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ABSTRACT

We present multiresolution spaces of complex rotation-covariant functions, deployed on the 2-D hexagonal lattice.
The designed wavelets, which are complex-valued, provide an important phase information for image analysis,
which is missing in the discrete wavelet transform with real wavelets. Moreover, the hexagonal lattice allows
to build wavelets having a more isotropic magnitude than on the Cartesian lattice. The associated filters, fully
characterized in the Fourier domain, yield an efficient FFT-based implementation.
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1. INTRODUCTION

Multiresolution analysis and the discrete wavelet transform (DWT) have proved to form a powerful framework
in a wide range of signal processing applications. When applied to 2-D signals and images defined on the
traditional Cartesian lattice, the most frequently used DWT are separable; their basis functions and filters are
simply tensor products of the 1-D ones, which makes the implementation simple. The downside, however, is
that these decompositions tend to privilege the vertical and horizontal directions. They also create a “diagonal”
cross-term that does not have a straightforward directional interpretation. So, the need exists for transforms able
to correct this deficiency of the separable transforms and to capture the regularity of 1-D singularities having
arbitrary orientations, like edges in the images. Non-separable wavelets, by contrast, offer more freedom and
can be better tuned to provide more isotropy. To this end, on the Cartesian lattice, the quincunx subsampling
scheme can advantageously replace the dyadic scheme.1, 2

In this work, we depart from the Cartesian lattice Z2 and propose multiresolution bases on the hexagonal
lattice. Hexagonal sampling is well known to present superior properties in many domains: its twelve fold
symmetry implies more isotropy and makes its geometrical and topological characteristics better than those of the
Cartesian lattice. It is also known that hexagonal sampling allows to represent isotropic band-limited functions
with a lesser sampling density on the hexagonal lattice than on the Cartesian one.3 Hexagonal multiresolution
analyses have a large area of potential applications, since it is possible to convert a classical image, defined on
the Cartesian lattice, onto the hexagonal lattice, where the processing using the DWT may be performed. We
proposed recently a new conversion method between these two lattices for this purpose.4 It has the appealing
property of being fully reversible; so, the Cartesian to hexagonal step does not lose any information. Therefore,
the challenge is to design wavelet bases that fully exploit the superior properties of the hexagonal lattice.

When designing non-separable wavelets, one possibility is to concentrate on the design of the filters only.
Indeed, applying the DWT to an image is equivalent to feeding it to a filterbank, that splits it into one lowpass
and several highpass subsampled channels.5 The lifting technique provides a powerful framework for designing
such multidimensional filterbanks;6 the wavelets are calculated afterwards from the filter coefficients by iterative
methods. However, this often results in wavelets with unfavorable properties, e.g. fractal-like functions.7 In this
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work, we design the scaling functions and wavelets directly, with explicit formulas in the Fourier domain—an
approach that is often favored by mathematicians.8 The filters then follow directly.

Besides good isotropic property, the ability of an image transform to identify the local geometric coherence
of structures like edges, ridges, or corners, is at the heart of image analysis. The best way to combine isotropy
of the magnitude (the detection of a feature should not depend on its orientation) with an angle information
is to build a redundant transform with complex-valued wavelets. The amplitude-phase representation provides
great robustness to image processing algorithms. To this end, a new family of complex multiresolution analyses
has been proposed recently on the Cartesian lattice.9 So, the analysis of an image provides complex wavelet
coefficients, whose magnitude can be used like with classical real DWTs, and phase encodes the local orientation
of the feature. The price to pay for this additional phase information is the 2×-redundancy of the representation,
since a real-valued image provides complex-valued coefficients. An alternative approach of the literature, that
is increasingly popular, is the dual-tree DWT: two real DWTs are developed in parallel, with filters forming
approximate Hilbert pairs.10, 11 This yields a better directionality than the DWT, at the expense of a 4×
redundancy in 2-D. Moreover, the angle selectivity of the dual-tree DWT is limited to a set of finite orientations,
while our approach is fully steerable. Finally, complex non-redundant DWT have been proposed, but they
essentially amount to re-organize real wavelet coefficients into complex ones, so that the gain of the phase is
made at the expense of a loss in resolution, with the finest wavelet band having resolution 3 or 4 times lesser
than the one of the initial image.12–14 Our initial goal was to develop a non-redundant complex DWT on the
hexagonal lattice in the same spirit, but we found the redundant design, presented in this article, to have much
better theoretical properties.

