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ABSTRACT
Machine learning (ML) is transforming the field of image processing and
analysis, from automation of laborious tasks to open-ended exploration
of visual patterns. This has striking implications for image-driven life
science research, particularly microscopy. In this Review, we focus on
the opportunities and challenges associated with applying ML-based
pipelines for microscopy datasets from a user point of view. We
investigate the significance of different data characteristics – quantity,
transferability and content–and how this determineswhichMLmodel(s)
to use, as well as their output(s). Within the context of cell biological
questions and applications, we further discuss ML utility range, namely
data curation, exploration, prediction and explanation, and what they
entail and translate to in the context of microscopy. Finally, we explore
the challenges, common artefacts and risks associated with ML in
microscopy. Building on insights from other fields, we propose how
these pitfalls might be mitigated for in microscopy.

KEY WORDS: Data, Analysis, Machine learning, Microscopy,
Bioinformatics, Image analysis

Introduction
Over the past two decades, light microscopy has benefited from
significant advancements in optical design and sample preparation.
For example, the development of super-resolution microscopy
(Betzig et al., 2006; Gustafsson, 2000; Klar and Hell, 1999; Rust
et al., 2006) has enabled the visualisation of molecules with a spatial
resolution ranging from a few nanometres to 200 nm. Meanwhile,
lattice light-sheet microscopy (Chen et al., 2014) has allowed 3D
live-cell-friendly imaging of sensitive samples with high spatial-
temporal resolution, and expansion microscopy allows the physical
expansion of samples to visualize details below 200 nm with
conventional microscopes (Wassie et al., 2019). In parallel,
improvements have also been made in data acquisition diversity
and scalability, including microchips assays to assess the
cytotoxicity of cells in microwells (Guldevall et al., 2016) and
cell painting setups (Bray et al., 2016), to study the effect of a variety
of perturbations (e.g. different drugs) in different cellular structures.
In this Review, we investigate how image processing and analysis
can use artificial intelligence (AI) to embrace (and benefit from)
these extensive and complex datasets.
Machine learning (ML) techniques represent a dominant subset

within AI and are increasingly used in life science research, in
particular for bioimage analysis (Jan et al., 2024). In contrast to

conventional analytical pipelines, ML involves two stages: training
and inference. During training, the model iteratively learns complex
patterns and intricate relationships in the dataset, by estimating
mathematical parameters. The entire process relies on the choice of
model architecture, capacity and regularisation techniques, which
significantly impact on the performance of the model. To ensure an
optimal training process, a set of hyperparameters must be chosen,
such as the learning rate (i.e. how quickly the model updates its
predictions) or the loss function (i.e. a measure of how well the
predictions of the model match the actual data) (Yang et al., 2020).
When the model has converged, that is trained, assessment metrics
are used on a separate test dataset to evaluate the accuracy of the
model. Therefore, the model can then be used for inference, during
which it applies its acquired knowledge to make either predictions
or decisions typically on new unseen data, or generate its own
synthetic datasets. The accuracy of the model measures the
reliability of the inferences. Conventionally, ML models can be
categorised into supervised and unsupervised. Supervised models
are trained on paired datasets, meaning an input with its
corresponding output targets. For example, raw images paired
with output segmentation labels (Fig. 1A). In contrast, unsupervised
models are fully data-driven; they mathematically learn the mapping
between given inputs and outputs without provided labels (Fig. 1B).
The aim in this case is to uncover intrinsic properties or groupings
within the input images themselves, without explicit guidance.

A common feature, independent of the ML method applied, is
that data is core and central. It is not only analysed or processed
through the pipeline, but prior to that, it is required for training. This
is a fundamental difference compared with conventional non-ML
strategies. Thus, understanding data from users (e.g. its type,
quality, content and quantity) and its impact on the models, both in
terms of possible applications and challenges, are paramount if ML
is to become a widely used tool in microscopy. In this Review, we
explore how the transition of microscopy image analysis to ML
impacts both data acquisition and analysis. We further reflect on
inevitable risks and challenges associated with using AI in
microscopy research, based on experience from other fields that
have embraced this transition earlier. We learn from the strategies
used by these fields to mitigate specific challenges and comment on
how these can be translated to microscopy.

Data acquisition – what matters in a dataset for ML models?
“Any model is only as good as the data it is trained on”. In this
section, we delve into data requirements for successful ML
implementation. More specifically, we discuss how data quantity,
transferability and content affect the ML models used, as well as the
limitations and trade-offs associated with these features.

Quantity
We use data quantity here to refer to the volume of data available for
training. In microscopy, it often translates to the number of images
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(Fig. 2A). Intuitively, having more data for training in ML usually
means that the model is exposed to more variability, dynamic range
and noise. Overall, it enables ML models to focus more effectively
on the data, discerning noise from meaningful signals (Lei et al.,
2019).
Training with a broad dataset also helps to mitigate overfitting

(Montesinos López et al., 2022), a phenomenon where the model
captures irrelevant features on the training data rather than
learning the generalisable patterns. By providing more acquired
data, the model is less likely to ‘memorise’ specific instances in
the training set and learns how to generalise across a broader
spectrum of examples. For instance, in cell segmentation tasks

(Stringer et al., 2021), overfitting is associated with wrongfully
detected objects in the background, such as experimental artefacts
(e.g. cell debris), instead of accurately segmenting the target
biological structures.

