f̂ (n).
4. For N ≤ n < 2N , set y(n)←− S2N (n) f̂ (n−N ).
4. Output: inverse-FFT of y(n).
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Chapter 6

Shiftability of the Gabor-like
wavelet transforms

Abstract — In this chapter, we provide an interpretation of the am-
plitude and phase information obtained from the Gabor-like transform
introduced in Chapter 5. This interpretation is particularly relevant
when we reconstruct the signal from the redundant wavelet coefficients,
given that there exists several non-unique ways of doing so1.

6.1 Introduction

THe developments in this chapter are based on the analogy with Fourier analysis
which (among other things) provides a means of encoding the relative location

of information in signals. We recall that the Fourier expansion of a finite-energy
signal f (x) on [0, L] is given by

f (x) = a0+ a1 cos(ω0x)+ a2 cos(2ω0x)+ · · ·
+ b1 sin(ω0x)+ b2 sin(2ω0x)+ · · · (6.1)

where ω0 = 2π/L is the fundamental frequency, and a0,a1,a2, . . ., and b1, b2, . . .
are the proportions of the even and odd harmonics. Let us introduce the complex
coefficients cn = an − j bn and express them in the polar form cn = |cn |exp( jφn),

1This chapter is based on the article [33]: K. N. Chaudhury, M. Unser, "On the shiftability of
dual-tree complex wavelet transforms," IEEE Transactions on Signal Processing, vol. 58, no. 1, pp.
221-232, January 2010.

97



98 Shiftability of the Gabor-like wavelet transforms

where 0¶φn < 2π. We can then write (6.1) as

f (x) =
∞
∑

n=0

|cn |
�

cosφn cos(nω0x)− sinφn sin(nω0x)
�

=
∞
∑

n=0

|cn |ϕn(x +τn) (6.2)

where
ϕn(x) = cos(nω0x) and τn =φn/nω0.

In this form, the shift τn specifies the displacement of the reference sinusoid ϕn(x)
relative to its fundamental period [0, L/n]. The fundamental aspect of (6.2) is
that it provides a characterization of the modulus and phase information using the
following optimality criterion: From the orthogonality of the harmonic series,
one can show that τn corresponds to that shift which maximizes |〈 f (·),ϕn(·+τ)〉|,
the correlation between the signal and ϕn(x). The amplitude |cn | is simply the
maximum correlation,

|cn |=max
τ
|〈 f (·),ϕn(·+τ)〉|.

Fourier analysis involves “global” basis functions and proves to be less efficient for
approximating signals with isolated singularities, e.g., signals such as natural images
which are piecewise-polynomial. The wavelet representation is known to be more
efficient in this case [14]. This is attributed to their characteristic vanishing moment
property. Added to this is the multiresolution structure which allows one to localize
signal discontinuities that live at different spatial resolutions.

Complex wavelets, particularly the ones obtained by combining non-redundant
wavelet bases, provide an attractive means of recovering the phase information.
The phase relation between the components of the complex wavelet is used to
encode the relative signal displacement. Our present interest is in the case where
the components form a Hilbert pair.

6.2 Shiftable representation

We make some basic observations about (6.2). Note that

cn =
∫ L

0
f (x)

�

e j nω0 x�∗ d x (6.3)

where e j nω0 x is the primitive analytic function e j nω0 x = ϕn(x)+ jH ϕn(x). Next,
we use the phase-shift property of the fractional Hilbert transforms (fHT) intro-
duced in Chapter 2, to express the “reconstruction” functions in (6.2) as

ϕn(x +τn) =Hτn
ϕn(x)
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where we redefine τn to be τn =φn/π. We can then write (6.2) as

f (x) =
∞
∑

n=0

|cn | Hτn
ϕn(x). (6.4)

We now show how (6.4) can be generalized by replacing the global waveforms ϕn(x)
by localized wavelets. We recall from Chapter 5 that the Gabor-like transform
involves two wavelet bases

(ψi ,k ) and (ψ′i ,k ) (i ∈ Z, k ∈ Z).

These are obtained though the dilations and translations of mother wavelets ψ(x)
and ψ′(x), where

ψ′(x) =H ψ(x).

The representation of signal f (x) in L2(R) in terms of these bases is given by

f (x) =











∑

(i ,k)∈Z2

ai[k]ψi ,k (x)
∑

(i ,k)∈Z2

bi[k]ψ
′
i ,k (x).

(6.5)

The coefficients ai[k] and bi[k] are given by

ai[k] = 〈 f , ψ̃i ,k〉 and bi[k] = 〈 f , ψ̃′i ,k〉.

By symmetry, the dual wavelet bases are generated through the dilations and trans-
lations of the dual wavelets that form a Hilbert pair,

ψ̃′(x) =H ψ̃(x).

By analogy with the Fourier representation, we introduce the complex coefficients

ci[k] =
1

2

�

ai[k]− j bi[k]
�

= |ci[k]|exp( jφi[k]).

Introducing the analytic wavelet

Ψ̃(x) =
1

2

�

ψ̃(x)+ j ψ̃′(x)
�

we can write this as

ci[k] =
∫

f (x)Ψ̃∗i ,k d x.

This is analogous to (6.3).
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0
ω0

ω0 − Ω ω0 + Ω
ω

π

|ψ̂(ω)|

Figure 6.1: Ideal spectrum of a modulated wavelet. The spectrum has
passbands over ω0 −Ω < |ω| < ω0 +Ω with local axes of symmetry at
ω =±ω0.

Clearly, ci[k] is a redundant representation of f (x). We choose to reconstruct
the signal by averaging the individual reconstructions in (6.5). This results in the
representation

f (x) =
1

2

∑

(i ,k)∈Z2

h

ai[k]ψi ,k (x)+ bi[k]ψ
′
i ,k (x)

i

=
∑

(i ,k)∈Z2

|ci[k]| Hφi [k]/π
�

ψi ,k (x)
�

.

Let us denote
ψ(x;τ) =Hτψ(x) (τ ∈R)

and use Dili Transk[ f (x)] to represent fi ,k (x). Using the dilation and translation
invariance ofHτ , we can write

f (x) =
∑

(i ,k)∈Z2

|ci[k]| Dili Transk
�

ψ(x;τi[k])
�

. (6.6)

This is analogues to (6.4) in that it gives the signal representation in terms of the
modulus and phase information. The coefficients in this case are obtained by
projecting the signal on to the dilated-translated copies of the analytic wavelet.
The multiresolution amplitude-phase representation in (6.6) provides an important
insight into the signal transformation

f (x) 7→
n

�

|ci[k]|,τi[k]
�

o

(i ,k)∈Z2
.

Note that the shifted wavelets ψ(x;τi[k]) in (6.6) play a role analogous to the phase-
shifted sinusoids ϕn(x +τn) in (6.2). This analogy provides a formal interpretation
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of the amplitude-phase factors: The modulus |ci[k]| indicates the strength of the
local signal correlation at scale i and position 2i k. On the other had, the relative
signal displacement is encoded in the shift τi[k], which corresponds to the most
“appropriate” waveform within the familyHτψi ,k (x).

6.3 Modulated wavelets

We now show that the functions ψ(x;τi[k]) can be explicitly characterized for
certain classes of wavelets. This provides further insight into (6.6).

A wavelet is a bandpass function by construction. We consider the particular class
of modulated wavelets of the form

ψ(x) = ϕ(x)cos(ω0x + ξ0).

We assume that the localization window ϕ(x) is bandlimited to −Ω≤ω ≤Ω, and
where |ω0|>Ω (cf. Figure 6.2). Under these assumptions, it was shown in Chapter
2 that

Hτ

�

ϕ(x)cos(ω0x + ξ0)
�

= ϕ(x)cos(ω0x + ξ0+πτ). (6.7)

That is, the fractional Hilbert transform acts on the phase of the modulating sinusoid
while preserving the lowpass window. Using (6.7), we can write (6.6) as

f (x) =
∑

(i ,k)∈Z2

fixed window
︷ ︸︸ ︷

ϕi ,k (x) Dili Transk

h

variable amp−phase oscillation
︷ ︸︸ ︷

�

�ci[k]
�

�cos
�

ω0x + ξ0+πτi[k]
�

i

(6.8)

where ϕi ,k (x) = Dili Transkϕ(x) is the window at scale i and translation 2i k.

Note that the shift parameters in (6.8) and (6.2) play similar roles, namely, that of
positioning the oscillation. We thus conclude (at least least intuitively) that the
modulus and phase information in (6.8) are such that they “optimally” fit the signal
transitions within a fixed localization window. We will shortly give an empirical
demonstration of this principle using an example.

Two instances of modulated wavelets are as follows:

(1) Shannon wavelet. This is specified by

ψ(x) = sinc

�

x − 1/2

2

�

cos

�

3π(x − 1/2)

2

�

.

Its dilates and translates form an orthonormal wavelet basis of L2. Many wavelet
families converge to the Shannon wavelet as the order increases [58]; e.g., the
orthonormal Battle-Lemarié wavelets [59], and the interpolating Dubuc-Deslauriers
wavelets [60].
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(1a) τ = −1 (1b) τ = 0 (1c) τ = 1/2

(2a) τ = −1 (2b) τ = 0 (2c) τ = 1/2

Figure 6.2: Quadrature pairs of orthonormal spline (respectively B-spline)
wavelets resembling the Shannon (respectively Gabor) wavelet: Solid (blue)
graph:Hτψ

3(x); Broken (red) graph:Hτ+1/2ψ
3(x); and Solid (black) graph:

Common localization window given by |Hτψ
3(x)+ jHτ+1/2ψ

3(x)|.

(2) Gabor wavelet. The sinc(x) envelope of the Shannon wavelet results in an
“ideal” frequency resolution, but only at the expense of poor spatial decay. As
against this, wavelets modeled on the Gabor functions tend to exhibit better space-
frequency localization. As in the case of the Shannon wavelet, several wavelet
families closely resemble the Gabor function. It was shown in Chapter 5 the
complex B-spline wavelets asymptotically converge to a Gabor function. In this
case, the representation in (6.8) would correspond to the situation where the dual
wavelet is used for analysis, while the Gabor wavelet is used for reconstruction.

Figure 6.2 shows quadrature pairs of Shannon-like (resp. Gabor-like) wavelets.

To empirically demonstrate the optimality of reconstruction in (6.8), we perform
the following simple experiment. We consider the Gabor-like B-spline wavelet ψ(x)
of degree 3, and a step input f (x) = sign(x−x0)which has a discontinuity at x0. The
M -level decomposition of this signal using the standard discrete wavelet transform
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is given by

f (x) =
∑

l

plϕM ,l (x)+
M
∑

i=1

∑

k

ai ,kψi ,k (x), (6.9)

where ϕM ,l (x) are the translates of the coarsest scaling function. On the other hand,
the Gabor-like transform gives the representation

f (x) =
∑

l

plϕM ,l (x)+
∑

n
p ′nϕ

′
M ,n(x)+

M
∑

i=1

∑

k

|ci[k]| ψi ,k
�

x;τi[k]
�

. (6.10)

The idea is to demonstrate that the shifted wavelets in (6.10) have a better lock
on the transition at x0 than the wavelets in (6.9). Figure 6.3 shows the reference
wavelet ψi ,k (x) and the shifted wavelet ψi ,k (x;τi[k]) corresponding to a specific
scale i = J . We set the translation to k = [2−J x0] which corresponds to the position
of the transition at this scale. Also shown in the figures are the step input and the
Gaussian-like localization window of the wavelet. The oscillation of the shifted
wavelet is clearly seen to have a better lock on the transition than the reference. The
magnitude of the signal correlation in either case supports this observation.

6.4 Quality indices

The shiftability of the Gabor-like transform was established based on two funda-
mental properties, namely,

(1) The correspondence ψ2(x) =H ψ1(x), and

(2) The modulated forms

ψ1(x) = ϕ(x)cos(ω0x + ξ0) and ψ2(x) = ϕ(x) sin(ω0x + ξ0)

where the support of ϕ̂(ω) is restricted to the interval [−ω0,ω0].

The practical challenge is the design of different flavors of wavelets that fulfill or, at
least, provide close approximations of these criteria. We propose some indices for
assessing the quality of the approximation.

A simple index for (1) is the correlation

%=max

�

〈ψ2,H ψ1〉
||ψ1|| · ||ψ2||

, 0

�

. (6.11)

By the Cauchy-Schwarz inequality, 0 ¶ % ¶ 1 and equals unity if and only if
ψ2(x) =H ψ1(x). Thus, the higher the value of %, the better is the approximation.

On the other hand, note that (2) has a simple Fourier domain characterization:

S(ω) = ψ̂1(ω)+ j ψ̂2(ω) =

(

g (ω) 0<ω<∞
0 −∞<ω ¶ 0,
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〈f(x), ψi,k(x; τi[k])〉 = 29.3

〈f(x), ψi,k(x; 0)〉 = 21.1

(a)

(b)

Figure 6.3: Reconstruction wavelets for the step unit. (a) This shows the
reference wavelet ψi ,k (x) = ψi ,k (x; 0) corresponding to the conventional
discrete wavelet transform. (b) The shifted wavelet ψi ,k (x;τi[k]) for the
Gabor-like transform is shown. The magnitudes of the signal correlation in
either case clearly shows that the shifted wavelet has a better lock on the
singularity.
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Table 6.1: Quality indices for different classes of wavelets

Type of Dual-Tree Wavelets % κ

Shannon wavelets (ideal) 1 0

B-spline wavelets, degree=1 1 0.9245

B-spline wavelets, degree=3 1 0.0882

B-spline wavelets, degree=6 1 0.0373

Orthonormal spline wavelets, degree=1 1 0.9292

Orthonormal spline wavelets, degree=3 1 0.1570

Orthonormal spline wavelets, degree=6 1 0.0612

Kingsbury’s wavelets (q-shift Le Gall 5/3) [27] 0.9992 0.6586

where g (ω) is complex-valued and has an axis of symmetry within its support. This
suggests a index which measures the symmetry of S(ω). In particular, let

κ=

∫ ∞

0
|S∗(ω0+ω)− S(ω0−ω)|

2 dω
∫ ∞

−∞
|S(ω)|2 dω

(6.12)

where

ω0 =

∫ ∞

−∞
ω |S(ω)|2 dω

∫ ∞

−∞
|S(ω)|2 dω

.

Note that 0 ≤ κ ≤ 1. It measures the disparity between S(ω) and its reflection
around the centroid, and equals zero if and only if S(ω) is symmetric (with ω0
as the centre of symmetry). Conversely, a high value of κ signifies greater local
asymmetry in S(ω), and hence a poor approximation of the modulation criterion.

We computed the indices % and κ for different classes of wavelets2. The results are
compared in Table 6.1. The spline wavelets are analytic by construction [49], and
hence % = 1 irrespective of their degree. As their degree increases, the complex
B-spline (resp. orthonormal) wavelets converge to complex Gabor (resp. Shannon)
wavelet. The rapid decrease in κ reflects the improvement in symmetry.

2The wavelets were synthesized using the iterated filter bank algorithm, and the integrals involved in
(6.11) and (6.12) were realized using high-precision numerical integration.
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6.5 Multi-dimensional extension

We now extend the amplitude-phase representation to the multi-dimensional setting.
Without the loss of generality, we derive the amplitude-phase representation for the
particular two-dimensional setting.

We recall from Chapter 4 that the Gabor-like transform in two-dimension uses six
analytic wavelets of the form

Ψl (x) =ψl (x)+ jHθl
ψl (x)

where
θ1 = θ2 = 0, θ3 = θ4 =π/2, θ5 =π/4, and θ6 = 3π/4.

The components of Ψl (x) are oriented along the direction θl . The corresponding
transform involves four biorthogonal systems. LetΨl ,i ,k(x) be the dilated-translated
copies of the dual wavelets Ψ̃1(x), . . . , Ψ̃6(x), and let

cl ,i[k] =
1

4

∫

f (x)Ψ̃l ,i ,k(x)
∗ d x . (6.13)

As before, we choose to reconstruct the signal by averaging the outputs . To
derive the representation of f (x) in terms of the coefficients cl ,i[k], we require the
fractional extensions of the directional Hilbert transforms introduced in Chapter 2.
Consider the shifted wavelets

ψl
�

x ;τl ,i[k]
�

=Hθl ,τi [k]
ψl (x).

where

τl ,i[k] =
1

π
arg(cl ,i[k]). (6.14)

As shown in Appendix A, using the invariances of fHTs, we can write

f (x) =
6
∑

l=1

∑

(i ,k)∈Z3

|cl ,i[k]| Dili Transk

h

ψl
�

x ;τl ,i[k]
�

i

. (6.15)

Thus, the signal is given by the superposition of six direction-selective wavelets with
shifts.

As in the one-dimensional setting, further insight into the above representation is
obtained by considering wavelets resembling windowed plane waves. In particular,
let the wavelets be of the form

ψl (x) = ϕl (x)cos
�

Ωl u
T
θl

x
�

.
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Then, we can write (6.15) as

f (x) =
6
∑

l=1

∑

(i ,k)∈Z3

fixed window
︷ ︸︸ ︷

Dili Transk[ϕl (x)] Dili Transk

h

variable amp−phase plane wave
︷ ︸︸ ︷

|cl ,i[k]|cos
�

Ωl u
T
θl

x +πτl ,i[k]
�

i

(6.16)
This explicitly highlights the role of the phase-shifts in (6.14) as scale-dependent
measures of the local signal displacements along the preferential directions.

This is the exactly scenario for the Gabor-like transforms discussed in Chapter
4. These are the asymptotic forms of the B-spline wavelet. We recall that (6.16)
corresponds to the case where we analyze the signal using the dual complex wavelets,
while the Gabor-like wavelets are used for reconstruction.

6.6 Shiftable spline wavelets

If ψ(x) is not modulated, we can characterize (6.6) and (6.15) by studying the
wavelets ψ(x;τ) and ψl (x ;τ). The remarkable fact is that it can be done explicitly
for the B-spline wavelets introduced in Chapter 5. To do so, we need the following
result (see Appendix B for a proof), which is a generalization of Theorem 1 from
Chapter 5.

Proposition 25 (Shifted spline wavelets). The fractional Hilbert transform of a spline
wavelet is again a spline wavelet of same order, but with different shift:

Hγψ
α
τ
(x) =ψα

τ−γ (x). (6.17)

That is, the fHT acts only on the shift parameter of the spline wavelet while
preserving its genus and order. Thus, for the transform involving the spline wavelet
basis and its Hilbert pair, we have the signal representation

f (x) =
∑

(i ,k)∈Z2

Dili Transk

h

|ci[k]| ψ
α
τ−τi [k]

(x)
i

.

We now consider the separable spline wavelets introduced in Chapter 5. It turns
out that, as in the 1D case, the action is purely determined by the perturbation of
the shift parameter of the constituent spline functions. However, the key difference
is that the directional fHT operators act “differentially” on the shifts of the spline
functions along each dimension. Observe that the six wavelets are of the general
form

∑

l

gl (x;α,τ1)hl (y;α,τ2)

where gl (x;α,τ1) and hl (y;α,τ2) are spline scaling functions or wavelets which
are of the same degree α, but whose shifts are τ1 and τ2. By introducing the shift
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vector τ = (τ1,τ2), we can conveniently write this as ψl (x ;α,τ). For instance, the
wavelets ψ1(x ;α,τ) and ψ5(x ;α,τ) are specified by (see Chapter 4)

ψ1(x ;α,τ) =ψα
τ1
(x)βα

τ2
(y)

and

ψ5(x ;α,τ) =
1
p

2

h

ψα
τ1
(x)ψα

τ2
(y)−ψα

τ1+1/2(x)ψ
α
τ2+1/2(y)

i

where we set τ1 = τ2 = τ. In Appendix C we derive the following result.

Proposition 26. Let τ = (τ,τ), and

µl =

(

1 for 1≤ l ≤ 4
1/
p

2 for l = 5 and 6.

Then
Hθl ,γ

ψl (x ;α,τ) =ψl
�

x ;α,τ− γµl uθl

�

.

The result is quite intuitive. The horizontal and vertical wavelets can be shifted
along the direction of the corresponding directional fHT by perturbing the shift of
the spline functions running along the same direction of the fHT; the shift of the
spline function along the orthogonal direction remains unaffected. On the other
hand, the diagonal wavelets can be shifted by perturbing the shift of the wavelets
along either dimension.

As a direct consequence of (6.15) and Proposition 26, we have the non-asymptotic
representation

f (x) =
6
∑

l=1

∑

(i ,k)∈Z3

Dili Transk

h

|cl ,i[k]| ψl
�

x ;α,τ−µkτl ,i[k]uθl

�

i

.

As discussed in §6.5, for sufficiently large α, ψl (x ;α,τ) constructed using the B-
spline (orthonormal spline) wavelets resemble the Gabor (Shannon) wavelet where
the shift τl ,i[k] gets incorporated into the phase of the modulating plane wave.

Appendix A

Consider the four wavelet bases generated by the separable wavelets

ψ1+p (x),ψ2+p (x),ψ3+p (x)

for p = 0,3,6 and 9. For a fixed p, we can represent f (x) by the sereis
∑

(i ,k)∈Z3

h

a1+p,i[k]ψ1+p,i ,k(x)+ a2+p,i[k]ψ2+p,i ,k(x)+ a3+p,i[k]ψ3+p,i ,k(x)
i
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where

ap+ j ,i[k] =
∫

f (x)ψ̃p+ j ,i ,k(x) d x ( j = 0,1 and 2). (6.18)

We combine and regroup these into

f (x) =
∑

(i ,k)∈Z3





1

4

�

a2,i[k]ψ2,i ,k(x)+ a8,i[k]ψ8,i ,k(x)
�

+
1

4

�

a5,i[k]ψ5,i ,k(x)+ a11,i[k]ψ11,i ,k(x)
�

+
1

4

�

a1,i[k]ψ1,i ,[k](x)+ a4,i[k]ψ4,i ,k(x)
�

+
1

4

�

a7,i[k]ψ7,i ,k(x)+ a10,i[k]ψ10,i ,k(x)
�

+
1

4
p

2
(a3,i[k]− a12,i[k])

�ψ3,i ,k(x)−ψ12,i ,k(x)
p

2

�

+
1

4
p

2
(a6,i[k]+ a9,i[k])

�ψ6,i ,k(x)+ψ9,i ,k(x)
p

2

�

+
1

4
p

2
(a3,i[k]+ a12,i[k])

�ψ3,i ,k(x)+ψ12,i ,k(x)
p

2

�

+
1

4
p

2
(a6,i[k]− a9,i[k])

�ψ6,i ,k(x)−ψ9,i ,k(x)
p

2

�



.

