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We introduce a family of piecewise-exponential functions that have the Hermite 
interpolation property. Our design is motivated by the search for an effective scheme 
for the joint interpolation of points and associated tangents on a curve with the 
ability to perfectly reproduce ellipses. We prove that the proposed Hermite functions 
form a Riesz basis and that they reproduce prescribed exponential polynomials. We 
present a method based on Green’s functions to unravel their multi-resolution and 
approximation-theoretic properties. Finally, we derive the corresponding vector and 
scalar subdivision schemes, which lend themselves to a fast implementation. The 
proposed vector scheme is interpolatory and level-dependent, but its asymptotic 
behavior is the same as the classical cubic Hermite spline algorithm. The same 
convergence properties—i.e., fourth order of approximation—are hence ensured.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Cubic Hermite splines are piecewise-cubic polynomial functions that are parametrized in terms of the 
value of the function and its derivative at the end point of each polynomial segment. By construction, 
the resulting spline is continuous with continuous first-order derivative. Cubic Hermite splines are used 
extensively in computer graphics and geometric modeling to represent curves as well as motion trajectories 
that pass through specified anchor points with prescribed tangents [13]. This is typically achieved by fitting 
a separate Hermite spline interpolant for each coordinate variable.
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Cubic Hermite splines have a number of attractive computational features. The basis functions are in-
terpolating with a fourth-order approximation and their support is minimal. They satisfy multiresolution 
properties, which is the key to the specification of subdivision schemes [24] and the construction of multi-
wavelet bases [9,27]. They are also closely linked to the Bézier curves, which provide an equivalent mode 
of representation. Their only limitation is that they require many control points to accurately reproduce 
elementary shapes such as circles and ellipses. This is why we investigate in this paper a variation of the 
classical Hermite scheme that is specifically geared towards the reproduction of elliptical shapes. This new 
Hermite subdivision scheme is obtained by studying the multiresolution properties of exponential Hermite 
splines. In particular, we deal with Hermite splines piecewisely spanned by linear polynomials, sine and 
cosine, often called cycloidal splines (see, e.g., [1,17]), which are ideally suited for outlining roundish objects 
in images by means of few control points (see [30] for an application of this spline model to the segmenta-
tion of biomedical images). Our main point in this work will be to show that we are able to achieve perfect 
ellipse reproduction while retaining all the attractive properties of the cubic Hermite splines modulo some 
proper adjustment of the underlying computational machinery. The extended Hermite functions that we 
shall specify are splines with pieces in E4 := 〈1, x, eiω0x, e−iω0x〉, ω0 ∈ [0, π], joining C1-continuously at the 
integer knots. Hence they belong to the class of cycloidal splines. This points towards a connection with 
other exponential spline basis functions investigated in the literature (see, e.g., [10,18–22] and references 
quoted therein), although we are not aware of any prior work that specifically addresses the problem of 
ellipse reproduction nor covers the theoretical results that we are reporting here.

The paper is organized as follows. In Section 2, we motivate our design while spelling out the conditions 
that the basis functions must satisfy. We then derive the two Hermite functions (φ1,ω0, φ2,ω0) that fulfill
our requirements in Section 3; these are the generators for the space S1

E4
(Z), which is made up of functions 

that are piecewise exponential polynomials with (double) knots on the integers. In Section 4, we make the 
connection with exponential splines explicit by expressing the generators in terms of Green’s functions of the 
differential operators L1,ω0 := d4

dx4 + ω2
0

d2

dx2 and L2,ω0 := d3

dx3 + ω2
0

d
dx (whose corresponding E-spline spaces 

are denoted as SE4(Z) and SE3(Z)). In Section 5, we prove that the integer translates form a Riesz basis by 
analyzing the corresponding Gramian matrix. Section 6 is devoted to the characterization of the Hermite 
representation on hZ, while Section 7 focuses on the investigation of its multi-resolution properties and 
the derivation of the corresponding subdivision scheme. In Section 8, we show that our cycloidal Hermite 
splines, in direct analogy with their polynomial counterpart, admit a Bézier representation that involves an 
exponential generalization of the classical Bernstein polynomials. Finally, in Section 9, we exploit the Bézier 
connection to derive the exponential version of the four point scalar subdivision scheme for the classical 
Hermite splines [15,29].

2. Motivation for the construction

An active contour (a.k.a. snake) is a computational tool for detecting and outlining objects in digital 
images. Its central component is a closed parametric curve that evolves spatially towards the contour of 
a target by minimizing a suitable energy functional [23]. The most commonly-used curve models rely on 
B-spline basis functions [2].

Since roundish objects are common place in biological imaging (in particular, fluorescence microscopy), 
it is of interest to develop a parametric framework that is specifically tailored to this type of shape while 
retaining the flexibility of splines and the ability to reparametrize by increasing the number of control 
points. A first solution to this problem was proposed by Delgado et al. who developed an “active cells” 
framework that is based on cardinal exponential B-splines [11]. The present research was motivated by the 
desire to refine this model by providing additional control over the tangents of the curve. This led us to 
the definition of a new parametric model that has the ability to perfectly reproducing ellipses while offering 
full tangential control as well as easy manipulation via the use of M control points and Bézier handles. By 
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Fig. 1. Examples of parametric curves r(t) represented in the Hermite basis. The shape parameters are the control points represented 
by crosses and the tangent handles (arrows) that control the derivative of each of the coordinate variable with respect to t. The 
first illustrates the ellipse-reproduction capability of our extended model, while the second demonstrates the production of a cusp 
by decreasing the magnitude of its tangent vector to zero.

introducing Bézier handles, one also gains in flexibility; for instance, one can induce a sharp break via a 
proper adjustment of the tangent vector (see Fig. 1). The corresponding parametric representation is

r(t) =
∑
n∈Z

(
r(n)φ1(t− n) + r′(n)φ2(t− n)

)
(1)

where the closed curve r(t) = (x(t), y(t)) and its tangent r′(t) = (dx(t)
dt , dy(t)

dt ) are assumed to be 
M -periodic. Practically, this means that the underlying curve is uniquely specified by its shape param-
eters {r(n), r′(n)}M−1

n=0 which can be translated graphically into a set of control points with tangential 
handles (see Fig. 1).
The fundamental property of this kind of Hermite representation is that the generating functions φ1, φ2

and their derivatives φ′
1, φ

′
2 satisfy the joint interpolation conditions

φ1(n) = δn,0, φ′
2(n) = δn,0, φ′

1(n) = 0, φ2(n) = 0

for all n ∈ Z (see Fig. 2).
The shape space associated with (1) is the collection of all possible curves that can be generated by varying 
the control parameters {r(n), r′(n)}M−1

n=0 . Our three design requirements on the specification of this shape 
space are as follows:

1. the representation should be unambiguous and stable with respect to the variation of the shape param-
eters;

2. the shape space should be closed with respect to affine transformations;
3. the shape space should include all ellipses.

