FULLY REVERSIBLE IMAGE ROTATION BY 1-D FILTERING
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ABSTRACT

In this work, we propose a new image rotation algorithm.
The main feature of our approach is the symmetric reversibil-
ity, which means that when using the same algorithm for the
converse operation, then the initial data is recovered exactly.
To that purpose, we decompose the lattice conversion pro-
cess into three successive shear operations. The translations
along the shear directions are implemented by 1-D convolu-
tions, with new appropriate fractional delay filters. Also, the
method is fast and provides high-quality resampled images.

Index Terms— Rotation, resampling, shears, interpola-
tion, fractional delay filters

1. INTRODUCTION

Rotation amounts to resample an image from a square lattice
to another rotated one. For this, typical approaches are based
on reconstruction: a continuous-domain representation, e.g. a
bilinear or bicubic function, is constructed, that estimates the
underlying (unknown) function f(x) by means of its samples
f(k), k € Z2. This function is then sampled on the target
lattice, to yield the new pixel values f(R _gk), where the ro-
tation matrix is defined as

cos(0)
sin(6)

B — sin(0)
Ry = cos(f) |- 1

In this paper, we propose an alternative approach that is
driven by the property that the rotation operation R ¢ has an
exact inverse operation, which is achievable with the same al-
gorithm. That is, we pursue Rg o R_g = Zd, VO € R,
where R _y should be the converse operation of Rg; that is
R_p = SRyS, where S is an axial symmetry through the ori-
gin. We say a rotation operator satisfying these requirement
to be “symmetrically reversible”. Formally, these condition is
equivalent for Rg to be orthogonal: R _¢ = Ry, its adjoint
operator, is also its inverse.
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The motivation for this work was to find a method for ro-
tating an image without losing any information, with the guar-
antee that the same operation applied in opposite sense will
exactly recover the initial image. The orthogonality of the
method may also be very useful in some applications; for in-
stance, it becomes equivalent to apply some denoising method
on the image or its rotated version.

Our method is based on two fundamental ingredients: (1)
One can turn the square lattice into its rotated version in three
successive shear operations; This idea, known in the litera-
ture, makes the method separable, hence, simple to implement
and fast through 1-D operations along rows and columns of
the image. We recall this method in the Section 2. (2) The 1-
D translation operators required to implement the shears can
be carried out so as to ensure the “symmetric reversibility”.
We propose a new specific choice of filters to this purpose,
developed in Section 3. In this family, filters of arbitrary high
order can be designed to guarantee high quality results, as
shown by experiments in Section 5.

2. ROTATION BY THREE SHEARS

In the following, x = [r; 72]T denotes a vector of R2. A
continuous shear corresponds to a displacement of a point x
in a direction a, with amplitude proportional to (x,a*) where
at = [—az a;1]T. So, a shear is characterized by a matrix of
the form S = I + Maa*7, for some A € R. It is known that
the rotation matrix can be factorized in three shear matrices

(see [1] and references therein):

Ro=o T e )10 _taf(g)l

This decomposition provides us with the following algorithm,
that only involves 1-D operations:

e On each row of the image s with index kg, perform
a translation of magnitude tan(6/2).ko (in the direc-
tion T). This amounts to estimating the sample values
f(k1—tan(0/2).ka, ko) from the available pixel values

f (K1, k).
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e On each column of the image with index &, perform a
translation of magnitude sin(6).k; (in the direction —).

e On each row of the image with index ko, perform a
translation of magnitude tan(6/2).ko (in the direction
T). The pixel values of the final image approximate the
desired samples f(R_gk).

We remark that only rotations with angle 6 € [—m /4, 7/4]
have to be processed by this decomposition, since the other
rotations can be decomposed in such a rotation and a rotation
with angle —7/2, /2 or 7, which is trivially performed.