The idea is to express the right-hand terms in terms of the coefficients

cl ,i[k] = |cl ,i[k]|exp( jπτl ,i[k])

and the wavelets ψl ,i ,k(x) and their Hilbert transforms. For example, consider the
terms in the fifth and sixth line. From (6.13) and (6.18), we have

a3,i[k]− a12,i[k]

4
p

2
=

1

4
Re
∫

f (x)Ψ̃5,i ,k(x) d x = |c5,i[k]|cos(πτ5,i[k])

and

a6,i[k]+ a9,i[k]

4
p

2
=

1

4
Im
∫

f (x)Ψ̃5,i ,k(x) d x =−|c5,i[k]| sin(πτ5,i[k]).

As for the wavelets, note that (cf. Chapter 4)

ψ5,i ,k(x) =
ψ3,i ,k(x)−ψ12,i ,k(x)

p
2
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and

Hθ5
ψ5,i ,k(x) =

ψ6,i ,k(x)+ψ9,i ,k(x)
p

2
.

By combining these, we get

|c5,i[k]|
�

cosφ5
i [k]ψ5,i ,k(x)− sinφ5

i [k]Hθ5
ψ5,i ,k(x)

�

= |c5,i[k]| ψ5,i ,k(x ;τ5
i [k]).

Treating the remaining the terms identically, we have (6.15).

Appendix B

To establish (6.17), we consider the operator

Õ∆τ f (ω) =Dτ(e
jω) f̂ (ω) (6.19)

where

Dτ(e
jω) =

(

(1− e− jω)τ(1− e jω)−τ forω ∈ (−π,π)\{0}
0 whenω = 0.

Let dτ[k] be the filter with Fourier transform Dτ(e
jω). We claim that

Hγβ
α
τ
(x) =∆γβ

α
τ−γ (x) =

∑

k∈Z

dγ [k]β
α
τ−γ (x − k). (6.20)

To see this, recall that

ÕHγ f (ω) = exp
�

− jπγ sign(ω)
�

f̂ (ω)

and note that

β̂α
τ
(ω) =

Dγ (e
jω)β̂α

τ−γ (ω)

( jω)−γ (− jω)γ
.

Then (6.20) is immediate once we notice that

( jω)−γ (− jω)γ = exp
�

− jπτ sign(ω)
�

.

To proceed further, we need the identity

gα
τ−γ [k] = dγ ∗ gα

τ
[k]. (6.21)

A simple manipulation shows that

Hα
τ−γ (e

jω) =Dγ (−e− jω)Hα
τ
(e jω).
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It follows that

Gα
τ−γ (e

jω) = e jωQα(−e− jω)Hα
τ−γ (−e− jω)

=Dγ (e
jω)
h

e jωQα(−e− jω)Hα
τ
(−e− jω)

i

=Dγ (e
jω)Gα

τ−γ (e
jω)

which establishes (6.21). From (6.20) and (6.21), we conclude that

Hγψ
α
τ

� x

2

�

=
∑

k∈Z

gα
τ
[k]Hγβ

α
τ
(x − k)

=
∑

k∈Z

gα
τ
[k]
n
∑

n∈Z

dγ [n]β
α
τ−γ (x − k − n)

o

=
∑

m∈Z

gα
τ
∗ dγ [m]βτ−γ (x −m)

=ψα
τ−γ

� x

2

�

.

Appendix C

We derive the relation for the wavelets ψ1(x ;α,τ) and ψ5(x ;α,τ). The rest can be
derived identically.

Form (6.17), one of the relations is immediate,

H0,γψ1(x ;α,τ) =Hγ [ψ
α
τ
(x)]βα

τ
(y) =ψα

τ−γ (x)β
α
τ
(y) =ψ1(x ;α,τ− γuθ1

).

For the second relation, we require the factorization

H π
4 ,τ =H0, τ2

H π
2 , τ2

.

It can be verified that this is true for functions whose frequency supports are
restricted to the quadrants {(ω1,ω2) :ω1 > 0,ω2 > 0} and {(ω1,ω2) :ω1 < 0,ω2 <
0}. Since this is true for ψ5(ω;α,τ), by (6.17), we have

H π
4 ,γψ5(x ;α,τ) =

1
p

2
H0, γ2

H π
2 , γ2

h

ψα
τ
(x)ψα

τ
(y)−ψα

τ+ 1
2
(x)ψα

τ+ 1
2
(y)
i

=
1
p

2

h

ψα
τ− γ

2
(x)ψα

τ− γ
2
(y)−ψα

τ− γ
2+

1
2
(x)ψα

τ− γ
2+

1
2
(y)
i

=ψ5

�

x ;α,τ− γ
1
p

2
uθ5

�

.



112 Shiftability of the Gabor-like wavelet transforms



Chapter 7

Stereo matching using a
translation-invariant wavelet
pyramid

Abstract — State-of-the-art algorithms for dense stereo matching
perform a global optimization on graphs constructed from the raw pixel
intensities. The most popular ones are based on Graph-Cuts, Belief
Propagation, and Dynamic Programming. Graph-based algorithms,
however, tend to be rather slow when both the size of the stereo images
and the range of disparities are large [61].

Image pyramiding provides an attractive means of accelerating such
algorithms. In this chapter, we propose a coarse-to-fine stereo-matching
algorithm that does narrow-band DP on the Gabor-like wavelet pyra-
mid introduced in Chapter 5. The crucial feature of our pyramid is that
it provides near translation-invariance at the cost of moderate redun-
dancy. We show that a significant reduction of the computation time is
obtained in comparison to the standard DP algorithm.

We evaluate our algorithm on the benchmark Middlebury database
maintained by Scharstein and Szeliski [62].

7.1 Introduction

THe goal of a stereo matching algorithm is to establish pixel correspondences be-
tween a pair of stereo images. For the present work, we assume that the images

are rectified, that is, the epipolar lines are aligned with the corresponding scanlines
[63]. In this case, the correspondence is simply given by the local displacement of
the pixel along the scanline. The output of a stereo algorithm is a 2-dimensional

113
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map that records the disparity for every pixel in one image (the reference image).
We call this the disparity map.

Let us denote the left and right image by I1[m, n] and I2[m, n]. The rows are
indexed by 1≤ m ≤M , where M is the height of the image, while the columns are
indexed by 1≤ n ≤N , where N is the width of the image.

The advantage with rectified images is that one can estimate the disparity on a
scanline-by-scanline basis. In this case, the stereo matching problem is reduced to
one of finding correspondences between the 1-dimensional profiles I1[m, ·] and
I2[m, ·] for every 1 ≤ m ≤ M . Ideally, the goal is one of finding a disparity map
(dm,n) such that

I2[m, n+ dm,n] = I1[m, n]. (7.1)

In practice, one usually proceeds by posing this as an optimization problem [63].

7.2 Stereo-matching using optimization

We begin by setting up the optimization strategy used for estimating the disparity.
To do so, we use the terminology of Scharstein et al. [61].

Let the basic cost of matching the left pixel I1[m, n] to the right pixel I2[m, n′] be

|I2[m, n′]− I1[m, n]|. (7.2)

We define the aggregated cost by averaging the basic cost over a fixed neighborhood:

%
�

I1[m, n], I2[m, n′]
�

=
∑

|p|≤Ωp

∑

|q |≤Ωq

|I2[m− p, n′− q]− I1[m− p, n− q]|.

Note that we also average the cost from the adjacent scanlines. This introduces some
consistency between adjacent scanlines, and helps reduce the artifact of “horizontal
streaking” that is typical for scanline-based optimization [64, 61].

In the so-called local optimization method, one estimates the disparity by minimizing
the aggregated cost pixel-by-pixel:

dm,n = arg min
0≤d<∆

%
�

I1[m, n], I2[m, n+ d]
�

(7.3)

where∆ is an a priori bound on the range of disparity. This is popularly known as
the Winner-Take-All strategy in computer vision [61]. The main difficulty here is
that the disparity at every pixel is computed independently of its neighboring pixels.
As a result, the final disparity map tends to be noisy.

We can solve this problem using regularization; that is, by introducing a smoothness
constraint on the disparity map. This leads us to the global optimization methods,
where we allow the pixels to be assigned disparities which are possibly sub-optimal
in terms of (7.3). The idea is to offset this extra cost by increasing the agreement of
the pixel with its neighbors in terms of their disparities.
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Left image Right image

True disparity map

Figure 7.1: A particular example of stereo images. This shows the rectified
Teddy stereo pair and the corresponding disparity map. The images were
obtained from the Middlebury database [62]. The image size is 450× 375,
and the maximum disparity is 55 pixels.



116 Stereo matching using a translation-invariant wavelet pyramid

Figure 7.2: Scanline-based stereo matching. In this case, the left and right
images are assumed to be rectified, and one proceeds to estimate the disparity
on a scanline-by-scanline basis in which every pairs of rows from the left and
right image are matched independently. This turns the 2-dimensional stereo-
matching problem into a 1-dimensional problem resulting in a significant
reduction of the computational complexity.

We begin by selecting a particular row. Let d1, · · · , dN be the disparity along this
row. For notational convenience, we drop the suffix corresponding to the row. The
global cost function we want to minimize is given by

C (d1, · · · , dN ) =Cdata(d1, · · · , dN )+λCsmooth(d1, · · · , dN ) (7.4)

where

Cdata(d1, · · · , dN ) =
N
∑

n=1

%(I1[m, n], I2[m, n+ dn]) (7.5)

and

Csmooth(d1, · · · , dN ) =
N−1
∑

n=1

|dn − dn+1|. (7.6)

The role of the data term (7.5) is to penalize the disagreement of the disparity map
with the observed data. The smoothness term (7.6) is the total-variation norm of
the disparity profile. It penalizes profiles which are not piecewise-smooth. This
particular regularization is known to perform well for stereo matching [65].

7.2.1 Fast computation of aggregated cost

In the sequel, we will be required to compute the aggregated cost in (7.5) at different
positions in the image and for disparities in the range {0,1, . . . ,∆− 1}. It turns out
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that this can be efficiently done by introducing a 3-dimensional matrix V(m, n, d )
of size M ×N ×∆. We call this the cost volume. The elements of the cost volume
are set using (7.2),

V(m, n, d ) = |I1[m, n]− I2[m, n+ d]|.

Then

%
�

I1[m, n], I2[m, n′]
�

=
∑

|p|≤Ωp

∑

|q |≤Ωq

V(m− p, n− q , n′− n).

This suggests the following efficient algorithm for computing the aggregated cost.
For every fixed d , we convolve the 2-dimensional profile V(·, ·, d ) with the box
distribution

Box[m, n] =

(

1 if |m|<Ωp and |n|<Ωq

0 otherwise.

As is well-known, this can be computed with O(N ×M ) operations using running-
sums and finite differences, irrespective of the size of Ωp and Ωq [28]. This is
particularly efficient when the size of the window is large. Let V∗(m, n, d ) be the
resulting matrix. Then

%
�

I1[m, n], I2[m, n′]
�

=V∗(m, n, n′− n).

7.2.2 Dynamic programming

The naive optimization of (7.4) using exhaustive search has the complexity O(N∆).
One can do better by observing that the problem of finding correspondences be-
tween scanlines can be cast as a string matching problem, along with some additional
ordering constraints. As is well-known, the string matching problem can be ef-
ficiently solved using dynamic programming [66]. Dynamic programming (DP)
proceeds by breaking the complex problem into simpler subproblems, solves these
subproblems, and finally combines them to obtain the global solution. In particular,
we can optimize (7.4) in O(N∆) using DP. Dynamic programming was first used for
edge-based approaches, e.g., by Ohta and Kanade in [64]. Geiger et al. were among
the first to apply DP for stereo matching based on pixel-wise intensity differences
[67].

We set up the framework for minimizing (7.4) using DP as follows. Our approach is
motivated by the algorithm in [68]. We first fix a row m in the reference image. We
then initialize a matrix M of size N ×∆ and copy the plane of V∗ corresponding to
row m into M:

M(n, d ) =V∗(m, n, d ). (7.7)

We call M the score matrix (cf. Figure 7.3). We next proceed to update the entries of
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(a) Graph (b) Matrix

Figure 7.3: The data abstractions used for matching the respective left
and right scanlines using dynamic programming. (a) The ordered graph
structure where every node corresponds to a given position in the scanline
(order from left to right) and is assigned a fixed disparity (ordered from top
to bottom). The edges between adjacent columns represent the disparity
transition between a pixel and its neighbor. (b) The score matrix is of size
N ×∆. This is used to assign different scores to different nodes in the graph
during the first phase of dynamic programming. The matrix is initialized
using (7.7). It is then updated from top to bottom using the rule in (7.8).

M in a top-to-bottom fashion starting from the first row,

M(n, d )←M(n, d )+min
n

M(n− 1, d −B)+λB , · · ·

· · · ,M(n− 1, d ), · · · ,M(n− 1, d +B)+λB
o

. (7.8)

The number B is the maximum allowed “jump” (or transition) in disparity that we
allow between two adjacent pixels. Following the smoothness constraint in (7.6),
every jump incurs a cost λ. We store the index of the pixel that gives the minimum
in (7.8).

After the last row M(N , ·) is filled, we get the optimal cost simply by taking the
minimum over this row. The optimal path is then obtained by back-tracking on the
indices stored at the time of filling the score matrix. The optimal path gives us the
disparity at each pixel in the scanline. The above process is repeated over all the
scanlines to generate the full disparity map.
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A scan-line (BLUE) and its translate (RED) 

Figure 7.4: The reference scanline f (x), shown in BLUE (solid line), and
its translated f (x − h), shown in RED (dashed line). We have set h = 10
pixels. The wavelet decompositions of these scanlines using the standard
wavelet pyramid and our complex wavelet pyramid are compared in Figure
7.5.

7.3 Use of multiresolution pyramids

Multiresolution techniques, particularly the ones based on wavelet pyramid, pro-
vide an attractive framework for the estimation of stereo correspondence [69, 70].
The main advantage with these representations is their hierarchical nature, which
(among other things) allows one to reduce the dimensionality of the problem. From
a computational standpoint, this allows the usage of the so-called coarse-to-fine algo-
rithms, where results from coarser levels are used to constrain the search at finer
levels. This class of algorithms may be considered as being intermediate to those
where the correspondence is established using either local search [71, 72], or by
optimizing a global cost function [73].

There are also some added advantages with wavelet based matching. Conventional
approaches based on intensity-based matching estimate the disparity from the raw
pixel intensities directly. This makes them susceptible to level shifts; e.g., due
to illumination variation between the left and right camera. By using a wavelet
representation, one can easily cancel out such level shifts (bias invariance). Mul-
tiresolution strategies have also proven useful in resolving the ambiguities of dense
matching of smooth surfaces which lack clear feature points and have few occlusions
[74].
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7.4 Translation-invariant wavelet pyramid

In the context of stereo matching, the common problem with real wavelet pyramids
is their poor translation-invariance [23, 69]. Complex wavelet pyramids provide
an attractive means of improving the translation-invariance at the cost of moderate
redundancy, that is, using two pyramids instead of one. For example, Magarey et
al. [75, 76] have introduced algorithms for motion estimation and image matching
using complex Gabor filters.

For our stereo-matching algorithm, we use the complex wavelet pyramid based
on the complex Gabor-like wavelets introduced in Chapter 5. We recall that the
analysis wavelet in this case is (approximately) given by

Ψ(x) = ϕ(x)exp( jω0x) (7.9)

where ϕ(x) is a Gaussian window, andω0 is the modulation frequency.

It turns out that the amplitude of this complex wavelet pyramid exhibits near
translation-invariance (modulo the decimation). It provides a satisfactory encoding
of the local image displacements in the amplitude function. To explain this, we
consider a scanline f (x) and its uniform translate f (x − h). The complex wavelet
coefficient of at scale 2−i and translation 2i k is given by

ci[k] = 2−i/2
∫

f (x)Ψ∗(2−i x − k) d x.

On the other hand, the wavelet coefficient of the translated scanline is given by

c̃i[k] = 2−i/2
∫

f (x − h)Ψ∗(2−i x − k) d x. (7.10)

It is shown in Appendix A that

c̃i[k] = ci[k − n]exp(− jω02−i∆h)+ residual

where the size of the “residual” is within 2−i |∆h| ‖ϕ′‖∞ | f̂ (2−iω0)|, and where 2i n
is the integer approximation of h and∆h is the fractional component:

h = 2i n+∆h. (7.11)

Note that the integer component of h gets encoded in the translation of the am-
plitude function, while the fractional component ∆h gets encoded in the phase
function.

Clearly, the residual is zero1 when∆h = 0. In general, since ‖ϕ′‖∞ is small for the
Gaussian, we have the close approximation

c̃i[k]≈ ci[k − n]exp(− jω02−i∆h).
1This is also the case if f (x) is bandlimited to [−2−Jω0, 2−Jω0], where 2−J is the coarsest scale.
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Figure 7.5: Response to uniform translation. Left: The coefficients of the
translated signals shown in Figure 7.4 for the standard wavelet pyramid.
Right: The amplitude functions |c̃i[k]| and |ci[k − n]| of the translated
signals of the Gabor-like wavelet pyramid. Level i = 1: The amplitude
functions at scale i = 1, which match perfectly. In this case, n = 5 and
∆h = 0. Level i = 2: The amplitude functions at scale i = 2; n = 2 and
∆h = 2.

Taking the modulus, we see that the amplitude is approximately translation-invariant
(modulo the decimation):

|c̃i[k]| ≈ |ci[k − n]| (k ∈ Z). (7.12)

We note that it is rather difficult to arrive at a comparable approximation using real
wavelets. The point is that the Gabor wavelet Ψ(x) is given by the product of a
smooth window ϕ(x) and a separate oscillatory component exp( jω0x). As a result,
we can control the error generated by the fractional translation∆h by making the
window sufficiently smooth. On the other hand, using the addition-multiplication
property of complex exponentials and by taking the modulus, we are able to cancel
out the phase component. As shown in Appendix A, in case of real wavelets,

c̃i[k] = ci[k − n]+ residual

where the residual is within 2−i |∆h| ‖ψ′‖∞ ‖ f ‖1. Now ‖ψ′‖∞ is typically high for a
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Figure 7.6: Original image and its wavelet pyramid. This shows a three
level decomposition of the raw pixel intensities of every scanline of the
original image. The resolution of the original image is M ×N , where N
is the width of the scanline. The pyramids are of resolution (left to right)
M × 2−1N , M × 2−2N , and M × 2−3N . We use a wavelet pyramid for each
of the left and right images. The disparity estimation begins at the coarsest
resolution and progresses towards the finer resolutions.

real wavelet owing to its oscillatory nature. Also, ‖ f ‖1≥ | f̂ (ω)|. By comparing the
residuals in the two cases, we now see why it is rather difficult for the real wavelet to
achieve the quality of translation-invariance as achieved by the complex counterpart.
We provide an empirical justification of these above observations using an example
in Figure 7.5.

7.5 Stereo-matching algorithm

Our objective is to accelerate the standard DP algorithm using the Gabor wavelet
pyramid. The idea is to estimate the disparity by matching the amplitudes of the left
and right pyramids. As mentioned earlier, the advantage with the wavelet pyramid
is that it offers dimensionality reduction. At every sub-resolution, the size of the
(left and right) images and the range of the disparity is reduced by a factor of two.
This allows us to cuts down the complexity of the DP by at least a factor of four.

The down side, however, is that we loose the local “fractional” displacements. For
example, in the case of uniform translation, we loose the part∆h in (7.11). It is only
the part n in (7.11) that can be captured using the left and right wavelet pyramids.
At scale 2i , the best estimate that we can have is h ≈ 2i n. Our idea is to recover the
lost∆h using a narrow-band DP at the finer scale of the pyramid (cf. Figure 7.7).
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Figure 7.7: Narrowband update of the disparity. The disparity from
the coarser resolution is used to initialize the dynamic programming for
the finer resolution. At the coarsest resolution, we use a full search for
estimating the disparity. At every subsequent finer resolution, we restrict
the search to a “narrow” neighborhood of the estimate obtained from the
coarser resolution. This allows us to correct the disparity information that
is lost during the downsampling process.

7.5.1 Gabor wavelet pyramid

We use two Gabor wavelet pyramids corresponding to the images I1[m, n] and
I2[m, n]. We perform a J -level decomposition of every scanline using the Gabor-
like transform described in Chapter 5. At every level 1≤ i ≤ J , we take the modulus
of the wavelet coefficients of each scanline, and concatenate them into a single image
(cf. Figure 7.6). This gives us the left and right pyramids

A1[i , m, n] and A2[i , m, n] (1≤ i ≤ J ).

The images A1[i , m, n] and A2[i , m, n] are of size M × 2−i N . The idea is to match
the profiles A1[i , m, ·] and A2[i , m, ·] for every 1≤ m ≤M to estimate the disparity
map at level i . We denote this map by di[m, n].

7.5.2 Coarse-to-fine refinement

We first estimate the disparity at the coarsest level of the wavelet pyramid. We do
this independently for each scanline by minimizing (7.4). We use the standard DP
described in §7.2.2. The main modifications that we make are as follows.