The paper is organized as follows. In Sect. 2, we recall some basics for the design of multi-dimensional
wavelets. We present our new rotation-covariant B-splines in Sect. 3 and use them to build multiresolution
analyses in Sect. 4. Then, in Sect. 5, we design the associated wavelet functions. Implementational aspects are
discussed in Sect. 6.

2. MULTIRESOLUTION ANALYSES ON THE HEXAGONAL LATTICE

The hexagonal lattice (of the so-called first type,15 with normalized sampling density equal to one) Λhex =
RhexZ2 = {Rhexk | k ∈ Z2} is characterized by its matrix

Rhex = [r1 r2] =

√
2√
3

[
1 1/2

0
√

3/2

]
. (1)

In order to define functions on the hexagonal lattice having multi-scale properties, one needs to define a 2×2
dilation matrix A, satisfying the following properties:

(1) The dilated lattice AΛhex forms a sublattice of the lattice Λhex, i.e., AΛhex ⊂ Λhex. Equivalently,
ARhex = RhexD with D only having integer entries.

(2) The magnitude of each eigenvalue of A must be strictly larger than 1 to ensure dilation in each dimension.
We then define q = | det(A)| as the dilation factor.

Given a dilation matrix A, a multiresolution analysis of L2(R
2) on the hexagonal lattice with scaling function

ϕ is an increasing sequence · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · of subspaces of L2(R
2) satisfying the four conditions

(i) (density)
⋃
j∈Z

Vj is dense in L2(R
2);

(ii) (separation)
⋂
j∈Z

Vj = {0};
(iii) (scaling) Vj = {f(Ajx) | f(x) ∈ V0} ∀j ∈ Z;

(iv) {ϕ(x−Rhexk) | k ∈ Z2} forms a Riesz basis of V0;

In the next section, we design such multi-resolution analyses, with functions having the appealing property
of rotation covariance. Before this, we introduce some more notions for manipulating signals on lattices.



Let us consider a discrete signal v = (v[k])k∈Z2 sampled on the hexagonal lattice Λhex; i.e., v[k] is located at
the lattice site Rhexk. The discrete Fourier transform of v is defined accordingly as

v̂(ω) =
∑

k∈Z2

v[k] exp(−i〈ω,Rhexk〉). (2)

v̂(ω) is periodic on the reciprocal lattice Λ̂hex = 2πR̂hexZ2, where R̂hex = R−T
hex.

We define the cosets of Λhex with respect to a dilation matrix A as the sets AΛhex +τm, for m = 0, . . . , q−1,
where τ 0 = 0 and the vectors τm ∈ Λhex, called digits, are such that

Λhex =

q−1⋃

m=0

AΛhex + τm. (3)

A systematic way for choosing the digits is to take them as the lattice sites contained in the domain {ARhexx | x ∈
[0, 1)2} of R2. We also define the dual digits τ̂m such that

ÂΛhex = A−TΛ̂hex =

q−1⋃

m=0

Λ̂hex + τ̂m. (4)

The upsampling operation of a discrete signal from Λhex to AΛhex is defined as:16

v = [u]↑A ⇔ v[k] =

{
u[A−1k] if k ∈ AΛhex

0 otherwise
F←→ v̂(ω) = û(AT

ω). (5)

The downsampling operation of a discrete signal on Λhex with matrix A is defined by:16

v = [u]↓A ⇔ v[k] = u[Ak] ∀k ∈ Z
2 F←→ v̂(ω) =

1

q

q−1∑

m=0

û(A−T
ω − τ̂m). (6)

It is well known that applying a DWT to an image is equivalent to feeding it in a filterbank, using convolutions
and the downsampling/upsampling operations defined above.

3. LOCALIZED ROTATION COVARIANT FUNCTIONS

A function ρ(x) is isotropic if ρ(Rθx) = ρ(x) for every x ∈ R2, where Rθ is the 2× 2 rotation matrix with angle
θ. On the other hand, ρ(x) is rotation-covariant if

ρ(Rθx) = eiNθρ(x), ∀x ∈ R
2, θ ∈ R, (7)

for some parameter N ∈ Z. Thus, a rotation-covariant function has an isotropic magnitude and a phase that
encodes the rotation of the analyzed function: by denoting Rθf = f(Rθ·), we have:

〈Rθf, ρ〉 = 〈f,R−θρ〉 = eiNθ〈f, ρ〉. (8)

The key property due to rotation-covariance is that the phase of the wavelet coefficients is related to some
privileged local orientation, like the orientation of edges.

