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ABSTRACT

Three-directional box-splines are particularly well-suited to

interpolate and approximate hexagonally sampled data. In

this paper, we propose a computationally efficient end-to-

end reconstruction process. First, we introduce a prefiltering

step that is based on a quasi-interpolation scheme using low-

complexity finite-impulse-response (FIR) filters. Second, we

derive a closed analytical expression for three-directional

box-splines of any order that leads to a fast evaluation of the

spline surface. All operations act locally on the data, and thus

are well adapted to applications dealing with large images. To

demonstrate the feasibility of our method, we implemented

the complete procedure and we present experimental results.

Index Terms— Hexagonal lattices, spline functions, in-

terpolation, image reconstruction

1. INTRODUCTION

The representation of sampled data by means of a dis-

crete/continuous model is essential for common tasks such

as interpolation and resampling. Polynomial spline models

based on separable B-splines are well suited for images and

other 2-D data sampled on the Cartesian lattice [1]. Box-

splines are a multi-dimensional extension of B-splines [2]

that have found many practical applications [3]. Among

the large box-spline family, three-directional (non-separable)

box-splines are ideally matched to the hexagonal lattice [4],

since they exploit its highly praised isotropy and twelve-fold

symmetry [5, 6].

A box-spline surface is a weighted sum of box-splines

placed on the lattice sites. These weights (or box-spline coef-

ficients) have to be computed by filtering the samples. The

classical approach is to satisfy the interpolation condition;

this solution can be obtained by an IIR filter but there is no

efficient implementation in the hexagonal case. Here, we in-

troduce an alternative high-quality algorithm based on quasi-

interpolation which involves low-complexity FIR filters.

Once the box-spline coefficients are found, the spline sur-

face needs to be evaluated at the desired locations; e.g., for

hexagonal to Cartesian grid conversion. The usual algorithms

available for computing box-splines are based on their re-

cursive properties and are both time and memory consum-

ing [7, 8, 9]. Here, we propose a new characterization of

three-directional box-splines, which provides a closed ana-

lytical formula that can be evaluated efficiently. The key idea

behind our approach is to express the box-spline as the con-

volution of a particular Green function and a discrete filter.

After the preliminaries in Sect. 2, we propose the quasi-

interpolation FIR prefilters in Sect. 3 and the fast box-spline

evaluation in Sect. 4. The combination of both elements leads

to an efficient end-to-end reconstruction scheme for hexago-

nally sampled data.

2. BOX-SPLINES ON THE HEXAGONAL LATTICE

2.1. Mathematical preliminaries

A 2-D lattice is a set of points of the plane, characterized by

two linearly independant vectors v1 and v2 grouped in a ma-

trix R = [v1 v2], such that the lattice sites are the locations

Rk for every k = [k1 k2]
T ∈ Z

2. Let us define the vectors

e1 = [1 0]T, e2 = [0 1]T, and those shown in Fig. 1 as

r1 =

[
1/2

−√
3/2

]
, r2 =

[
1/2√
3/2

]
, r3 =

[
1
0

]
. (1)

The Cartesian lattice is then obtained for R = [e1 e2], and

the regular hexagonal lattice, as in Fig. 1, for R = [r1 r2].
We use the following notations: f(x), where x =

[x1 x2]
T ∈ R

2, is a bivariate function; s = (s[k])k∈Z2

is a 2-D discrete signal. The Fourier transform of a func-

tion f(x) ∈ L2(R
2) is f̂(ωωω) =

∫
R2 f(x) exp(−j〈ωωω,x〉)dx,

where 〈ωωω,x〉 = ωωωT
x is the usual inner product of vec-

tors. We define the Z-transform of a discrete signal s as

S(z) =
∑

k∈Z2 s[k]z−k, where z
−k stands for z−k1

1 z−k2

2 .