The first item is taken care of by making sure that the basis functions form a Riesz basis (see Section 5). 
The second and third requirements provide the following additional conditions on the basis functions.

To accomplish the affine invariance requirement, consider the affine transformation s(t) = Ar(t) + b of 
the curve r(t) in the 2-D plane. Since this new curve can be represented in the Hermite basis as

Ar(t) + b =
∑
n∈Z

((
Ar(n) + b

)︸ ︷︷ ︸
s(n)

φ1(t− n) + Ar′(n)︸ ︷︷ ︸
s′(n)

φ2(t− n)
)

if and only if φ1 satisfies the partition of unity property
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Fig. 2. The generators φ1,ω0 and φ2,ω0 of E4 Hermite splines with ω0 = 3/4π. The two functions and their derivatives are vanishing 
at the integers with the exception of φ1,ω0 (0) = 1 and φ′

2,ω0
(0) = 1 (interpolation conditions). Their support size is two.

∑
n∈Z

φ1(t− n) = 1,

the latter condition is the one inferred by the second item.
Finally, the third requirement deals with the ability of our Hermite model to reproduce ellipses, as 

illustrated in Fig. 1. Since the representation is affine invariant, it is sufficient to be able to encode the unit 
circle, which translates into the two complementary conditions

cos(ω0t) =
∑
n∈Z

(cos(ω0n)φ1(t− n) − ω0 sin(ω0n)φ2(t− n))

sin(ω0t) =
∑
n∈Z

(sin(ω0n)φ1(t− n) + ω0 cos(ω0n)φ2(t− n))
with ω0 = 2π

N
∈ [0, π].

3. Cardinal Hermite exponential (cycloidal) splines

In analogy with the classical cubic solution, we shall determine our extended Hermite functions φ1,ω0(x)
and φ2,ω0(x) by first focusing on the unit interval x ∈ [0, 1] and imposing the four required boundary 
conditions in each case; i.e.,

φ1,ω0(0) = 1, φ′
1,ω0

(0) = 0, φ′
1,ω0

(1) = 0, φ1,ω0(1) = 0

and

φ2,ω0(0) = 0, φ′
2,ω0

(0) = 1, φ′
2,ω0

(1) = 0, φ′
2,ω0

(1) = 0.

The existence of such functions is guaranteed if we consider a common four-dimensional solution space of 
Tchebychev polynomials. Because of our reproduction requirements, we already know that the solution space 
should contain the functions {1, cos(ω0x), sin(ω0x)}. The last functional degree of freedom is taken care of 
by imposing that the two generators, which are supported in [−1, 1], should be real-valued, symmetric or 
anti-symmetric and restricted to the class of exponential polynomials in order to yield bona fide splines. 
This fixes the solution space to E4 = 〈1, eiω0x, e−iω0x, x〉 and makes the construction of our cycloidal splines 
unique.

The functions φ1,ω0 and φ2,ω0 that fulfill these constraints then constitute the generators for the space 
of cardinal Hermite cycloidal splines, which is denoted by S1

E (Z). They are given by

4
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φ1,ω0(x) =
{
g1,ω0(x), for x ≥ 0
g1,ω0(−x), for x < 0,

φ2,ω0(x) =
{
g2,ω0(x), for x ≥ 0
−g2,ω0(−x), for x < 0

(2)

where

gj,ω0(x) :=
(
aj(ω0) + bj(ω0)x + cj(ω0)eiω0x + dj(ω0)e−iω0x

)
χ[0,1], j = 1, 2 (3)

with the combination coefficients given by

a1(ω0) := iω0 + 1 + eiω0(iω0 − 1)
q(ω0)

, b1(ω0) := − iω0(eiω0 + 1)
q(ω0)

,

c1(ω0) := 1
q(ω0)

, d1(ω0) := − eiω0

q(ω0)
,

a2(ω0) := p(ω0)
iω0(eiω0 − 1)q(ω0)

, b2(ω0) := −eiω0 − 1
q(ω0)

,

c2(ω0) := eiω0 − iω0 − 1
iω0(eiω0 − 1)q(ω0)

, d2(ω0) := −eiω0(eiω0(iω0 − 1) + 1)
iω0(eiω0 − 1)q(ω0)

,

and

p(ω0) := e2iω0(iω0 − 1) + iω0 + 1, q(ω0) := eiω0(iω0 − 2) + iω0 + 2. (4)

Since aj(ω0), bj(ω0), j = 1, 2 are both real as well as cj(ω0)eiω0x + dj(ω0)e−iω0x, j = 1, 2, both functions 
in (3) are real-valued. Indeed substitution of the above coefficients in (3) provides

g1,ω0(x) =
(

1 − sin(ω0/2)
s(ω0)

+ ω0 cos(ω0/2)
s(ω0)

x + sin(ω0/2 − ω0x)
s(ω0)

)
χ[0,1],

g2,ω0(x) =
(

sin(ω0) − ω0 cos(ω0)
ω0u(ω0)

+ sin(ω0/2)
s(ω0)

x

− ω2
0 cos(ω0/2) cos(ω0(1 − x)) + sin(ω0/2)(sin(ω0x)u(ω0) − cos(ω0x)v(ω0))

2ω0 sin(ω0/2)s(ω0)t(ω0)

