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Abstract
The processes of radiomics consist of image-based personalized tumor phenotyping for precision
medicine. They complement slow, costly, and invasive molecular analysis of tumoral tissue. Whereas
the relevance of a large variety of quantitative imaging biomarkers has been demonstrated for various
cancer types, most studies were based on 2D image analysis of relatively small patient cohorts. In this
work, we propose an online tool for automatically extracting 3D state-of-the-art quantitative imaging
features from large batches of patients. The developed platform is called QuantImage and can be ac-
cessed from any web browser. Its use is straightforward and can be further parameterized for refined
analyses. It relies on a robust 3D processing pipeline allowing normalization across patients and imag-
ing protocols. The user can simply drag-and-drop a large zip file containing all image data for a batch
of patients and the platform returns a spreadsheet with the set of quantitative features extracted for
each patient. It is expected to enable high-throughput reproducible research and the validation of
radiomics imaging parameters to shape the future of noninvasive personalized medicine.
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12.1 INTRODUCTION

Cancer ecosystems are composed of microhabitats defining the cancer subtype, stage,
response to treatment, and patient survival [1]. Estimating the composition of tumoral
tissue can therefore provide valuable information for optimal personalized disease man-
agement. Current promising approaches for precision medicine are mostly based on
molecular analyses of biopsied or resected tissue [2]. Nevertheless, the success of such
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Figure 12.1 Axial views of heterogeneous NSCLC tumors. The three CT images on the left show tu-
mors with solid (red) and ground glass (blue) regions delineated. The PET image on the right shows
the metabolic heterogeneity of the tumor. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this chapter.)

approaches are hindered by their invasiveness as well as the requirement of slow, costly,
and complex analysis of “-omics” data. In addition, the tissue samples used for molec-
ular analyses are most often acquired from a highly localized tumor region or from the
grinding of whole tumor mass, which does not allow to accurately capture molecular
heterogeneity [3]. The computerized quantitative analysis of existing diagnostic, treat-
ment planning and follow-up images enables reproducible and comprehensive analysis of
tumoral regions as a whole, potentially allowing the exploration of tumor heterogeneity
in a noninvasive fashion. The latter spawned the new research fields of radiomics [4] and
imaging genomics [5] (see Chapter 8). The metabolism, density and structure of tumoral
tissue observed in three-dimensional Positron Emission Tomography (PET), Magnetic
Resonance (MR), and Computed Tomography (CT) images reflects their nature [6],
including regions of active cancer cells, angiogenesis, necrosis [7], and even subsets of
underlying cancer-related genomics [8,9]. Examples of PET and CT images of hetero-
geneous Nonsmall Cell Lung Cancer (NSCLC) tumors are depicted in Fig. 12.1.

Radiomics consists of image-based personalized tumor phenotyping, complement-
ing slow, costly, and invasive molecular analysis [4,10]. Computerized quantitative image
analysis yields a collection of variables, which are further linked to disease outcomes and
subtypes using advanced statistical and machine learning methods. These processes are
detailed in Fig. 12.2. The main categories of quantitative imaging biomarkers are in-
tensity, shape, and texture, which are characterizing the distribution of voxel values,
the contour of tumors and the spatial transitions between voxel values, respectively.
Current state-of-the-art in radiomics provided initial evidence about the relevance of
these quantitative imaging parameters for precision medicine [11–15]. However, several
limitations are concerning texture-based image measures in particular. First, large-scale
clinical studies are required to further validate texture-based features in diverse disease-
specific contexts. This is of primary importance because texture parameters are mostly
informative when used in large groups (e.g., 50 to 100 attributes), requiring large cohorts
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Figure 12.2 Illustration of the radiomics processes (toy example): Several quantitative imaging fea-
tures are extracted from the tumoral region (green) in PET-CT. The resulting collection of variables
spans a hyperspace where distinct cancer subtypes and treatment responders are ideally occupying
well-defined regions. The latter can be further revealed by advanced statistical and machine learning
methods.

of patients to respect acceptable ratios between the number of variables and instances.
Second, most studies are based on suboptimal texture operators applied in 2D slices that
are not able to capture the wealth of complex three-dimensional tissue architectures
available in modern imaging protocols (see Chapter 3). 3D approaches are emerg-
ing [16]. However, the interpretation of such image measures is challenging since the
human cannot fully visualize opaque 3D solid images. Moreover, few computer tools
are available and they are not specific to PET and CT imaging. Exceptions include
LifeX1 and CGITA2 [17], which allow extracting three-dimensional texture measures.
However, they are both based on gray-level matrices only, which have shown limited
abilities to mine rich textural patterns (see Section 3.3 of Chapter 3).

This work presents an online tool for extracting high-throughput, advanced 3D
radiomics features in PET-CT images. No software installation is required and the plat-
form can be accessed through any web browser. It allows submitting large batches of
patient files and to download resulting patient-wise collections of radiomics features
in a standard Comma-Separated Values (CSV) data structure. The radiomics attributes
include PET- and CT-specific intensity values, novel distance measures characterizing
metastatic spread, as well as three distinct groups of texture measurements combining
advanced analysis and interpretability. All attributes can be parameterized in a simple
web page.