Decomposing the rotation in three shears provides
algorithms—for the same quality—being computationally
less complex than their 2-D counterparts [1]. However, the
method proposed in [1], implementing the 1-D translations
using spline interpolation, is not reversible. For particular an-
gles, 2-D nearest neighbor interpolation is actually symmet-
rically reversible, and can be computed efficiently [2]. The
quality of this method is very poor, however. It should also
be stressed that other decompositions of rotations have been
proposed in the literature [3, 4, 5], but they use scaling oper-
ations in addition to shears, that necessarily imply some loss
of information; hence, they can not be made reversible.

3. 1-D FRACTIONAL DELAY OPERATORS FOR
IMAGE TRANSLATION

We now concentrate on the way to perform the 1-D transla-
tions. A translation (a.k.a. shift or delay) operator 7 : s +—
s’ = s x h, is implemented by a discrete convolution with
a fractional delay filter h. These filters have a long history
in signal processing and communication systems, see [6] and
references therein. So, we have to design a family of filters
h., for every 7 € R. Further on, we denote the Z-transform
of afilter h by H(z) = >, hlk]z7F.

The rotation is symmetrically reversible (orthogonal) if
and only if the translation is orthogonal, too. This is equiva-
lent to the two conditions 1/H,(z) = H_,(z) = H.(z71):
the inverse of 7 is the translation in the opposite direction,
corresponding to the same operation but in reverse order on
the data. This amounts for i, to be an all-pass filter:

|H,(e7*)] =1, Yw € R. 3)

So, h is entirely characterized by its phase response 6, (w)
such that H (e7%) = e7%(“) The phase delay —6},(w)/w and
group delay —df(w)/dw are classical measures of quality for
delay filters. Ideally, they should be constant and equal to 7
in the range w € (—m, 7).

For integer values of 7, the translation is exact with
H.(z) = z77. Using compositions with such shifts and
the symmetry, we only have to design the filters h, for
T € [0,1/2]. Then, for 7 € R, we select H (z) =
2 UH g (z%8"("= D), where d = sgn(7)[|7| + 3] — 1.
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We note that two classical families of filters are all-pass
and may be used in our context: nearest neighbor inter-
polation (H,(z) = 1 Vr), which is very basic and does
not provide a good quality; and the sinc interpolation kernel
(H,(e?%) = e9“T), prone to the introduction of unwanted
oscillations (ringing). Moreover, the infinitely long response
of sinc interpolation requires much computation time, since
an implementation in the Fourier domain using FFTs is re-
quired. The filters we propose in the following are short and
realizable in the spatial domain.

The only known class of realizable all-pass filters having
explicit formulas of their coefficients as a function of 7 is the
class of Thiran filters [6], designed to have maximally flat
group delay at w = 0. This asymptotic constraint privileges
the accurate translation of the low frequency part of the sig-
nal. This design is in fact particularly relevant for images,
since it is well known that images have their energy content
essentially localized around the origin in the frequency do-
main. Such “maxflat” filters are also Neville filters [7]; that
is, they perfectly translate polynomial signals up to some de-
gree. The Thiran filter of order N is causal, and stable if and
only if 7 > N — 1. For our purpose, we want to design de-
lay filters for 7 € [0,1/2], which does not suit this stability
interval. Moreover, the constraint for the filter to be causal
is not necessary for treatments on images. Thus, we design
new non-causal all-pass filters having maximally flat group
delay, optimized for 7 € [0, 1/2]: we define, for every integer
N > 1, the new filter h]TV by

N L+biz7 b+ by NV by
H'(2) =
T bnzN +by_12N" 14 b2t 1

G

with

o N A
b = (—1) (k>Hm Vkel.N. (5
n=0

hY turns out to be the Thiran filter of order N whose de-
nominator would have been shifted to map the interval 7 €
[N —1/2, N]into the interval 7 € [0, 1/2].