)
χ[0,1], (5)

where

s(ω0) := 2 sin(ω0/2) − ω0 cos(ω0/2), t(ω0) := 2 sin(ω0/2) + ω0 cos(ω0/2), (6)

and

u(ω0) := ω0 sin(ω0) − 2
(
1 − cos(ω0)

)
, v(ω0) := 2 sin(ω0) + ω0

(
1 − cos(ω0)

)
. (7)

Note that φ1,ω0 and φ2,ω0 are exponential polynomials in E4 in each interval [n, n +1) for n = −1, 0 (and by 
extension for any n ∈ Z) and that they are differentiable (with continuous derivatives) at the knots x = n.
It is clear that any linear combination of the integer shifts of these functions is a piecewise exponential 
polynomial made of pieces in E4 joining C1-continuously at the integers. Such functions can also be inter-
preted as exponential splines with double knots on the integers, the effect of a double knot being to reduce 
the ordinary degree of continuity of the classical cardinal exponential splines by one [16]. It follows that the 
space S1

E4
(Z) can be written as

S1
E4

(Z) =
{
s(x) =

∑
aT [n]φω0

(x− n) : a ∈ �2×1
2 (Z)

}
, with φω0

:= (φ1,ω0 , φ2,ω0)T . (8)

n∈Z
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Due to the Hermite interpolation condition, the expansion coefficients in (8) coincide with the samples of 
the function and its first derivative on the integer grid; that is, a[n] = (s(n), s′(n))T .

4. Connection with standard exponential splines and reproduction properties

Our way of establishing the link with standard exponential splines is to compute the Fourier transforms 
of the Hermite exponential spline generators with the convention that f̂(ω) =

∫
R
f(x)e−iωx dx. This yields

φ̂ω0
(ω) =

[
φ̂1,ω0(ω)
φ̂2,ω0(ω)

]
=
[ c10(ω0)+c11(ω0)ω

ω2(ω2−ω2
0)

c20(ω0)+c21(ω0)ω
ω2(ω2−ω2

0)

]
, (9)

where, for p(ω0), q(ω0) as in (4), we have

c10(ω0) := −iω3
0(eiω0 + 1)
q(ω0)

(
2 −
(
e−iω + eiω

))
,

c11(ω0) := −iω2
0(eiω0 − 1)
q(ω0)

(
eiω − e−iω

)
,

c20(ω0) := −ω2
0(eiω0 − 1)
q(ω0)

(
eiω − e−iω

)
,

c21(ω0) := −ω0

q(ω0)(1 − eiω0)
(
2p(ω0) −

(
1 + 2iω0eiω0 − e2iω0

)(
e−iω + eiω

))
.

Next, we rewrite (9) in matrix-vector form as

φ̂ω0
(ω) = R̂

(
eiω
)
ρ̂ω0

(ω), (10)

with

ρ̂ω0
(ω) :=

[
ρ̂1,ω0(ω)
ρ̂2,ω0(ω)

]
=
[

1
ω2(ω2−ω2

0)
i

ω(ω2−ω2
0)

]
, (11)

and

R̂
(
eiω
)

:= iω0

q(ω0)

[
−ω2

0(eiω0 + 1)(2 − (e−iω + eiω)) iω0(eiω0 − 1)(eiω − e−iω)

iω0(eiω0 − 1)(eiω − e−iω) 2p(ω0)−(1+2iω0eiω0−e2iω0 )(e−iω+eiω)
1−eiω0

]

= 1
s(ω0)

⎡⎣ ω3
0 cos(ω0/2)(2 − (e−iω + eiω)) ω2

0 sin(ω0/2)(eiω − e−iω)

ω2
0 sin(ω0/2)(eiω − e−iω) 2ω0(ω0 cos(ω0)−sin(ω0))−ω0(ω0−sin(ω0))(e−iω+eiω)

2 sin(ω0/2)

⎤⎦ , (12)

where expressions of p(ω0), q(ω0) and s(ω0) are given in (4) and (6), respectively. The aim here is to reveal 
the linear relation between the generators φω0

= (φ1,ω0 , φ2,ω0)T and ρω0
= (ρ1,ω0 , ρ2,ω0)T . The latter are 

Green’s functions of the differential operators L1,ω0 := d4

dx4 + ω2
0

d2

dx2 , L2,ω0 := d3

dx3 + ω2
0

d
dx defining SE4(Z)

and SE3(Z), respectively. The explicit expression of these Green’s functions is given by

ρ1,ω0(x) = F−1
{

1
ω2(ω2 − ω2

0)

}
= ω0x− sin(ω0x)

2ω03 sgn(x), (13)

ρ2,ω0(x) = d
ρ1,ω0(x) = 1 − cos(ω0x)

2 sgn(x). (14)
dx 2ω0
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By inverting the 2 × 2 Fourier matrix R̂(eiω) in (12), we find that

ρ̂ω0
(ω) =

(
R̂
(
eiω
))−1

φ̂ω0
(ω). (15)

Since (R̂(eiω))−1 =: P̂(eiω) has entries that are ratios of trigonometric polynomials, its discrete-time inverse 
Fourier transform is well-defined and guaranteed to yield a unique sequence of matrices

P[n] = 1
2π

+π∫
−π

P̂
(
eiω
)

eiωn dω

of slow growth. Hence, we conclude that

ρω0
(x) =

∑
n∈Z

P[n]φω0
(x− n), (16)

which proves that Green’s functions ρ1,ω0 and ρ2,ω0 (as well as their integer shifts) can be perfectly repro-
duced by {φω0

(· − n)}n∈Z. The specific form of (16) then follows from the interpolation property of the 
generators; that is, from the relation

s(x) =
∑
n∈Z

(
s(n)φ1,ω0(x− n) + s′(n)φ2,ω0(x− n)

)
, (17)

which is valid for any function in S1
E4

(Z). In particular, we have that

ρ1,ω0(x) =
∑
n∈Z

(
ω0n− sin(ω0n)

2ω03 sgn(n)φ1,ω0(x− n) + 1 − cos(ω0n)
2ω02 sgn(n)φ2,ω0(x− n)

)
, (18)

and

ρ2,ω0(x) =
∑
n∈Z

(
1 − cos(ω0n)

2ω02 sgn(n)φ1,ω0(x− n) + sin(ω0n)
2ω0

sgn(n)φ2,ω0(x− n)
)
. (19)

In order to establish a link between order-four Hermite exponential splines (namely cycloidal Hermite 
splines) and order-four exponential B-splines (see [31] for the definition and detailed investigation of expo-
nential B-splines), we consider a discretization on Z of the differential operators L1,ω0 and L2,ω0 based on 
the following recursive definition of what we call the discrete annihilation operator. The basic principle here 
is to specify the shortest possible sequence of weights that annihilates the components (typically sinusoids) 
that are in the null space of those operators.