(1) We act on the pyramids instead of raw pixel intensities. That is, we set

I1[m, n] =A1[J , m, n] and I2 = [m, n] =A2[J , m, n]

in (7.5).

(2) The unknown set of disparities in (7.4) is given by d1, · · · , dL, where L= 2−J N .
The range of disparity goes down by the same factor, that is, 0 ≤ dl ≤ 2−J∆ for
every 1≤ l ≤ L.
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We run a DP for each of the M rows. This gives us the computed disparity map
dJ [m, n].

We then iteratively propagate this estimate to the next scale of the pyramid. The
main point is that the disparity estimate obtained from the coarser level is used to
“initialize” the DP for the next level. We call this the narrow-band DP. It consists of
the following steps.

(1) Suppose we have the map di[m, n] for some 1≤ i ≤ J . If i = 1, we simply use
the left and right images in (7.5). Otherwise, we set

I1[m, n] =A1[i − 1, m, n] and I2 = [m, n] =A2[i − 1, m, n].

(2) The unknown set of disparities in (7.4) is given by d1, . . . , dL, where L= 2−i+1N .
These are obtained by extrapolating the coarse estimate di[m, n] both in space and
range, and then refining them within a narrow window. A straightforward way of
doing this is by setting

dl =

(

δl + 2di[m, (l + 1)/2] if l is odd
δl + 2di[m, l/2] if l is even,

where
|δl | ≤ η 2−i+1∆ (1≤ l ≤ L).

The factor η << 1 is used to determine the size of narrow-band. Note that the
optimization variables in this case are δ1, . . . ,δL. The score matrix M in this case is
of size L×η 2−i+2∆.

We run a DP for each of the M rows to get the disparity map di+1[m, n]. We keep
doing this till we get to the image space.

7.6 Experiments

We compare the results and execution time of our algorithm with local optimization
and the standard DP algorithm. These represent the two extremes as far as the
execution speed and the quality of reconstruction is concerned. Local optimization
is very fast, but the computed disparity tends to be very noisy. On the other
hand, DP uses regularization to smooth out the noise and yields better results as a
consequence. The flip side is that it runs slow on large images, particularly when
the disparities are large.

To judge the performance of our algorithm, we use the three different test images
shown in Figures 7.1, 7.9, and 7.11. The disparity estimates obtained using the three
methods (along with the true disparity) are shown in Figures 7.8, 7.10, and 7.12.
We have cropped the disparity maps along their boundaries. The parameter settings
along with the execution times are also mentioned. These have been manually tuned
to obtain the best result in every case. In all the three cases, we used a three level
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(a) True disparity (b) Local optimization

(c) Dynamic programming (c) Our method

Figure 7.8: Comparison of the disparity maps obtained using local opti-
mization, dynamic programming (DP), and our wavelet method (WDP)
for the stereo pair in Figure 7.1. The parameters have been manually tuned
to obtain the best results. As a result of the regularization, the disparities
obtained from DP and WDP are seen to be less noisy than that obtained
from local optimization. The results of DP and WDP are seen to be compa-
rable. The execution time for WDP is marginally less then DP in this case.
The parameters used for WDP are: ∆= 110,Ωp = 5,Ωq = 5,B = 37, and
λ= 0.06.
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wavelet decomposition using the Gabor-like cubic B-spline wavelet. The images
have been been padded along their width to their nearest dyadic size. The wavelet
pyramids were built on these padded images. While estimating the disparity, we
simply restricted the computation within the true boundaries.

As seen in Figure 7.8, the disparity map obtained from local optimization is very
noisy for the pair in Figure 7.1. Thanks to the regularization, the outputs of DP
and WDP are seen to be less noisy. The results of DP and WDP are seen to be
comparable. Since the size of the image and the range of disparity is moderate, the
execution time for WDP is marginally less then DP in this case. The parameter
settings for WDP are: Ωp = 5,Ωq = 5,B = 37, and λ= 0.06.

In Figure 7.10, we show the disparity estimates obtained using different algorithms
for the stereo pair in Figure 7.9. The results obtained using our method is seen to be
comparable to the one using DP. However, we are able to obtain a significant reduc-
tion in the execution time using wavelet pyramiding and coarse-to-fine refinement.
The execution time for DP is 46 seconds, while our method takes 16 seconds. The
parameters used in our method are: Ωp = 5,Ωq = 5,B = 18, and λ= 0.13.

Finally, the results obtained for the images in Figure 7.11 are shown in Figure 7.12.
The estimate obtained using DP is again seen to be better than that obtained using
local optimization. Due to the large size of the image and the disparities, DP takes a
total of 81 seconds for computing the disparity. Using wavelet pyramiding along
with narrow-band DP, we are able to reduce this to 43 seconds. The parameters
used in this case are: Ωp = 5,Ωq = 5,B = 60, and λ= 0.06.

7.7 Future extensions

We presented a preliminary version of a stereo matching algorithm based on a
translation-invariant wavelet pyramid. We showed that the execution time for
the DP can be cut down by 50− 70% using coarse-to-fine refinement, without
any appreciable degradation of the disparity map. There is still a lot of scope of
improving our algorithm on various grounds. These are as follows.

• Occlusion handling. We used a very basic DP algorithm which is unable
to handle occlusions. This is because we forced a match between every left
and right pixel. It is, however, possible to modify the DP algorithm so as to
handle occlusions. This can be done, for example, by introducing the option
of not matching certain pixels, and an appropriate penalty for doing so into
the cost funcion.

• Sub-pixel estimation using phase. The disparity estimates returned using
narrow-band DP were all integer-valued. As a result, the disparity map often
exhibited contouring effects in regions where there are no smooth transitions
between different disparities. This can be fixed by incorporating sub-pixel
refinement. In our case, this can be done (at no extra cost) using the phase
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of the complex wavelet coefficients. The phase information can be used to
retrieve the “fractional” displacements which are not encoded in the amplitude
functions.

• Adaptive narrow-band DP. During the narrow-band DP, we allowed for
disparity refinements within a certain tolerance. This tolerance η was fixed
globally at every scale. From our experiments, it was clear that pixels situated
near the boundaries of disparity transitions required a higher tolerance than
those situated in the interior of regions having uniform disparities. This
suggests the possibility of adapting the tolerance η at every point via some
means, e.g., using an estimate of the local variation of the disparity.

• Use of 2-dimensional wavelet transform. We could exploit the redundancy
along the vertical direction by subsampling the rows as well. This could
be done using the 2-dimensional Gabor-like wavelet transform proposed in
Chapter 5. For example, we can use the subbands that are near-translation
invariant along the horizontal and vertical directions. This would further
reduce the computational time.

Appendix A

Using (7.9), we can write (7.10) as

c̃i[k] = 2−i/2
∫

f (x)ϕ(2−i x − k + 2−i h)exp
h

− jω0(2
−i x − k + 2−i h)

i

d x.

For some fixed scale i > 0, we decompose the translation as

h = 2i n+∆h

where 2i n is the integer approximation of h at scale 2i , and ∆h = h − 2i n. The
former is the “large” integer component of the translation (relative to the scale 2−i ),
while the latter is the “small” fractional component. Using this decomposition, we
can write

c̃i[k] = exp(− j 2−iω0∆h)
�

2−i/2
∫

f (x)ϕ(2−i x − k + n+ 2−i∆h)exp
�

− jω0(2
−i x − k + n)

�

d x
�

.

To estimate the drop in the height of the window ϕ(x), we use the first-order
approximation

ϕ(x +τ) = ϕ(x)+ ε(τ)

where |ε(τ)| ≤ τ‖ϕ′‖∞. A simple manipulation shows that

c̃i[k] = ci[k − n]exp(− jω02−i∆h)

+ ε(2−i∆h) f̂ (2−iω0)exp
�

− jω0( 2−i∆h − k + n)
�

.
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In particular,

c̃i[k] = ci[k − n]exp(− jω02−i∆h)+ residual

where the size of the “residual” is within 2−i |∆h| ‖ϕ′‖∞ | f̂ (2−iω0)|.

On the other hand, an identical analysis for a real wavelet ψ(x) shows that

c̃i[k] = ci[k − n]exp(− jω02−i∆h)+ residual

where the size of the residual in this case is within 2−i |∆h| ‖ψ′‖∞ ‖ f ‖1.
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Left image Right image

True disparity map

Figure 7.9: Rectified stereo images of Cloth1 and the true disparity map
[62]. The image size is 626× 555, and the maximum disparity is 110 pixels.
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(a) True disparity (b) Local optimization

(c) Dynamic programming (c) Our method

Figure 7.10: Disparity estimates obtained using different algorithms for
the stereo pair in Figure 7.9. The results obtained using our method is seen
to be comparable to the one using DP. However, we are able to obtain a
significant reduction in the execution time using wavelet pyramiding and
coarse-to-fine refinement. The execution time for DP is 46 seconds, while
our method takes 16 seconds. The parameters used in our method are:
Ωp = 5,Ωq = 5,B = 18, and λ= 0.13.
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Left image Right image

True disparity map

Figure 7.11: Cloth2 stereo pair and the true disparity map [62]. The size
of the image is 626× 555, and the maximum disparity is 170 pixels.
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(a) True disparity (b) Local optimization

(c) Dynamic programming (c) Our method

Figure 7.12: Results obtained for the images in Figure 7.11. The estimate
obtained using DP is seen to be better than that obtained using local opti-
mization. Due to the large size of the image and the disparities, DP takes a
total of 81 seconds for computing the disparity. Using wavelet pyramiding
along with narrow-band DP, we are able to reduce this to 43 seconds. The
parameters are: Ωp = 5,Ωq = 5,B = 60, and λ= 0.06.
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Chapter 8

Fast space-variant Gaussian
filtering

Abstract — The efficient realization of linear space-variant (non-
convolution) filters is a challenging computational problem in image
processing. In this chapter, we demonstrate that it is possible to filter
an image with a Gaussian-like elliptic window of varying size, elonga-
tion and orientation using a fixed number of computations per pixel.
The filtering algorithm is based on a family of compactly supported
piecewise-polynomials, and is realized using pre-integration and local
finite-differences1.

8.1 Introduction

THE most commonly used smoothing operator in image processing is the Gaus-
sian filter. As far as isotropic Gaussians are concerned, a fast implementation

is achievable simply by decomposing it into two 1-dimensional Gaussian, one along
each image axes. The 1-dimensional filters are in turn implemented using efficient
recursive algorithms, e.g., the ones proposed by Deriche [78] and Young et al.
[79]. We refer the readers to this survey article [80] for an exhaustive account and
comparison of such recursive techniques.

A fundamental limitation of isotropic kernels is that it does not take into account
the anisotropic nature of image features. This results in the blurring of oriented
patterns and textures. The development of fast anisotropic filters, in particular,
anisotropic Gaussian filters, have gained momentum over the past decade. Worth

1This chapter is based on the article [77]: K. N. Chaudhury, A. Muñoz-Barrutia, M. Unser, "Fast
space-variant elliptical filtering using box splines," IEEE Transactions on Image Processing, vol. 19, no.
9, pp. 2290-2306, September 2010.
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mentioning in this regard is the work of Geusebroek et al. [81], who developed an
efficient recursive technique based on the factorization of the anisotropic Gaussian
into two 1-dimensional Gaussians, one along the image axes and the other along
a generally off-grid direction. A drawback of this technique is that one has to
interpolate the image along the off-grid direction to implement the corresponding
1-dimensional filter. To avoid interpolation and, in effect, to improve the spatial
homogeneity and the Gaussian structure of the filters in [81], Lam et al. came
up with their “triple-axis” filter. Instead of using two directions, they chose to
decompose the anisotropic Gaussian into three 1-dimensional Gaussians, operating
along one of the four cardinal directions—the horizontal, the vertical, and the two
diagonals [82]. The focus of these papers have largely been on space-invariant
filtering, where the entire image is convolved with a single anisotropic Gaussian. As
against this, a variety of space-variant filtering strategies have also been developed.
This included image statistics driven filtering [83], non-linear diffusion filtering
[31, 84] and gradient inverse-weighted filtering [85], to name a few.

8.2 Space-variant averaging

In this Chapter, we focus on linear space-variant filtering using Gaussian-like kernels
of various shapes and sizes. From a purely discrete perspective, this calls for the
design of a family of Gaussian filters {gλ[n]}λ, so that, given an input image f [n],
one gets the filtered samples f̄ [n] through the averaging

f̄ [n] =
∑

k∈Z2

f [k]gλ(n)[n− k]. (8.1)

The parameter λ(n) specifies the covariance of the filter applied at location n. It
allows one to continuously adjust the scale, orientation and elongation of the filter
in keeping with the anisotropy of the local image features. There are, however,
certain practical problems involved in an efficient realization of (8.1). It is obvious
that (8.1) cannot be written as a convolution, and hence cannot be realized using
the fast Fourier transform. In fact, the available options are either to (i) compute the
filters gλ[n] by sampling the continuous Gaussian on-the-fly, or (ii) discretize λ a
priori and to pre-compute the corresponding filters. The problem with the former
is that it proves to be extremely slow for wide kernels, while the latter restricts the
control on the anisotropy of the filters. By appropriately modifying the algorithm
in [78, 79], Tan et al. developed an algorithm for computing (8.1) for the particular
case when gλ[n] is isotropic [80].

Spline kernels can also yield efficient algorithms for space-variant filtering, par-
ticularly when the space-variance is in terms of the scale (or size) of the kernel.
For instance, Heckbert proposed an algorithm for adaptive image blurring using
tensor-products of polynomial splines, where the image is filtered with kernels
of various scales using repeated integrations and finite-differences [28]. Based on
similar principles, namely, the scaling properties of B-splines, Muñoz-Barrutia et
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al. have developed an algorithm for rapid computation of the continuous wavelet
transform of 1-dimensional signals [86]. Recently, the method was extended to
perform space-variant filtering using Gaussian-like functions of arbitrary size [87].
To achieve this, the authors choose to approximate the Gaussian using separable
B-splines. We propose to take this approach one step further. In particular, we over-
come the limited steerability and ellipticity of the separable B-splines by considering
certain quasi-separable analogues of B-splines, the so-called box splines [6]. We show
that these box splines can also be used to approximate anisotropic Gaussians, and
that the associated space-variant filter can be realized using recursive pre-integrations
and scale-dependent finite differences.

To date, there have only been few applications of such multivariate splines in image
processing and computer graphics. Noteworthy among them are the works of
Richter [88] and Asahi et al. [89] on the development of image approximation and
reconstruction algorithms, and that of Condat et al. [90] and Entezari et al. [91]
on the development of interpolation formulas for hexagonal and BCC lattices.

8.3 The main idea

We propose a fast space-variant filtering algorithm using a family of Gaussian-like
box splines whose size, elongation and orientation can be continuously controlled.
The attractive feature of our approach is that we use a continuous-discrete formalism
which avoids the necessity of sampling a continuously-defined Gaussian on-the-fly,
or of storing a discrete set of pre-computed filters. The subsequent developments
are centered around the following main ideas.

(1) The use of quasi-separable box splines. The construction of bivariate box
splines, conceived as the “shadow” of N -dimensional polytopes in 2-dimensions,
often turns out to be rather intricate; see [6] for instance. We consider an alternative
straightforward recipe for constructing box splines, namely, through repeated con-
volutions of dilated and rotated box distributions (see Figure 8.3). In particular, we
realize the radially-uniform box spline βN

a (x) through the convolution of N rotated
box distributions, where a = (a1, . . . ,aN ) is a scale-vector with ak being the scale of
the box distribution along the direction (k − 1)π/N . We give a precise definition in
§8.5.

The reason why the radially-uniform box splines are of interest in the current context
is twofold. The first of these is that we can make them arbitrarily close to a Gaussian
by increasing N . The second reason, which has a more practical significance, is that
we can continuously control their size, elongation, and orientation simply by acting
on the scales.

(2) An efficient strategy for space-variant averaging. To convey this idea, con-
sider the formula

f̄ [n] =
1

2W (n)+ 1

W (n)
∑

k=−W (n)

f [n− k]. (8.2)
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Figure 8.1: Computation of the space-variant average f̄ [n]. We first
localize the signal f (x) using the shifted box function (hatched zone), and
then we compute the area. The central idea of our algorithm is to determine
this area by taking the finite-difference of the primitive of f (x).

This gives the space-variant averages of a 1-dimensional signal f [n]. We interpret the
factor W (n) as the size of the “discrete box filter” applied at location n. It controls
the amount of smoothing. The disadvantage of (8.2) is that the computational cost
scales linearly with W (n), which even gets worse in higher dimensions. This can be
circumvented (with a mild interpolation cost) if we instead consider the formula

f̄ [n] =
1

a(n)

∫ n+a(n)/2

n−a(n)/2
f (y) d y =

∫

f (y)Boxa(n)(n− y) d y. (8.3)

Here we have replaced the discrete signal f [n] by its interpolation f (x), and the
discrete box filter by the (normalized) box function

Boxa(x) =

(

1/a for −a/2< x ≤ a/2,
0 otherwise.

The main advantage is that we can realize (8.3) using a fixed number of computations
per position, independent of the size of a(n). To do so, we first compute the
primitive

F (x) =
∫ x

−∞
f (y) d y

and then apply the formula

f̄ [n] =
1

a(n)

h

F (n+ a(n)/2)− F
�

n− a(n)/2)
i

. (8.4)

The last step requires one addition and multiplication per position. The idea is
illustrated in Figure 8.1. The other advantage is that, as opposed to the integer-valued
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1 a

∆−1
1 Box1(x)Box1(x) Boxa(x) = ∆a∆−1

1 Box1(x + τ)

Figure 8.2: Box function rescaling through “addition and subtraction” of
the unit box function: The step function is first reproduced from the unit
box using the running-sum, and then the appropriate finite-difference is
applied to recover the rescaled box function.

window W (n) in (8.2), this gives access to the real-valued scale a(n) for continuously
controlling the smoothing. Indeed, if f (x) is integrable (at least locally), then it can
be shown that the use of small scales results in less smoothing. In particular, f̄ [n]
tends to f [n] as a(n) goes to zero. On the other hand, f̄ [n] becomes small as a(n)
get large.

Our present contribution is the generalization of (8.3) to the bivariate setting using
the radially-uniform box splines. In particular, given a discrete image f [n], we
consider the space-variant filtering

f̄ [n] =
∫

f (y)βN
a(n)(n− y) d y (8.5)

where f (x) represents a suitable interpolation of f [n]. The significance of the quasi-
separable characterization ofβN

a (x) in terms of the box distributions is that it allows
us to relate (8.5) to the 1-dimensional problem in (8.3). Indeed, we demonstrate in
§8.5 that (8.5) can be implemented using an appropriate bivariate extension of pre-
integrations and finite-differences, together with few evaluations of a fixed piecewise
polynomial (the coefficients are pre-computed). Although the derivation of the
algorithm is slightly involved, the final solution turns out to be remarkably simple
and easy to implement; see §8.6, Algorithm 3.

8.4 Efficient space-variant averaging

We now derive (8.4) using an operator-based formalism. This helps set up the frame-
work required for the subsequent generalization of the idea to higher dimensions
and multiple orders.
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For positive real numbers a and b , let

∆a f (x) =
1

a

�

f (x)− f (x − a)
�

(8.6)

and

∆−1
b

f (x) = b
∞
∑

k=0

f (x − b k). (8.7)

We call these the finite-difference (FD) and the running-sum (RS) of f (x), respec-
tively2. The numbers a and b are referred to as the scales of the operators.

We note that the operators ∆a and ∆−1
b

, which take f (x) into ∆a f (x) and ∆−1
b

f (x)
respectively, are linear and translation-invariant. Moreover, when b is an integer,
∆−1

b
can be applied to a sequence f [n] through the well-defined operation

∆−1
b

f [n] = b
∞
∑

k=0

f [n− b k].

In particular, g[n] =∆−1
1 f [n] can be efficiently implemented using the recursion

g[n] = g[n− 1]+ f [n], under appropriate boundary conditions [86].

Note that we can relate the variable-size box functions in (8.3) to the unit-width box
function using the transformation

Boxa(x) =∆a∆
−1
1 Box1(x +τ) (8.8)

where τ = (a−1)/2. This means that box functions of variable widths can be derived
from a fixed box function through the successive applications of running-sums and
finite-differences; see Figure 8.2. To derive (8.8), we note that

∆−1
1 Box1(x) =

∞
∑

k=0

Box1(x − k) = u(x + 1/2),

where u(x) = 1 for x > 0, and is zero otherwise. This shows that

∆a∆
−1
1 Box1(x +τ) =

1

a

�

u(x + a/2)− u(x − a/2)
�

= Boxa(x).

We use (8.8) to derive the algorithm for computing (8.3) as follows. Fix some
arbitrary n and the corresponding a(n) in (8.3), and consider the function

s(x) =
∫

f (y)Box1(x − y) d y.

2The notation∆−1
b

is justified by the fact that∆a∆
−1
b

acts as the identity operator when a = b .
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By linearity and translation-invariance, and using (8.8), we can write

∆a(n)∆
−1
1 s(x +τ) =

∫

f (y)[∆a(n)∆
−1
1 Box1(x +τ− y)] d y

=
∫

f (y)Boxa(n)(x − y) d y.

In other words,
f̄ [n] =∆a(n)∆

−1
1 s(n+τ).

Now if the input is discrete, of the form f (x) =
∑

n∈Z f [n]δ(x − n), then

s(x) =
∑

f [n]Box1(x − n).

A simple manipulation then shows that

∆−1
1 s(x) =

∑

g[n]Box1(x − n)

where g[n] is the running-sum of f [n]. Therefore, denoting the piecewise-constant
interpolation of g[n] by F (x), we obtain

f̄ [n] =∆a(n)F (n+τ).

This leads us to the following two-step algorithm for realizing (8.3).

(1) Space-invariant step. Perform the recursion g[n] = g[n− 1]+ f [n].