Associated with the lattice sites Rk, s can be represented in

the continuous domain by a weighted Dirac comb s(x) =∑
k∈Z2 s[k]δ(x −Rk). Accordingly, its Fourier transform is

ŝ(ωωω) =
∑

k∈Z2 s[k] exp(−j〈ωωω,Rk〉). Continuous and dis-

crete convolutions are denoted by ∗, while ∗ is used for the

complex conjugate.
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Fig. 1. The hexagonal lattice is generated using integer com-

binations of the vectors r1, r2, r3. The three-directional box-

splines χn are polynomial inside each triangle, and have a

hexagonal support (indicated by solid lines for χ1 and χ2).

2.2. Three-directional box-splines

A 2-D box-spline model defined on a lattice R has the form

f(x) =
∑
k∈Z2

c[k]ϕΞ(x − Rk), x ∈ R
2, (2)

where the c[k] are the box-spline coefficients that are weights

for the box-spline basis functions ϕΞ placed on every lattice

site. The box-spline ϕΞ depends on a concatenated matrix of

N vectors Ξ = [v1 · · · vN ] (N ≥ 2), and can be defined as

follows [2]: if Ξ = [v1 v2], then

ϕ[v1 v2](x) =

{
1/| det(Ξ)|, if Ξ−1

x ∈ [0, 1)2,
0, otherwise,

(3)

and inductively, ϕΞ∪[v](x) =

∫ 1

0

ϕΞ(x − tv)dt.

On a hexagonal lattice, box-splines can be constructed us-

ing the three vectors r1, r2, −r3. So, we select the lattice

R = [r1 r2] and we define the so-called Courant element [2]

as χ1 =
√

3
2 ϕ[r1 r2 −r3], which includes a lattice density nor-

malization factor |detR| =
√

3
2 . Higher order box-splines are

obtained as χn = 2√
3

χn−1 ∗ χ1, n > 1. Their expression in

the Fourier domain is

χ̂ n(ωωω) =

√
3

2

(
exp(j〈ωωω, r3〉)

∏3
i=1 1 − exp(−j〈ωωω, ri〉)

(j〈ωωω, r1〉)(j〈ωωω, r2〉)(j〈ωωω, r3〉)

)n

(4)

The box-splines χn(x) have a hexagonal compact support

and twelve-fold symmetry, as illustrated in Figs. 1 and 2. In

Sect. 4, we provide analytical formulas for these box-splines.

3. QUASI-INTERPOLATION PREFILTER

In this work, we consider the following reconstruction

problem: given samples s[k] = f0(Rk) of an unknown

function f0 at the hexagonal lattice sites, we want to re-

construct a spline surface f(x) =
∑

c[k]χn(x − Rk) that

approaches f0. To this end, the box-spline coefficients c[k]
are obtained by prefiltering the samples: c = s ∗ p, where the

x1

x2 x1

x2

Fig. 2. First two box-splines χ1 (left) and χ2 (right).

prefilter p has to be determined. The classical interpolation

condition requires f to pass through the known samples (i.e.

f(Rk) = s[k] for every k), leading to the interpolation

prefilter pint with Z-transform

Pint(z) =
1∑

k∈Z2 χn(Rk) z−k
. (5)

Except for n = 1, there is no fast algorithm for per-

forming the prefiltering step with pint in the spatial domain.

Fourier domain implementations are hard to design for

hexagonally sampled data and have a higher complexity

order. Instead, we propose to use a simple FIR prefilter,

optimized such that f is close to the unknown function f0.

From approximation theory, we know that ‖f − f0‖L2
can be

predicted very accurately by the quantity [10]

ε =
1

2π

√∫
R2

∣∣f̂0(ωωω)
∣∣2E(ωωω) dωωω, (6)

where the frequency error kernel is defined as

E(ωωω) = 1 − |χ̂ n(ωωω)|2
âχn(ωωω)︸ ︷︷ ︸

Emin(ωωω)

+âχn(ωωω)

∣∣∣∣ 2√
3
p̂(ωωω) − χ̂ n(ωωω)∗

âχn(ωωω)

∣∣∣∣2, (7)

using aχn [k] =
√

3
2 χ2n(Rk) (discrete autocorrelation of χn).

In practice, most of the image energy is concentrated in the

low-frequency part of the spectrum, which implies that the

error is dominated by the behavior of the kernel at the origin.