Definition 1. For ωj ∈ [0, π], j = 0, . . . , m, the discrete annihilation operator for the frequencies (ω0, · · · , ωm)
is recursively defined as

Δω0f(x) := f(x) − eiω0f(x− 1), Δ(ω0,···,ωm)f(x) := Δω0

(
Δ(ω1,···,ωm)f(x)

)
. (20)

In light of the above definition, a discretization on Z of the differential operators L1,ω0 and L2,ω0 is given 
by Δ(0,0,ω0,−ω0) and Δ(0,ω0,−ω0), respectively. Note that Δ(0,0,ω0,−ω0) is exact when applied to functions in 
E4 and that Δ(0,ω0,−ω0) is exact when applied to functions in E3 := 〈1, eiω0x, e−iω0x〉, ω0 ∈ [0, π].
In accordance with the classical theory of exponential splines, the order-four and order-three normalized ex-
ponential B-splines are defined as follows, with a normalization factor that ensures the partition of unity [3].
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Definition 2. The normalized order-four exponential B-spline basis for SE4(Z) is defined by

B4,ω0(x) =
(

ω0

2 sin(ω0/2)

)2

Δ(0,0,ω0,−ω0)ρ1,ω0(x). (21)

Similarly, the normalized order-three exponential B-spline basis for SE3(Z) is

B3,ω0(x) =
(

ω0

2 sin(ω0/2)

)2

Δ(0,ω0,−ω0)ρ2,ω0(x). (22)

With the help of some algebra, we are also able to express B4,ω0 and B3,ω0 in terms of shifts of the 
generator φω0

. For instance, we find that

B4,ω0(x) = γ3
1φ1,ω0(x− 1) + γ3

2φ1,ω0(x− 2) + γ3
3φ1,ω0(x− 3)

+ μ3
1φ2,ω0(x− 1) + μ3

2φ2,ω0(x− 2) + μ3
3φ2,ω0(x− 3), (23)

where

γ3
1 = ω0 − sin(ω0)

4ω0 sin2(ω0/2)
, γ3

2 = 1 − 2γ3
1 , γ3

3 = γ3
1 , μ3

1 = 1
2 , μ3

2 = 0, μ3
3 = −1

2 .

One can easily verify that B4,ω0 is supported on [0, 4] and that it converges to a cubic B-spline as ω0 → 0.
Similarly, we make use of the Hermite interpolation property (17) to obtain the corresponding expression 
for the order-three exponential B-spline for the space SE3(Z), which is, instead, supported on [0, 3]:

B3,ω0(x) = γ2
1φ1,ω0(x− 1) + γ2

2φ1,ω0(x− 2) + μ2
1φ2,ω0(x− 1) + μ2

2φ2,ω0(x− 2), (24)

where

γ2
1 = 1

2 , γ2
2 = 1

2 , μ2
1 = ω0

2 cot(ω0/2), μ2
2 = −μ2

1.

Since exponential B-splines reproduce functions in E4, the property automatically extends to the space 
S1
E4

(Z). Specifically, we have that

xm =
∑
n∈Z

(
nmφ1,ω0(x− n) + mnm−1φ2,ω0(x− n)

)
, m = 0, 1, (25)

and

e±iω0x =
∑
n∈Z

(
e±iω0nφ1,ω0(x− n) ± iω0e±iω0nφ2,ω0(x− n)

)
. (26)

Remark 1. From (25) and (26), we immediately observe that any Hermite interpolant of type (17) is 
reproducing the whole space E4 and, in particular, it is ellipse-reproducing. Moreover, we observe that (23)
and (24) can be interpreted as the construction of the shortest superfunction for the space S1

E4
(Z) [6].

The remarkable property with respect to the theory of exponential splines is that the space S1
E4

(Z), 
(which is the sum of SE4(Z) and SE3(Z) as shown below), admits basis functions of size 2 that are shorter 
than the exponential B-splines for any of the pure spline constituents. This can be explained via the so-called 
localization process. Based on (9) and (11), we express φ1,ω0 as
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φ1,ω0 = −ω2
0(eiω0 − 1)
q(ω0)

Δ0ρ2,ω0 + iω3
0(eiω0 + 1)
q(ω0)

Δ(0,0)ρ1,ω0

= ω2
0

s(ω0)
(
sin(ω0/2)Δ0ρ2,ω0 − ω0 cos(ω0/2)Δ(0,0)ρ1,ω0

)
, (27)

with q(ω0) and s(ω0) in (4) and (6), respectively. While either of the summands in (27) is only partially 
localized and still includes a sinusoidal trend, it is the combination of both that results in the cancellation
of all residual components. In a similar way

φ2,ω0 = ω2
0(1 − eiω0)
q(ω0)

Δ0ρ1,ω0

− iω0

(1 − eiω0)q(ω0)
(
2iω0eiω0Δ(ω0,−ω0)ρ2,ω0(• + 1) +

(
1 − e2iω0

)
Δ(0,0)ρ2,ω0(• + 1)

)
= ω0

s(ω0)

(
ω0 sin(ω0/2)Δ0ρ1,ω0 −

ω0

2 sin(ω0/2)Δ(ω0,−ω0)ρ2,ω0(• + 1) + cos(ω0/2)Δ(0,0)ρ2,ω0(• + 1)
)
,

(28)

where q(ω0) and s(ω0) are given in (4) and (6), respectively. Thus φ2,ω0 is localized in [−1, 1].
Collecting the previous arguments, we now prove the following result.

