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A B S T R A C T

For effective treatment of Alzheimer’s disease (AD), it is important to identify subjects who are most likely to
exhibit rapid cognitive decline. We aimed to develop an automatic image interpretation system based on a deep
convolutional neural network (CNN) which can accurately predict future cognitive decline in mild cognitive
impairment (MCI) patients using flurodeoxyglucose and florbetapir positron emission tomography (PET). PET
images of 139 patients with AD, 171 patients with MCI and 182 normal subjects obtained from Alzheimer’s
Disease Neuroimaging Initiative database were used. Deep CNN was trained using 3-dimensional PET volumes of
AD and normal controls as inputs. Manually defined image feature extraction such as quantification using
predefined region-of-interests was unnecessary for our approach. Furthermore, it used minimally processed
images without spatial normalization which has been commonly used in conventional quantitative analyses.
Cognitive outcome of MCI subjects was predicted using this network. The prediction accuracy of the conversion
of mild cognitive impairment to AD was compared with the conventional feature-based quantification approach.
Accuracy of prediction (84.2%) for conversion to AD in MCI patients outperformed conventional feature-based
quantification approaches. ROC analyses revealed that performance of CNN-based approach was significantly
higher than that of the conventional quantification methods (p < 0.05). Output scores of the network were
strongly correlated with the longitudinal change in cognitive measurements (p < 0.05). These results show the
feasibility of deep learning as a practical tool for developing predictive neuroimaging biomarker.

1. Introduction

1.1. Backgrounds

Recent treatment strategies for Alzheimer’s disease (AD) are aimed
at slowing cognitive decline and are focused on the pre-dementia stage
which includes mild cognitive impairment (MCI) [1]. However, as the
etiology of MCI is heterogeneous, MCI patients show different rates of
cognitive decline, and even some never convert to AD [2]. Thus, it is a
matter of utmost importance to identify the patients with MCI who
would benefit from treatment. So far, several studies have investigated

a number of imaging biomarkers that can predict whether a patient
with MCI will convert to AD. They include brain metabolism and
amyloid load measured by 18F-fluorodeoxyglucose (FDG) and 18F-flor-
betapir (AV-45) positron emission tomography (PET), respectively
[3–6]. Previous studies have used quantitative parameters or visual
assessment of the brain images for predicting MCI patients who would
covert to AD. However, visual analysis cannot provide quantitative and
objective data and quantitative analyses commonly require complicated
processing [7–10].

In this study, we showed a deep convolutional neural network
(CNN) based method, a type of deep learning, could accurately predict

https://doi.org/10.1016/j.bbr.2018.02.017
Received 30 January 2018; Received in revised form 2 February 2018; Accepted 13 February 2018

⁎ Corresponding author at: Cheonan Public Health Center, 234-1 Buldang-Dong, Seobuk-Gu, Cheonan, Republic of Korea.
⁎⁎ Corresponding author at: Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

1 These authors contributed equally to this work.
2 Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the

ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can
be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

E-mail addresses: chy1000@snu.ac.kr (H. Choi), kyong.jin@epfl.ch (K.H. Jin).

Abbreviations: AD, Alzheimer’s disease; MCI, mildcognitive impairment; FDG, 18F-fluorodeoxyglucose; AV-45, 18F-florbetapir; CNN, convolutional neural network; ADNI, Alzheimer’s
Disease Neuroimaging Initiative; NC, normal control; CDR-SB, Clinical Dementia Rating Sum of Boxes; ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale 13-item; FAQ,
Functional Activities Questionnaire; MMSE, Mini-Metal Status Examination; ROC, receiver operating characteristic