The chapter is structured as follows. The methods of the proposed 3D quanti-
tative image analysis pipeline are detailed in Section 12.2. Each subsection contains
the necessary technical details to understand and reproduce every quantitative imaging
biomarkers: intensity-, distance-, and texture-based features. Section 12.3 details the

1 http://www.lifexsoft.org, as of 5 December 2016.
2 https://code.google.com/archive/p/cgita/, as of December 5, 2016.

http://www.lifexsoft.org
https://code.google.com/archive/p/cgita/
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Figure 12.3 Architecture of the proposed 3D quantitative image analysis pipeline.

workflows and processes of the proposed online tool, which can be used as a reference
manual for the end-user. Conclusions and perspectives are provided in Section 12.4.

12.2 METHODS

The pipeline of our system is shown in Fig. 12.3. The very first step of the pipeline con-
sists in finding and regrouping image studies and series from a batch zip file uploaded
to the server. For each patient, the latter should include Digital Imaging and Commu-
nications in Medicine (DICOM) files of both CT and PET scans, as well as a DICOM
RT structure file containing the Region(s) Of Interest (ROI) to analyze. The structure
of the zip file and its parsing is detailed in Section 12.3.2. Nonetheless, it is required
to explain at this point that the DICOM RT file must contain the ROI corresponding
to main tumor referred to as GTV_T. Optionally, it may contain secondary ROIs re-
ferring to nodes or metastases named GTV_N. The structure of the returned CSV file
containing all 3D quantitative imaging parameters is described in Section 12.3.3. The
following subsections detail the various steps of the pipeline contained inside the orange
box in Fig. 12.3.

12.2.1 PET-CT alignment
The DICOM RT file is generated with respect to the CT scan and the ROI it is
always in the same scale and alignment as the CT image. This is not the case for the
PET scan. Most often, the resolution of the CT scan is higher than the PET and the
volume covered might be unaligned between the two. The volume position and voxel
dimensions specified in the headers of the DICOM files series from the PET and CT
scans are used to resample and to perform a rigid alignment of the PET series on the CT.
This transformation requires an interpolation procedure. The nearest neighbor method
is used to preserve the uptake values of the PET. After this step, the PET and CT
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Figure 12.4 Left: axial CT slice and PET image overlay after the alignment and rescaling of the PET
image. Right: closeup view of the ROI (green). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this chapter.)

volumes contain the same number of voxels and cover the same 3-dimensional region.
Fig. 12.4 shows a full slice as well as a zoomed view of the around the ROI (marked in
green) of fused PET and CT volumes after the alignment. This example will be further
used to illustrate the various steps of the system.

12.2.2 Intensity-based features
This section details intensity-based features, which are based on the regional distribu-
tions of the voxel values. The latter correspond to the Hounsfield Units (HU) and the
Standardized Uptake Values (SUV) in CT and PET images, respectively. Only the vox-
els inside GTV_T and GTV_N are used. The system allows to further refine the ROIs
based on multiple user-defined metabolic thresholds on the SUV values. This is illus-
trated in Fig. 12.5, where the initial ROI shown in Fig. 12.4 shrinks with respect to
increasing metabolic thresholds τ .

12.2.2.1 Statistics of voxels values

The first four statistical moments are used to characterize the intensity distribution inside
the ROI. By intensity, we refer to the voxel values, i.e., HU in CT and SUV in PET
(see Section 1.2.1 of Chapter 1). These statistical moments are the mean μ, standard
deviation σ , skewness skew, and kurtosis kurt. Let Mτ be the region containing the
voxels of the ROI M with intensity value greater than a threshold τ . We define NMτ

as
the number of voxels in Mτ . The position of each voxel is determined by the 3D vector
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Figure 12.5 Resulting cropped ROI (in blue) when applying increasing metabolic thresholds τ on the
initial ROI shown in Fig. 12.4.

ξ , and f (ξ) corresponds to the intensity value at the position ξ . The four moments are
defined as

μMτ
= 1

NMτ

∑
ξ∈Mτ

f (ξ), (12.1)

σMτ
=

√√√√ 1
NMτ

∑
ξ∈Mτ

(
f (ξ) − μMτ

)2
, (12.2)

skewMτ
= 1

NMτ
σ 3

Mτ

∑
ξ∈Mτ

(
f (ξ) − μMτ

)3
, (12.3)

kurtMτ
= 1

NMτ
σ 4

Mτ

∑
ξ∈Mτ

(
f (ξ) − μMτ

)4
. (12.4)

The skewness measures the symmetry of the distribution. skew = 0 means that the dis-
tribution is symmetric, skew < 0 means that the distribution is more concentrated on
the right of the mean μ (i.e., high voxel values), and skew > 0 when the concentration
is on the left of the μ. The kurtosis measures the tailedness of the distribution, i.e., the
concentration of the data around μ. The higher is the kurtosis, the more concentrated
the data with a high peak at μ. The normal distribution has always skew = 0 because it
is completely symmetric. Its kurtosis is always 3. Fig. 12.6 shows the distributions of the
CT (HU) and PET (SUV) inside the unthresholded ROI M shown in Fig. 12.4. The
normal distribution with identical μ and σ as the corresponding distribution is showed
in black to illustrate the significance of skewness and kurtosis. The intensity statistics of
M are specified in Table 12.1.

12.2.2.2 PET-specific intensity-based features
A set of PET-specific features based on the distribution of SUV intensity values has
been identified in the literature as meaningful for assessing the metabolic properties of
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Figure 12.6 Distribution curves for each intensity measure in CT (top) and PET (bottom). The equiva-
lent normal distributions with corresponding μ and σ are shown in black.