The starting point for the construction of our multiresolution bases is the following rotation-covariant function,
defined in the sense of distributions by

ρ̂(ω) =
1

(ω2
1 + ω2

2)
α(ω1 − iω2)N

, (9)

where ω = [ω1, ω2]
T ∈ R2\0, α ∈ R+, N ∈ N, and the continuous Fourier transform of a bivariate function

f(x) ∈ L2(R
2) is defined as f̂(ω) =

∫
R2 f(x) exp(−i〈ω,x〉)dx, for ω ∈ R2.



In the spatial domain, with polar coordinates x = [‖x‖ cos(θ), ‖x‖ sin(θ)]T, ρ is defined as the inverse Fourier
transform of the Hadamard partie finie Pf(ρ̂). This yields ρ(x) = ‖x‖2α+N−2eiNθC(α,N), where θ = arg(x)
and C(α,N) is a constant with eventually a ln(‖x‖) factor. One clearly sees the rotation-covariance of ρ.

The translates of ρ on Λhex do not form a Riesz basis, so we have to localize this function and eliminate its
singularity at the origin. For this, we define the elementary localization filter ν by

ν =
1√
3

-1

-1

-1

6

-1

-1

-1 . (10)

Equivalently, ν̂(ω) =
(
6−2 cos(31/4(−ω1/

√
3+ω2)/

√
2)−2 cos(31/4(ω1/

√
3+ω2)/

√
2)−2 cos(3−1/4

√
2ω1)

)
/
√

3.

Then, we define the elementary polyharmonic hexagonal rotation-covariant (EPHRC) B-spline β(x) as

β(x) =
∑

vα+N/2[k]ρ(x −Rhexk)←→ β̂(ω) =
ν̂(ω)α+N/2

(ω2
1 + ω2

2)
α(ω1 − iω2)N

. (11)

Since ν̂(ω) = O(‖ω‖2), the singularity of ρ̂ at the origin is eliminated, and β̂(ω)→ 1 as ω → 0.

3.1. The isotropic case N = 0

When N = 0, β is real-valued. In this case, our B-splines revert to classical polyharmonic splines, and β is
the hexagonal equivalent of the well-known elementary polyharmonic B-spline for the Cartesian lattice, defined
by Rabut.17 β and its translates on Λhex can be used, e.g., for interpolation on the hexagonal lattice, or for
designing real DWTs on Λhex.

Our B-splines have better isotropy properties as their Cartesian counterparts of Rabut. Contrary to the
latter, they converge to a Gaussian as the order α increases. More precisely, we have

β̂

(
ω√
α

)
= 1− 1

8
√

3
‖ω‖2 +O(‖ω‖4), as ω → 0. (12)

This means that the second-order moment of β is α/(4
√

3). Then, following the outline of the proof of the central
limit theorem, we get

β̂

(
ω√
α

)
−→ exp

(
− 1

8
√

3
‖ω‖2

)
, as α→∞, (13)

and β tends to an isotropic Gaussian as α increases:

β(x) ≈ 2
√

3

πα
exp

(
−2
√

3

α
‖x‖2

)
, (14)

with standard deviation
√
α/(4

√
3). Thus, β is bell-shaped with a width that can be tuned by α. The convergence

to a Gaussian indicates that β tends to be optimally localized in both space and frequency, in the sense of the
Heisenberg uncertainty principle.

In the following, we assume N ≥ 1, so as to obtain the desired property of rotation-covariance.

3.2. Key properties of the EPHRC B-splines

Our B-splines β have the following properties:

• Contrary to the function ρ, β is not exactly rotation covariant. Actually, this property is incompatible with
the requirement of having a Riesz basis and a positive approximation order at the same time. However, β̂ is
rotation-covariant of order 3 around the origin; that is,

β̂(ω) = eiNθ
(
1 + C‖ω‖2 +R(cos(6θ)))‖ω‖4 +O(‖ω‖6)

)
, as ω → 0, (15)



(a) (b)

Figure 1. Plots of |β̂(ω)|, the magnitude of The Fourier transform of the EPHRC B-spline, for (a) α + N/2 = 1 and (b)
α + N/2 = 2.

where θ = arg(ω), C is a constant and R(·) is a non-constant function. With the additional 12-fold symmetry

of ‖β̂‖ and ‖β‖, the rotation-covariance of β is achieved to a good extent.