Behavioural Brain Research 344 (2018) 103–109

Available online 14 February 2018
0166-4328/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01664328
https://www.elsevier.com/locate/bbr
https://doi.org/10.1016/j.bbr.2018.02.017
https://doi.org/10.1016/j.bbr.2018.02.017
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
mailto:chy1000@snu.ac.kr
mailto:kyong.jin@epfl.ch
https://doi.org/10.1016/j.bbr.2018.02.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbr.2018.02.017&domain=pdf


cognitive decline. Recent advances in CNN have dramatically improved
image recognition field [11]. We applied CNN to FDG and AV-45 PET
images to predict cognitive decline in MCI patients. Our method was
designed to discriminate patients’ groups classified according to the
cognitive outcome with minimized image processing. In addition, it
could provide a quantitative biomarker combining both the FDG and
AV-45 PET information. We showed that the CNN-based biomarker
strongly correlated with future cognitive decline. Our major contribu-
tion was 1) to predict future MCI patients’ outcome by applying the
deep CNN model trained for discriminating AD from controls, and 2) to
achieve prediction with minimally processed multimodal neuroimage
data due to the benefits of the deep CNN.

1.2. Related works

Recently, deep learning has been applied to brain images to classify
patients’ disorders. One of the initial paper that used deep learning for
identifying AD using brain images employed Deep Boltzmann Machine
as a feature extractor [12]. Discriminative features were extracted from
3D patches of FDG PET and MRI for the further classification task.
Another study for extracting deep learning-based discriminative fea-
tures from multimodal images used randomized denoising autoencoder
and showed correlation between the output score of the classification
model and clinical outcomes [13]. Another study used conventional
image quantification and deep learning. Multimodal image features
extracted by predefined region-of-interests were combined as inputs of
a neural network for classifying AD [14]. These studies focused on
discriminative feature extraction from multimodal image data, how-
ever, required routinely performed image processing. Furthermore, the
input of the neural network was high-dimensional vector or manually
extracted features instead of raw 3-dimensional voxels as CNN models.
Instead of feature extracting using autoencoder or Boltzmann machine,
3D CNN models exploiting all voxels as inputs have been applied to
classifying disorders. A 3D CNN model was applied to structural MRI to
classify AD, MCI and controls [15]. Another 3D CNN model for struc-
tural MRI was built upon pretraining process performed by convolu-
tional autoencoder [16]. fMRI-based classification model was reported
using 2D CNN by stacking processed fMRI images across axial and time
axes [17]. So far, no studies focused on exploiting multimodal 3D PET
images without normalization as inputs for CNN despite ease of clinical
applicability of minimally processed images. Furthermore, independent
future outcome prediction of MCI patients using CNN model trained by
AD and controls has not been reported.

2. Methods

2.1. Subjects

The data used in this study included subjects recruited in
Alzheimer’s Disease Neuroimaging Initiative-II (ADNI-2) with available
baseline data on FDG and AV-45 PET (http://adni.loni.usc.edu). The
ADNI was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD, VA Medical Center and
University of California San Francisco. Subjects have been recruited
from over 50 sites across the US and Canada. The primary purpose of
ADNI has been to test whether serial MRI, PET, other biological mar-
kers, and clinical and neuropsychological assessment can be combined
to measure the progression of MCI and early AD. For up-to-date in-
formation, see http://www.adni-info.org. Written informed consent to
cognitive testing and neuroimaging prior to participation was obtained,
approved by the institutional review boards of all participating in-
stitutions.

For diagnostic classification and learning the CNN, we firstly se-
lected patients with AD and healthy subjects who had baseline FDG and
AV-45 PET scans. We also selected MCI patients who had baseline FDG
and AV-45 PET scans and 3-year follow-up clinical evaluation. This

resulted in 182 normal controls (NCs), 139 AD patients and 171 MCI
subjects. Based on whether the MCI patients would convert to AD
within 3 years, MCI patients were grouped as MCI converters and
nonconverters.

Cognitive function of the subjects was evaluated using Clinical
Dementia Rating Sum of Boxes (CDR-SB), Alzheimer’s Disease
Assessment Scale-Cognitive Subscale 13-item (ADAS-Cog), Functional
Activities Questionnaire (FAQ), and Mini-Metal Status Examination
(MMSE). As we interested in whether CNN-based baseline PET bio-
markers would be associated with longitudinal cognitive decline,
longitudinal changes of cognitive measurements were also assessed at
1 year and 3 years after the baseline study.