Asymptotically at ωωω = 0, we have Emin(ωωω) = O(‖ωωω‖4n),
which is a lower bound for the approximation quality,

related to n but independent of p. As in [11], we require

E(ω) ∼ Emin(ω); i.e., we enforce E(ω) to be maximally

flat around ωωω = 0, so that E(ωωω) is as close as possible to

Emin(ωωω). This constraint can be reformulated as

p̂(ωωω) =

√
3

2

χ̂ n(ωωω)∗

âχn(ωωω)
+ O(‖ωωω‖N), (8)

with N ≥ 2n + 1. If N ≤ 4n, (8) can be further rewritten as

p̂(ωωω) =

√
3/2

χ̂ n(ωωω)
+ O(‖ωωω‖N ). (9)

Thus our design consists in finding p̂(ωωω) having a desired Tay-

lor development up to a chosen order. Note that (8) implies
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that we have quasi-interpolation of order 2n [10]. The inter-

polation prefilter pint does not verify (8), which means that

we can potentially achieve better approximation quality than

with interpolation. So, we look for minimal complexity FIR

prefilters with twelve-fold symmetry, using the simple design

in (9) with N = 2n + 1. For n = 1 and n = 2, this leads

respectively the prefilters:

5
4

−1
24

−1
24

−1
24

−1
24

−1
24

−1
24

37
20

−41
240

−41
240

−41
240

−41
240

−41
240

−41
240

7
240

7
240

7
240

7
240

7
240

7
240

We are now able to find the box-spline coefficients c[k]
from the samples s[k] by filtering with these prefilters.

4. EFFICIENT CHARACTERIZATION OF

THREE-DIRECTIONAL BOX-SPLINES

In the 1-D case, a uniform polynomial spline can be expressed

similarly to (2) as f(x) =
∑

k∈Z
c[k]βn(x − k). βn is the

causal B-spline of degree n ∈ N, which can be defined in

the spatial domain as βn(x) = ∆n+1 ∗ (x)n
+/n!. We identify

(x)n
+ = {xn, for x > 0; 0, otherwise}, and ∆n as the nth it-

erate of the finite difference filter, usually expressed in the Z-

domain as ∆n(z) = (1− z−1)n. The filtering process acts as

a localization operator on the power function: βn has a com-

pact support. The term (x)n
+/n! is also called the generating

function and it corresponds to the (causal) Green function of

the differential operator Ln = dn/dxn; i.e., the function ρ(x)
such that Ln {ρ} (x) = δ(x).

On the 2-D Cartesian lattice, the associated

differential operator for tensor-product B-splines

βn(x) = βn(x1)β
n(x2) is

Ln =
∂2n

∂xn
1∂xn

2

= Dn
e1

Dn
e2

F←→ (j〈ωωω, e1〉)n(j〈ωωω, e2〉)n, (10)

where Dvf(x) = limt→0(f(x + tv) − f(x))/t. In that

case, the (separable) generating function is (x)n
+/(n!)2 =

(x1)
n
+(x2)

n
+/(n!)2 and the corresponding localization oper-

ator ∆n(z) = ∆n(z1)∆
n(z2). Inspired by this construction

of B-splines using Green functions, we propose an extension

for three-directional box-splines on the hexagonal lattice.

4.1. From differential operators to generating functions

In order to construct the three-directional box-splines, we in-

troduce the differential operator Ln = 2√
3

Dn
r1

Dn
r2

Dn
r3

, n ≥ 1.

Its Fourier transform, in the sense of the distributions, is

L̂n(ωωω) =
2√
3
(j〈ωωω, r1〉)n(j〈ωωω, r2〉)n(j〈ωωω, r3〉)n. (11)

∆ = -1

1

1

0

-1

-1

1

Fig. 3. The wedge-like Green function ρ1 = µ0,1 (left), and

the localization filter ∆ (right). They serve to generate the

box-spline χ1, as described in (16).

PROPOSITION (proof in [12]): A Green function ρn(x) of

the operator Ln, n ≥ 1, is given by

ρn(x) =
n−1∑
i=0

(
n − 1 + i

i

)
µn−1−i,2n−1+i(x), (12)

where

µn1,n2(x1, x2) =
1

n1!n2!