Proposition 1. The exponential spline space S1
E4

(Z) can be written as S1
E4

(Z) = SE4(Z) + SE3(Z).

Proof. We simply observe that a cardinal exponential spline for the space SE4(Z) (see, e.g, [26] or [31]) 
admits a unique expansion of the type

s(x) =
∑
n∈Z

a[n]ρ1,ω0(x− n) ⇔ L1,ω0s(x) =
∑
n∈Z

a[n]δ(x− n),

where a[n] is a sequence of slow growth. The same holds for the space SE3(Z) and Green’s function ρ2,ω0

associated with the differential operator L2,ω0 . This, in view of (18) and (19), implies that SE4(Z) +SE3(Z) ⊂
S1
E4

(Z). On the other hand from (27) and (28) we see that any function in S1
E4

(Z) is also in SE4(Z) +SE3(Z), 
so completing the proof. �
5. Riesz basis property

In this section we show that the system of integer translates of the Hermite exponential spline expansion 
in (8) is stable. Indeed we prove that, for the vector function φω0

= (φ1,ω0 , φ2,ω0)T , there exist two constants 
0 < α ≤ β < +∞ such that

α‖a‖�2 ≤
∥∥∥∥∑
n∈Z

aT [n]φω0
(· − n)

∥∥∥∥
L2

≤ β‖a‖�2 , with a ∈ �2×1
2 (Z).

The result is stated in the following theorem.

Theorem 1. The system of (vector) functions {φω0
(· −n), n ∈ Z}, φω0

= (φ1,ω0 , φ2,ω0)T with φj,ω0 , j = 1, 2
as in (2), forms a Riesz basis.

Proof. We start by computing the Hermitian Fourier Gram matrix of the basis, which is given by
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Ĝ
(
eiω, ω0

)
=
∑
k∈Z

φ̂ω0
(ω + 2πk)φ̂ω0

(ω + 2πk)H

=
[∑

n∈Z
〈φ1,ω0 , φ1,ω0(· − n)〉e−iωn

∑
n∈Z

〈φ1,ω0 , φ2,ω0(· − n)〉e−iωn∑
n∈Z

〈φ2,ω0 , φ1,ω0(· − n)〉e−iωn
∑

n∈Z
〈φ2,ω0 , φ2,ω0(· − n)〉e−iωn

]

=
[
a(ω0)(e−iω + eiω) + b(ω0) c(ω0)(e−iω − eiω),

c(ω0)(eiω − e−iω) d(ω0)(e−iω + eiω) + e(ω0)

]

=
[

2a(ω0) cos(ω) + b(ω0) −2c(ω0)i sin(ω),

2c(ω0)i sin(ω) 2d(ω0) cos(ω) + e(ω0)

]
,

where

a(ω0) := ω0(ω2
0 − 18) cos(ω0) − 6(ω2

0 − 5) sin(ω0) + ω0(ω2
0 − 12)

12ω0(s(ω0))2
,

b(ω0) := ω0(ω2
0 + 3) cos(ω0) − 3(ω2

0 + 5) sin(ω0) + ω0(ω2
0 + 12)

3ω0(s(ω0))2
,

c(ω0) := 5ω0(ω2
0 + 3) cos(ω0/2) + ω0(ω2

0 − 15) cos(3ω0/2) − 72 sin(ω0/2) − 6(ω2
0 − 4) sin(3ω0/2)

24ω2
0 sin(ω0/2)(s(ω0))2

,

d(ω0) :=

6(7ω2
0 + 6) sin(ω0) + 6(ω2

0 − 3) sin(2ω0) − ω0(2(7ω2
0 − 30) cos(ω0) + (ω2

0 − 12) cos(2ω0) + 3(ω2
0 + 24))

48ω3
0 sin2(ω0/2)(s(ω0))2

,

e(ω0) :=

−12(2ω2
0 + 3) sin(ω0) − 3(5ω2

0 − 6) sin(2ω0) + 2ω0(2(ω2
0 + 9) cos(ω0) + (ω2

0 − 18) cos(2ω0) + 6ω2
0)

24ω3
0 sin2(ω0/2)(s(ω0))2

,

are real functions, ω0 ∈ [0, π] and s(ω0) is defined as in (6). We continue by observing that the Gram matrix 
Ĝ(eiω, ω0) is symmetric and 2π-periodic and that the Riesz basis requirement is equivalent to (see [14])

+∞ > β2 = max
ω∈[0,π]

λmax
(
eiω, ω0

)
≥ min

ω∈[0,π]
λmin

(
eiω, ω0

)
= α2 > 0, (29)

where λmax(eiω, ω0) and λmin(eiω, ω0) denote the maximum and minimum eigenvalues of Ĝ(eiω, ω0) at 
frequency ω, respectively. To prove (29), we start by computing the trace of Ĝ(eiω, ω0) (which is a real-valued 
function that equals the sum of the two eigenvalues) as

tr
(
Ĝ
(
eiω, ω0

))
= 2
(
a(ω0) + d(ω0)

)
cos(ω) + b(ω0) + e(ω0).

Since both a(ω0) +d(ω0) and b(ω0) +e(ω0) are bounded real numbers, tr(Ĝ(eiω, ω0)) is bounded from above, 
and hence β < +∞. Moreover, since both b(ω0) − 2a(ω0) and e(ω0) − 2d(ω0) are real positive numbers, we 
can write

tr
(
Ĝ
(
eiω, (ω0)

))
= 2
(
a(ω0) + d(ω0)

)
cos(ω) + b(ω0) + e(ω0) >

(
b(ω0) − 2a(ω0)

)
+
(
e(ω0) − 2d(ω0)

)
> 0;

i.e., the trace is also positive, which means that β is bounded from below. In order to prove the existence of 
α > 0 such that (29) is true, it suffices to compute det(Ĝ(eiω, ω0)) (which is the product of the eigenvalues) 
and verify that it is positive and bounded away from 0. The computation of the determinant yields
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det
(
Ĝ
(
eiω, ω0

))
=
(
2a(ω0) cos(ω) + b(ω0)

)(
2d(ω0) cos(ω) + e(ω0)

)
− 4 sin2(ω)

(
c(ω0)

)2
= A(ω0) cos(2ω) + B(ω0) cos(ω) + C(ω0),

with

A(ω0) = 2
(
a(ω0)d(ω0) +

(
c(ω0)

)2)
, B(ω0) = 2

(
a(ω0)e(ω0) + b(ω0)d(ω0)

)
,

C(ω0) = 2
(
a(ω0)d(ω0) −

(
c(ω0)

)2)+ b(ω0)e(ω0).