2.2. FDG PET and AV-45 PET

All the PET images were downloaded from ADNI database at the
most advanced preprocessing stage. FDG PET images were acquired 30
to 60min and AV-45 PET images were acquired 50 to 70min after the
injection. The FDG and AV-45 PET images were co-registered to each
other, averaged across the time frames, standardized to have same
voxel size (1.5× 1.5× 1.5mm). PET images were acquired in the 57
sites participating in ADNI, scanner-specific smoothing was additionally
applied [18]. As the processing did not include nonlinear spatial
warping, size and shape of the brains were not changed after the pre-
processing. These preprocessed images could be downloaded from
ADNI database and we used them for deep CNN training and testing as
they are.

2.3. Study design

The main purpose of this paper was to develop a deep CNN-based
method for prediction of cognitive decline and selection of subjects who
would eventually convert to AD. Before the testing of MCI conversion,
the deep CNN was trained using PET images of AD and NC subjects. For
discrimination between MCI converter and nonconverter, the network
trained by AD/NC data was directly transferred as the imaging features
of MCI converter would be similar with those of AD. The nodes of the
output layer were only reassigned to MCI converter and nonconverter.
All the PET images of MCI subjects were tested whether they would
convert to AD or not. Therefore, our deep CNN was a classifier in-
dependent from the training data to discriminate between MCI con-
verter and nonconverter (Fig. 1). In addition, we also obtained a
quantitative score for MCI converter. The quantitative value of the
output of the network before the final activation layer (i.e. softmax)
was defined as ConvScore, a score that indicates how close inputted
baseline images are to AD. The score can be expected to be utilized for a
predictive biomarker.

The CNN was designed using MatConvNet (Version 1.0-beta 16)
[19]. Additional information about the network architecture is avail-
able in the Supplementary Methods and Supplementary Table 1.

Sensitivity, specificity and accuracy of the classification between AD
and NC were calculated using cross-validation. Additional information
about training and validation of the classification between AD and NC is
available in the Supplementary Methods.

2.4. Prediction of cognitive decline in MCI subjects

Using the network trained by PET images of AD and NC, PET images
of MCI subjects were tested whether they would convert to AD or not.
The labels of the output nodes of the CNN, AD and NC, were changed to
MCI converter and nonconverter, as aforementioned above. As the
classification of AD/NC, we classified a patient as a predictive MCI
converter if the probability of the network output layer was higher than
0.5. Sensitivity, specificity and accuracy were measured and ROC
analysis was also performed using ConvScore.

ConvScore was correlated with the longitudinal changes of
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cognitive measurements including CDR-SB, ADAS-Cog, FAQ and MMSE.
Cognitive measurements of 1-year and 3-year follow-up visits were
compared with those of baseline studies to calculate longitudinal
changes. Pearson correlation was used for the correlation analysis.

2.5. Feature volume of interests based analysis

To compare CNN-based biomarker with conventional quantification
methods, feature volume of interests (VOIs)-based analyses for FDG and