(2) Space-variant step. Set f̄ [n] =∆a(n)F (n+τ), where τ = (a(n)− 1)/2.

The steps of the algorithm when the input is an impulse, and when a(n) = a for
every n, are shown in Figure 8.2. The second and third plots correspond to steps (1)
and (2) of the algorithm.

The remarkable fact about the algorithm is that the space-variant aspect of the
transformation f [n] 7→ f̄ [n] is transferred to the scale-dependent operator ∆a .
This is then implemented at a fixed computational cost per pixel—one addition and
multiplication.

We note that (8.8) can more generally be written as

Boxa(x) =∆a∆
−1
b

Boxb (x +τ) (8.9)

where τ = (a−b )/2. The significance is that, if the lattice spacing b is different from
unity, one can still realize the running-sum (without interpolation) by replacing the
operator∆−1

1 by∆−1
b

. We will use this idea in the sequel.

8.5 Bivariate extension

We now extend the space-variant filtering discussed in the previous section to the
bivariate setting. Here, we need to address the additional aspect of directionality.
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Figure 8.3: Construction of the radially-uniform box spline through the
convolution of four directional box distributions. (A) The four box distri-
butions, distributed uniformly over [0,π), were assigned equal scales in this
example; (B) Scan profile along θ=π/8.
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8.5.1 Radially-uniform box splines

As a first step, we devise an appropriate directional extension of the box function.
Corresponding to some real-valued scale a and direction 0≤ θ <π, we define

ϕa,θ(x) = Boxa(u
T
θ

x)δ(uT
θ⊥

x)

where uθ = (cosθ, sinθ) and uθ⊥ = (− sinθ, cosθ). We call ϕa,θ(x) the directional
box distribution. It is the tensor product of the box function Boxa(x) and the
Dirac distribution δ(x) operating along orthogonal directions uθ and uθ⊥ . The
scale a controls the amount of smoothing applied along the direction of the box
distribution, whereas, no smoothing is applied along the transverse direction.

The idea then is to convolve an arbitrary number of such directional box distribu-
tions (see Figure 8.3). Corresponding to some integer N ≥ 2, a set of real-valued
scales a1, . . . ,aN , and uniform rotations θk = (k − 1)π/N , k = 1, . . . ,N , we define

βN
a (x) = (ϕa1,θ1

∗ · · · ∗ϕaN ,θN
)(x). (8.10)

We call this the radially-uniform box spline. We refer to N as the directional order (or
simply order), and the tuple a = (a1, . . . ,aN ) the scale-vector of the box spline.

8.5.2 Properties

We note that a more standard (though less intuitive) analytic definition of the
radially-uniform box spline is as follows. Let M be the matrix whose columns are
given by ak uθk

, 1 ≤ k ≤ N , and let � = [−1/2,1/2]N be the centered unit cube
(box) in RN . Consider the distribution




BM, f
�

=
∫

�
f (Mx)d x (8.11)

where f (x) is some continuous test function. Then βN
a (x) is the “density” function

associated with BM, that is,




BM, f
�

=
∫

f (x)βN
a (x)d x .

To see the equivalence between (8.10) and (8.11), we set f (x) = exp(− jωTx) in
(8.11), and apply the convolution-multiplication property of the Fourier transform.
Moreover, by setting f (x) = 1 in (8.11), we see that the total mass of βN

a (x) is given
by the volume of the unit cube in RN . This explains why βN

a (x) is often described
as the “shadow” of a N -dimensional box in 2-dimensions [6].

Following either of the definitions, it can be verified that βN
a (x) is a piecewise

polynomial of degree ≤N − 2, where the partitions are specified by lines running
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along the directions θ1, . . . ,θN . It is symmetric with respect to the origin, and is
compactly supported on a convex N -sided polygon consisting of the points

n
N
∑

k=1

αk ak uθk
: −1/2≤ αk ≤ 1/2

o

.

Clearly, the radially-uniform box splines are non-separable for N > 2. However,
in keeping with the spirit of the underlying tensor construction, the term quasi-
separable is more appropriate.

The scale-vector plays a vital role in determining the size and shape of the box
spline. It is clear that the box spline can be arbitrarily elongated along the principal
directions θk (1 ≤ k ≤ N ) simply by rescaling the box distribution ϕak ,θk

, that is,
by making ak large compared to the other scales. In fact, we will demonstrate in
the sequel that one can elongate the box spline along any arbitrary direction by
appropriately acting on the scale-vector. The role of the directional order is more
subtle. It determines the degrees of freedom available for controlling the geometry
of the box spline and also its smoothness. We will discuss these aspects in detail for
the particular four-directional box spline (N = 4) in §9.8.

8.5.3 Realization of (8.5)

First, we extend the FD and the RS operator to bivariate functions. Our goal is to
derive a relation similar to (8.8) for the radially-uniform box splines. Corresponding
to positive real-valued scales a and b , and direction 0 ≤ θ < π, we consider the
directional finite-difference

∆a,θ f (x) =
1

a

�

f (x)− f (x − auθ)
�

, (8.12)

and the directional running-sum

∆−1
b ,θ

f (x) = b
∞
∑

k=0

f (x − k b uθ). (8.13)

The radially-uniform FD and RS operators are then specified by the combined
action of (8.12) and (8.13) along the directions θk = (k − 1)π/N . In particular, we
set

∆N
a =∆a1,θ1

◦ · · · ◦∆aN ,θN
, (8.14)

and
∆−N

b
=∆−1

b1,θ1
◦ · · · ◦∆−1

bN ,θN
, (8.15)

where the scale-vectors a = (a1, . . . ,aN ) and b = (b1, . . . , bN ) specify the scale along
each direction. The operators ∆N

a and ∆−N
b

are closely related to the radially-
uniform box splines.
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Proposition 27 (The key decomposition). The box spline βN
a (x) can be expressed as

βN
a (x) =∆

N
a ∆

−N
b
βN

b (x +τ). (8.16)

where τ is an appropriate shift vector.

Proof. It is straightforward to be verify that

∆N
a ∆

−N
b
=∆a1,θ1

∆−1
b1,θ1
◦ · · · ◦∆aN ,θN

∆−1
bN ,θN

. (8.17)

From (8.9), we can write

ϕa,θ(x) =∆a,θ∆
−1
b ,θ
ϕb ,θ(x +τuθ). (8.18)

where τ = (a− b )/2.

Let τ =
∑

τk uθk
, where τk = (ak− bk )/2. Following definition (8.10), we can write

βN
b (x +τ) =þ

N
k=1ϕbk ,θk

(x +τk uθk
). (8.19)

From (8.17), (8.18), and (8.19), we see that

∆N
a ∆

−N
b
βN

b (x +τ) =∆a1,θ1
∆−1

b1,θ1
◦ · · · ◦∆aN ,θN

∆−1
bN ,θN

h

þN
k=1 ϕbk ,θk

(x +τk uθk
)
i

=þN
k=1∆ak ,θk

∆−1
bk ,θk

ϕbk ,θk
(x +τk uθk

)

=þN
k=1ϕak ,θk

(x)

which is simply βN
a (x) by (8.10).

Before discussing the filtering algorithm, we briefly elaborate on the implementation
of∆N

a and∆−N
b

. It can be shown that (8.14) can be written as

∆N
a f (x) =

2N−1
∑

i=0

wi f (x − xi ) (8.20)

where

wi = (−1)q1+···+qN (a1 · · ·aN )
−1 and xi =

N
∑

k=1

qk ak uθk
.

The index i is the decimal counterpart of the binary number (qN , qN−1, . . . , q1). It
takes values from 0, · · · , 2N − 1 corresponding to the values (0, . . . , 0), · · · , (1, . . . , 1)
taken by (qN , qN−1, . . . , q1). We call xi the vertices of the FD mesh, and wi the
corresponding mesh taps (see Figure 8.5).

As far as the application of ∆−N
b

to a discrete sequence f [n] is concerned, the
difficulty is that the vectors bk uθ must necessarily lie on the lattice for (8.13) to be
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well-defined. Therefore, we cannot associate a digital filter with the RS operators in
general. However, the good news is that this can be done when N equals 2 and 4.
We will discuss this in detail in §8.6.

The algorithm for realizing (8.5) corresponding to a specified scale-vector map a(n)
is based on (8.16). In particular, we assume the input signal to be of the form

f (x) =
∑

n∈Z2

f [n]δ(x −n).

The pre-integrated signal is defined to be

gb[n] =∆
−N
b

f [n].

By proceeding along lines of the 1-dimensional case, we can write (8.5) as

f̄ [n] =
2N−1
∑

i=0

wi F (n+τ− xi ) (8.21)

where
F (x) =

∑

n∈Z2

gb[n]β
N
b (x −n).

and

τ =
1

2

�

∑

(ak (n)− bk )cosθk ,
∑

(ak (n)− bk ) sinθk
�

.

The pairs (xi , wi ) are the vertices and taps of the affine FD mesh in (8.20). Note
that τ, wi and xi are defined pointwise in (8.21); we dropped the index n to simplify
the notation. We discuss the implementation aspects of the algorithm, particularly
the computation of gb[n] and its interpolation F (x), for the case N = 4 in §8.6.

8.5.4 Asymptotic characterization

The motivation behind introducing the radially-uniform box splines was to develop
elliptical Gaussian-like filters, whose shape (size, elongation and orientation) can
be continuously controlled. It turns out that the radially-uniform box splines (and
their iterated versions) form close approximates of the Gaussian. The following
result (see Appendix A for a proof) can be seen as a “radial” version of the central
limit theorem3.

Theorem 28 (Approximation of isotropic Gaussians). Let N ≥ 2, and set

ak (N ) = σ

È

24

N
(1≤ k ≤N ).

3An interpretation of this principle in the probabilistic setting is discussed in Appendix G.
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Then

lim
N−→∞

βN
a(N )(x) =

1

2πσ2
exp
�

−
‖x‖2

2σ2

�

. (8.22)

The radially-uniform box splines constructed using uniform scale-vectors are sup-
ported on a N -sided uniform polygon, and it can be shown that they have continu-
ous derivatives of order (N − 3). The above result is then consistent with the fact
that the isotropy and smoothness of such box splines progressively improves with
the increase in the directional order. It is also possible to mimic certain anisotropic
Gaussians by using a sequence of non-uniform scale-vectors. Indeed, as a direct ex-
tension of Theorem 28, one can construct sequences of box splines which converge
to anisotropic Gaussians as N increases.

Another useful form of anisotropic convergence is achievable based on the serial
convolutions of a radially-uniform box spline (fixed directional order) with itself.
In particular, corresponding to fixed integers N and m (m ≥ 1), and a scale-vector
a = (a1, . . . ,aN ), consider the iterated radially-uniform box spline

βN ,m
a (x) = (βN

a ∗ · · · ∗β
N
a )(x) (8.23)

obtained through the (m− 1)-fold convolution of βN
a (x) with itself. Let

a(m) =
1
p

m
(a1, . . . ,aN ).

Then

lim
m−→∞

βN ,m
a(m)(x) =

1

2π |det(C)|1/2
exp
�

−
1

2
xTC−1x

�

(8.24)

where

C=
1

12









∑

a2
k

cos2θk
1
2

∑

a2
k

sin2θk

1
2

∑

a2
k

sin2θk
∑

a2
k

sin2θk









. (8.25)

To see this, note that the components of the box spline are given by

þm
j=1 ϕak/

p
m,θk
(x) (1≤ k ≤N ).

It follows from a certain from of the central limit theorem that each of these
converge to a “directional” Gaussian distribution as m gets large. The covariance
in (8.25) is the limiting sum of the covariances of the constituent box distributions.
The utility of these iterated box splines will be discussed in §8.7.

8.5.5 Approximation of Gaussian

Having characterized the asymptotic behavior of the box splines, we now focus
on the problem of approximating a given anisotropic Gaussian using box splines
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Figure 8.4: Intensity distribution of (a) the radially-uniform box spline,
and (b) the separable B-spline, of order four. The respective scan profiles
along π/8 are shown in (c) and (d).



8.6 Four-directional box splines 149

of fixed directional order. Since a centered Gaussian is uniquely specified by its
covariance, we propose to approximate the Gaussian based on its covariance. Since
the level-sets of Gaussians are ellipses, this is also equivalent to constructing elliptical
filters of different size, elongation, and orientation.

The covariance of the radially-uniform box spline is given by

CN
a =

∫

x xTβN
a (x) d x .

As shown in Appendix B , we can express this as the sum of the covariances of the
box distributions,

CN
a =

1

12









∑

a2
k

cos2θk
1
2

∑

a2
k

sin2θk

1
2

∑

a2
k

sin2θk
∑

a2
k

sin2θk









. (8.26)

This gives the explicit dependence of CN
a on the scale-vector. We propose the

following characterization of the elliptical parameters of the box spline: Let λmax and
λmin denote the largest and smallest eigenvalues of CN

a , and (v1, v2) the eigenvector
corresponding to the eigenvalue λmax. The size, elongation, and orientation of the
radially-uniform box spline are then defined by

sN
a = λmax+λmin =

1

12

∑

a2
k ,

%N
a =

λmax

λmin
=

∑

a2
k
+
p

D
∑

a2
k −
p

D
, and

θN
a = tan−1

�

v2

v1

�

= tan−1







−
∑

a2
k

cos(2θk )+
p

D
∑

a2
k sin(2θk )






, (8.27)

where
D =

�∑

a2
k cos2θk

�2
+
�∑

a2
k sin2θk

�2
.

Since CN
a is strictly positive (again see Appendix B), all the above parameters are

indeed well-defined. Note that the covariance in (8.26) and the triple in (8.27)
provide equivalent descriptions of the box spline geometry. The motivation behind
introducing the latter is its convenient rotation-invariant nature: while CN

a changes
with the rotations of a given box spline, sN

a and %N
a remains fixed.

8.6 Four-directional box splines

We now focus on the four-directional box spline defined by

β4
a(x) = (ϕa1,0 ∗ϕa2,π/4 ∗ϕa3,π/2 ∗ϕa4,3π/4)(x).
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Figure 8.5: The distribution of the taps of the FD mesh. The pairs (u, v)
denote the positions (u) and the corresponding weights (v) of the taps of
the FD mesh.

This particular box spline is composed of patches of quadratic polynomials (degree
≤ 2), and is continuously differentiable. It is supported on a convex octagon (see
Figure 8.3).

We note that in [87] the authors have used separable B-splines to approximate the
Gaussian. Although these functions are built from the same constituent box distri-
butions, the advantage of the four-directional box splines over the separable ones
is that they are more isotropic. As seen in Figure 8.4, they have a better Gaussian
profile than their separable counterparts having identical order. In addition, the
anisotropic four-directional box spline can be rotated to arbitrary orientations,
while the separable ones are constrained to the image axes.

8.6.1 Fast space-variant elliptical filtering

Note that, for b = (1,
p

2,1,
p

2), the running-sum ∆−4
b

f [n] can be computed
without interpolation . The corresponding interpolating function, β4

b
(x), turns

out to be well-known in the box spline community, and is popularly referred to as
the Zwart-Powell (ZP) element [6, 92]. We shall simply denote it by βZP(x).

We realize (8.5) in two-steps as follows.

(1) Pre-integration. We fix b = (1,
p

2,1,
p

2). Then

∆−4
b
=∆−1

1,0 ◦∆
−1p

2,π/4
◦∆−1

1,π/2 ◦∆
−1p

2,3π/4
.
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Then gb[n] =∆
−4
b

f [n] can be computed as follows.

(RS1) Horizontal running-sum:

g0[n1, n2] =∆
−1
1,0 f [n1, n2] =

∞
∑

k=0

f [n1− k , n2].

(RS2) First-diagonal running-sum:

gπ/4[n1, n2] =∆
−1p

2,π/4
g0[n1, n2] =

p
2
∞
∑

k=0

g0[n1− k , n2− k].

(RS3) Vertical running-sum:

gπ/2[n1, n2] =∆
−1
1,π/2 gπ/4[n1, n2] =

∞
∑

k=0

gπ/4[n1, n2− k].

(RS4) Second-diagonal running-sum:

gb[n1, n2] =∆
−1p

2,3π/4
gπ/2[n1, n2] =

p
2
∞
∑

k=0

gπ/2[n1+ k , n2− k].

(2) Finite-differences. At each position n, the FD mesh is computed using the
scale-vector a(n). The weights wi and the vertices xi are listed in Table 8.1, where
we have set a′k = ak/

p
2 for k = 2 and 4. The mesh has a total of 4× 4= 16 vertices

(see Figure 8.5). The shift τ = (τ1,τ2) is given by

τ1 =
1

2
p

2
(
p

2a1+ a2− a4−
p

2) and τ2 =
1

2
p

2
(a2+

p
2a3+ a4− 3

p
2).

The filtered sample is given by

f̄ [n] =
15
∑

i=0

wi F (n+τ− xi ) (8.28)

where
F (x) =

∑

n∈Z2

gb[n]βZP(x −n).

The interpolated samples in (8.28) are computed efficiently by taking advantage of
the piecewise-polynomial structure of the compactly supported ZP element (see
Appendix F).

As in the 1-dimensional setting, the running-sums are efficiently computed using
recursions; see Algorithm 3. The computational advantage, especially for wider
kernels, is derived from the fact that the number of vertices of the FD mesh does
not depend on the scale-vector. As a result, the algorithm has a fixed computational
cost per pixel, modulo the cost of the running-sum and the interpolations (see
computation times in Table 8.2).
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Table 8.1: Specification of the taps of the FD mesh associated with the op-
erator∆4

a . The weight w is given by (a1a2a3a4)
−1, where a = (a1,a2,a3,a4)

is the corresponding scale-vector.

i xi wi i xi wi
0 (0,0) +w 8 (−a′4,a′4) −w
1 (a1, 0) −w 9 (a1− a′4,a′4) +w
2 (a′2,a′2) −w 10 (a′2− a′4,a′2+ a′4) +w
3 (a1+ a′2,a′2) +w 11 (a1+ a′2− a′4,a′2+ a′4) −w
4 (0,a3) −w 12 (−a′4,a3+ a′4) +w
5 (a1,a3) +w 13 (a1− a′4,a3+ a′4) −w
6 (a′2,a3+ a′2) +w 14 (a′2− a′4,a3+ a′2+ a′4) −w
7 (a1+ a′2,a3+ a′2) −w 15 (a1+ a′2− a′4,a3+ a′2+ a′4) +w

8.6.2 Size, elongation and orientation of the box splines

The size and shape of the radially-uniform box spline can be controlled by adjusting
the scales of the constituent box distributions. In this regard, we now discuss
the following: (i) the forward problem of controlling the anisotropy of the four
directional box spline by acting on the scale-vector, and (ii) the inverse problem
of uniquely specifying the scale-vector of the box spline corresponding to a given
covariance (geometry). For notational ease, we henceforth drop the superscript
N = 4 when referring to the four-directional box spline and its related parameters.

Control on the anisotropy

From (8.27), the size, orientation and elongation this box spline are given by

sa =
1

12

∑

a2
k , θa = tan−1







a2
3 − a2

1 +
p

D

a2
2 − a2

4






, and %a =

∑

a2
k
+
p

D
∑

a2
k −
p

D
,

where D = (a2
3 − a2

1)
2+(a2

2 − a2
4)

2. It turns out that the size and orientation can be
arbitrarily controlled by adjusting the scale-vector. Indeed, the size can be easily
manipulated by multiplying the scale-vector by a constant factor, since this leaves
both the orientation and elongation unchanged. On the other hand, the elongation
can be arbitrarily controlled in the neighborhood of the four principal directions.
However, there exists a finite upper bound on the elongation along other directions.

Proposition 29 (Feasibilty). For every φ in [0,π), there exists a scale-vector a such
that θa =φ. There is however a finite bound on the elongation given by

sup %a <U (φ) =
1+ |νφ|+

q

1+ ν2
φ

1+ |νφ| −
q

1+ ν2
φ

(8.29)
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Algorithm 3 Space-variant box spline filtering
1. Input: f [n] and a(n)
2. Perform recursions:

g0[n1, n2]← f [n1, n2]+ g0[n1− 1, n2]

gπ/4[n1, n2]←
p

2g0[n1, n2]+ gπ/4[n1− 1, n2− 1]

gπ/2[n1, n2]← gπ/4[n1, n2]+ gπ/2[n1, n2− 1]

gb[n1, n2]←
p

2gπ/2[n1, n2]+ gb[n1+ 1, n2− 1]

3. Local FD operation:
for each position n do

Compute wi , xi and τ using a(n)
Evaluate the samples F (n+τ− xi ) using ZP interpolation
f̄ [n]←

∑

i wi F (n+τ− xi )
end for
4. Return f̄ [n]

where νφ =
1
2 (tanφ− cotφ)sign

�π
2 −φ

�

. The supremum is over the set of a for which
θa =φ.

This is explained in detail in Appendix C. Figure 8.6 gives the variation of 1/U (φ)
as a function of the orientation. In particular, a bound of 3+ 2

p
2≈ 5.8 is attained

along the orientations φ= (2k − 1)π/8,1≤ k ≤ 4, exactly mid-way between two
adjacent primal directions. This is perfectly reasonable since the control on the
geometry of the box spline is minimal along these directions.

In order to specify the elliptical geometry of the box spline, we will use either of
the following equivalent descriptors as per convenience:

(D1) Size, elongation and orientation (s ,%,θ).

(D2) Length of the major and minor axes, and the orientation (
p
λmax,

p
λmin,θ).

(D3) Covariance matrix C.

Descriptor (D1) gives the lengths of the major and minor axes as λmax = s%/(1+%)
and λmin = s/(1+%), respectivelyyy. On the other hand, (D2) gives the correspond-
ing covariance as

C=

 

λmax cos2θ+λmin sin2θ 1
2 (λmax−λmin) sin2θ

1
2 (λmax−λmin) sin2θ λmin cos2θ+λmax sin2θ

!