(
2|x2|√

3

)n1
(

x1 − |x2|√
3

)n2

+

.

(13)

Notice that the functions µn1,n2 and ρn all have the same

wedge-like support; they are causal in x1 and symmetric in

x2, as shown in Fig. 3.

4.2. From generating functions to box-splines

In the Fourier domain, the generating function ρn corre-

sponds to χ̂ n without its numerator in (4). The remaining

term can be identified by introducing the discrete filter ∆
depicted in Fig. 3:

∆(z) = (1 − z−1
1 )(1 − z−1

2 )(z1z2 − 1). (14)

Using the property r3 = r1 + r2, we find that ∆̂n(ωωω) =
∆(exp(j〈ωωω, r1〉), exp(j〈ωωω, r2〉))n is exactly the numerator of

(4). We can explicitly find the filter coefficients of ∆n by

expanding the n-th power of the Z−transform of (14). By

collecting the coefficient in front of the term z−k1

1 z−k2

2 , we

get, for every k1, k2 ∈ Z,

∆n[k] =

min(n+k1,n+k2,n)∑
i=max(k1,k2,0)

(−1)k1+k2+i

(
n

i−k1

)(
n

i−k2

)(
n
i

)
.

(15)

Putting together (14), (11), and the fact that

L̂n(ωωω)ρ̂ n(ωωω) = 1, we find that χ̂ n(ωωω) = ∆̂n(ωωω)ρ̂ n(ωωω).
Therefore, we obtain the characterization:

χn(x) = ∆n ∗ ρn(x) =
∑
k∈Z2

∆n[k]ρn(x − Rk). (16)

The complete analytical expression of χn(x), n ≥ 1, can then

be written as
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(a) (b) (c)

Fig. 4. Zoom on the “eye of Lena” from samples on a hexagonal lattice. (a) Nearest neighbor interpolation. (b) Proposed

linear box-spline (χ1) reconstruction, (c) Proposed cubic box-spline (χ2) reconstruction. The computation times (C code) for

prefiltering and evaluating the surface on a high-resolution Cartesian grid were 0.06s, 0.15s, and 0.36s, respectively.

χn(x1, x2) =

n∑
k1,k2=−n

min(n+k1,n+k2,n)∑
i=max(k1,k2,0)

(−1)k1+k2+i

(
n

i−k1

)(
n

i−k2

)(
n
i

)
n−1∑
d=0

(
n−1+d

d

)
1

(2n−1+d)!(n−1−d)!
(17)

∣∣∣∣2x2√
3

+k1−k2

∣∣∣∣n−1−d(
x1− k1+k2

2
−

∣∣∣∣ x2√
3

+
k1−k2

2

∣∣∣∣)2n−1+d

+

.

This formula provides us with an efficient way to evalu-

ate the three-directional box-spline χn(x) of any order at any

point x. More details, as well as Matlab and C code, can

be found in [12]. Notice that the computational complexity

is polynomial in n, compared to exponential for the general

recursive methods described in the literature [7, 8, 9]. For

example, the evaluation of χ3(1, 1) running our Matlab code

on a PC took 0.002s, while 47s were required for the same

operation using the Matlab code proposed in [8].

The fast evaluation of the box-splines χn makes it easy

to evaluate the spline surface f(x) at any point x using (2),

which makes the sum finite since χn has a compact support.

5. RESULTS & CONCLUSION

Both the prefiltering step and the box-spline evaluation were

implemented in Matlab and C to show the feasibility of the

proposed method. An example of “zooming” for hexagonally

sampled data is illustrated in Fig. 4: the box-spline surface

has been evaluated on a high-resolution Cartesian grid.

The reconstruction method is completely local: both the

FIR prefilter and the box-spline basis function have finite sup-

port. This makes the approach particularly attractive for ap-

plications that need to handle large images. Additionally,

it can capitalize on the better approximation quality of the

hexagonal lattice compared to the Cartesian one [13]. Due to

its smoothness, the case n = 2 could be particularly interest-

ing for high-quality 3-D visualization of box-spline surfaces.
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