Fig. 1. Framework for predicting cognitive decline in mild cognitive impairment patients. (A) Deep convolutional neural network architecture is applied to the two PET images,
FDG and florbetapir (AV-45). Each layer, features can be extracted by 3-dimensional convolution and activation (ReLU) function. Multilayer convolutions yield 1-dimensional output and
the last layer have two nodes, which correspond to Alzheimer’s disease (AD) and normal control (NC). (B) Deep CNN was trained from PET data of AD and NC. 10-fold cross validation
was used. After the training, the trained network was directly used for the classification between mild cognitive impairment (MCI) converter and nonconverter. Thus, the network was
independent from the PET data of MCI patients. Prediction accuracy for MCI conversion was assessed. Receiver operating characteristic (ROC) analysis was also performed.
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AV-45 PET were carried out. The images were processed and quantified
by feature VOI as described previously [20–22]. In brief, FDG PET
volumes were spatially normalized with nonlinear warping process.
Average FDG uptake from the angular (right/left), temporal (right/left)
and posterior cingulate cortices were calculated. The quantification
data were expressed relative to the mean uptake of a reference regions,
pons and cerebellar vermis [20]. For AV-45 PET, cortical uptake of AV-
45 was calculated. Cortical regions were segmented with FreeSurfer,
and used to extract mean AV-45 uptake in frontal, anterior and pos-
terior cingulate, lateral parietal, and lateral temporal regions. The
overall cortical mean uptake value expressed relative to uptake in the
whole cerebellum was used [21,22].

2.6. Voxelwise feature extraction and support vector machine

Our proposed CNN-based approach was additionally compared with
a conventional machine learning approach using voxelwise feature
extraction. This approach used combined information of FDG and AV-
45 PET images and did not use predefined VOI. Thus, it was a data-
driven method as our CNN-based approach that was independent from
previous knowledge of significant VOIs relevant to the diagnosis. This
approach was performed by three steps: spatial normalization of PET
images, feature extraction using principal component analysis (PCA)
and support vector machine (SVM) classification. SVM classifier using
feature extraction from PET images has been studied several times and
showed good performance for the diagnosis of AD [23–25]. We trained
PCA-SVM classier using FDG and AV-45 PET data of AD/NC and tested
it for MCI patients as training and testing process of the CNN-based
approach. Details are described in Supplementary Methods.

2.7. Statistics

We compared the diagnostic and prediction accuracy of CNN with
those of conventional feature-based approaches with McNemar’s non-
parametric test. ROC analysis with area under the curve (AUC) mea-
surement was performed for ConvScore and feature VOI-based para-
meters. The AUCs were compared using a nonparametric test of DeLong
for comparison of two correlated ROC curves [26]. The performance
comparison results for predicting MCI converters were obtained by the
model which showed the best accuracy for discriminating AD in the
cross-validation. The performance of discriminating AD from NC was
measured by the combined results of cross-validation. ConvScore was
correlated with longitudinal changes of cognitive measurements using
Pearson’s correlation. All statistical analysis was performed by using the
MATLAB software. P-value < 0.05 was considered significant.

3. Results

3.1. Results of AD classification and MCI conversion prediction

We included a total of 492 subjects in this study. Among them, 139
patients were AD, 171 patients were MCI and 182 were NC.
Demographic data and cognitive measurements of each group were
summarized in Table 1.

The classification accuracy of the CNN-based approach was

compared with feature VOI-based analysis of FDG and AV-45 PET as
conventional quantitative analyses. In addition, it was compared with a
SVM classifier based on PCA features of FDG and AV-45 PET images.
The PCA features were shown in Supplementary Fig. 1. Sensitivity,
specificity and accuracy of CNN-based approach for classification be-
tween AD and NC were 93.5%, 97.8% and 96.0%, respectively. They
were significantly higher than those of the SVM classifier as well as
VOI-based analyses (p-values were summarized in Table 2). The per-
formance of SVM classifiers with different kernels are summarized in
Supplementary Table 2. Sensitivity, specificity and accuracy of the
CNN-based approach for the prediction of MCI conversion was 81.0%,
87.0% and 84.2%, respectively. Accuracy of the deep CNN was sig-
nificantly higher than VOI-based analysis of FDG PET and the SVM
classifier. Specificity of deep CNN was significantly higher than VOI-
based analysis of AV-45 PET and the SVM classifier. Sensitivity was also
higher compared with conventional methods, though it did not reach
statistical significance (p-values were summarized in Table 2).