Next we construct the lower bound

det
(
Ĝ
(
eiω, ω0

))
≥ C(ω0) −

∣∣B(ω0)
∣∣− ∣∣A(ω0)

∣∣ = C(ω0) + B(ω0) −A(ω0) =: G(ω0).

The final step is to observe that the auxiliary function

G(ω0) = 180ω0 sin(ω0) − 9ω3
0 sin(2ω0) − 4(2ω4

0 − 3ω2
0 − 48) cos(ω0) + (ω4

0 − 24ω2
0 − 3) cos(2ω0) + 7ω4

0 − 78ω2
0 − 189

24ω4
0 sin2(ω0/2)(s(ω0))2

≥ G(0) > 0

is positive and increasing for ω0 ∈ [0, π], which proves existence of the lower Riesz bound. �
6. Re-scaled Hermite representation

We now specify the Hermite functions with respect to the grid hZ where h > 0 is the sampling step. The 
corresponding generators φh

ω0
= (φh

1,ω0
, φh

2,ω0
)T are obtained from φ1

ω0
:= φω0

and satisfy{
φh

1,ω0
(x) = φ1,hω0(x/h)

φh
2,ω0

(x) = hφ2,hω0(x/h),
(30)

where φj,hω0 , j = 1, 2 are the Hermite cardinal functions in (2) with ω0 replaced by hω0. Note that the 
second function is re-normalized to fulfill the Hermite interpolation condition (φh

2,ω0
)′(0) = 1. Likewise, the 

derivatives satisfy the scaling relation⎧⎨⎩
(
φh

1,ω0

)′(x) = 1
h

(φ1,hω0)′(x/h)(
φh

2,ω0

)′(x) = (φ2,hω0)′(x/h).
(31)

We then define the Hermite spline space at resolution h as

S1
E4

(hZ) =
{
sh(x) =

∑
n∈Z

aT
h [n]φh

ω0
(x− nh) : ah ∈ �2×1

2 (Z)
}
. (32)

The asymptotic behavior of the re-scaled Hermite functions φh
j,ω0

, j = 1, 2 is investigated in the next 
proposition.

Proposition 2. The re-scaled Hermite functions φh
j,ω0

, j = 1, 2 satisfy

lim
h→0

φh
1,ω0

(hx) =
{ (−2x + 1)(x + 1)2, for −1 ≤ x ≤ 0,

(2x + 1)(x− 1)2, for 0 < x ≤ 1,

lim
h→0

1
h
φh

2,ω0
(hx) =

{
x(x + 1)2, for −1 ≤ x ≤ 0,
x(x− 1)2, for 0 < x ≤ 1.
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Proof. In light of (30), the result is obtained simply by taking the limit of (5) as ω0 → 0. �
This result is important because it shows that the re-scaled Hermite functions converge to the cardinal 

Hermite cubic splines as h → 0.

Remark 2. The implication of Proposition 2 is that the asymptotic properties of the cycloidal Hermite 
splines are the same as those of the classical cubic Hermite splines. They are therefore endowed with the 
same fourth-order of approximation. This happens to be the order of approximation of the cubic B-splines, 
which are included in the space spanned by the Hermite splines as ω0 → 0.

7. Multiresolution properties

To make the multiresolution structure of these spaces apparent, we define the Hermite spline space at 
resolution h given in (32) in terms of Green’s functions ρω0

= (ρ1,ω0 , ρ2,ω0)T . To this end, we use the 
convolution relation

φh
ω0

(x) =
∑
k∈Z

Rh[k]ρω0
(x− hk),

which is the time-domain counterpart of (10) when properly rescaled to the grid hZ. This allows us to show 
that

sh(x) =
∑
n∈Z

bT
h [n]ρω0

(x− nh),

where bT
h [n] =

∑
k∈Z

aT
h [n − k]Rh[k] = (aT

h ∗Rh)[n]. Since the basis functions in this second representation 
do not depend on h, we can infer that S1

E4
(hZ) ⊂ S1

E4
( h
mZ) for any integer m > 1, simply because the basis 

functions of the coarser space are a (subsampled) subset of ones located on the finer grid. On the side of 
the Hermite generators, the corresponding two-scale relation is

φh
ω0

(x) =
∑
n∈Z

Hh→h/m[n]φ
h
m
ω0

(
x− n

h

m

)
, (33)

with refinement mask

Hh→h/m[n] =
[
φh

1,ω0
(n h

m ) (φh
1,ω0

)′(n h
m )

φh
2,ω0

(n h
m ) (φh

2,ω0
)′(n h

m )

]
=
[

φ1,hω0( n
m ) 1

h (φ1,hω0)′( n
m )

hφ2,hω0( n
m ) (φ2,hω0)′( n

m )