Filtering a signal s of finite length T with hY is easily
achieved in a single in-place backward pass:

for i from T-1 down to 0 do
for k from 1 to N do
s[i]+=b _kx(s[i-k]-s[i+k]);

For the translation to be reversible without expanding the size
of the signal, periodic boundary conditions have to be used.
The initialization of the recursive loop is done classically, us-
ing a few terms of the signals so that the error is below some
prescribed level of precision. Also, extending the size of the
image before rotation is necessary in order to avoid the shuf-
fling of some parts of the images, caused by these periodic
conditions. The image can be cropped back to its initial size
afterwards, but the reversibility is lost in that case.
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Fig. 1. Phase delay of hl (left) and h? (right), for several
values of 7 in [0,0.5].

Finally, we note that for N = 0 and N — oo, we obtain
the translation by nearest neighbor and sinc interpolation, re-
spectively. So, we denote these two methods by 2% and ~h2° in
the following. In fact, as N increases, the phase delay of the
filters hY approaches more and more the ideal phase delay, as
can be seen in Fig. 1.

4. IN-DEPTH ANALYSIS

First, it is worth mentionning that there is no underlying con-
tinuous model fitted on the image, as is the case with interpo-
lation methods. The proposed approach is entirely discrete.
Also, our method does not introduce any blur, since the use
of all-pass filters leaves unchanged the magnitude of all fre-
quency components along the shear directions.

An analysis of the behavior of the rotation process can be
carried out in the Fourier domain, see [8, 9]. In fact, when
the rotation is performed using three shears with sinc inter-
polation for the translations, the central part of the frequency
plane is perfectly rotated, but other parts of it are displaced
at other locations. This means that bandlimited images with
frequency content in this central area are perfectly rotated.
When using one of the proposed filters—without ideal phase
response —additional (and much harder to quantify) distor-
tions of the frequency content occur.

Concerning the computational complexity, the proposed
method with 22 requires only 3N multiplications and 6 N +3
additions per pixel. Even the simplest bilinear interpolation
requires 3 multiplications and 8 additions per pixel. More-
over, the conversion process can be performed in-place on the
initial data, making the use of auxiliary memory unnecessary.

5. EXPERIMENTAL VALIDATION

To illustrate the quality of our approach, we performed 9 suc-
cessive rotations of angle 27 /9 on natural 512 x 512 images.
The cumulative effect was then observed by comparing the fi-
nal image against the initial one. They were first extended
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within a larger support, before applying the rotations, and
cropped to the initial size afterwards. The results are reported
in Tab. 1 and are illustrated in Fig. 2.

Performing the translations using nearest neighbor inter-
polation clearly provides a poor quality. Our method signifi-
cantly outperforms the classical bilinear interpolation, which
provides blurred images. The bicubic interpolation [10] is
also outperformed, using Y with N > 2. A higher order
(N > 5) would be required to outperform the reference cu-
bic spline interpolation (denoted SP3). Our method does not
introduce any blur and the parameter N controls the tradeoff
aliasing/ringing: the sinc filter h° creates ringing artifacts
that spread over the entire image, while strong jittering ef-
fects appear with h. Since these artifacts may be considered
more disturbing than blur, the practitioners not interested by
reversibility, who want the best tradeoff between quality and
speed, may use the decomposition in shears in combination
with 1-D spline interpolation, as proposed in [1]. We report
the results corresponding to this approach, for cubic spline
interpolation, in the fifth column of Tab. 1.

Also, we indicate for each method the computation time
of one rotation, for C-code run on an Apple Mac Dual 2.7 Ghz
PowerPC G5. All of our filters give computation times signif-
icantly reduced when compared with interpolation methods.

6. CONCLUSION

We proposed an image rotation method that is first and fore-
most symmetrically reversible (orthogonal). Thus, no loss of
information is introduced during the rotation. It combines a
decomposition in three shears with new all-pass fractional de-
lay filters. As shown by practical results, our approach offers
a very good tradeoff between quality and computation speed.
Our approach can be extended in higher dimensions, e.g. us-
ing the decomposition of 3-D rotations in 4 shears [11].
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