In addition to the group classification, we calculated quantitative
score, ConvScore, for predicting MCI converters. It was obtained from
the value of the last layer of the network. Using ConvScore, ROC curves
were drawn and AUC were calculated (Fig. 2, Table 2). AUC of Conv-
Score was significantly higher than feature-VOI based analysis for AD
classification (p < 0.001 for deep CNN vs. FDG and vs. AV-45) and
prediction of MCI conversion (p < 0.01 for deep CNN vs. FDG and
p < 0.05 for deep CNN vs. AV-45).

3.2. Correlation of CNN-based biomarker with cognitive outcomes

ConvScore calculated from baseline PET images of MCI patients was
significantly correlated with the longitudinal change of cognitive
measurements at 1 year and 3 years (Fig. 3). ConvScore was sig-
nificantly positively correlated with longitudinal change of CDR-SB
(r= 0.37, p < 0.0001 at 1 year and r= 0.63, p < 0.0001 at 3 years),
ADAS-Cog (r= 0.29, p= 0.0001 at 1 year and r= 0.24, p=0.004 at
3 year) and FAQ (r= 0.40, p < 0.0001 at 1 year and r= 0.67,
p < 0.0001 at 3 year). It was significantly negatively correlated with
MMSE (r= -0.30, p < 0.0001 at 1 year and r=−0.61, p < 0.0001 at
3 year). Note that the relatively weak correlation between ConvScore
and longitudinal changes in cognitive scores at 1 year was found. The
changes were steeper for the measurements at 3 years compared with
1 year. ConvScore of MCI converters was significantly higher than that
of MCI nonconverters (2.40 ± 1.49 and -0.13 ± 1.36, respectively.
p < 0.0001) (Supplementary Fig. 2). ConvScore could be used as a
quantitative biomarker for predicting longitudinal cognitive measure-
ments decline in MCI patients as well as conversion to AD.

4. Discussion

In the present study, we developed a deep learning-based diagnostic
method for predicting cognitive decline in MCI patients. According to
our knowledge, we firstly applied recent deep CNN model to multi-
modal PET images to predict cognitive outcome. Deep CNN could ac-
curately classify patients’ diagnostic group with the minimal steps of
image processing and provide a quantitative biomarker for predicting
cognitive outcome. Accordingly, the prediction of cognitive decline in

Table 1
Demographic data.

Variables Normal (n=182) AD (n= 139) p-value MCI converter (n= 79) MCI nonconverter (n= 92) p-value

Age (years) 73.4 ± 6.3 74.3 ± 8.2 n.s. 72.3 ± 7.2 70.3 ± 6.3 n.s.
Sex (M/F) 88/94 80/59 n.s. 43/36 51/41 n.s.
Education (years) 16.6 ± 2.5 15.8 ± 2.7 < 0.01 16.3 ± 2.6 16.4 ± 2.7 n.s.
MMSE 29.0 ± 1.2 23.0 ± 2.1 < 0.001 27.1 ± 1.9 28.1 ± 1.7 <0.001
ADAS 9.1 ± 4.5 31.0 ± 8.6 < 0.001 22.0 ± 6.8 12.9 ± 5.5 <0.001
APOE ε4 (−/+) 130/52 (28.6%) 44/95 (68.3%) < 0.001 22/57 (72.2%) 58/34 (37.0%) <0.001
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our method could be automatically made by simply inputting subjects’
images. Output value (ConvScore) was significantly correlated with the
longitudinal change of cognitive measurements.

Previous PET imaging biomarkers relied on the uptake value in a set
of regions of interest developed a priori or whole-cortical uptake value
[6,9,10]. To obtain these values, several image processing steps such as
spatial normalization and cortical segmentation using structural MRI
were required. However, such processing was not standardized and
nonlinear image transformation could introduce a potential source of
errors particularly in morphological alterations [27,28]. Our proposed
method used spatially unnormalized baseline image data of AD and NC.
It suggests that our approach is simply able to be utilized to redesign the
voxelwise brain imaging processing pipeline which has routinely im-
plemented normalization to template space.