The quantity of data required for training also scales with the
capacity of the model, that is, howmany parameters the model has to
estimate during training. Typically, when an analysis task becomes
more complex, so does the architecture of the ML model used,
such as going from the binary pixel classification of cell types
(e.g. healthy versus disease phenotypes), to the classification of
multiple descriptive disease phenotypes, or going from pixel
classification to more complex tasks such as the segmentation of
individual cells, which involves the prediction of detailed and
structured outputs (Stringer et al., 2021). This leads to learning a
higher number of parameters of the model and hence a need for
more training data.

It is pertinent to ask, “how much data do I need?”. Unfortunately,
there is no simple answer to this question, as the required amount of
data highly depends on the application. Generally, large datasets are
necessary, but in some cases, an excess of data can hinder the
analysis. For instance, in developing a method for predicting
fluorescent labels in unlabelled images using deep learning
(Christiansen et al., 2018), researchers acquired ∼200,000 diverse
images to train the model for sufficient generalisation. Conversely,
for tasks involving the interpretation of specific biological
data, such as identifying visual factors that determine embryo
quality, only ∼2000 images were needed (Rotem et al., 2024). In
cases like the latter, where the goal is to derive insights from highly
specific datasets, exposing the model to extensive data diversity
(with hundreds of thousands of cells) is not advisable, as it could
lead to overgeneralisation. Nevertheless, for most applications in
microscopy, the number of required images to train a model from
scratch typically falls within the thousands, which is still a very high
volume compared to the norm in biological research.
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In response to the need for acquiring extensive microscopy
datasets, high-throughput technologies and automated acquisition
platforms are increasingly being developed (Mahecic et al., 2019).
These are especially useful for techniques that are inherently low
throughput. For instance, single-molecule localization microscopy
(SMLM) (Lelek et al., 2021) allows the acquisition of images with
tens of nanometres in resolution, but each image is restricted to a
small field-of-view (<1000 µm2) and requires thousands of time
frames to collect. For this, efforts have been made to automatically
collect SMLM data in multi-well arrays, leading to a significant
collection throughput (Beghin et al., 2017). Moreover, even for
microscopy techniques that are not as low throughput as SMLM,
such as confocal or widefield microscopy, efforts have been made to
automate the acquisition process (Zehrer et al., 2024), with the help
of tools that allow the microscope control (Moreno et al., 2021;
Pinkard et al., 2021). Strikingly, researchers have recently started
developing imaging farms, which consist of fully automated
microscopes that acquire images in parallel. This falls within the
scope of laboratory automation for autonomous and automated
imaging (Bai et al., 2022), which promises to dramatically increase
data acquisition speed and volume. Besides hardware-based
approaches, synthetic datasets are a convenient strategy to
increase the data size for model training, particularly in low-
throughput techniques like SMLM (Speiser et al., 2021).
Although such technological developments indeed lead to an

increase in the amount of collected raw images, they do not provide
the labels necessary for supervised ML applications. For example,
producing pixel-level segmentation of cells typically requires
extensive and tedious manual annotation and curation (Thul et al.,
2017). This often requires interdisciplinary collaborations, time and
resources, and thus continues to constitute a major bottleneck for
ML implementations. One way to circumvent this is by the use of
active learning, where a small labelled subset of data is used for
initial training. The model identifies uncertain predictions, which
are then corrected by an external source (e.g. a human). These newly
labelled data are added to the training set, iteratively improving the
performance of the model without requiring a fully labelled dataset
upfront (Kutsuna et al., 2012). Another inventive way of tackling
the annotation bottleneck involves citizen science, where the
general public contributes to scientific data labelling. ‘Project
Discovery’ is a mini-game where players annotate images provided
from The Human Protein Atlas (https://www.proteinatlas.org/;
Sullivan et al., 2018). These annotations were then used for a
subcellular map of the human proteome (Thul et al., 2017). After
having data annotations, a common strategy to increase the
overall data used for training in supervised ML (i.e. images
and corresponding target labels) is by using artificial data
augmentation techniques. These include rotations, flips and noise
injection to expand the existing dataset.
In practice, a combination of high-throughput imaging, synthetic

data generation, annotation and data augmentation is often employed
to create comprehensive datasets for training ML models in
microscopy. This often requires interdisciplinary collaborations,
time and resources, and thus continues to constitute a major
bottleneck for ML implementation. Increasing data quantity is also
not always an available option. This could be due to the rarity of
certain biological samples, or limitations associated with the
acquisition method itself, such as phototoxicity (Icha et al., 2017).