]
,

which follows from the application of the Hermite interpolation formula with respect to the grid hZ as well 
as from (30) and (31).
As an application of this result, we write down the m-ary vector subdivision scheme for computing the 
function

s(x) =
∑
n∈Z

aT
0 [n]φω0

(x− n),

as well as its first derivative, at any arbitrary fine grid with hJ = 1/mJ starting from its values at the 
integers.
For readers not familiar with subdivision, we shortly recall that a vector subdivision scheme is an efficient 
iterative procedure based on the repeated application of refinement rules transforming, at each iteration, 
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a sequence of vectors into a denser sequence of vectors. Whenever convergent, they generate vector functions 
related to the vector data used to start the iterative procedure (see [12] or [32] for details on subdivision 
schemes). The present subdivision scheme turns out to be interpolatory: since each finer sequence contains 
the coarser one, the initial vector data corresponds to the samples of the limit function. We refer the 
reader to [4] and [8] for theoretical results on interpolatory vector subdivision schemes. Moreover, our 
vector subdivision scheme is of Hermite-type, with the understanding that the initial data and the vectors 
generated at each step represent function values and consecutive derivatives up to a certain order. Details 
on interpolatory as well as non-interpolatory Hermite subdivision schemes can be found in [5,7,25].
Concretely, the interpolatory Hermite-type subdivision algorithm associated to (33) proceeds recursively for 
j = 0, . . . , J − 1 by computing for all n ∈ Z

aj+1[n] =
∑
�∈Z

Hj [mn− �]aj [�], (34)

where Hj [n] := HT
hj→hj+1

[n] and hj = 1
mj . When m = 2 (dyadic Hermite interpolation), each step involves 

an upsampling by a factor of two followed by a matrix filtering. The corresponding dyadic filters (or dyadic 
subdivision masks) {Hj [n], j ≥ 0}, which are non-zero for the entries n = −1, 0, 1 only, are described by 
the matrix sequences

Hj [−1] =

⎛⎜⎝ 1
2

1−eiω
(j+1)
0

2iω(j)
0 (eiω

(j+1)
0 +1)

× 1
2j

iω
(j)
0 (eiω

(j+1)
0 −1)2

D(ω(j)
0 )

× 2j iω
(j)
0 eiω

(j+1)
0 −eiω

(j)
0 +1

D(ω(j)
0 )

⎞⎟⎠
=

⎛⎝ 1
2 − tan(ω(j)

0 /4)
2ω(j)

0
× hj

2ω(j)
0 sin2(ω(j)

0 /4)
s(ω(j)

0 )
× 1

hj

2 sin(ω(j)
0 /2)−ω

(j)
0

2s(ω(j)
0 )

⎞⎠ ,

Hj [0] =
(

1 0
0 1

)
,

Hj [1] =

⎛⎜⎝ 1
2 − 1−eiω

(j+1)
0

2iω(j)
0 (eiω

(j+1)
0 +1)

× 1
2j

− iω
(j)
0 (eiω

(j+1)
0 −1)2

D(ω(j)
0 )

× 2j iω
(j)
0 eiω

(j+1)
0 −eiω

(j)
0 +1

D(ω(j)
0 )

⎞⎟⎠
=

⎛⎝ 1
2

tan(ω(j)
0 /4)

2ω(j)
0

× hj

−2ω(j)
0 sin2(ω(j)

0 /4)
s(ω(j)

0 )
× 1

hj

2 sin(ω(j)
0 /2)−ω

(j)
0

2s(ω(j)
0 )

⎞⎠ , (35)

where

ω
(j)
0 := ω0/2j = ω0hj , D

(
ω

(j)
0
)

:= iω
(j)
0
(
1 + eiω

(j)
0
)

+ 2
(
1 − eiω

(j)
0
)
, j ≥ 0

and s(ω(j)
0 ) as in (6). The output of the algorithm yields the sequence aT

J [n] = (s(n/2J), s′(n/2J )). Note that, 
as the refinement masks are resolution-dependent, the scheme can be categorized as being non-stationary.

Remark 3. The non-stationary j-level subdivision mask in (35) is such that, for D =
(

1 0
0 1

2

)
,

lim
j→∞

DjHj [−1]D−j =
( 1

2 −1
8

3
2 −1

4

)
, lim

j→∞
DjHj [1]D−j =

( 1
2

1
8

−3
2 −1

4

)
,

i.e., it is asymptotically similar to Merrien’s stationary scheme based on Hermite cubic splines [24].
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Remark 4. Like the non-stationary subdivision scheme in [28], Eq. (34) describes a 2-point Hermite subdi-
vision scheme reproducing ellipses.

8. Equivalent Bézier representation

The generalized Bernstein basis functions for the space E4 with x ∈ [0, 1] are special instances of exponen-
tial B-splines with multiple knots and they have been investigated by several authors [20,21]. For the sake 
of completeness, we here recall their definition and main properties. In analogy with Bernstein polynomials 
of degree 3, the four Bernstein basis functions b�,ω0(x), � = 0, · · · , 3 of E4 satisfying

i) symmetry: b�,ω0(x) = b3−�,ω0(1 − x) for all � = 0, · · · , 3 and x ∈ [0, 1];
ii) endpoint conditions, listed only for b0,ω0 and b1,ω0 :

b0,ω0(0) = 1, b0,ω0(1) = 0, (b0,ω0)′(1) = (b0,ω0)′′(1) = 0,

b1,ω0(0) = b1,ω0(1) = 0, (b1,ω0)′(1) = 0;

iii) partition of unity: 
∑3

�=0 b�,ω0(x) = 1 for all x ∈ [0, 1];
iv) non-negativity: b�,ω0(x) ≥ 0 for all x ∈ [0, 1] and � = 0, · · · , 3;

are given by

b0,ω0(x) = 2iω0eiω0

r(ω0)
− 2iω0eiω0

r(ω0)
x + 1

r(ω0)
eiω0x − e2iω0

r(ω0)
e−ω0x

= ω0

ω0 − sin(ω0)
(1 − x) − sin(ω0(1 − x))

ω0 − sin(ω0)
,

b1,ω0(x) = (1 − eiω0)p(ω0)
q(ω0)r(ω0)

+ iω0(eiω0 − 1)3

q(ω0)r(ω0)
x + r(ω0) − q(ω0)

q(ω0)r(ω0)
eiω0x + eiω0(p(ω0) − q(ω0))

q(ω0)r(ω0)
e−iω0x

= sin(ω0/2)
s(ω0)

− 2ω0 sin3(ω0/2)
s(ω0)(ω0 − sin(ω0))

(1 − x) +
(

1
ω0 − sin(ω0)

+ cos(ω0/2)
s(ω0)

)
sin
(
ω0(1 − x)

)
− sin(ω0/2)

s(ω0)
cos
(
ω0(1 − x)