Accuracy of differentiation between MCI converter and non-
converter (84.2%) outperformed the conventional machine learning
approach using SVM with voxelwise feature selection as well as con-
ventional feature-VOI based methods. ROC comparison results also re-
vealed that the accuracy of prediction was significantly higher than
other methods. Note that the feature-VOI based methods relied on prior
information about important regions and partly employs MR informa-
tion for cortical parcellation [20–22], while deep CNN-based and SVM-
based approaches solely used PET information. Nonetheless, the pre-
diction accuracy of our approach was higher than the VOI-based

methods with a priori and structural information. That is because deep
CNN has the benefit that could automatically discover the optimal
features for image classification [11]. Furthermore, the accuracy of our
approach also outperformed other state-of-the-art machine-learning
algorithms based on feature selection other than deep learning for this
differentiation problem [29–32], though those studies used different
imaging modalities and clinical variables. For example, Cheng, et al.
suggested a machine learning classifer using FDG PET, MRI and CSF
biomarkers, which showed 80.1% accuracy for discriminating MCI
converters [29]. Deep CNN models using MRI showed more than 95%
accuracy for discriminating AD from normal which was similar with our
model though they were not tested for identifying MCI converters
[15,16]. The major benefit of deep CNN compared with other con-
ventional machine learning methods is the end-to-end training [11].
Because 3d medical images have high dimensions, previous methods
have commonly required dimension reduction by feature selection.
However, deep CNN model uses all voxels of image data as inputs as
convolutional filters make sparse connection compared with fully-
connected neural networks [33]. It eventually reduces learning para-
meters of the model and enables end-to-end training.

Our approach could provide a quantitative variable, ConvScore, to
be used as a fusion biomarker for multimodal images. As an imaging
biomarker, low glucose metabolism and high amyloid deposit in the
cortex at baseline can predict the longitudinal decline of cognitive

Table 2
Sensitivity, specificity and accuracy for the discrimination between AD and normal controls and the prediction for MCI converters.

Feature VOI-based SVM Deep CNN based approach p-value

FDG AV45 vs. FDG vs. AV45 vs. SVM

AD vs. Normal
Sensitivity,% 84.2 81.8 84.2 93.5 0.004 < 0.001 0.001
Specificity,% 86.3 80.8 88.5 97.8 < 0.001 < 0.001 < 0.001
Accuracy,% 85.4 80.7 86.6 96.0 < 0.001 < 0.001 < 0.001
ROC AUC 0.91 0.84 – 0.98 < 0.001 < 0.001

MCI Conversion Prediction
Sensitivity,% 70.9 86.1 79.7 81.0 0.08 0.29 0.99
Specificity,% 79.3 75.0 72.8 87.0 0.19 0.007 < 0.001
Accuracy,% 75.4 80.1 76.0 84.2 0.02 0.21 0.02
ROC AUC 0.82 0.83 – 0.89 0.006 0.03

ROC: receiver operating characteristic; AUC: area under curve.

Fig. 2. ROC curves for deep CNN. ROC analyses were performed for the classification of AD (A) and the prediction of MCI conversion (B). ROC curves of feature VOI-based approaches
using FDG and AV-45 PET were also drawn. Areas under curve (AUC) values were calculated. (A) AUC of ConvScore was significantly higher than feature-VOI based analysis for AD
classification (AUC=0.98, 0.91 and 0.84 for ConvScore, FDG and AV-45, respectively; p < 0.001 for deep CNN vs. FDG and vs. AV-45) (B) AUC of ConvScore was also significantly
higher than feature VOI-based analysis for prediction of MCI conversion (AUC=0.89, 0.82 and 0.83 for ConvScore, FDG and AV-45, respectively; p < 0.01 for deep CNN vs. FDG and
p < 0.05 for deep CNN vs. AV-45).
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scores [20,21]. However, a combined parameter considering both me-
tabolism and amyloid deposit has been needed. ConvScore is not only a
fusion biomarker directly obtained by both PET images, but correlated
with longitudinal cognitive measurements. It suggests cognitive func-
tions of patients with high ConvScore at baseline could be rapidly de-
teriorated. Even though relatively weak correlation between ConvScore
and cognitive measurements changes at 1 year (less than r < 0.4), we
could be used ConvScore as a single parameter that reflects both PET
image patterns for future cognitive decline particularly for long-term
outcome. This correlation is an important observation that has impact
on clinical trials for early treatment intervention in prodromal AD.
ConvScore could help select the subjects who would benefit from
treatment in the clinical trials.