• As in the case N = 0, we can show that the B-splines have a magnitude that tends to a Gaussian with
variance (2α+N)/(8

√
3). This property shows the good isotropy of the magnitude of β. An illustration is given

in Fig. 1.

• The translates on the hexagonal lattice β(x−Rhexk) generate a Riesz basis; i.e, there exist two constants
0 < C0, C1 <∞ such that

C0‖c‖ℓ2 ≤
∥∥∥∥∥
∑

k∈Z2

c[k]β(x −Rhexk)

∥∥∥∥∥
L2

≤ C1‖c‖ℓ2 . (16)

for every sequence c ∈ ℓ2. This condition is equivalent to

C0 ≤ âβ(ω) ≤ C1, (17)

where we define the discrete autocorrelation sequence aβ by aβ[k] = (β̄ ∗ β∗) (Rhexk), using the flip operator
β̄(x) = β(−x) and the complex conjugation ·∗. The Poisson sum formula gives

âβ(ω) =
∑

k∈Z2

aβ[k] exp(−i〈ω,Rhexk〉) =
∑

k∈Z2

|β̂(ω − 2πR̂hexk)|2. (18)

Thus, given that âβ(ω) ≥ |β̂(ω)|2 and that |β̂(ω)|2 does not vanish in the Nyquist band, the existence of a lower
bound C0 is trivial. The existence of an upper bound C1 can be derived as in Ref. 2, Appendix I.

• We can show that β has an approximation order equal to 2α+N .

4. MULTIRESOLUTION BASES

For every dilation matrix A that is a scaled rotation (that is, A =
√
qRϑ for some dilation factor q ∈ R2 and

angle ϑ ∈ R), β(x) satisfies a refinement relation with A:

β(A−1x) =
∑

k∈Z2

hβ[k]β(x −Rhexk) (19)

and thus generates a multiresolution analysis. The associated refinement filter has the form:

ĥβ(ω) = q
β̂(AT

ω)

β̂(ω)
=

(
ν̂(AT

ω)

ν̂(ω)

)α+N/2
e−iNϑ

qα+N/2−1
. (20)



Of particular interest is the dilation matrix A3 =
√

3Rπ/6. The corresponding dilation factor is q = 3, which is
the minimum value achievable on the hexagonal lattice with a dilation matrix corresponding to a scaled rotation.

We then define the polyharmonic hexagonal rotation-covariant spline space Vj at scale j ∈ Z by

Vj = Span(β(Ajx−Rhexk) | k ∈ Z2)
L2(R

2)
. (21)

We also define the dual EPHRC B-spline βd as

β̂d(ω) =
β̂(ω)

âβ(ω)
(22)

and the orthonormal EPHRC B-spline β⊥ as

β̂⊥(ω) =
β̂(ω)√
âβ(ω)

. (23)

In fact, with this definition, we have, for every k ∈ Z2,

〈β⊥(x), β⊥(x −Rhexk)〉 = 〈β(x), βd(x−Rhexk)〉 = δk,0, (24)

and the orthogonal projection of a function f(x) ∈ L2 onto V0 can be written as

P⊥f(x) =
∑

k∈Z2

〈f, βd(· −Rk)〉β(x −Rhexk) (25)

=
∑

k∈Z2

〈f, β(· −Rhexk)〉βd(x−Rhexk) (26)

=
∑

k∈Z2

〈f, β⊥(· −Rhexk)〉β⊥(x−Rhexk). (27)

5. WAVELETS

We can now construct polyharmonic hexagonal B-spline (pre-)wavelets that span the orthogonal complement Wj

of Vj into Vj+1. It is known that q − 1 wavelets ψm(x) have to be designed for this, such that

Wj = Span(ψm(Ajx−Rhexk) | k ∈ Z2, m = 1 . . . q − 1)
L2(R

2)
. (28)

The semi-orthogonality condition W0 ⊥ V0 yields

〈ψm(x), β(x −Rhexk))〉 = 0, (29)

for every k ∈ Z2 and m = 1 . . . q − 1.