Table 12.1 Table with the values of the first four moments of the intensity
distribution for the examples shown in Fig. 12.6

μM σM skewM kurtM

HU distribution −78.0416 211.2127 −1.3821 9.4431
Normal distribution −78.0416 211.2127 0 3

SUV distribution 3.5962 1.9587 1.5430 6.9098
Normal distribution 3.5962 1.9586 0 3

tumors [18,15]. These are (i) SUV max, the maximum SUV value inside the ROI, (ii)
SUV peak, the peak SUV measuring the mean SUV value within a spherical neighbor-
hood of 1.2 cm radius and centered at the position of SUV max, (iii) MTV , the Metabolic
Tumor Volume, and (iv) TLG, the Total Lesion Glycolysis combining both metabolic
and volumetric information. Let Smax be the spherical neighborhood of SUV max, and
vvox the volume of one single voxel. The measures are defined as (following the notation
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introduced in Section 12.2.2.1)

SUV max = max
ξ∈M

(
f (ξ)

)
, (12.5)

SUVpeak,τ = 1
NMτ ∩Smax

∑
ξ∈Mτ ∩Smax

f (ξ) = μMτ ∩Smax , (12.6)

MTV τ = vvox · NMτ
, (12.7)

TLGτ = μMτ
· MTV τ . (12.8)

It worth noting that SUV max is not affected by the threshold τ .

12.2.3 Distance features: measures of cancer invasiveness
Fried et al. introduced the concept of disease solidity for NSCLC in [19]. It consists of
measuring disease spread by computing the relation between the volume of the main
tumor and all secondary nodes with respect to the volume of their convex hull. The lat-
ter is defined as the smallest convex shape containing all nodules (including the tumor).
Following this concept, we designed new measures of metastases spread based on dis-
tances between the main tumor (delimited in GTV_T ) and the metastases (in GTV_N ).
The various distance measures are illustrated in Fig. 12.7. Let T be volumetric region of
the main tumor and M i the region of metastasis i. Let bT be the barycenter of the main
tumor, bM i the barycenter of the metastasis i, and bM the barycenter of all metastases.
The distance between T and M i is defined as the Euclidean distance between their
barycenters, i.e.,

dT,M i = ||bT − bM i ||2. (12.9)

Figure 12.7 Distances features as measures of cancer invasiveness. Various distances dT,M i between
the barycenter bT of the primary tumor region T and the barycenter bM i of each metastasis region
M i are computed to measure the spread of disease.
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The same formula is used to compute the distance between the main tumor and the
barycenter of all metastases dT,M . Considering this definition, and denoting the MTV
in cubic millimeters (mm3) of the metastasis M i as MTVi, seven different features are
introduced as:
(i) the distance between the tumor and the barycenter of all metastases bM

dT,M = ||bT − bM ||2, (12.10)

(ii) the sum of all tumor-metastasis distances
∑

i

dT,M i =
∑

i

||bT − bM i ||2, (12.11)

(iii) the sum of distances weighted by the respective MTV of the metastases
∑

i

MTVi · dT,M i =
∑

i

MTVi · ||bT − bM i ||2, (12.12)

(iv) the metastasis remoteness

max
i

{
dT,M i

} = max
i

{ ||bT − bM i ||2
}
, (12.13)

(v) the metastasis remoteness weighted by the MTV of the corresponding metastasis

max
i

{
MTVi · dT,M i

} = max
i

{
MTVi · ||bT − bM i ||2

}
, (12.14)

(vi) the cumulative distance between each metastasis and the barycenter of all metastases
∑

i

dM i,M =
∑

i

||bM i − bM ||2, (12.15)

and (vii) the MTV-weighted version of the latter
∑

i

MTVi · dM i,M =
∑

i

MTVi · ||bM i − bM ||2. (12.16)

12.2.4 Texture features
Another set of quantitative imaging features extracting measures of 3D texture, i.e., the
spatial transitions between the voxel values (see Section 1.2.1 of Chapter 1) are imple-
mented. The three main groups of texture measures are 3D Gray-Level Co-occurrence
Matrices (GLCM) [20], 3D Laplacians of Gaussians (LoG), and 3D Riesz wavelets [21].
Detailed descriptions and review can be found in Sections 3.3.1, 3.2.1, and 3.2.2 of
Chapter 3, respectively. The latter were successfully used in various radiomics applica-
tions [22–24,14,25].
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12.2.4.1 Isometric volumes

Inside the body, three-dimensional tissue architectures can be constituted of texture
patterns characterized by transitions between voxel values along any directions of R3.
To ensure the unbiased management of directions, the voxels of the images must be
isometric, i.e., the dimensions of each voxel �ξ1, �ξ2, �ξ3 must be equal (see Sec-
tion 1.3.2 and Fig. 1.15 of Chapter 1). Moreover, the voxel dimensions must be
normalized across patients to allow optimal interpatient comparisons of image scales
and directions. As a preprocessing step before extracting any texture feature, CT, PET,
and ROI volumes are resampled to have identical isometric voxel sizes. The latter are
set to 0.75 × 0.75 × 0.75 mm3 as a trade-off between data size and image resolution.
Resampling methods are based on cubic spline interpolation for the CT volume and on
nearest neighbors for PET and ROI volumes.