In the clinical setting, most imaging studies are assessed by experts’
visual analysis, because it is simpler and more practical than the
quantitative assessment which needs time-consuming procedures. Deep
CNN is motivated by human visual perception, which hierarchically
processes recognized images in the cerebral cortex [34]. As hierarchical
features of images are automatically trained by data, manual feature
selection or image processing steps can be minimized in deep CNN
[11,34]. Therefore, after the training, the network is automatically able
to analyze patients’ images by simply inputting subjects’ images. Con-
sidering the ease of application, the CNN-based image interpretation
system has a large potential to be used in development of biomarkers of
several diseases including cancer, cardiovascular disorders as well as
neurodegenerative diseases.

Recent remedies of CNN for achieving higher accuracy are in-
creasing the depth of the network [35]. However, to learn a deeper
neural network, more image data will be essential. As the network is
trained by the larger data, the higher performance it shows. In our
study, to overcome the limited number of imaging data, PET images

were augmented by flipping image in left-right direction (Supplemen-
tary Methods). It was based on the previous knowledge that AD and
MCI converters showed symmetrically decreased FDG uptake and in-
creased AV-45 uptake in the cerebral cortices. The network trained
without this augmentation process showed 89.4% and 81.3% accuracy
for the differentiation between AD and NC and predicting MCI con-
verters, respectively. Though the augmentation process increased the
performance of the network, it might cause potential error in the
classification because the two brain hemispheres have partly different
functions. In the future, larger image data cohort and deeper network
architecture could improve the CNN-based approach. Furthermore, we
used only ADNI dataset which could be insufficient for the generalized
validation as well as optimal training. Therefore, as a future work, the
model needs to be validated in PET images acquired from independent
centers and modified by larger datasets.

5. Conclusions

Our deep CNN-based approach could accurately predict cognitive
decline in MCI patients by combining information of FDG and AV-45
PET images. For testing whether a MCI subject would convert to AD,
baseline PET images without spatial transformation were needed as a
feature extraction was automatically performed. As a future work, our
approach may be additionally validated in clinical trials with in-
dependent large cohorts. As an accurate biomarker, we expect our ap-
proach will help select appropriate prodromal AD patients who benefit
from early intervention.

Role of the funding source

The funders of the study had no role in the study design, data

Fig. 3. Correlation between output of the network and longitudinal changes of cognitive measurements. The last layer provides an output scores for AD or MCI converter, which
are defined as ConvScore. Cognitive measurements at baseline, 1 year, and 3 years were obtained for each MCI patient and ConvScore was correlated with the longitudinal change of
them. (A–D) ConvScore was significantly correlated with the change of Cognitive Dementia Scaling Sum of Boxes (CDR-SB) (r= 0.37, p < 0.0001), Alzheimer Disease Assessment Scale-
Cognitive Subtest (ADAS-Cog) (r= 0.29, p= 0.0001), Functional Activities Questionnaire (FAQ) (r= 0.40, p < 0.0001) and Mini-mental State Examination (MMSE) (r= -0.30,
p < 0.0001) from baseline to 1 year follow-up. (E–H) The significant correlation between ConvScore and the change of the measurements from baseline to 3 years was also found
(r= 0.63, p < 0.0001 for CDR-SB; r= 0.24, p= 0.004 for ADAS-Cog; r= 0.67, p < 0.0001 for FAQ; r=−0.61, p < 0.0001 for MMSE).
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