.
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Figure 8.6: Polar plot of the symmetric variation of 1/U (φ) as a function
of the filter orientation φ, where U (φ) is the bound on the elongation.
We plot the inverse 1/U (φ) to avoid the blowups U (φ)−→+∞ as φ−→
θk . The bound reaches its minimum when the orientation of the filter is
exactly midway between two principal axes, whereas arbitrary elongation
is achievable in the neighborhood of the four principal directions φ =
0,π/4,π/2 and 3π/4.
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Optimal scale-vector for a given anisotropy

By (8.26), the covariance matrix of the four-directional box spline is given by

Ca =
1

24

�

2a2
1 + a2

2 + a2
4 a2

2 − a2
4

a2
2 − a2

4 2a2
3 + a2

2 + a2
4

�

. (8.30)

The problem is one of specifying a scale-vector a such that Ca =C. By introducing
the positive vector p = (a2

1 ,a2
2 ,a2

3 ,a2
4), we can reformulate the problem as one of

finding p > 0 such that Mp = c , where

M=







2 1 0 1
0 1 0 −1
0 1 2 1






and c = 24

�

C(1,1), C(1,2), C(2,2)
�

.

The scale-vector is then given by a =
p

p.

As far as existence of solutions is concerned, Proposition 29 ensures that the linear
system Mp = c , p > 0, corresponding to a given geometry (λmin,λmax,θ), is always
solvable provided that % < U (θ). As it turns out, the linear system is under-
determined and has infinitely many solutions. The idea then is to use a scale-vector
that is “optimal” in some sense.

For reasons that will soon be obvious, we modify the positivity constraint as p ≥ ε1,
where ε is some arbitrarily small positive number. Note that M is of full-rank, and
hence the null-space is of dimension 4− 3 = 1. This means that the solutions of
Mp = c lie on the affine subspace {p̄+ te : t ∈R}, where p̄ is a particular solution
of Mp = c , and e is in the null-space. We fix e= (1,−1,1,−1). On the other hand,
we can easily compute p̄ by pivoting one of its components and solving for the
remaining three—since M is of full-rank, the reduced system is always solvable.

One can easily verify that for p̄ + te = ( p̄1 + t , p̄2 − t , p̄3 + t , p̄4 − t ) ≥ ε1 it
is both necessary and sufficient that t lies in the closed interval [t`, tr ], where
t` =max(− p̄1+ε,− p̄3+ε) and tr =min( p̄2−ε, p̄4−ε). We use the available degree
of freedom to select a solution that maximizes a certain measure of Gaussianity.

A classical measure of the Gaussianity of a 1-dimensional function is its kurtosis..
For a centered function, this is defined by κ = µ4 − 3µ2

2, where µ4 and µ2 are
the fourth-order and second-order moments. The absolute value of κ provides a
measure of Gaussianity. For a true Gaussian, κ= 0. In general, the smaller is the
absolute value, the more Gaussian-like is the function.

For a bivariate function f (x), we use the following matrix-valued extension

K= L− tr(C)C− 2C2 (8.31)

where

C=
∫

(x xT) f (x) d x and L=
∫

(x xT)2 f (x) d x .
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(a) θ = 0 (b) θ = π/9 (d) θ = 7π/18

(e) θ = π/2 (h) θ = 8π/9(g) θ = 3π/4(f) θ = 23π/36

(c) θ = π/4

Figure 8.7: Intensity distributions of the four-directional box splines of
identical size (s = 1) and elongation (%= 2.5), but with different orienta-
tions. The ellipse in each figure represents a level-set of the Gaussian having
the same covariance as the corresponding box spline.

These are the second-order and fourth-order moment matrices of f (x). When d = 1,
this reduces to κ=µ4− 3µ2

2. Moreover,

(1) If f (x) is a multivariate Gaussian, then K= 0 (cf. [93] for a proof).

(2) The Frobenius norm of K,

‖K‖=
�
∑

i , j

|K(i , j )|2
�1/2

,

is rotation-invariant in that the kurtosis matrices of the rotations of f (x) have the
same Frobenius norm (proof in Appendix D).

Following the above arguments, we propose to solve the optimization problem

p0 = argminp ‖Kp‖
2, Mp = c , p ≥ ε1. (8.32)

This gives the optimal scale-vector a0 =
p

p0 corresponding to the most Gaussian-
like box spline. The rotation-invariance property ensures that the box splines of
identical size and elongation, but of different orientations, are as homogenous as
possible.
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The norm of the kurtosis matrix of βa(x) is calculated to be

‖Kp‖
2 =

4
∑

k=1

p4
k +(p

2
1 + p2

3 )(p
2
2 + p2

4 ).

See Appendix E for details. Substituting pk = p̄k + t ek into this expression, we get
the quartic polynomial

ζ (t ) =
4
∑

k=1

( p̄k + ek t )4+
�

( p̄1+ t )2+( p̄3+ t )2
��

( p̄2− t )2+( p̄4− t )2
�

.

Together with the parameterization p = p̄+ te, this simplifies the problem to one
of finding

t0 = argmint ζ (t ), t ∈ [t`, tr ]. (8.33)

The optimal solution is then given by a0 =
p

p̄+ t0e.

Note that the minimum of ζ (t ) is attained either at one of the interior points (t`, tr )
where ζ ′(t ) = 0, or at one of the boundary points. This gives us a simple algorithm
for designing optimized Gaussian-like box splines of a specified covariance. This is
shown in Algorithm 4.

The main step is clearly that of root-finding. In particular, the coefficients of the
cubic equation ζ1 t 3+ ζ2 t 2+ ζ3 t + ζ4 = 0 are given by

ζ1 = 32,
ζ2 = 24( p̄1− p̄2+ p̄3− p̄4),

ζ3 = 16
∑

p̄2
k − 8( p̄1+ p̄3)( p̄2+ p̄4),

ζ4 = 4( p̄3
1 − p̄3

2 + p̄3
3 − p̄3

4 )+ 2( p̄1+ p̄3)( p̄
2
2 + p̄2

4 )− 2( p̄2+ p̄4)( p̄
2
1 + p̄2

3 ).

The box splines obtained using the above optimization for various orientations are
shown in Figure 8.7. The quality of the Gaussian approximation under different
practical settings of the orientation and the elongation is quantified in Figure 8.8.

Algorithm 4 Specification of box spline of given covariance
1. input: Covariance triple c .
2. Set p4 = 1, compute p̄ by solving Mp̄ = c .
3. Compute t` and tr , and the coefficients of ζ ′(t ), from p̄.
4. Find the real roots R of ζ ′(t ) = 0 over the open interval (t`, tr ).
5. Set a0 = (p̄+ t0e)

1/2, where ζ (t0) =mint ζ (t ) over the points R∪{t`, tr }.
6. return: The scale vector a0.

Finally note that the correspondences (1,%,θ)↔ (a1,a2,a3,a4) for 0< θ <π and
1≤ %<U (θ) can be pre-computed and stored in a look-up table (LUT). For a given
%, the set of correspondences (1,%,θ)↔ (a1,a2,a3,a4) have an inherent four-fold
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Figure 8.8: Normalized correlation between the optimal four-directional
box spline and the target Gaussian at different elongations and orientations.
For a fixed elongation, the correlation is minimum at the critical orienta-
tion θ= 22.5◦, and improves symmetrically as θ approaches the principal
orientations (cf. Figure 8.6).

symmetry in θ owing to the presence of the four principal directions. Hence, it
suffices to store the scale-vector correspondences for 0 < θ < π/4. This reduces
the size of the LUT by a factor of four. For any arbitrary size s > 1, orientation
0<θ <π, and elongation 1≤ %<U (θ), the corresponding scale-vector is given by
the following operations.

(1) Rotate the box spline by setting

φ=















θ for 0<θ <π/4
θ−π/4 for π/4<θ <π/2
θ−π/2 for π/2<θ < 3π/4
θ− 3π/4 for 3π/4<θ <π.

(2) Determine (a1,a2,a3,a4) corresponding to (1,%,φ) using the LUT. The desired
scale-vector is then given by a permutation and rescaling,

(a1,a2,a3,a4) 7→















p
s(a1,a2,a3,a4) for 0<θ <π/4
p

s(a2,a3,a4,a1) for π/4<θ <π/2
p

s(a3,a4,a1,a2) for π/2<θ < 3π/4
p

s(a4,a1,a2,a3) for 3π/4<θ <π.

8.6.3 Computation time

The space-variant filtering using the four-directional box spline was implemented
in Java on a 2.66 GHz Intel system. The typical execution times required for
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convolving a 512× 512 image with kernels of various sizes are shown in Table 8.2.
It is clear that the run time is independent of the size of the kernel.

Table 8.2: Average computation time for box splines of different sizes.
Size (s ) 1 2 4 8 16

Time (milliseconds) 101 100 103 101 100

8.7 Higher-order box splines

As suggested by the convergence result (8.22), the Gaussian approximation of the
four-directional box splines can be improved by using more directions. Implement-
ing the corresponding space-variant filtering using the algorithm in §8.5.3 however
turns out to be challenging and not very practical—the principal axes of these box
splines are generally along off-grid directions, and one needs to interpolate the image
for implementing the associated running-sums.

The iterated four-directional box splines β4,m
a (x) introduced in §9.8 provide a

practical alternative. These box splines rapidly converge to a Gaussian with the
increase in m. Also, note that the four-directional box spline and its iterates have
identical covariances. This means that the algorithm in §8.6.2 can be used for
optimizing the iterated box splines as well. The first two iterates of the four-
directional box spline along with the target Gaussian are shown in Figure 8.9. It is
seen that β4,2

a (x) resembles the target Gaussian very closely. In fact, the minimum
correlation coefficient rises from 95% to 99% for m = 2 (cf. Figure 8.8). In practice,
we can thus implement a higher-order filter simply by iterating the algorithm in
§8.6.1. We must, of course, set the scale-vector to a/

p
m, where m is the number

of iterations.

Appendix A

We first establish that the Fourier sequence bβ2
a(2)(ω),

bβ3
a(3)(ω), . . . convergences

pointwise to a Gaussian:

lim
N−→∞

bβN
a(N )(ω) = exp

�

−
σ2

2
‖ω‖2

�

. (8.34)

We then show that the above convergence is also in the L2(R2) norm. This will
establish the theorem, since it is well-known that the Fourier transform of a Gaussian
is a Gaussian, and that fn −→ g in L2 if f̂n −→ ĝ in L2.

To derive (8.34), we note that

bϕa,θ(ω) = bβa(u
T
θ
ω) = sinc

�

auT
θ
ω/2

�
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(b) Anisotropic forms (s = 1, � = 3, θ = π/8)

(a) Isotropic forms (s = 1, � = 1)

Figure 8.9: Higher-order box splines through iterative convolutions. Left:
The reference four-directional box spline; Center: Iterated box spline ob-
tained by convolving the (rescaled) four-directional box spline with itself;
Right: Target Gaussian having identical covariance.
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Then, the convolution-multiplication rule gives

bβN
a(N )(ω) =

N
∏

k=1

bϕak (N ),θk
(ω) =

N
∏

k=1

sinc

�

ak (N )

2
uT
θk
ω

�

. (8.35)

Now, it can be shown that

sinc(x) = 1− x2/6+O(x4).

Substituting ak (N ) = σ
p

24/N into (8.35), and using the above estimate along with
the inequality |uT

θk
ω| ≤ ‖ω‖, we have

bβN
a(N )(ω) =

N
∏

k=1

�

1−
σ2

N
(uT
θk
ω)2+O

�

N−2 ‖ω‖4
�

�

. (8.36)

We next develop the quadratic term in (9.6),

(uT
θk
ω)2 = (cosθkω1+ sinθkω2)

2,

and then the product. After some calculation, it is found that, for some absolute
constant c ,

bβN
a(N )(ω) =

N
∏

k=1



1−
σ2

2N
‖ω‖2+

σ2

2N
(ω2

1 −ω
2
2)cos2θk +

σ2

N
ω1ω2 sin2θk +O

�

N−2 ‖ω‖4
�





=
�

1−
σ2

2N
‖ω‖2

�N
+O

�

N−1 ‖ω‖4
�

(‖ω‖< cN ). (8.37)

In the above calculation, we have made decisive use of the fact that rotations θk =
(k − 1)π/N are uniformly distributed over [0,π) through the identities:

N
∑

k=1

cos2θk = 0, and
N
∑

k=1

sin2θk = 0.

These are used to cancel out the linear factors

N
∑

k=1

σ2

2N
(ω2

1 −ω
2
2)cos2θk

and
N
∑

k=1

σ2

N
ω1ω2 sin2θk .

Finally, by noting that (1− x/m)m converges to exp(−x) as m gets large, we arrive
at (8.34) as the limiting case of (8.37).
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To demonstrate that (8.34) holds in the L2 norm sense, it suffices to show the
sequence of error functions

EN (ω) = bβ
N
a(N )(ω)− exp(−σ2 ‖ω‖2 /2)

converge to zero in the above norm, that is, ‖EN‖2 −→ 0 as N −→ ∞. Now,
since we have already demonstrated that EN (ω) −→ 0 pointwise, all we need to
show in order to invoke the dominated convergence theorem is that the sequence
|E2(ω)| , |E3(ω)| , . . . is uniformly bounded by a L2 function. Moreover, since

|EN (ω)| ≤ | bβ
N
a(N )(ω)|+ exp(−σ2 ‖ω‖2 /2),

it suffices to show that each | bβN
a(N )(ω)| admits such a bound.

The main idea behind establishing such a bound is that the above mentioned se-
quence can be covered by a Gaussian in a neighborhood of the origin and by a
function with sufficient decay at the tails, independent of N . Indeed, using the
estimate sinc(u)≤ 1− u2/π2 for |u| ≤π, one can verify that

�

�

�

bβN
a(N )(ω)

�

�

�=
N
∏

k=1

�

�

�sinc
�

p
6σ
p

N
uT
θk
ω
��

�

�

≤
N
∏

k=1






1−

6σ2|uT
θk
ω|2

π2N







≤ exp
�

ωTC1ω
�

(‖ω‖<δ)

where the matrix C1 and the number δ are independent of N . As far as the tail is
concerned, the Cauchy-Schwarz inequality |uT

θk
ω| ≤ ‖ω‖, gives

�

�
bβN

a(N )(ω)
�

�=
N
∏

k=1

�

�

�sinc
�

p
6σ
p

N
uT
θk
ω
��

�

�≤
C2

‖ω‖2
(‖ω‖ ≥ δ).

where C2 is again independent of N . Combining the above estimates, we see that

�

�
bβN

a(N )(ω)
�

�≤ exp
�

−ωTC1ω
�

+
C2

‖ω‖2

�

1− rect

�

‖ω‖
δ

��

for allω. Since the function on the right is indeed in L2, this establishes the desired
bound, and consequently, the norm convergence.

Appendix B

We begin with the observation that if f (x) and g (x) are symmetric (about the
origin) and have a total mass of unity, then

C f ∗g =C f +Cg ,
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where C f denotes the covariance matrix of f (x). To see this, note that f̂ (0) =

ĝ (0) = 1 (unit mass), and that ∂i f̂ (0) = ∂i ĝ (0) = 0 (by symmetry). Using the
multiplication-differentiation rule,

∫

xi x j f (x) d x =−∂i∂ j f̂ (0),

we then have

C f ∗g (i , j ) =
∫

xi x j ( f ∗ g )(x) d x

=− ĝ (0)∂i∂ j f̂ (0)− f̂ (0)∂i∂ j ĝ (0)− ∂i f̂ (0)∂ j ĝ (0)− ∂i ĝ (0)∂ j f̂ (0)

=−∂i∂ j f̂ (0)− ∂i∂ j ĝ (0)

=C f (i , j )+Cg (i , j ).

Now, since the directional box distributions ϕak ,θk
(x) satisfy the above criteria,

CN
a =

N
∑

k=1

Ck

where Ck is the covariance matrix of ϕak ,θk
(x). We explicitly compute the com-

ponent C(1,2); the remaining components can be similarly derived. Using the
multiplication-differentiation rule again, we have

Ck (1,2) =
∫

x1x2ϕak ,θk
(x) d x =−∂1∂2β̂ak

(uT
θk
ω)
�

�

�

ω=0
=

a2
k

24
sin2θk .

Therefore,

CN
a (1,2) =

∑

k

Ck (1,2) =
1

24

∑

k

a2
k sin2θk .

Finally, we note that CN
a is positive-definite. This is simply because

uTCN
a u =

∫

uT(x xT )u βN
a (x) d x =

∫

(uTx)2βN
a (x) d x > 0.

Alternatively, we also show that its eigenvalues

λmax =
1

2

�
∑

a2
k +
p

D
�

and λmin =
1

2

�
∑

a2
k −
p

D
�

are strictly positive, where

D =
�∑

a2
k cos(2θk )

�2
+
�∑

a2
k sin(2θk )

�2
.
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This is obviously the case for λmax. Moreover,

�
∑

k

a2
k

�2
−D =

�
∑

k

a2
k

�2
−
�
∑

k

a2
k cos(2θk )

�2
−
�
∑

k

a2
k sin(2θk )

�2

= 2
∑

k 6=`
a2

k a2
`

�

1− cos(2θk − 2θ`)
�

> 0.

This shows us that
∑

a2
k
>
p

D , so that λmin is strictly positive as well.

Appendix C

Following definition (8.27), the dependence of orientation of the box spline β4
a(x)

on the scale-vector can be expressed as

tanθa = ν + sign(a2− a4)
p

1+ ν2 (0<θa <π) (8.38)

where

ν = (a2
3 − a2

1)/(a
2
2 − a2

4).

It can be verified that it is both necessary and sufficient that a2 > a4 (resp. a2 < a4)
for the box spline to be oriented between 0 < θa < π/2 (resp. π/2 < θa < π).
Now note that the map (a1,a2,a3,a4) 7→ (ν , sign(a2− a4)) uniquely determines the
orientation of the box spline. This uniqueness is based on the argument that, for
0<θa <π/2, (8.38) reduces to tanθa = ν +

p

1+ ν2 since a2 > a4. This implicitly
represents a one-to-one between θa and ν over the domains (0,π/2) and (−∞,∞),
since the map θa 7→ tanθa from (0,π/2) into (0,∞), and the map ν 7→ ν +

p

1+ ν2

from (−∞,∞) into (0,∞) are both strictly monotonic. Similarly, a one-to-one
between θa and ν over the domains (π/2,π) and (−∞,∞) can be established. In
particular, we have

ν =
1

2
(tanθa − cotθa) sign

�π

2
−θa

�

. (8.39)

Thus, given any orientation θa =φ, the corresponding νφ is uniquely specified by
(8.39). This establishes the first part of the proposition, since there trivially exists
some positive vector (a1, . . . ,a4) such that (a2

3 − a2
1)/(a

2
2 − a2

4) = νφ.

As far as the bound is concerned, we observe that the elongation can be expressed as
%a = 1+ 2/(γ − 1), where γ =

∑

a2
k
/
p

Da ≥ 1. For a given orientation θa =φ, the
components of the feasible scale-vectors bear the relation (a2

1 − a2
3) = νφ(a

2
4 − a2

2),
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and thus we have that

γ =

∑

a2
k

Æ

(a2
3 − a2

1)
2+(a2

2 − a2
4)

2

=
a2

1 + a2
3

Æ

(a2
3 − a2

1)
2+(a2

2 − a2
4)

2
+

a2
2 + a2

4
Æ

(a2
3 − a2

1)
2+(a2

2 − a2
4)

2

=
1

q

1+ ν2
φ

a2
1 + a2

3

|a2
1 − a2

3 |
+

|νφ|
q

1+ ν2
φ

a2
2 + a2

4

|a2
2 − a2

4 |
>

1+ |νφ|
q

1+ ν2
φ

following the trivial inequalities a2
1 + a2

3 > |a
2
1 − a2

3 |, and a2
2 + a2

4 > |a
2
2 − a2

4 |. Conse-
quently,

%a = 1+
2

γ − 1
<

1+ |νφ|+
q

1+ ν2
φ

1+ |νφ| −
q

1+ ν2
φ

. (8.40)

The above bound is tight since it can be approached arbitrary closely by making the
scales a` and ak (θ` <φ< θk ) arbitrarily large.

Appendix D

Let K and Kθ denote the kurtosis matrices of f (x) and its rotation f (RT
θx), re-

spectively, where Rθ is the rotation matrix. Observe that Lθ and L are related
as

Lθ =
∫

(x xT)2 f (RT
θx) d x =

∫

Rθ(yyT)2RT
θ f (y)d y (y =RT

θx)

=Rθ

�∫

(yyT)2 f (y) d y
�

RT
θ

=RθLRT
θ.

Similarly, we have Cθ =RθCRT
θ. Now since tr(AB) = tr(BA) and RT

θRθ = I,

tr(Cθ) = tr(RθCRT
θ) = tr(CRT

θRθ) = tr(C).

Therefore,

Kθ = Lθ− tr(Cθ)Cθ− 2C2
θ
RθLRT

θ− tr(C)RθCRT
θ− 2RθC

2RT
θ

=Rθ(L− tr(C)C− 2C2)RT
θ =RθKRT

θ.