We define the high-pass filter gψm
associated to ψm, such that

ψm(A−1x) =
∑

k∈Z2

gψm
[k]β(x −Rhexk) ⇔ ĝψm

(ω) = q
ψ̂m(AT

ω)

β̂(ω)
. (30)

Thus, (29) is equivalent to
[gψm

∗ h̄∗β ∗ aβ ]↓A = 0. (31)

Traditionally, the wavelets are defined indirectly through (30), and the design is focused on the filters gψm

themselves. In the multivariate and non-separable case, this construction is not trivial. A method based on



unitary polyphases matrices can be used,8, 19 but it is practical only when the filters have finite impulse responses.
In this work, we define the wavelets directly, in the Fourier domain:

q ψ̂m(AT
ω) =

ν̂(ω)α+N/2

âβ(ω)
e−i〈ω,τm〉β̂(ω). (32)

We directly have the highpass filter

ĝψm
(ω) =

ν̂(ω)α+N/2

âβ(ω)
e−i〈ω,τm〉. (33)

Let us prove that, with this definition, (31) holds. For this, we remark that for any filter h1 such that ĥ1

is A−TΛ̂hex-periodic, there exists h2 such that h1 = [h2] ↑A, which means that h1 has coefficients only on the

coset AΛhex. As a consequence, for every m, [ĥ1(ω)e−i〈ω,τm〉]↓A = 0. Here, the role of ĥ1 is played by

(
ν̂(ω)α+N/2

âβ(ω)

)
ĥβ(ω)∗âβ(ω) = ν̂(AT

ω)α+N/2 eiNϑ

qα+N/2−1
, (34)

which is clearly A−TΛ̂hex-periodic. (31) follows. This proves the semi-orthogonality.

Let us now study the rotation-covariance properties of the wavelets. First, ψ̂m has a rotation-covariant
behavior around the origin:

ψ̂m(ω) = O
(
‖ω‖2α+N β̂(ω)

)
= O

(
‖ω‖2α+NeiNθ

)
(35)

Moreover, the wavelet transform of a test function f ,

〈f, ψm(· −Rhexk)〉 =
1

(2π)2
〈f̂ , ̂ψm(· −Rhexk)〉 (36)

=
1

(2π)2

∫

R2

f̂(ω)ψ̂m(ω)∗ei〈ω,Rhexk〉dω (37)

=
1

(2π)2

∫

R2

f̂(ω)‖ω‖2α(ω1 − iω2)
N Φ̂(ω)ei〈ω,A

−1
τm〉ei〈ω,Rhexk〉dω (38)

= (−∆)α
(
−i ∂
∂x1
− ∂

∂x2

)N
{f ∗ Φ}(Rhexk + A−1τm), (39)

behaves as a Laplacian of order α modified by Wirtinger differential operator of order N . Here, Φ(x) is a lowpass,
12-fold symmetric, and isotropic around the origin, kernel, given by

qΦ̂(AT
ω) =

e−iNϑ

qα+N/2

ν̂(ω)2α+N

‖ω‖4α+2N âβ(ω)

F←→ Φ(A−1x) =
e−iNϑ

qα+N/2
β(x) ∗ β̄d(x)∗. (40)

Thus, the wavelets can be represented as

ψm(x) = (−∆)α
(
−i ∂
∂x1

+
∂

∂x2

)N
{Φ∗}(x−A−1τm). (41)

This last expression clearly shows the main feature of our wavelets: when N = 1, analyzing a function f with
the wavelets extracts the direction of the gradient of f in the phase of the wavelet coefficients.



6. IMPLEMENTATION

Because the filters used for the wavelet decomposition have infinite impulse responses and are not separable,
an implementation by convolutions in space domain is not suitable: this would be costly and would yield to
accuracy problems because of the necessity to truncate the filters.

Since the filters have explicit formulas in the Fourier domain, it is natural and more convenient to use FFTs
for computing the wavelet decomposition in the Fourier domain. Thus, the discrete Fourier transform of the
image data is filtered by multiplying with the refinement and the wavelet filter. Exploiting symmetries, we can
downsample the data by a factor of three and use an inverse Fourier transform on the reduced data. This yields
a fast and stable algorithm.

7. CONCLUSION

We presented a family of complex multiresolution bases in L2(R
2) deployed on the hexagonal lattice. The non-

separable B-splines we introduced have the property of approximate rotation-covariance and yield multiresolution
analyses for every scaled rotation dilation matrix. They are flexibly parameterized by the value α that controls
the smoothness and decay properties of the resulting wavelets. The second degree of freedom, N , influences the
rotation-covariance behavior. Both parameters can be important for image processing applications.

The wavelet transform is non-redundant when applied to complex-values signals. It is 2× redundant for
real-valued images. The FFT-based implementation provides a fast algorithm, which makes our wavelet decom-
position no more complicated to use than the classical real DWT.
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