12.2.4.2 3D gray level cooccurrence matrix (GLCM) features

GLCMs constitute a group of popular texture descriptors introduced by Haralick et al.
in [20]. The 2D version of this descriptor is discussed in Section 3.3.1 of Chapter 3.
3D GLCMs were proposed for the description of 3D textures in [26,27]. The prop-
erties of 2D GLCMs presented in Table 3.8 of Chapter 3 are also valid for the 3D
extension. 3D GLCMs are extending their 2D counterparts consisting in measuring the
co-occurrences between two voxel values in a 3D neighborhood. Fig. 12.8 shows the
3D neighborhood of all possible spatial configurations between the central voxel (red)
and another voxel (semitransparent) separated by a distance of 1 and 2 voxels. While the
set of 2D directions u can be defined with one single angle θ in polar coordinates, u
is parameterized by 2 angles (θ,φ) in spherical coordinates (see Section 2.2 of Chap-

Figure 12.8 3D GLCM neighborhood of all possible spatial configurations between the central voxel
(red) and another voxel (semitransparent) separated by a distance of 1 and 2 voxels. A displacement
parameterized by the index vector �k = (�k1 = 2,�k2 = 1,�k3 = 2) is exemplified between the
black voxel and the center one (red). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this chapter.)
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Table 12.2 The thirteen 3D directions u considered
for computing GLCMs

Coordinates of u ∈R
3 θ φ

(0,1,0) π
2 0

(1,1,0) π
4 0

(1,0,0) 0 0
(1,−1,0) −π

4 0
(0,1,1) π

2
π
4

(0,0,1) 0 π
2

(0,−1,1) −π
2

3π
4

(1,1,1) π
4

π
4

(1,0,1) 0 π
4

(1,−1,1) −π
4

π
4

(1,1,−1) π
4 −π

4
(1,0,−1) 0 −π

4
(1,−1,−1) −π

4 − 3π
4

ter 2). The 13 equally-sampled directions used to approximate the full 3D neighborhood
are detailed in Table 12.2 (see Fig. 1.14 of Chapter 1). The cumulative cooccurrences
along every 13 directions allow building approximately locally rotation-invariant fea-
tures in a similar fashion as 2D locally rotation-invariant GLCMs depicted in Fig. 3.10
of Chapter 3. This strategy has been commonly used in the literature [16]. 11 texture
measurements are computed from the GLCMs to characterize 3D texture properties.
These are: contrast, correlation, energy, homogeneity, entropy, inverse different moment, sum av-
erage, sum entropy, sum variance, difference variance and difference entropy (detailed formula
can be found in [28]). The contrast and energy texture features correspond to our intuitive
perception of texture in 2D.

12.2.4.3 3D Laplacian of Gaussians (LoG) features

One of the simplest texture descriptor based on convolution is the Laplacian of Gaus-
sians (LoG). The LoG operator is defined for any D-dimensional image in Section 3.2.1
of Chapter 3. The formula of the operator function is specified in Eq. (3.5) and its main
properties are summarized in Table 3.1. The parameter controlling the size of the LoG
filters is σ and allows studying volumetric texture properties at multiple scales. This σ is
referred in this section as σLoG to distinguish it from the standard deviation of intensity
distributions introduced in Section 12.2.2.1. A set of multiscale and locally rotation-
invariant (LoG are circularly/spherically symmetric) texture measurements is obtained
by averaging the absolute values of the response maps of LoG operators in the ROI
mask M for a series of increasing values of σLoG. Fig. 12.9 depicts the profile of the LoG
filter for three different σLoG values. The response maps resulting from the convolutions
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Figure 12.9 3D LoG filters at various scales controlled by the parameter σLoG. The top row shows
central sections of the filters and the bottom row shows spherical wedges.

of the three filters with two different images fA and fB are shown in Fig. 12.10. It can
be observed that different values of σLoG can be used to characterize different texture
scales.

As described in Fig. 1.12 of Chapter 1, it is possible to distinguish between the
texture found on the margin of the ROI (Mmargin) and the one found in the core region
of the tumor (Mcore ≡ GTV_N ). To that end the LoG response maps are averaged in
both regions separately (see Fig. 12.11). Mmargin is obtained from the difference between
Mcore dilated and eroded with a spherical structural element (diameter = 2.25 mm).
Therefore the tumor margin has an approximate thickness of 4.5 mm.

12.2.4.4 3D Riesz-wavelets features

Another convolutional feature group is extracted by the proposed pipeline and is based
on 3D Riesz wavelets [21]. The latter are defined for any D-dimensional image and
are detailed in Section 3.2.2 of Chapter 3. They consist in computing the real Riesz
transform of a primal circularly/spherically symmetric wavelet decomposition, the lat-
ter being similar to LoG filters. The Lth-order real Riesz transform of an image f (x)

computes Lth-order all-pass derivatives of the latter. In other words, L = 1 computes
first-order image derivatives and measures the slope of the spatial transition between the
values of a set of aligned voxels, and the second-order transform (L = 2) measures the
curvature of the transition. Consequently, they have an intuitive interpretation and have
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Figure 12.10 2D sections of the response maps of two different simulated tumors fA and fB for the
LoG filters shown in Fig. 12.9.