Our claim follows immediately, since

‖Kθ‖
2 = tr(KT

θ
Kθ) = tr(RθK

TKRT
θ) = tr(KTK) = ‖K‖2 .
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Appendix E

In order to compute the kurtosis matrix, we only need to evaluate the fourth-
order moments; the second-order moments are alrea dy known. In particular,
using Fourier identities similar to the ones used in Appendix B, one can derive the
following expressions:
∫

x4
1βa(x) d x =

1

4
µ4

�

4a4
1 + a4

2 + a4
4

�

+
1

2
µ2

2

�

6a2
1a2

2 + 6a2
1a2

4 + 3a2
2a2

4

�

,
∫

x3
1 x2βa(x) d x =

1

4
µ4

�

a4
2 − a4

4

�

+
3

2
µ2

2a2
1

�

a2
2 − a2

4

�

,
∫

x2
1 x2

2βa(x) d x =
1

4
µ4

�

a4
2 + a4

4

�

+
1

2
µ2

2

�

a2
1a2

2 + a2
1a2

4 + a2
2a2

3 + a3
3a2

4 − a2
2a2

4 + 2a2
1a2

3

�

,
∫

x1x3
2βa(x) d x =

1

4
µ4

�

a4
2 − a4

4

�

+
3

2
µ2

2a2
3

�

a2
2 − a2

4

�

,
∫

x4
2βa(x) d x =

1

4
µ4

�

4a4
3 + a4

2 + a4
4

�

+
1

2
µ2

2

�

6a2
2a2

3 + 6a2
3a2

4 + 3a2
2a2

4

�

,

where µ4 = 1/80 and µ2 = 1/12 denote the fourth and second-order moments of
Box1(x), respectively. These provide the components of the matrix La , which in
turn leads to the following simple expression for the kurtosis matrix

Ka = La − tr(Ca)Ca − 2C2
a = (µ4− 3µ2

2)

 

a4
1 +

1
2 (a

4
2 + a4

4)
1
2 (a

4
2 − a4

4)
1
2 (a

4
2 − a4

4) a4
3 +

1
2 (a

4
2 + a4

4)

!

.

(8.41)
Finally, from (8.41), we get ‖Ka‖

2 =
∑4

k=1 a8
k
+(a4

1 + a4
3 )(a

4
2 + a4

4).

We note that the negative factor (µ4−3µ2
2) in (8.41) is in fact the kurtosis of rect(x),

the sub-Gaussian constituent of the box spline. The fact that Ka is negative-definite
is thus consistent with the sub-Gaussian nature of the resulting box spline.

Appendix F

Given a discrete function c[n] and a point x on R2, we outline a technique for the
fast evaluation of the sum

∑

n∈Z2

c[n]βZP(n− x) (8.42)

A sketch of the partitions of the piecewise polynomial βZP(x) is provided in Figure
8.10. The exact functional forms of the ZP box spline 2βZP(x) corresponding to
these partitions can be found in [92]. SinceβZP(x) has a compact support, this is in
fact a finite sum, and requires at most seven evaluations of the function βZP(· − x)
for any arbitrary translation x . This is illustrated in Figure 8.10, where the red dots
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Figure 8.10: The translated box spline βZP(· − x). The red dots x1, . . . , x7
correspond to the points on the Cartesian lattice, and the triangular regions
P1, . . . , P4 are different partitions of the ZP, which together constitute a unit
cell of the lattice.

x0, . . . , x6 denote the lattice points that intersect the support of βZP(· − x). Thus,
one needs to evaluate the translated ZP at the points x0, . . . , x6 in order to compute
the sum. The drawback here is that naive evaluation of the spline at every x j
requires a decision-making to figure out the associated partition before computing
the corresponding polynomial.

The redundancy that we exploit is as follows: Consider the triangular regions
P0, . . . , P3 marked with blue dashed lines in Figure 8.10 corresponding to the four
different partitions of the ZP. These together constitute a unit cell of the lattice,
and hence only one lattice point intersects them. The figure shows a particular
instance where this point, denoted by x0, lies in P0. This clearly fixes the partitions
of the remaining lattice points x1, . . . , x6. Thus, if we denote the polynomials
corresponding to these partitions by ρ0,0(x), . . . ,ρ0,6(x), then the sum in (8.42) is
simply given by

∑6
j=0 c[x j ]ρ0, j (x j ). More generally, if x0 intersects the partition

Pi (0≤ i ≤ 3), and if we denote the corresponding polynomials by ρi , j (x), then the
sum is given by

∑6
j=0 c[x j ]ρi , j

�

x j
�

. Thus, we have the computational advantage
that at most two binary decisions are required to determine the ZP partitions
corresponding to the points x j , and that we can pre-compute the coefficients of the
polynomials ρi , j (x).
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Appendix G

The following is the probabilistic interpretation of the Central Limit Theorem
(CLT) used for approximating the Gaussian distribution using box splines. Given
that all forms of the CLT are deep results, we wonder if there are some interesting
applications of this idea in the stochastic setting as well?

Let X be random vector on the plane, whose realizations are distributed on a line
passing through the origin (e.g., one of the coordinate axes). Thus, X is completely
specified by a probability measure µ(t ) on the real line. Suppose that

∫

t dµ(t ) = 0, and
∫

t 2 dµ(t ) = 1.

Finally, given 0≤ θ <π, let us denote the rotation matrix on the plane by

Rθ =
�

cosθ − sinθ
sinθ cosθ

�

.

Then the following holds.

Theorem 30 (Radial CLT). For any integer N , fix the rotations θk = (k− 1)π/N for
1 ≤ k ≤ N. Suppose that X1,X2, . . . ,XN are independent and identically distributed
copies of X . Then the random vector

ZN =
1
p

N

�

Rθ1
X1+Rθ2

X2+ · · ·+RθN
XN

�

converges to the standard normal distribution on the plane as N gets large. More
precisely, for any Borel subset B on the plane,

lim
N−→∞

Prob(ZN ∈ B) =
1

2π

∫

B
exp

�

−
‖x‖2

2

�

d x .

The above theorem suggests a means of picking vectors from the normal distribution
on the plane. Apparently, this method is quite efficient, and works well even with a
small number of rotations (see Figure 8.11). The following is a MATLAB simulation
for the case, where X is

p
12 times the uniform distribution over (−1/2,1/2) on the

x-coordinate):

%—————————-
N=10; draws=10000;
theta=(0:N-1)*pi/N;

Z1=zeros(draws,1);
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Figure 8.11: The scatter plot of ZN over 10,000 realizations, with N = 10
rotations.

Z2=zeros(draws,1);

for n=1:draws % outer loop (realizations)
X1=0;
X2=0;
r=sqrt(12)*(rand(N,1)-0.5*ones(N,1));
for k=1:N % inner loop (rotations)
X1=X1+r(k,1)*cos(theta(1,k));
X2=X2+r(k,1)*sin(theta(1,k));
end

Z1(n,1)=sqrt(1/N)*X1;

Z2(n,1)=sqrt(1/N)*X2;
end

figure(2),scatter (Z1,Z2); axis image
%—————————-
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Chapter 9

Smoothing using space-variant
filters

Abstract — We propose two smoothing filters based on non-linear,
space-variant averaging. The first of these is modeled on anisotropic
(Gaussian) diffusion. To approximate the anisotropic Gaussian, we use
the four-directional box spline introduced in Chapter 8. The space-
variance in this case is in terms of the size, elongation, and orientation
of the box splines.

The other scheme is based on a space-variant form of the Gaussian
bilateral filter, which involves a range filter along with spatial filter.
The adaptability in this case is in terms of the size of the spatial fil-
ter. We develop an efficient constant-time algorithm for implementing
the space-variant filter. This is achieved by approximating the spa-
tial Gaussian filter using four-directional box splines, and by (locally)
approximating the Gaussian range filter using trigonometric functions.

To demonstrate the working of these filters, we perform some
denoising experiments1.

Smoothing of images using Gaussian filters (isotropic diffusion) results in excessive
blurring of image features. The more sophisticated anisotropic diffusion is known
to perform better in such cases [31, 84]. To overcome the shortcomings of local
smoothing, researchers have also proposed various global and multiscale approaches,
where, e.g., one proceeds by minimizing a global energy functional such as the total-
variation functional [94], or by exploiting the sparsity of the wavelet representation
[23]. We refer the interested reader to [95] for an exhaustive review and comparison

1This chapter is based on [77]: K. N. Chaudhury, A. Muñoz-Barrutia, M. Unser, "Fast space-variant
elliptical filtering using box splines," IEEE Transactions on Image Processing, vol. 19, no. 9, pp. 2290-
2306, 2010; and on the article, K. N. Chaudhury, D. Sage, M. Unser, "Fast O(1) bilateral filtering using
trigonometric range kernels", submitted to IEEE Transaction on Image Processing.
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of many such methods. The focus of the present chapter is, however, solely on
local smoothing. Similar to anisotropic diffusion, we propose the use of certain
smoothing mechanisms which are based on non-linear averaging. We develop fast
and efficient algorithms for implementing these schemes.

9.1 Space-variant anisotropic smoothing

In our first scheme, we propose to smooth the image using a space-variant form of
the anisotropic Gaussian filter, where the anisotropy of the filter is changed from
point-to-point inside the image. We approximate the anisotropic Gaussian using the
four-directional box spline introduced in Chapter 8. The main idea is to adapt the
size, elongation, and orientation of the filter to the local image features. In effect, we
locally average the corrupted image using box splines that have been elongated along
the image feature (orthogonal to the local gradient). This induces more smoothing
along the features, and less across it. As a result, we are able to suppress the ambient
noise, while preserving the sharpness of the image features at the same time.

9.1.1 Anisotropy estimation

To derive an estimate of the local image anisotropy, we use the so-called structure
tensor [96]. The local orientation in this case is estimated through the minimization
of a weighted-norm of the directional derivative. Let Dθ f (x) be the directional
derivative of f (x) along uθ = (cosθ, sinθ). Consider a suitable averaging window
w(x) with support Ω. Then the estimate of the local orientation is given

θ?(x) = arg min
0≤θ<π

∫

Ω
w(y) |Dθ f (x − y)|2 d y. (9.1)

Note that the objective in (9.1) can be expressed as a quadratic form. Indeed, by
expressing the directional derivative in terms of the gradient g(x),

Dθ f (x) = uT
θ

g(x),

we can write the objective as
uT
θ

J(x)uθ (9.2)

where

J(x) =
∫

Ω
w(y)

�

ggT�(x − y) d y.

The 2×2 matrix J is called the structure tensor. Note that J is symmetric and positive
semidefinite. Following its eigen decomposition, it is immediate that θ?(x) is simply
the direction of the eigenvector corresponding to the minimum eigenvalue of J.

Using the fact that both the eigenvalues of J are non-negative, we propose to estimate
the elongation as follows. Let the eigenvalues be 0 ≤ λmin ≤ λmax. We set %? =
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λmax/λmin if both eigenvalues are non-zero, equal to 1 if both are zero (locally
isotropic intensity), and equal to max(1,λ) if only one of the eigenvalues λ is non-
zero. On the other hand, we estimate the size of the box spline as s? = λmax+λmin.

We note that the structure tensor matrices can be efficiently computed using simple
convolution and pointwise operations. We refer the reader to [96, Chapter 13] for
implementation details.

9.1.2 Smoothing algorithm

The anisotropy estimates s?,%?, and θ? are used to compute the scale-vector of the
four-directional box spline. This is done using the algorithm described in §6.2 of
Chapter 8. The main steps of the our denoising algorithm are as follows.

• Computation of the structure-tensor.

• Computation of the estimates s?,%?, and θ? at every location using the eigen
decomposition of the structure tensor. This is used to determine the scale-
vector a(n) of the Gaussian-like box spline.

Isotropic box splines are used in the uniform-intensity regions; we set a =
(σ ,σ ,σ ,σ), where σ is proportional to the noise variance.

• Pre-integration of the corrupted image using running-sums.

• Computation of the parameters of the finite-difference mesh using a(n), and
its application to the pre-integrated image.

9.1.3 Denoising experiments

We now apply our algorithm for denoising synthetic and real images corrupted with
additive Gaussian noise. We compare the results obtained using our algorithm with
those obtained using the isotropic Gaussian filter and the Perona-Malik diffusion
filter [31]. The algorithm was implemented in Java on a Macintosh 2.8 GHz Intel
dual-core system. The average execution time of our algorithm was 600 milliseconds
for a 512× 512 image. This included the time for computing the structure-tensor,
the running-sums, the optimal scale-vector, the interpolated samples, and the finite-
differences.

We use the standard test image of Barbara and corrupt it with white Gaussian noise.
We use the variance of the noise to set the size of the Gaussian used for isotropic
smoothing. The parameters used for the Perona-Malik filter are typical: time step
of 0.1, conductance in the range of 10∼ 30, and a total of 15∼ 30 iterations. The
parameters were manually tuned to optimize the PSNR, and also to avoid blocking
artifacts. Figure 9.1 shows the results obtained from the different filters. As far
as the quantitative evaluation of the filters is concerned, our algorithm clearly
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Figure 9.1: Denoising results on a test image. (A) Barbara corrupted
with additive Gaussian noise, PSNR= 18.0 dB; (B) Isotropic smoothing,
PSNR = 23.10 dB; (C) Diffusion filtering, PSNR = 23.25 dB; (D) Our
algorithm, PSNR = 23.58 dB. The algorithms were tuned for the best
PSNR.
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Figure 9.2: Denoising results on a real biological image. (A) Noise-free
immunofluorescence image of actin fibres (Courtesy of C. Aemisegger,
CMIA, University of Zürich); (B) Image corrupted with additive Gaussian
noise, PSNR = 12.20 dB; (C) Isotropic smoothing, PSNR = 15.38 dB;
(D) Diffusion filtering, PSNR = 15.50 dB; (E) Our algorithm, PSNR =
15.80 dB.

outperforms both isotropic and diffusion filters in terms of the Peak-Signal-to-Noise-
Ratio (PSNR); see Table 9.1. Moreover, as shown in the zoomed-in sections of the
denoised images, the oriented stripes on the clothes of Barbara are quite faithfully
restored by our algorithm. A significant amount of blurring of the stripes is seen in
the results obtained using isotropic and diffusion filters. The non-linear diffusion
filter, however, tends to perform better at low PSNRs in the range of 5-10 dB.

We next compare the results on the real biological image shown in Figure 9.2. This
particular fluorescence image exhibits numerous elongated fiber-like structures. We
use a lower PSNR of around 12 dB. The parameters of the isotropic filter and the
diffusion filter are set as in the previous case, except that the iteration count for
the latter is increased to 15. As before, the improvement of the PSNR obtained
using our filter is higher. Importantly, as again apparent from the image zooms, our
algorithm causes significantly less merging of the close fibers and blurring of the
finer ones.
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Table 9.1: Comparison of the PSNRs of the filters at different noise levels
using the test image of Barbara.

Input PSNR (dB) 10.0 12.0 14.0 16.0 18.0 20.0
Isotropic filter 15.38 18.20 20.20 21.65 23.10 24.30
Diffusion filter 15.48 18.31 20.30 21.70 23.25 24.35

Our filter 15.45 18.38 20.57 21.94 23.58 24.56

9.2 Space-variant bilateral filter

The denoising strategy discussed in the previous section was based on local spatial
filtering. This takes advantage of the similarity of pixels that are spatially close. The
hypothesis used here is that the “neighborhood” pixels tend to be more correlated to
the pixel of interest than the distant pixels. As a result, we were able to considerably
reduce the noise by simply averaging the neighborhood pixels. The hypothesis,
however, breaks down in the vicinity of sharp transitions, e.g., in the vicinity of an
edge. The pixels one side of the edge tend to be better correlated than those on the
other side of the edge. Isotropic averaging in such cases results in undue blurring of
image features. This led us to consider space-variant anisotropic averaging, where
we controlled the shape of the averaging neighborhood at every pixel based on the
local image characteristics.

An alternative approach is that of bilateral filtering proposed by Tomasi and Man-
duchi [32]. Along with a spatial filter, the bilateral filter also involves a range filter.
The role of the range filter is to penalize large deviations in intensities, typically
between pixels lying on different sides of an edge. As a result, the averaging is biased
towards pixels which are close both in space and photometric intensity to the pixel
of interest. Let the choice of spatial and range filter be w(x) and g (s), respectively.
The output of the bilateral filter is given by

f̃ (x) = η−1
∫

w(y)g
�

| f (x)− f (x − y)|
�

f (x − y) d y

where η is the normalizing factor:

η=
∫

w(y)g
�

| f (x)− f (x − y)|
�

d y.

The bilateral filter was originally introduced by Tomasi and Manduchi [32] as
a edge-preserving operator. Subsequently, this simple and non-iterative operator
has found widespread use in several image processing, computer graphics, and
computer vision applications. This includes denoising [97, 98, 99, 100], texture
editing [101], demosaicing [102], optical-flow estimation [103, 104], and stereo
matching [105, 106], to name a few.
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The most commonly used bilateral filter is one where g (s) is a 1-dimensional
Gaussian and w(x) is an isotropic Gaussian. We call this the Gaussian bilateral filter.
In this Section, we propose a space-variant form of the Gaussian bilateral filter. The
idea is to vary the width of w(x) based on the local structural information—we
use wide Gaussians in the homogenous regions, and narrow ones in the vicinity of
edges. The range filter is kept fixed.

Our goal is to implement the space-variant bilateral filter in constant time (irrespec-
tive of the size of the spatial filter), without any noticeable degradation of filter
response. It was shown in Chapter 8 that the four-directional box splines provide
a close approximation of isotropic Gaussians. We use these box splines to approx-
imate the Gaussian spatial filter w(x). On the other hand, the fixed range filter
g (s) is approximated by an appropriate polynomial. The idea of accelerating the
implementation of the standard bilateral filter using a polynomial range filter was
first proposed in [107]. This constant-time implementation was later generalized to
include arbitrary spatial and range filters by several researchers; e.g., see [108] and
the references therein.

9.2.1 Constant-time bilateral filtering using shiftable range ker-
nels

Letβa(x) be the four-directional box spline of equal scale a along the four directions.
Let a(x) be the scale used at position x . The output of the bilateral filter at location
x is given by

f̃ (x) = η−1
∫

βa(x)(y)g
�

| f (x)− f (x − y)|
�

f (x − y) d y (9.3)

where

η=
∫

βa(x)(y)g
�

| f (x)− f (x − y)|
�

d y. (9.4)

We assume that the range filter g (s) is symmetric, so that we can replace g (|s |) by
g (s) in the above formula. We will require this symmetry in the sequel.

In keeping with the notation of Chapter 8, we denote the spatial average obtained
using the isotropic box spline as

f (x) =
∫

βa(x)(y) f (x − y) d y. (9.5)

It is implied that the scale a depends on the position x . The main point is that we
can compute this spatial average in constant-time by exploiting the overlaps involved
in the summation, and the particular structure of the box spline window.

Note that, unlike the transformation f (·) 7→ f (·), the transformation f (·) 7→ f̃ (·) is
not linear. This is due to the presence of the range filter g (s ) in (9.3). Our goal is to
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express (9.3) in terms of (9.5). This will allow us to compute the bilateral filter in
constant-time.

We show that this can be done if the range filter g (s ) is symmetric and shiftable. We
call a class of functions G as being shiftable if there exists a (fixed) set of functions
ϕ1(s), . . . ,ϕN (s) such that, for all g (s) belonging to G,

g (s −τ) =
N
∑

i=1

ai (τ)ϕi (s) (τ ∈R).

The functions ϕi (x) are called the basis functions. They do not depend on the
translation parameter τ. It is the coefficients ai = ai (τ) that capture the action of
the translation. Concrete instances of G are the class of polynomials PN of degree
at most N , and the class of trigonometric polynomials TN of degree at most N . To
see this, note that every g (s) belonging to PN is spanned by the basis functions

ϕ1(s) = 1,ϕ2(s) = s , . . . ,ϕN (s) = sN ,

and that every translate of everyϕi (s ) can be expressed in terms ofϕ1(s ),ϕ2(s ), . . . ,ϕi (s ).
On the other hand, every g (s) belonging to the class TN is spanned by the basis
functions

ϕ1(s) = 1,ϕ2(s) = e j ns , . . . ,ϕN (s) = e j N s .

To see why g (s) is shiftable, simply note that ϕi (s −τ) = e− j nτϕi (s).

Let g (s ) be shiftable and symmetric. Then for some basis functions ϕ1(s ), . . . ,ϕN (s )
we can write

g (s −τ) =
N
∑

i=1

ai (τ)ϕi (s).

Therefore,

g (| f (x)− f (x − y)|) = g ( f (x − y)− f (x)) =
N
∑

i=1

ai (x)ϕi ( f (x − y)) (9.6)

where we use the shorthand ai (x) = ai ( f (x)). Plugging (9.6) into (9.3), we get

f̃ (x) = η−1
N
∑

i=1

ai (x)
∫

βa(x)(y) f (x − y)ϕi ( f (x − y)) d y

where

η=
N
∑

i=1

ai (x)
∫

βa(x)(y)ϕi ( f (x − y)) d y.

Let us define the auxiliary images

φi (x) = f (x)ϕi ( f (x)) and ψi (x) = ϕi ( f (x)).
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We can then write (9.3) as

f̃ (x) =
∑

i ai (x)φi (x)
∑

i ai (x)ψi (x)
. (9.7)

The gives us the following O(1) algorithm for the bilateral filter: We first set up the
auxiliary images and the coefficients dn(x) from the input image. We then average
each of the auxiliary images using a O(1) algorithm (this can be done in parallel).
The samples of the filtered image is then given by the simple sum and division. In
particular, for an image of size M ×M , we can compute the spatial averages for any
arbitrary w(x) at the cost of O(M 2 log2 M ) operations using the Fourier transform.
As mentioned earlier, this can further be reduced to a total of O(M 2) operations
using specialized spatial kernels [28, 109, 77].

Two concrete instances of shiftable functions are the class of polynomials, and the
class of trigonometric functions. The generators for the former are precisely the
monomials

ϕ1(s) = 1, ϕ2(s) = s , · · · , ϕN (s) = sN .

On the other hand, the generators for the class of trigonometric functions of
frequency at most N are the complex exponentials:

ϕ1(θ) = 1, ϕ2(θ) = exp( jθ), · · · , ϕN (θ) = exp( j Nθ).

The idea of using polynomials (more precisely, Taylor polynomials) to approximate
the Gaussian range kernel was proposed by Porikli in [107]. As will be shown in
the sequel, this has some serious drawbacks. We show how these can be fixed using
instead trigonometric functions.