)
,

b2,ω0(x) = (1 − eiω0)
q(ω0)

+ iω0(1 − eiω0)3

q(ω0)r(ω0)
x + p(ω0) − q(ω0)

q(ω0)r(ω0)
eiω0x + eiω0(r(ω0) − q(ω0))

q(ω0)r(ω0)
e−iω0x

= sin(ω0/2)
s(ω0)

− 2ω0 sin3(ω0/2)
s(ω0)(ω0 − sin(ω0))

x +
(

1
ω0 − sin(ω0)

+ cos(ω0/2)
s(ω0)

)
sin(ω0x)

− sin(ω0/2)
s(ω0)

cos(ω0x),

b3,ω0(x) = 2iω0eiω0

r(ω0)
x + − eiω0

r(ω0)
eiω0x + eiω0

r(ω0)
e−iω0x

= ω0

ω0 − sin(ω0)
x− sin(ω0x)

ω0 − sin(ω0)
, (36)

where q(ω0) is given in (4) and r(ω0) := 1 + 2iω0eiω0 − e2iω0 .
For later use, we mention that, by symmetry, (b2,ω0)′(0) = (b3,ω0)′(0) = 0. Similarly,

(b0,ω0)′(0) = (b2,ω0)′(1) = −(b1,ω0)′(0) = −(b3,ω0)′(1) = p(ω0) − r(ω0) = ω0(cos(ω0) − 1)
.

r(ω0) ω0 − sin(ω0)
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Fig. 3. Exponential Bernstein basis functions (left) versus exponential Hermite basis functions (right) for ω0 = 3/4π.

It is well known that cubic Hermite interpolation can be expressed in terms of cubic Bézier basis functions. 
To achieve the same in the present context, let us consider the task of computing b�,ω0(x), � = 0, · · · , 3 as 
specified by (8) for x ∈ [n, n + 1). Defining t = x − n ∈ [0, 1), we simplify the expansion as

b�,ω0(n + t) = b�,ω0(n)φ1,ω0(t) + (b�,ω0)′(n)φ2,ω0(t) + b�,ω0(n + 1)φ1,ω0(t− 1)

+ (b�,ω0)′(n + 1)φ2,ω0(t− 1), (37)

by retaining only the four Hermite basis functions that are non-vanishing within the interval (see Fig. 3).
From the endpoint condition (ii), we readily obtain the conversion between the two types of representations 
as ⎡⎢⎢⎢⎣

φ1,ω0(t)
φ2,ω0(t)

φ1,ω0(t− 1)
φ2,ω0(t− 1)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1 1 0 0
0 r(ω0)

r(ω0)−p(ω0) 0 0
0 0 1 1
0 0 − r(ω0)

r(ω0)−p(ω0) 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
b0,ω0(t)
b1,ω0(t)
b2,ω0(t)
b3,ω0(t)

⎤⎥⎥⎥⎦ . (38)

Remark 5. Note that limω0→0
r(ω0)

r(ω0)−p(ω0) = 1
3 . This indicates that the above conversion matrix provides in 

the limit the conversion matrix for cubic polynomial Hermite splines, as expected.

9. Link with scalar subdivision

We conclude the paper by showing that the Hermite subdivision scheme discussed in Section 7 can also 
be converted into a non-uniform, non-stationary scalar subdivision scheme for exponential B-splines with 
double knots spanning S1

E4
(Z). This is the (new) exponential counterpart of the subdivision scheme for 

cubic B-splines with double knots considered in [15,29]. Based on the conversion between Hermite and 
Bézier functions for E4 given by (38), we see that, for j ≥ 0, in the interval [ �

2j , �+1
2j ], the function

fj [n]φ1,ω0(x) + dj [n]φ2,ω0(x) + fj [n + 1]φ1,ω0

(
x− 1/2j

)
+ dj [n + 1]φ2,ω0

(
x− 1/2j

)
(39)

can be written as

fj [n]b0,ω0(x) +
(
fj [n] + r(ω0)

2j(r(ω0) − p(ω0))
dj [n]

)
b1,ω0(x)

+
(
fj [n + 1] − r(ω0)

j
dj [n + 1]

)
b2,ω0(x) + fj [n + 1]b3,ω0(x),
2 (r(ω0) − p(ω0))
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Fig. 4. Geometric interpretation of the subdivision schemes in (41) and (42). Top: at each step the interpolatory vector subdivision 
scheme (41) creates a new vector between any two old vectors and retains them. Bottom: at each step the approximating scalar 
subdivision scheme (42) creates two new control points between any two old ones and discards them.

or, in a more compact form, as

fj [n]b0,ω0(x) + pj [2n + 1]b1,ω0(x) + pj [2n + 2]b2,ω0(x) + fj [n + 1]b3,ω0(x),

with

(
pj [2n]

pj [2n + 1]

)
︸ ︷︷ ︸

pj [n]

=
(

1 − r(ω0)
2j(r(ω0)−p(ω0))

1 r(ω0)
2j(r(ω0)−p(ω0))

)
︸ ︷︷ ︸

Mj

(
fj [n]
dj [n]

)
︸ ︷︷ ︸

aj [n]

, n ≥ 0. (40)

At this point, we recall that the dyadic Hermite subdivision scheme with mask (35) and the repeated 
evaluation of the local Hermite interpolant at interval mid points (see, for example, [24]) can be explicitly 
written as

aj+1[2n] := aj [n], aj+1[2n + 1] := Hj [1]aj [n] + Hj [−1]aj [n + 1], (41)

or, in view of (40), as

pj+1[2n] := Mj+1M−1
j pj [n],

pj+1[2n + 1] := Mj+1Hj [1]M−1
j pj [n] + Mj+1Hj [−1]M−1

j pj [n + 1]. (42)

Since at each iteration j, the latter formulas define pj+1[4n], pj+1[4n + 1], pj+1[4n + 2], pj+1[4n + 3], the 
vector rules in (42) do identify four scalar rules that we can associate to a non-uniform and non-stationary 
scalar subdivision scheme. This is the exponential counterpart of the four-point scheme in [15,29], whose 
geometric meaning is shown in Fig. 4.
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