Figure 12.11 Mmargin and Mcore regions used for feature aggregation.

shown to provide relevant quantitative image measurements in the context of several
medical applications [25,29,14,30–32]. We used the primal circularly/spherically sym-
metric wavelet presented in [24,33], which was found to have an optimal bandwidth. We
limited a maximum Riesz order to 2 and a maximum of wavelet scales to 4. Riesz order
1 encodes the gradient of the image (first-order derivative), while order 2 also encodes
the Hessian of the image (second-order derivative). The scale controls the size of the
texture properties to be detected. Fig. 12.12 shows sliced response maps of first-order
Riesz wavelets for scale 1 and 2 on a 2D slice of the synthetic tumor fB (see Fig. 12.10).
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Figure 12.12 Response maps of the simulated tumor image fB (left) for Riesz filterbanks of order 1 with
scales 1 and 2.

Figure 12.13 Profiles of the elements the Riesz filterbank of order 2. The latter corresponds to the
six distinct second-order derivatives (i.e., the Hessian) of the circularly/spherically symmetric primal
wavelet.

While the LoG reacts equally to transitions between voxel values along any direction
(LoGs are circularly/spherically symmetric), the first-order Riesz filterbank contains
three different filters characterizing three orthogonal directions. Second-order Riesz
filters characterize six different directions according to the Hessian (see Fig. 12.13).
Sets of scalar texture measurements are obtained by computing the average energies of
the response maps in both the tumor margin Mmargin and the core Mcore region (see
Fig. 12.11).

In order to obtain both directional and locally rotation-invariant features, Riesz
wavelets are aligned at each position ξ0 based on the local direction u maximizing the
energy of the gradient [34,21]. This alignment strategy is applicable to any Riesz order
and is illustrated in Fig. 12.14 for order 1 (i.e., the gradient). The benefits of locally
aligning the filters are explained in Section 2.4.3 (moving frames) of Chapter 2 for 2D
images. This local alignment is even more important in 3D as the amount of possible
directions is much larger in volumetric neighborhoods. To demonstrate the importance
of locally aligning the filters, we designed a synthetic example of possible local volu-
metric tissue architecture. The latter follows the examples provided in Section 2.4.1 of
Chapter 2 showing two-dimensional natural and biomedical textures where the local
organization of the image directions (LOID) is crucial for their unequivocal description
(see Fig. 2.10). Our example extends the latter to 3D and contains three volumetric
solid images with three tubular bars each (see Fig. 12.15). They simulate tubular struc-
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Figure 12.14 Illustration of the local alignment strategy of the Riesz filters on the boundary of a syn-
thetic tumor. Riesz wavelets of order 1 are depicted.

Figure 12.15 Synthetic 3D images containing three tubular structures with varying spatial configura-
tions. The latter simulate, e.g., possible vascular structures.

tures crossing in the 3D space as it may occur with e.g., intricate tissue vasculature. The
importance of maintaining the directional information while obtaining locally rotation-
invariant features is demonstrated in Fig. 12.16, where the discriminatory power of the
various texture features, i.e., 3D GLCMs (see Section 12.2.4.2), 3D LoGs (see Sec-
tion 12.2.4.3), and aligned 3D Riesz wavelets are compared. GLCMs and LoGs yield
almost identical feature values for the three synthetic images, while the aligned Riesz
filters are able to discriminate each of them. For this example, seven values of σLoG were
used for the LoG filters. Order 2 and one scale were used for the Riesz wavelets.

12.3 THE QUANTIMAGE ONLINE IMAGE ANALYSIS PLATFORM

The QuantImage online platform consists of a simple web-page where the physicians
can upload batches of image series from multiple patients and download a CSV file
containing the values of the features described in the previous sections. The underlying
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Figure 12.16 Feature values obtained for the three examples shown in Fig. 12.15. Only aligned Riesz
wavelets are able to discriminate each of them.

system of the developed web-service follows the pipeline depicted in Fig. 12.3. It mainly
consists of three steps from a user point of view: choosing system parameters, uploading
DICOM files, and downloading the computed features. These three steps were carefully
designed to be user-friendly and based on default parameter values, while users can also
have the full control of the computed features and their parameterizations. The home
page of QuantImage can be accessed at https://radiomics.hevs.ch and is depicted in
Fig. 12.17.

12.3.1 Parameter setting
As a first step, the user can select the parameter values for the QuantImage comput-
ing pipeline. The latter are grouped in four consecutive blocks. The first block allows

https://radiomics.hevs.ch
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Figure 12.17 Home page of QuantImage, which can be accessed at https://radiomics.hevs.ch.

Figure 12.18 Options for performing axial-wise dilations of GTV_N ROIs provided in the DICOM RT
files.

performing an initial dilation (in mm) of the ROIs (GTV_T and GTV_N ). The ROI
named GTV_T corresponds to the delineation of the main tumor (see Fig. 12.18),
while GVT_N refers to secondary nodules. This optional dilation is performed in 2D
for each axial slice of GTV_T and GTV_N . It is useful when the initial ROIs pro-
vided in the DICOM RT files do not cover the full tumor volumes. The subsequent
metabolic thresholds τ will yield more precise metabolic subregions. The three follow-
ing blocks refer to each feature group described in Sections 12.2.2, 12.2.3, 12.2.4 and
are detailed in Sections 12.3.1.1, 12.3.1.2, 12.3.1.3, respectively.

https://radiomics.hevs.ch
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12.3.1.1 Intensity-based features parameters

The second block of the QuantImage web page allows choosing whether to extract
the various intensity-based features and their parameters (see Fig. 12.19). A clickable
question mark icon is available next to each option to obtain more information about
the type of feature and its parameters. The features are organized in two subgroups:
CT Measures and PET Measures. CT Measures refer to the mean HU inside the main
tumor GTV_T and is computed at two different metabolic thresholds τi based on the
PET image (see Section 12.2.2.1). These are τ1 = 3 SUV and τ2 = 42% of SUV max.
The PET Measures correspond to the statistics and PET-specific features described in
Sections 12.2.2.1 and 12.2.2.2, respectively. In this case, the user can define sets of
metabolic thresholds by setting the range of values of τ and an incremental step. These
thresholds can be specified for measures extracted from both the main tumor GTV_T
and from other nodes GTV_N (when available in the DICOM RT files). This selection
can be specified for both absolute SUV values and relative to SUV max. For intensity
measures computed from GTV_N with relative thresholds the reference SUV max can
be computed from either GTV_T or GTV_N.