9.2.2 Trigonometric range kernel

Note that g (s) must have some additional properties to qualify as a valid range
kernel (besides being symmetric). Namely, g (s )must be non-negative, and must be
monotonic in that g (s1)≤ g (s2) whenever |s1|> |s2|. In particular, it must have a
peak at the origin. This ensures that large differences in intensity get more penalized
than small differences, and that the bilateral filter behaves purely as a spatial filter
in a region having uniform intensity. Moreover, one must also have some control
on the variance (effective width) of g (s ). We now address these design problems in
order.

The properties of symmetry, non-negativity, and monotonicity are simultaneously
enjoyed by the family of raised cosines of the form

g (s) =
�

cos(γ s)
�N (−T ≤ s ≤ T ).

Writing cosθ= (e jθ+ e− jθ)/2, and applying the binomial theorem, we see that

g (s) =
N
∑

n=0

2−N
�N

n

�

exp
�

j (2n−N )γ s
�

.
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Figure 9.3: The family of raised cosines g (s ) = (cosθ)N over the dynamic
range −255≤ s ≤ 255, where θ= 0.5πs/255. The powers (outer to inner
curves) are respectively N = 1,2,3, 4, and 6. Note that the functions become
more Gaussian-like as their degree increases. We show that they indeed
converge to a Gaussian (after appropriate normalization) as N gets large.

Since g (s ) has a total of (N +1) terms, this gives a total of 2(N +1) auxiliary images.
The central term n =N/2 is constant when N is even, and we have one less auxiliary
image to process in this case.

Figure 9.3 shows the raised cosines of degree N = 1 to N = 5. It is seen that the
functions become more Gaussian-like as the degree increases. Indeed, a remarkable
property of the raised cosines is that they provide very close approximates of the
Gaussian. More precisely, it can be shown that (cf. Appendix A for a proof):

lim
N−→∞

�

cos

�

γ s
p

N

��N

= exp

�

−
γ 2 s2

2

�

. (9.8)

The crucial fact is that the rate of convergence is much faster than that of the Taylor
polynomials, which were used to approximate the Gaussian range kernel in [107].
In particular, we can obtain a approximation comparable to that achieved using
polynomials using fewer number of terms. This is important from the practical
standpoint. In Figure 9.4, we consider the target Gaussian kernel exp(−s2/2σ2),
where σ = 80. We approximate this using the raised cosine of degree 4, which has 3
terms. We also plot the polynomial corresponding to the 3-term Taylor expansion
of the Gaussian, which is used in for approximating the Gaussian in [107]. It is
clear that the approximation quality of the raised cosine is superior to that offered
by a Taylor polynomial having equal number of terms. In particular, note that the
Taylor approximation does not automatically offer the crucial monotonic property.

The approximation in (9.8) also suggests a means of controlling the variance of the
raised cosine, namely, by controlling the variance of the target Gaussian. The target
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Figure 9.4: Approximation of the Gaussian exp(−x2/2σ2) (dashed black
curve) over the interval [−255,255] using the Taylor polynomial (solid
red curve) and the raised cosine (solid blue curve). We set σ = 80, and
use N = 4 for the raised cosine in (9.8). The raised cosine is of the form
a0+ a1 cos(2θ)+ a2 cos(4θ) in this case. We use a 3-term Taylor polynomial
of the form b0+ b1x2+ b2x4. It is clear that the raised cosine offers a much
better approximation than its polynomial counterpart. In particular, note
how the polynomial blows up beyond |x|> 100.
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Figure 9.5: Comparison of the implementations of the Gaussian bilateral
filter on the grayscale image Isha (size 600× 512). The filter settings are
σs = 15 and σr = 80. (a) The original image; (b) Direct implementation
of the bilateral filter; (c) Output obtained using polynomial kernel [107];
and (d) The output of our algorithm. Note the strange artifacts in (c),
particularly around one of the eyes (zoomed insets). This is on account
of the form of the polynomial approximation shown in Figure 9.4. The
standard deviation of the error between (b) and (c) is 6.5, while that between
(b) and (d) is 1.2.
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Gaussian (with normalization) has a fixed variance of γ−2. This can be increased
simply by rescaling the argument of the cosine in (9.8) by some ρ> 1. In particular,
for sufficiently large N ,



cos

 

γ s

ρ
p

N

!



N

≈ exp

�

−
s2

2ρ2γ−2

�

. (9.9)

The variance of the target Gaussian (again with normalization) has now increased
to ρ2γ−2. A fairly accurate estimate of the variance of the raised cosine is therefore
σ2 ≈ ρ2γ−2. In particular, we can increase the variance simply by setting ρ= γσ
for all σ > γ−2, provided N is large enough.

Table 9.2: N0 is the minimum degree of the raised cosine required to
approximate a Gaussian of standard deviation σ on the interval [−255,255].
The a prior estimate d(γσ)−2e is also shown.

σ 200 150 100 80 60 50 40
N0 1 2 3 4 5 7 9

d(γσ)−2e 1 2 3 5 8 17 11

Bringing down the variance below γ−2, on the other hand, is more subtle. This
cannot be achieved simply by rescaling with ρ < 1 on account of the oscillatory
nature of the cosine. For instance, setting ρ < 1 can cause g (s) to become non-
negative, or loose its monotonicity. The only way of doing so is by increasing the
degree of the cosine (cf. Figure 9.3). In particular, N must be large enough so that
the argument of cos(·) is within [−π/2,π/2] for all −T ≤ s ≤ T . This is the case if

N ≥ ρ−2 ≈ (γσ)−2.

In other words, to approximate a Gaussian having a small variance σ , N must at
least be as large as N0 ≈ (γσ)−2. The bound is quite tight for large σ , but is loose
when σ is small. We empirically determined N0 for certain values of σ for the case
T = 255 (cf. Table 1). It turned out to be much lower than the estimate (γσ)−2

when σ is small. For a fixed setting of T (e.g., for grayscale images), this suggests
the use of a lookup table for determining N0 for small σ on-the-fly.

The above analysis leads us to an O(1) algorithm for approximating the Gaussian
bilateral filtering, where both the spatial and range filters are Gaussians. The steps
are summarized in Algorithm 5.

To summarize, our approach are the following advantages:

• Accuracy. Our method is exact. It does not require the quantization of the range
kernel, as is the case in [110, 108]. Moreover, note that the auxiliary images in
our case have the same dynamic range as the input image irrespective of the degree
N . This is unlike the situation in [107], where the dynamic range of the auxiliary
images grow exponentially with the N . This makes the computations susceptible to
numerical errors for large N .
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Algorithm 5 Fast O(1) bilateral filtering using Gaussian kernels

Input: Image f (x) with dynamic range [−T ,T ], σ2
s and σ2

r for the spatial and
range filters.
1. Set γ =π/2T , and ρ= γσr .
2. If σr > γ

−2, pick any large N . Else, set N = (γσr )
−2, or use a look-up table to

fix N .
3. Set up the images hn(x) = exp

�

jγ (2n−N ) f (x)/ρ
p

N
�

and gn(x) =

f (x)hn(x), and the coefficients dn(x) = 2−N�N
n

�

exp
�

− jγ (2n−N ) f (x)/ρ
p

N
�

.

4. Filter every hn(x) and gn(x) with a Gaussian of variance σ2
s to get hn(x) and

gn(x).
5. Set f̃ (x) as the ratio of

∑N
n=0 dn(x)gn(x) and

∑N
n=0 dn(x)hn(x).

Return: Bilateral filtered image f̃ (x).

• Speed. Besides having O(1) complexity, our algorithm can also be implemented
in parallel. This allows us to further accelerate its speed.

• Approximation property. Trigonometric functions yield better (local) approxi-
mation of Gaussians than polynomials. In particular, we showed that by using a
particular class of raised cosines, we can obtain much better approximations of the
Gaussian range kernel than that offered by the Taylor polynomials in [107]. The
final output is artifact-free and resembles the true output very closely. The only
flip side of our approach (this is also the case with [107], as noted in [108]) is that
a large number of terms are required to approximate very narrow Gaussians over
large intervals.

Implementation. We implemented the proposed algorithm for Gaussian bilateral
filtering in Java on a Mac Pro 2.8 GHz dual core system as a ImageJ plugin. We used
multi-threading for computing the spatial averages of the auxiliary images in parallel.
A recursive O(1) algorithm was used for implementing the Gaussian filter in space
domain. The average time for processing a 512× 512 grayscale image for a Gaussian
range kernel of σr = 80 (independent of σs of the spatial Gaussian) was 440 and 310
milliseconds for the raised cosine and the polynomial approximation, respectively.
The approximations are the ones shown in Figure 9.4. The execution of the latter is
slightly lower than that of our method since it requires half the number of auxiliary
images for a given degree. We note that the direct implementation of the filter
(using discretized Gaussians supported on [−3σ , 3σ]) requires considerable time
depending on the size of the spatial filter. For a 512× 512 image, it is 4 seconds for
σs as low as 3, and almost 14 seconds when σs = 6.

In Figure 9.5, we compare the processed outputs of the two algorithms with the
direct implementation. Note that our result In Figure 9.5, we compare the processed
outputs of the two algorithms with the direct implementation on the natural image
of Isha. Note that our result resembles the exact output very closely. The result
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Figure 9.6: Test image of a checker pattern which is used for comparing
the bilateral filters. The gray value is constant within each square (either 0
or 255). Artificial edges (transitions) were created between a given square
and its four adjoining neighbors. This is used to test how well a given filter
smooths the interiors of the squares, while preserving the edges at the same
time.

obtained using the polynomial kernel, on the other hand, shows strange artifacts
(see inset zoom). The difference is also clear from the standard deviation of the error
between the exact output and the approximations.

9.2.3 Denoising experiments

To demonstrate the working of the space-variant bilateral filter, we apply it for
image denoising. The main steps of our denoising algorithm are as follows.

• We compute the local energy E (x) as the weighted norm of the gradient g(x).
We use the formula

E (x) =
�∫

w(y)(gTg)(x − y) d y
�1/2

.

This, in turn, is used to determine the scale a(k) of the box spline at location
k. We first fix the minimum and maximum scale to be amin and amax (these
are set proportional to the noise variance). The rule for setting the scale is
then given by

a(k) = (1−λ)amin+λamax

where λ= 1/(1+E ). This ensures that the scales are always with the range
[amin,amax]. This rule pushes the scale towards amin when E gets large, and
towards amax for when E is small. In effect, we apply large spatial filters (more
smoothing) in the homogenous regions, where we have less structural energy.
On the other hand, we apply smaller spatial filters (less smoothing) close to
edges, where the energy is typically higher.
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Reference scan-line

Gaussian smoothing (without range filter) Bilateral filter (with range filter)

Figure 9.7: Comparison of the horizontal scan profiles of the smoothed
images obtained by applying different filters to the image shown in Figure
9.6. The proposed space-variant (adaptive) bilateral filter is seen to preserve
edges better than the standard bilateral filter.

• The auxiliary images ϕi (x) and ψi (x) are pre-integrated using running-sums.

• The parameters of the finite-difference mesh are computation using a(k).
The same finite-difference mesh is applied to the pre-integrated images to
obtain the space-variant averages of the auxiliary images. We have the crucial
advantage that the samples of the interpolating ZP function (required for the
finite-difference, cf. Chapter 8) needs to be computed only once per pixel.

• The space-variant averages of the auxiliary images are combined using (9.7) to
obtain the filtered image.

We now apply the space-variant bilateral filter for denoising synthetic and real images
corrupted with additive Gaussian noise. We compare the results with those obtained
using isotropic Gaussian filter and the standard bilateral filter. The algorithm was
implemented in Java on a Macintosh 2.8 GHz Intel dual-core system. The execution
time of our denoising algorithm is roughly 500 milliseconds for a 512× 512 image.
This included the time for computing the energy map and the scale vectors, the
five running-sums, the interpolated samples, and the finite-differences. We use the
raised-cosine range kernel for all the experiments.

We begin with the test image of Checker Patterns shown in Figure 9.6. To access
the superiority of proposed space-variant filter, we apply it to this sythetic image.
As reference, we also apply the isotropic Gaussian filter and the standard bilateral
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(a) Gaussian smoothing, PSNR=14.98 dB

(b) Gaussian bilateral filter, PSNR=18.29 dB (c) Adaptive bilateral filter, PSNR=19.47 dB

Corrupted Image, PSNR=14.33 dB

Figure 9.8: Cancellation of additive Gaussian noise. The test image in
Figure 9.6 has been corrupted with white Gaussian noise. The figure shows
the outputs obtained by applying various filters to this corrupted image.
Notice the difference in the performance of the filters along the edges of
the squares. The shrinkage derived from the range kernel of the bilateral
filter is successful in reducing averaging across edges. The improvement is
also evident from the respective PSNRs. The parameters of the filters have
been tuned to optimize the PSNR.
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filter to the same image. We use Gaussians of the same size for the isotropic and
the bilateral filter. For the space-variant filter, we use this to set the size of the
largest Gaussian amax. We set amin = amax/2. The scan profiles of the denoised
images are shown in Figure 9.7. It is clearly evident from the plots that the standard
bilateral filter preserves the edges significantly better than Gaussian smoothing. The
space-variant filter also yields a higher PSNR.

We now perform the following denoising experiment on the test image. We corrupt
the image by adding white Gaussian noise of a specified variance. This is shown
in Figure 9.8. It also shows the outputs of the three denoisng schemes. We used
Gaussians of the same size for isotropic smoothing and the standard bilateral filter.
The size of Gaussians were tuned to optimize the PSNR of the three filters. While
the noise content of the space-variant filter is marginally more than that of the other
two filters, it tends to provide better edge preservation than the standard bilateral
filter, and of course, significantly better than the isotropic Gaussian filter. The
improvement is also clear from the output PSNRs.

Finally, we compare the results obtained on the fluorescence image shown in Figure
9.2. We corrupt the image using white Gaussian noise. The denoising results are
shown in Figure 9.9. In this case, the size of the Gaussians for the three filters
were manually adjusted to maximize the PSNR of the output. As before, the
improvement of the PSNR obtained using our space-variant filter is higher. Our
filter provides better preservation of structures than the standard bilateral filter, at
the expense of some additional background noise (in comparison to the isotropic
Gaussian filter).

Appendix A

By Taylor’s theorem (with remainder), we have cos(x) = 1− x2/2+ x4 cos(ξ )/24,
where ξ is a number between 0 and x. That is, cos(x) = 1− x2/2+O(x4). After
some computation, it can be show that, for some constant c (independent of s and
N ),

�

cos

�

γ s
p

N

��N

=
�

1−
γ 2 s2

2N

�N

+O(N−1 s4)
�

|x|< c
p

N
�

.

Using the well-known fact that (1+ x/m)m approaches exp(x) as m gets large, we
get (9.8).
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(a) Gaussian smoothing, PSNR=17.54 dB

(b) Gaussian bilateral filter, PSNR=17.86 dB (c) Adaptive Gaussian bilateral filter, PSNR=18.25 dB

Corrupted Image, PSNR=14.93 dB

Figure 9.9: Results on real data. We use the biological image shown in
Figure 9.2 and corrupt it with additive Gaussian noise. The denoising
results shown in the figure have been obtained by manually optimizing
the PSNRs of the three filters. Notice that the standard bilateral filter
and our space-variant filter provide roughly the same amount of noise
attenuation (e.g., see background regions). The space-variant version of
the filter, however, provides better preservation of the filament structures,
besides improving its PSNR.
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Chapter 10

Fast detection of cells using a
continuously scalable detector

Abstract — In this chapter, we propose a fast algorithm for the
detection of cells in fluorescence images. The algorithm provides a
robust estimate of the number of cells, and their respective centers and
radii. It relies on the rapid computation of intensity-based correlations
between the cells and a near-isotropic detector.

The attractive features of our algorithm are its speed and accuracy.
We can compute the correlation between a cell and detectors of various
sizes using a fixed number of operations (independent of the size of
the detectors). On the other hand, we can continuously control the
center and the radius of the detector to derive a precise estimate of the
position and size of the cell.

We provide experimental results on both simulated and real data to
demonstrate the speed and accuracy of the algorithm1.

10.1 Intoduction

THE segmentation of cells is often an important pre-processing step for the
quantitative analysis of microscopic images. For example, routine image

analysis tasks in bio-microscopy, such as counting of cells, study of their spatial
organization and the distribution of fluorescence signals on the nuclei, require a
precise delineation of the cell boundaries.

In fluorescence imaging, the cells (or the cell nuclei) appear as bright blobs on a

1This chapter is based on the article [111]: K. N. Chaudhury, Zs. Püspöki, A. Muñoz-Barrutia, D.
Sage, M. Unser, "Fast detection of cells using a continuously scalable Mexican-hat-like template," Proc.
Seventh IEEE International Symposium on Biomedical Imaging, pp. 1277-1280, 2010.

191



192 Fast detection of cells using a continuously scalable detector

dark background. The difficulty, however, is that only a limited amount of laser
excitation can be used in order to avoid excess photobleaching. As a result, the
images are often corrupted with large amounts of shot noise [112]. Added to
this, there is typically the problem of uneven illumination, where the intensities
within the cell are significantly varying. This makes it difficult to segment the cells
using a single global threshold. Adaptive thresholding methods, often combined
with region growing, have commonly been used to circumvent this problem [113,
114]. More recently, accurate and sophisticated segmentation algorithms based on
level-sets and graph-cuts have been proposed for this task [115, 116]. The present
limitations of such methods are the difficulty to automate them, and their slow-to-
moderate computational speed. For certain applications, especially those related
to high-throughput screening, it is absolutely necessary to adopt techniques that
are fast and fully automated. Simple but efficient detection methods have been
proposed to suit these requirements [117, 118].

In this Chapter, we propose a simple and fast algorithm for the detection of round
cells in fluorescence images based on linear filtering. At the core of our algorithm is
a fast technique for computing correlations between cells and a scalable detector,
which is based on the fast algorithm for space-variant filtering proposed in Chapter
8. In the present context, we are interested in the “isotropic” variant of the radially-
uniform box splines which were shown to resemble the isotropic Gaussians. A
popular means of approximating the Laplacian-of-Gaussian (LoG) is using the
difference of Gaussians. In our case, we realize a LoG-like detector using the
difference of two near-isotropic box splines. These are then used as templates for
detecting round cells in fluorescence images, and for estimating their positions and
radii.

10.2 Scalable Laplacian-of-Gaussian detector

We briefly recall the construction of the isotropic variants of the radially-uniform
box splines. The detector construction is considered next.

10.2.1 Approximation of isotropic Gaussian

The particular box splines that we are interested in are realized through the con-
volution of four “uniformly-rotated” box functions of identical width. Using the
notations of Chapter 8, we can write this box spline as

βr (x) = (ϕr,0 ∗ϕr,π/4 ∗ϕr,π/2 ∗ϕr,3π/4)(x) (10.1)

where r is the width of the box functions.

This, in fact, can be seen as an improvement over the standard separable construction

φr (x) = (ϕr,0 ∗ϕr,0 ∗ϕr,π/2 ∗ϕr,π/2)(x), (10.2)
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Figure 10.1: Intensity distributions of (a) βr (x) and (b) φr (x); (c) and (d):
Respective scan profiles along π/8.

which uses box functions solely along the horizontal and the vertical directions.
Although βr (x) and φr (x) have the same order (a total of four box functions in
either case) the “rounding-effect” of the box functions placed along the diagonals
tends to make the former more isotropic. Indeed, judging by the shape of the
support and the distribution of the intensity of (10.1) and (10.2) shown in Figure
10.1, the former clearly looks more Gaussian-like than the latter. A quantitative
justification of this fact is obtained through the computation of the isotropy index

%=
1

2π|| f ||2

∫ 2π

0
〈Rθ f , f 〉 dθ

where Rθ is the operator that rotates a function by angle θ. This index measures the
rotational symmetry of a non-negative function by correlating it with its rotated
versions. Clearly, %= 1 if the function is truly isotropic. In general, the higher the
value of %, the better is the isotropy of the function. The index for (10.2) was found
to be 98.8%, while a higher index of 99.7% was recorded for (10.1).

10.2.2 Detector specification and characteristics

The Laplacian-of-a-Gaussian (LoG), also known as the Mexican-hat, is widely used
for detecting radial singularities in images. In practice, the LoG is often approxi-
mated by the difference of Gaussians, which is easier to implement. In our case, we
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Figure 10.2: (a) Intensity distribution of the LoG-like detector ψr (x); (b)
Scan profile along π/8.

approximate the LoG by the difference of a narrow and a wide box spline,

ψr (x) =βr (x)−βp2r (x), (10.3)

where r > 0 is a real-valued parameter that controls the scale (radius) of the detector.
Figure 10.2 shows the intensity distribution of ψr (x) and its profile along a scan-line
passing through the origin.

Note that, by construction, the total mass of βr (x) does not depend on r . There-
fore,

∫

ψr (x) d x = 0 (r > 0).

This means that the detector tends to suppress uniform-intensity regions, while it
gives a large response for singularities along the radial direction. To make this more
precise, we consider the ideal blob function with centre xc and radius R:

bR(x ; xc ) =

(

1 for 0≤ ‖x − xc‖≤ R
0 otherwise.

(10.4)

The radial singularity in this case is along the circumference of the blob. Assume
that (10.3) is centered at xc . The corresponding detector response is given by

Mr (xc ) =
∫

bR(x ; xc )ψr (x − xc ) d x .

We now vary its radius r . It turns out that Mr (xc ) is a smooth unimodal function of
r . Its peak is located at γR, where γ ≈ 1.33 is a calibration constant. This unimodal
response is exactly due to the cancellation that takes place between the constituent
box splines when r ≤ γR. The cancellation keeps increasing as r goes from γR to
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zero resulting in the progressive drop in the response. On the other hand, when
r > γR, no cancellation occurs. The decay of Mr (xc ) in this regime is due to the
1/r 4 normalization of the constituent box splines.

Although (10.4) is a rather idealized model for cells (or nuclei) in real images,
the responses obtained turn out to be very similar for real fluorescence images.
For instance, Figure 10.3 shows the response obtained for one of the cells in the
fluorescence image in Figure 10.5.

10.2.3 Computational aspects

Before presenting the algorithm, we elaborate on the computation of the quantity

Mr (xc ) =
∫

f (x)ψr (x − xc ) d x (10.5)

where f (x) is discrete,
f (x) =

∑

n∈Z2

f [n]δ(x −n).

A fast and efficient evaluation of (10.5) will turn out to be the workhorse of our cell
detection algorithm, which requires the rapid evaluation of Mr (x) at several image
positions, and at different radii per position.

From (10.3), it is clear that Mr (x) can be expressed as the difference of two averages,

Mr (x) =Ar (x)−Ap2r (x) (10.6)

where

Ar (x) =
∫

f (y)βr (y − x) d y. (10.7)

The crucial point is that we can exactly determine (10.7) using the algorithm of
Chapter 8. We briefly describe the steps of the algorithm in the present setting.

(1) Pre-integration. We pre-integrate the discrete image f [n] = f [n1, n2] along
the four cardinal directions using running-sums. These are efficiently implemented
using recursion.

(i) Horizontal, g0[n1, n2] =
∑∞

k=0 f [n1− k , n2].

(ii) First-diagonal, gπ/4[n1, n2] =
p

2
∑∞

k=0 g0[n1− k , n2− k].

(iii) Vertical, gπ/2[n1, n2] =
∑∞

k=0 gπ/4[n1, n2− k].

(iv) Second-diagonal, g[n1, n2] =
p

2
∑∞

k=0 gπ/2[n1+ k , n2− k].
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(2) Finite-difference. For a given position x and radius r , we compute Ar (x)
by taking a finite-difference of an interpolation of the pre-integrated image. In
particular, we use the formula

Ar (x) =
15
∑

i=0

wi G(x +τ− xi )

where

• The tuple (q4, q3, q2, q1) is the binary representation of the indices 0≤ i ≤ 15,
so that it takes values from (0,0,0,0) to (1,1,1,1).

• wi = (−1)q1 · · · (−1)q4(1/r 4) and xi = r (q1u0+ q2uπ/2+ q3u3π/4+ q4uπ/4).

• τ = (τ1,τ2) where τ1 = (r − 1)/2 and τ2 = (
p

2r + r − 3)/2.

• G(x) is the interpolation of g[n] using the box spline βZP(x),

G(x) =
∑

n∈Z2

g[n]βZP(x −n).

We recall that the samples G(x+τ−xi ) can be rapidly evaluated by taking advantage
of the finite support and the piecewise-quadratic structure of βZP(x); see Appendix
F of Chapter 8.

Once the pre-integration is over, Mr (x) is evaluated simply by computing (10.7) for
radii r and

p
2r using step 2, and then applying (10.6). The crucial aspect of the

above computation is that the number of operations (modulo the mild interpola-
tions) required in step 2 does not depend on r . Hence, the cost of computing Mr (x)
does not vary with the size of the detector. This O(1) complexity is clearly a signifi-
cant improvement over a naive implementation of (10.5) involving the discretization
of the detector and the integral, which would require O(r 2) computations.

An alternative would be to use some fast filtering technique to perform the corre-
lations with a fixed template over the entire image. The advantage of the present
computational strategy is that we can concentrate exclusively on refining the match-
ing around some location, which speeds up the whole process considerably.

10.3 Fast detection of cells

10.3.1 The image model

We model the image f (x) as the superposition of circular blobs bRi
(x ; xi ) of un-

known radius Ri and intensity αi , along with background noise n(x):

f (x) =
N
∑

i=1

αi bRi
(x ; xi )+ n(x). (10.8)
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Figure 10.3: A typical detector characteristic for one of the cells in Figure
10.5. The solid curve shows the variation of the detector response Mr (xc )
with radius r , where xc is the exact cell center. The dots on this curve
correspond to the successive estimates of the optimal point γR? obtained
from the golden section search.

We consider a more realistic model of the blobs bRi
(x ; xi ) than the one in (10.4).

We do assume each cell to be localized within a disk of radius Ri , but we do not
assume the blobs to have the same height or uniform intensity distributions.

The proposed algorithm estimates (without a priori knowledge) the number of cells
(N ), and the centre (xi ) and radius (Ri ) of each cell. The only assumption used is
that the radii of the cells are bounded, that is, Rmin ≤ Ri ≤ Rmax, where Rmin and
Rmax are provided as user inputs. Our approach involves the joint-estimation of the
centers and the radii, whereby we first sample the values of Mr (x) at discrete image
positions and radii to obtain a coarse-to-fine estimate of the center xi . Once this is
determined, we proceed to estimate the radius by optimizing Mr (xi ).

10.3.2 The algorithm

The main steps of the algorithm are as follows.

(1) Coarse estimation of the centers, rejection of background points. To obtain
a coarse estimate of the centers we restrict the potential cell centers, aka the candidate
points, to a coarse lattice of resolution d1.8Rmine×d1.8Rmine. This particular choice
of resolution ensures that at least one lattice point intersects every cell. Let us
denote these candidate points by x̂1, . . . , x̂P . We place them in a listL . In general,
P >>N , but is small compared to the size of the image.

At every x̂i , we compute Mr (x̂i ) at rk = Rmin+ k(Rmax−Rmin)/4 for k = 1,2, and
3. We set

Mi =max
k
|Mrk
(x̂i )|.

We remove those x̂i (typically the background pixels) from L for which Mi is
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Figure 10.4: Detection result on simulated data. Row 1: Blobs of different
size; Row 2: Blobs of different intensities; Row 3: Identical blobs corrupted
with different levels of additive Gaussian noise; Row 4: Identical blobs
corrupted with different levels of speckle noise; and Row 5: Cluster of
identical blobs with varying margin of separation.

smaller than a specific threshold ε. We sort the remaining points into x̂1, . . . , x̂K
using the criterion that x̂ j comes before x̂k if and only if M j ≥ Mk . Note that
K << P . The reasoning here is that those x̂i which are close to the actual centers xi
tend to generate larger responses than those that are further off. The above ordering
places such points in the foremost part ofL .

(2) Fine estimation of the center and the radius. We set N = 0 and i = 1. We
visit the foremost candidate point inL , place an appropriate window W around
it on the image lattice. Similar to the previous phase, we compute the maximum
response

M (ξ ) =max
k
|Mrk
(ξ )|

at every ξ ∈W . We use the result of this search over a finer lattice to select the
current center as the point corresponding to the local maxima, that is,

xi = argmax
ξ∈W

M (ξ ).

Having estimated the current centre, we use the unimodal characteristics of the
detector (cf. Figure 10.3), and the hypothesis that Rmin ≤ Ri ≤ Rmax, to estimate the
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radius. In particular, we set

Ri = γ
−1 argmax

n

|Mr (xi )| : γRmin < r < γRmax

o

.

We perform the above optimization using the golden-section search [119]. This
is an efficient algorithm for finding the extremum of a unimodal function, where
one localizes the extremum by successively shrinking the size of the interval within
which this is known to exist.

We now have the i -th cell with centre xi and radius Ri . We increment N to N + 1.
We then proceed to remove the points fromL which belong to the region of the
detected cel, i.e., the region {x : ‖x − xi‖≤ Ri}. We increment i to i + 1, and repeat
the above process, namely, the estimation of the centre and radius of the (i + 1)-th
cell, and the crucial speed-up step involving the truncation ofL .

(3) Convergence. The iteration is terminated if either the list of candidate points
is exhausted, or if the maximum projection goes below ε. The latter typically
occurs when all the bright cells have been detected, leaving behind the cells of weak
intensity and the background pixels.

The pseudocode for the algorithm is given in Algorithm 6. We have used the
following notations. For a given position x , we denote the maximum response over
the range [Rmin, Rmax], evaluated at fixed radii r1, . . . , rn , by

MaxResponse(x) = max
1≤i≤n

Mri
(x).

Given an ordered listL , we use Header(L ) to denote the first element ofL .

10.4 Experiments

To evaluate the performance of the proposed algorithm, we simulated a single
800× 400 image using different variations of the cell model in (10.8). This is shown
in Figure 10.4. The idea was to study the effect of the following on the performance
of the algorithm:

• The size and intensity of the blobs (rows 1 and 2),

• The presence of ambient noise (rows 3 and 4),

• The separation between the cells (row 5).

The respective SNRs of the images in row 3 (Gaussian noise) and row 4 (speckle
noise) were

+∞, 37.5, 31.5, 27.8, 25.4, 23.4, 21.8, 20.6 dB,
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Algorithm 6 Cell detection algorithm.
1. Input: Image f (x); bounds Rmin, Rmax; tolerance ε; window W ; γ .

2. Initialization ofL , the list of potential centers.

(i) Fix latticeL = [x1, . . . , xP ] of appropriate resolution.

(ii) Determine MaxResponse(x1), . . . ,MaxResponse(xP ).

(iii) If MaxResponse(x)< ε, then remove x fromL .

(iv) Sort remaining points inL using the order

x > y if and only if MaxResponse(x)≥MaxResponse(y) (x , y ∈L ).

(v) Set N = 0; initialize list of blobs, BLOBS= [].

3. do until convergence

(i) x←−Header(L ).

(ii) Center W at x , and set x̂←− argmax
n

MaxResponse(ξ ) : ξ ∈W
o

.

(iii) Compute R̂= γ−1 argmax
n

Mr (x) : γRmin ≤ r ≤ γRmax

o

.

(iv) Update: BLOBS←− [BLOBS, (x̂ , R̂)]; N ←−N + 1.

(v) Remove points fromL which are in the disk with center x̂ and radius R.

4. Output: Number of blobs N , and the list BLOBS.
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Figure 10.5: Top: Snapshot of moving cell nuclei (shown using white
circles) detected from an image sequence (Courtesy of C. Dibner, University
of Geneva). Bottom: Bright stem cells (shown using white bounding
boxes with a cross) detected from a fluorescence image using our algorithm
(Courtesy of N. Garin, ISREC, EPFL).
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and
+∞, 40.1, 37.2, 35.8, 34.6, 33.7, 33.3, 32.5 dB.

The detected blobs are shown in Figure 10.4 using red circles. A near-exact estimate
of the positions and radii was obtained for the blobs in the first four rows. The error
in localization was within 1 pixel, and that for the radius was within 1%. There
were however two false detections in presence of noise, and the algorithm failed to
detect the smallest blob in row 1and the overlapping blobs in row 5. The contiguous
blobs in this row 5 were detected as a single object.

Figure 10.5 shows the results of our detection algorithm applied to real fluorescence
images. The top Figure shows a NIH3T3 cell line (mammalian cells for circadian
cycle analysis) of size 512× 512, which stably expressed the nuclear fluorescent
protein under circadian Reverba promoter regulation. The second fluorescence
image (cropped to 512 × 312 pixels) was obtained from an experiment on the
migration and proliferation of stem cells. We used Rmin = 3, Rmax = 32 and W =
3Rmin in either case. Most of the bright blobs were detected in both the images,
including the slightly elongated cells in the second image. The very faint nuclei
in the first image and the tiny blobs in the second image were not detected. The
average execution time for the NIH3T3 and the stem cell image was 700 and 400
milliseconds, respectively. Note that the detection results for the stem cells shows
that the algorithm does reasonably well even when the cells are not particularly
round.

The algorithm was implemented in Java on a Macintosh 2.8 GHz Intel dual-core
system. We set Rmin = 3, Rmax = 20, and W = 3Rmin. The execution time for the
512× 512 image was about 600 milliseconds.
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Conclusion

11.1 Summary

IN this thesis, we addressed the construction of Gabor-like wavelets, and smoothing
kernels based on the Gaussian. We constructed a family of spline wavelets which

provided arbitrary close approximations of the Gabor function. On the other hand,
we introduced a family of compactly supported box splines to approximate the
optimally-localized Gaussian, both isotropic and anisotropic. The attractive feature
of these spline wavelets and kernels was that we are able to develop fast and efficient
algorithms to implement the associated transforms.

The Gabor function has the unique property of being optimally localized in both
space and frequency. In Chapters 2-6, we showed how Gabor-like wavelets could
be constructed within the framework of multiresolution analysis of Mallat and
Meyer. The central theme of our investigation was the connection between a
fundamental singular integral transform, the Hilbert transform, and wavelet bases
derived by the dilation and translation of a single oscillating prototype having a
prescribed number of vanishing moments. In particular, the construction of the
Gabor-like complex wavelets was motivated by the observation that the real and
the imaginary components of the Gabor function form an approximate Hilbert
transform pair. On the other hand, it was known that a certain class of spline
wavelets, the B-spline wavelets, converged to the real part of the Gabor function
with the increase of their order. The goal then was to realize the Gabor-like wavelets
by applying Hilbert transform to the B-spline wavelets and complexifying the
resulting Hilbert transform pairs of wavelets. This led us to address the more
general problem of constructing Hilbert transform pairs of wavelets within the
framework of multiresolution analysis.

To begin with, we provided a self-contained exposition of the local and global
properties of the Hilbert transform that are subsequently used in the thesis in
Chapter 2. We also identified the complete class of integral transform, the fractional

203
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Hilbert transforms, that are unitary (energy-preserving) and exhibit the fundamental
invariances of the Hilbert transform with respect to translations and dilations of
the signal. A particular directional extension of the fractional Hilbert transforms
was also introduced.

Our first basic observation was that the Hilbert transform could be seamlessly
integrated into the multiresolution framework of wavelets thanks to its invariance
to dilations and translations, and its energy-preserving nature. It is in connection
with the interaction of the transform with scaling functions (which are low-pass by
construction) and compactly supported wavelets, that we faced certain technical
difficulties. We observed that the Hilbert transform of a scaling function was no
longer a valid scaling function, and the Hilbert transform of a compactly supported
wavelet was necessarily of infinite support, with often a very slow decay; e.g., the
Hilbert transform of the Haar wavelet had only a modest quadratic decay. We
showed that the former problem can be dealt with through a careful design of the
wavelet multiresolution, in which the Hilbert transform is applied only on the
wavelet (which is oscillatory by nature) and never explicitly on the scaling function.
As far as the latter pathology is concerned, we showed how this can be overcome
simply by considering a classes of well-localized wavelets having sufficient number
of vanishing moments. The Hilbert transform of such wavelets were shown to
have comparable vanishing moments, and, importantly, a decay proportional to the
number of vanishing moments of the original wavelet.

Guided by the above considerations, we proceeded to formulate a recipe for con-
structing Hilbert transform pairs of wavelet bases. The key components of this
construction was the B-spline factorization theorem, and the observation that the
Hilbert transform of a B-spline could be expressed as the “discrete-filtered” version
of a larger class of so-called fractional B-splines having identical approximation
order. The former allowed us to express a sufficiently well-behaved scaling functions
in terms of B-splines, while the latter allowed us to transfer the slow decay of the
transform onto a discrete filter which was eventually applied on the oscillating
wavelet filter. Using this framework, we were able to identify pairs of (ordered)
spline multiresolutions where the associated wavelets formed a Hilbert transform
pair. It was shown that the complex wavelet obtained by combining the Hilbert
pairs converged to a Gabor function with the increase in order. Motivated by the
construction of Kingsbury et al. [26], we next extended the construction to higher
dimensions using the directional Hilbert transform and tensor-products wavelets.
This resulted in a system of complex wavelets that closely resemble the directional
Gabor functions. We also proposed an efficient numerical implementation of the
Gabor-like wavelet transforms using Mallat’s filterbank algorithm.

We next investigated the reconstruction mechanism (the functional representation)
associated with the Gabor-like transform in arbitrary dimensions. The functional
representation was arrived at based on the role of played by the fractional Hilbert
transforms in the reconstruction mechanism, their invariances to translations and di-
lations, and their modulation property (Bedrosian theorem). In particular, we high-
lighted the resemblance of the representation with the classical widowed-Fourier
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representation. This formal connection allows us to understand the significance of
the amplitude and phase information associated with the transform.

In Chapter 7, we developed a coarse-to-fine stereo-matching algorithm by applying
dynamic programming on the sub-sampled Gabor-like wavelet pyramid instead of
the raw pixel intensities. The crucial feature of our pyramid was that it provided
near translation-invariance at the cost of moderate redundancy. The translation-
invariance proved to be absolutely essential for encoding the local spatial translations
between the stereo pair. Based on the specific Gabor-like form of our complex
wavelets, we also provided a mathematical explanation of the near translation-
invariance of our pyramid. From a computational standpoint, we showed that a
significant reduction of the run time is achieved by our algorithm in comparison
with the standard dynamic programming algorithm.

The focus of Chapters 8-10 was on different forms of space-variant filtering based on
Gaussian-like kernels. In Chapter 8, we investigated the efficient realization of space-
variant filters modeled on anisotropic Gaussians. The realization of the space-variant
Gaussian filter is known to be computationally challenging, particularly when the
size of filter is large. We demonstrated that it is possible to filter an image with a
Gaussian-like box splines of varying size, elongation and orientation using a fixed
number of computations per pixel (constant-time implementation). The associated
algorithm was realized using simple pre-integrations and local finite-differences. We
also developed a simple root-finding algorithm for controlling the anisotropy of the
filter.

As an application of the Gaussian-like box splines and the associated filtering algo-
rithm, we proposed two space-variant filtering strategies in Chapter 9. The first of
these was inspired by anisotropic Gaussian diffusion. The space-variance in this case
is in terms of the size, elongation, and orientation of the box splines. The other
scheme was based on a space-variant form of the Gaussian bilateral filter. The spatial
adaptability in this case was in terms of the size of the spatial Gaussian filter. We
developed a constant-time algorithm for implementing this filter by approximating
the variable spatial filter using isotropic box splines, and by approximating the fixed
range filter using shiftable kernels. As an application in a different direction, we
constructed box spline filters resembling the Laplacian-of-Gaussian in Chapter 10.
Using this particular detector, and by appropriately modifying the algorithm in
Chapter 8, we developed a fast “template-matching” algorithm for the detection of
bright cells and nuclei in fluorescence images.

11.2 Future research extensions

We now discuss some possible directions along which the present research work can
be extended.

• Applications of the 2-dimensional Gabor-like wavelet transform. We used
the 1-dimensional Gabor wavelets for developing a coarse-to-fine stereo-matching
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algorithm in Chapter 7. We have, however, not fully exploited the reversibility of
the wavelet transform; that is, the possibility of reconstructing the original signal
from the analysis coefficients. For example, we could apply the 2-dimensional
transform for image processing applications such as denoising and deconvolution.
This has already been investigated for certain class of wavelet transforms with
promising results [120, 121]. We could make possible use of the shiftability of
our Gabor-like wavelet transform for such applications. The other feature of 2-
dimensional wavelet transform is that it exhibits better translation invariance along
certain preferred directions. This could be used for directional analysis of image
features such as those required in texture analysis and synthesis applications [122].

•Gabor-like wavelet packets. In wavelet packet decomposition, one analyzes the
signal by passing it through more filters than the standard discrete wavelet transform
[14]. The idea is to improve the frequency resolution of the standard wavelet
transform by decomposing the detail coefficients along with the approximation
coefficients. This was introduced by Coifman et al. by generalizing the link between
multiresolutions and wavelets [123].

The distinctive difference of wavelet packets with the standard wavelet paradigm is
that, as against the use of single mother wavelet, the latter uses different wavelets
at different scales (wavelet dictionary). There is evidence to believe that, if we
applied this scheme to the B-spline scaling function along with appropriate wavelet
filters, the corresponding wavelets would asymptotically converge (for large orders)
to Gaussian-modulated cosines having distinctive modulation frequencies. This
suggests the possibility of constructing a secondary system consisting of the Hilbert
transforms of the B-spline wavelets. The complexification of these two “matched”
systems would result in a larger class of Gabor-like wavelets (Gabor-wavelet dictio-
nary) having different modulation frequencies.

• Extension of the space-variant filtering to 3-dimensions. The possibility of
extending the space-variant filter (introduced in Chapter 8) to volume data was
not explored in the thesis. Extending the running-sums and the finite-differences
to 3-dimensions is conceptually straightforward. In particular, one would have
to integrate the image along the principal directions of the 3-dimensional lattice,
and would have to use a larger mesh of size 2N (N being the number of directions)
for computing the finite-differences. The challenge, however, is the computational
feasibility in that one would have to compute the 2N taps of the mesh on-the-fly,
and use high-precision arithmetic for manipulating the running-sums. The added
challenge of designing a fast algorithm for controlling the anisotropy of the box
splines using its scales also remains open.

• Improvement of the stereo-matching algorithm. This is still a lot of scope of
improving the stereo-matching algorithm. We have discussed the various possibilities
in detail in Chapter 7.
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• Applications of space-variant bilateral filters. The fast bilateral filter proposed
in Chapter 9 could be used for various problems in image processing, computer
graphics, and computer vision. These includes denoising [97, 98, 99, 100], texture
editing [101], demosaicking [102], optical-flow estimation [103, 104], and stereo
matching [105, 106], to name a few. For example, we could use the space-variant
bilateral filter for the “cost-aggregation” step of the stereo-matching algorithm. In
general, it has been demonstrated that the standard bilateral filter gives superior
performance for such applications.

• Refinement of the cell-detection algorithm. The cell-detection algorithm de-
veloped in Chapter 10 does reasonably better than the standard convolution-based
template matching in terms of speed and accuracy of the detection. The drawback
of the algorithm is that it is designed to handle only round cells using isotropic
templates. We could instead use a larger class of elliptical templates obtained by
taking the difference of two elliptical box splines of different size, but having same
orientation and elongation. This would result in a more flexible set of elliptical
detectors, which could be used to detect elliptical and round cells at the same time.
The non-trivial part, however, is the design of the optimization algorithm where one
would have to simultaneously optimize the detector response over three different
degrees of freedom—the size, the elongation, and the orientation of the template.
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