Figure 12.19 Parameter setting for intensity features.
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Figure 12.20 Parameter setting for distance features.

12.3.1.2 Distance-based features parameters
The only parameter to set for distance based features is the metabolic threshold for all
GTV regions (see Fig. 12.20). The features computed when this option is selected are
described in Section 12.2.3.

12.3.1.3 Texture-based features parameters
The last block is dedicated to the parameter setting of the texture-based features de-
scribed in Section 12.2.4 (3D GLCMs, 3D LoGs, and 3D Riesz). Only the most
important parameters of the descriptors can be tuned to limit the complexity of use
(see Fig. 12.21). The texture features are extracted from both CT and PET image series
inside GTV_T. In the case of the GLCMs the user can choose whether to consider
symmetric voxel pairs, the distance between voxels, and the number of gray levels (see
Section 12.2.4.2). The features returned for this descriptor are the 11 measures men-
tioned previously. When selecting 3D LoGs the user must select the range of scales
parameterized by σLoG in between 0.25 and 3.25 with a fixed step of 0.5. As explained
in Section 12.2.4.3, these features are computed from both the core and the margin
of the ROI. The last section of this block concerns the parameter setting for Riesz
wavelets, i.e., the order of the image derivatives and the number of scales. The Riesz
energy features are computed from both the core and the margin of the ROI.

12.3.2 File upload
Once the parameters are defined by the user the next step is to upload the DICOM files
of the batch of patients to be analyzed on the server. This file transfer includes encryp-
tion to protect patient data. The user must provide one unique zip file containing all
CT, PET, and DICOM RT files of all patients. The files must be all DICOM files (CT
and PET), and DICOM RT (ROI). The file structure inside the zip file is not impor-
tant, because the system is able to parse the inner structure of the zip file by reading the
DICOM headers and to regroup files based on patients and image series. The DICOM
RT file must at least include one ROI named GTV_T corresponding to the main tu-
mor. It may contain another optional ROI named GTV_N with other nodes of interest
(e.g., metastasis regions). If no GTV_N ROI is provided the corresponding features
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Figure 12.21 Parameter setting for 3D texture features.

will not be computed and will have NaN (not a number) values in the returned CSV
data structure. After creating the zip file containing the above-mentioned files the user
can upload it in the block entitled “2. Upload the CT/PET/DCOMRT ZIP file here”
shown in Fig. 12.17. The upload can be done either by browsing the file system or with
a simple drag-and-drop. After clicking the button upload a progress bar will show the
progress of file upload, followed by the progress of file processing and feature extraction.

12.3.3 Output CSV data structure
The output of the web-service is a CSV file containing the feature values (see
Fig. 12.22). The first two rows of the file contain the values of the parameters cho-
sen by the user, allowing reproducibility of the experiments. The next nonempty
row of the file contains a header with the names of the computed features. Each
following row corresponds to each single patient included in the uploaded zip file.
Tables 12.4, 12.5, 12.6, 12.7, and 12.8 in the Appendix detail the various feature names
used and their signification. In order to shorten the list of names, we used the following
naming conventions in the feature-code field:
• a list of strings in between { } means that one and only one string can be present in

the final name,
• a letter in between [ ] means that this letter corresponds to a parameter and it will

be encoded by its substituted value,
• a parameter called charDir was included for Riesz features that will be replaced by

the composition of the letters X, Y, and Z, representing the direction of the Riesz
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Figure 12.22 Screenshot of the resulting CSV data structure returned by the system. In this particu-
lar case, three patients with identifiers “P32,” “P_56,” and “Pat96” were processed (see lines 5–7). The
parameter values used for feature extraction are displayed in lines 1 and 2.

filter following the partial directional image derivatives (e.g., XX corresponds to
∂2/∂x2

1, XY corresponds to ∂2/∂x1∂x2).
As an example, let us consider the following feature-code:

tex_InnerRieszN[n]_{CT,PET}_[charDir]_scale[s].

Let then suppose that the user selected a Riesz order of 2, and 2 wavelet scales. Then
this feature-code will be denoted in the CSV file with all the forms listed in Table 12.3.

12.4 DISCUSSIONS AND CONCLUSIONS

We presented an online radiomics tool called QuantImage. The latter is based on
a user-friendly web-service allowing the extraction of current state-of-the-art three-
dimensional quantitative imaging features from PET and CT images. To the best of
our knowledge, this is the first radiomics-specific tool that can be simply accessed
through a secure web platform. The latter enables the extraction of quantitative imag-
ing parameters from large cohorts of patients without the need of neither software nor
hardware installation. The online tool can therefore be accessed directly from a clinical
environment. We believe that this effort is timely to further validate the relevance of
radiomics imaging biomarkers with large-scale clinical studies in the context of well-
defined and well-controlled oncological contexts. The features extracted by the system
include intensity-, distance-, and texture-based descriptors. While all feature groups
are preconfigured with default parameter values, the user has the possibility to further
choose which features to extract and to tune their most important parameters. The most
relevant aspects of these features are explained in this chapter, which can be used as a ref-
erence manual of the QuantImage system. The output of the system is in the standard
CSV data format, offering the possibility to manually analyze the feature values with
data plots, as well as their inclusion in more complex systems including advanced uni



Table 12.3 Variations of the feature-code tex_InnerRieszN[n]_{CT,PET}_[charDir]_scale[s] when using Riesz wavelets of order 2 and 2 consecutive
scales

tex_InnerRieszN2_CT_XX_scale1 tex_InnerRieszN2_CT_YY_scale1 tex_InnerRieszN2_CT_ZZ_scale1
tex_InnerRieszN2_CT_XY_scale1 tex_InnerRieszN2_CT_XZ_scale1 tex_InnerRieszN2_CT_YZ_scale1

tex_InnerRieszN2_CT_XX_scale2 tex_InnerRieszN2_CT_YY_scale2 tex_InnerRieszN2_CT_ZZ_scale2
tex_InnerRieszN2_CT_XY_scale2 tex_InnerRieszN2_CT_XZ_scale2 tex_InnerRieszN2_CT_YZ_scale2

tex_InnerRieszN2_PET_XX_scale1 tex_InnerRieszN2_PET_YY_scale1 tex_InnerRieszN2_PET_ZZ_scale1
tex_InnerRieszN2_PET_XY_scale1 tex_InnerRieszN2_PET_XZ_scale1 tex_InnerRieszN2_PET_YZ_scale1

tex_InnerRieszN2_PET_XX_scale2 tex_InnerRieszN2_PET_YY_scale2 tex_InnerRieszN2_PET_ZZ_scale2
tex_InnerRieszN2_PET_XY_scale2 tex_InnerRieszN2_PET_XZ_scale2 tex_InnerRieszN2_PET_YZ_scale2
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Table 12.4 Feature-codes used for general information in
the CSV file

Feature-code Description
Patient Patient ID found in DICOM header.
volT Volume of GTV_T.

Table 12.5 Feature-codes for intensity features used in the CSV file (part I): features extracted in ROI
GTV_T

Feature-code Description
int_HUMean_3abs Mean HU of the main tumor voxels with SUV >3.
int_HUMean_42rel Mean HU of the main tumor voxels with SUV >42 % of

SUVMax.
int_SUVMax Maximum SUV inside the main tumor.
int_SUVMean_T_[τ ]abs Mean SUV of the main tumor voxels with SUV > τ .
int_SUVVariance_T_[τ ]abs SUV variance of the main tumor voxels with SUV > τ .
int_SUVSkewness_T_[τ ]abs SUV skewness of the main tumor voxels with SUV > τ .
int_SUVKurtosis_T_[τ ]abs SUV kurtosis of the main tumor voxels with SUV > τ .
int_SUVPeak_T_[τ ]abs Mean SUV of the main tumor voxels with SUV > τ in a

spherical neighborhood of a radius of 8 voxels centered at the
voxel with maximum SUV.

int_MTV_T_[τ ]abs Volume (in mm) of the ROI containing the main tumor
voxels with SUV > τ .

int_TLG_T_[τ ]abs Total lesion glycosis of the ROI containing the main tumor
voxels with SUV > τ .

int_SUVMean_T_[τ ]rel Mean SUV of the main tumor voxels with SUV > τ % of
SUVMax.

int_SUVVariance_T_[τ ]rel SUV variance of the main tumor voxels with SUV > τ % of
SUVMax.

int_SUVSkewness_T_[τ ]rel SUV skewness of the main tumor voxels with SUV > τ % of
SUVMax.

int_SUVKurtosis_T_[τ ]rel SUV kurtosis of the main tumor voxels with SUV > τ % of
SUVMax.

int_SUVPeak_T_[τ ]rel Mean SUV of the main tumor voxels with SUV > τ % of
SUVMax in a spherical neighborhood of a radius of 8 voxels
centered at the voxel with maximum SUV.

int_MTV_T_[τ ]rel Volume (in mm) of the ROI containing the main tumor
voxels with SUV > τ % of SUVMax.

int_TLG_T_[τ ]rel Total lesion glycosis of the ROI containing the main tumor
voxels with SUV > τ % of SUVMax.



372 Biomedical Texture Analysis

Table 12.6 Feature-codes for intensity features used in the CSV file (part II): features extracted in ROI
GTV_N

Feature-code Description
int_SUVMean_N_[τ ]abs Mean SUV of the metastases voxels with SUV > τ .
int_SUVVariance_N_[τ ]abs SUV variance of the metastases voxels with SUV > τ .
int_SUVSkewness_N_[τ ]abs SUV skewness of the metastases voxels with SUV > τ .
int_SUVKurtosis_N_[τ ]abs SUV kurtosis of the metastases voxels with SUV > τ .
int_MTV_N_[τ ]abs Volume (in mm) of the ROI containing the metastases voxels

with SUV > τ .
int_TLG_N_[τ ]abs Total lesion glycosis of the ROI containing the metastases

voxels with SUV > τ .
int_SUVMean_N_[τ ]rel Mean SUV of the metastases voxels with SUV > τ % of

SUVMax.
int_SUVVariance_N_[τ ]rel SUV variance of the metastases voxels with SUV > τ % of

SUVMax.
int_SUVSkewness_N_[τ ]rel SUV skewness of the metastases voxels with SUV > τ % of

SUVMax.
int_SUVKurtosis_N_[τ ]rel SUV kurtosis of the metastases voxels with SUV > τ % of

SUVMax.
int_MTV_N_[τ ]rel Volume (in mm) of the ROI containing the metastases voxels

with SUV > τ % of SUVMax.
int_TLG_N_[τ ]rel Total lesion glycosis of the ROI containing the metastases

voxels with SUV > τ % of SUVMax.

Table 12.7 Feature-codes for distance features used in the CSV file
Feature-code Description
dst_TBarycenterN Distance between barycenter of the main tumor and the

barycenter of all metastases (see Eq. (12.10)).
dst_sumDistTN Cumulative distance between the barycenter of each

metastasis and the barycenter of the main tumor (see
Eq. (12.11)).

dst_MTVweighted-
SumDistTN

MTV-weighted cumulative distance between the barycenter
of each metastasis and the barycenter of the main tumor (see
Eq. (12.12)).

dst_maxDistTN Maximum metastasis remoteness (see Eq. (12.13)).
dst_MTVweighted-
MaxDistTN

MTV-weighted maximum metastasis remoteness (see
Eq. (12.14)).

dst_sumDistNBarycenterN Cumulative distance between the barycenter of each
metastasis and the barycenter of all metastases (see
Eq. (12.15)).

dst_MTVweightedSumDist-
NBarycenterN

MTV-weighted cumulative distance between the barycenter
of each metastasis and the barycenter of all metastases (see
Eq. (12.16)).
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Table 12.8 Feature-codes for texture features used in the CSV file
Feature-code Description
tex_GLCMsCon-
trast_{CT,PET}_[d]_[n]

Contrast measure of the GLCMs computed with distance d
and number of gray levels n for CT or PET.

tex_GLCMsCorrela-
tion_{CT,PET}_[d]_[n]

Correlation measure of the GLCMs computed with distance
d and number of gray levels n for CT or PET.

tex_GLCMsEn-
ergy_{CT,PET}_[d]_[n]

Energy measure of the GLCMs computed with distance d
and number of gray levels n for CT or PET.

tex_GLCMsHomogene-
ity_{CT,PET}_[d]_[n]

Homogeneity measure of the GLCMs computed with
distance d and number of gray levels n for CT or PET.

tex_GLCMsEn-
tropy_{CT,PET}_[d]_[n]

Entropy measure of the GLCMs computed with distance d
and number of gray levels n for CT or PET.

tex_GLCMsInverseDiffMo-
ment_{CT,PET}_[d]_[n]

Inverse difference moment measure of the GLCMs
computed with distance d and number of gray levels n for
CT or PET.

tex_GLCMsSumAver-
age_{CT,PET}_[d]_[n]

Sum average measure of the GLCMs computed with
distance d and number of gray levels n for CT or PET.

tex_GLCMsSumEn-
tropy_{CT,PET}_[d]_[n]

Sum entropy measure of the GLCMs computed with
distance d and number of gray levels n for CT or PET.

tex_GLCMsSumVari-
ance_{CT,PET}_[d]_[n]

Sum variance measure of the GLCMs computed with
distance d and number of gray levels n for CT or PET.

tex_GLCMsDiffVari-
ance_{CT,PET}_[d]_[n]

Difference variance measure of the GLCMs computed with
distance d and number of gray levels n for CT or PET.

tex_GLCMsDiffEn-
tropy_{CT,PET}_[d]_[n]

Difference entropy measure of the GLCMs computed with
distance d and number of gray levels n for CT or PET.

tex_Inner-
LoG_{CT,PET}_sigma[σ ]

LoG in the core of the main tumor with sigma σ for CT or
PET.

tex_Margin-
LoG_{CT,PET}_sigma[σ ]

LoG in the margin of the main tumor with sigma σ for CT
or PET.

tex_InnerRieszN[n]_{CT,
PET}_[charDir]_scale[s]

Riesz energy of the Riesz filter with direction charDir of
order n and scale s in the core of the main tumor for CT or
PET.

tex_MarginRieszN[n]_{CT,
PET}_[charDir]_scale[s]

Riesz energy of the Riesz filter with direction charDir of
order n and scale s in the margin of the main tumor for CT
or PET.
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and multivariate statistical methods or machine learning techniques such data clustering,
linear discriminant analysis, LASSO regression, or support vector machines to name a
few. Whereas all intensity- and texture-based quantitative imaging features were previ-
ously validated in various applicative contexts [25,14,35–37,35,38–40,22,41,11,42–52].
The presented system was initially validated in the context of head and neck [15,53,54]
tumors at the Lausanne University Hospital (CHUV). Future work includes the im-
plementation of covariance-based aggregation functions as an alternative to the average
for LoGs and Riesz wavelets [25], as well as three-dimensional shape features for the
characterization of the tumoral contour.
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APPENDIX 12.A

This section details the various feature names and their signification as listed in the CSV
data structure returned by the system. General information, intensity (parts I and II),
distance and texture feature-codes are detailed in Tables 12.4, 12.5, 12.6, 12.7, and 12.8,
respectively.
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