Transferability and availability
Image processing and analysis tasks are often repetitive in nature, or
at least partly overlapping. In this context, ML models are very

promising solutions to provide ‘fit for most’ general tools. This,
however, requires presenting the ML models with broad collections
of datasets during the initial training phase. ML models used to
segment nuclei (Schmidt et al., 2018 preprint), for instance, provide
reliable results independently of the cell type, as long as they have
been trained with a broad range of cell types in the first place.
Because acquiring large-scale and diverse datasets is costly and
remains challenging overall (Ellenberg et al., 2018) (e.g. due to the
time and financial costs of multi-disciplinary collaborations),
researchers have been putting efforts towards making data more
transferable and openly shared within the community (Bagheri
et al., 2022; Hohlbein et al., 2022). For data to be inherently
transferable (Fig. 2B), it should follow specific standardised formats
and principles, such as ‘Findable, Accessible, Interoperable,
Reusable’ (FAIR) (Wilkinson et al., 2016).

Findable data is data that is properly identified (e.g. by cell type
and imaging technique), with sufficient metadata that describes
conditions, such as cell treatments and imaging parameters, and is
easily searchable in a resource (e.g. database). Data accessibility
ensures datasets are readily available to use through public
repositories and data sharing platforms, such as Zenodo (https://
zenodo.org/). Interoperable data can be seamlessly used and
combined with other data in workflows without any prior
modifications (e.g. using standardised data formats; Goldberg
et al., 2005; Linkert et al., 2010). Reusable data is structured and
documented for easy future use, with clear documentation of
protocols and workflows used for acquisition and processing, to
ensure findings can be easily replicated.

Data transferability still grapples with limitations, despite the
efforts of researchers to adhere to it. In microscopy, the data sharing
‘culture’ only emerged relatively recently, and publishing open
access data often comes with limited gains. Arguably, a major issue
hindering data reuse is trust. Publication bias (Lee et al., 2024)
(i.e. publishing unrepresentative ‘good looking’ datasets), is often
an aspect research groups are very wary of when looking for data. In
addition, researchers are still frequently incentivised to acquire
fresh data for publications, even when the novelty of their work lies
in the analysis pipeline or software development, for which a
systematic requirement of new datasets is highly debatable. In an
effort to counteract this, researchers and developers are increasingly
using and developing platforms for data sharing. These can be
more general or multi-purpose platforms [e.g. Zenodo and
GitHub (https://github.com/)] or field-specific (Ouyang et al.,
2022b). For example, the Image Data Resource (IDR; https://idr.
openmicroscopy.org/) (Williams et al., 2017) and the Bioimage
archive (https://www.ebi.ac.uk/bioimage-archive/; EMBL) are
open-source platforms for publishing imaging data. Besides,
depending on the specific analytical task, it is possible today to
directly use pre-trained models available on open cloud platforms
(Chamier et al., 2021). BioImage Model Zoo (https://bioimage.io;
Ouyang et al., 2022a preprint), for instance, is an online platform
where standardised data and pre-trained models can be easily shared
and used, improving accessibility and reproducibility of ML
workflows in microscopy.

Transferability has enabled scientists to take advantage of large
amounts of data and train robust ML models for a specific task. By
making these models available, transfer learning, where pre-trained
models are reused and ‘readjusted’ to new data, also becomes possible
(Alzubaidi et al., 2021). Furthermore, these pre-trained models can be
fine-tuned with a significantly smaller amount of new data, often
requiring only tens of samples rather than thousands, making the
process more efficient and accessible for specific use cases.
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Content – information-rich datasets for novel knowledge with ML
High-content data refers to datasets rich in information, often
captured using specialised equipment, techniques and assays
(Fig. 2C). In recent decades, there has been a notable shift
towards acquiring high-content data, symptomatic of a ‘race for
information-rich datasets’ across fields, with the hope of gaining
new insights and generating novelty. This has been made possible
by notable progress in data acquisition, curation and annotation. In
microscopy, this typically translates to an increased number of
dimensions, such as the number of markers, as well as longer
imaging timescales, improved resolution, and imaging of multi-
cellular structures or full organisms.We discuss here howMLmight
become instrumental in enhancing how these ‘pretty pictures’ can
be integrated into understanding key biological processes.
High-content datasets indeed provide ML models with a wealth

of diverse features and patterns, enabling them to learn complex
relationships and capture subtle variations, leading to more accurate
and robust predictions (Gong et al., 2019). Interestingly, high-
content datasets might also consist of a combination of results
obtained with multiple microscopy modalities (i.e. paired data). ML
analysis pipelines easily scale to varied data types as inputs
(Schwartz et al., 2023). Effectively, this has the potential to provide
a holistic understanding of complex biological processes, with
inputs collected over multiple scales from genomes and molecules
to cells and whole organisms.
High-content screening (HCS) assays (Abraham, 2004; Boutros

et al., 2015; Lin et al., 2020) generate high-content datasets in which
a very high number of conditions, perturbations and/or targets or
markers can be investigated. For example, a genome-wide HCS
method has been used to systematically test the function of genes
through automated analysis of different phenotypic features in cells
(Chia et al., 2010). This involved the use of siRNAs to silence the
expression of thousands of genes and collecting data on the resulting
phenotypic changes in the human embryonic stem cells. Using ML
trained on this complex dataset, genes involved in regulating stem
cell identity were successfully identified. Image-based cell profiling
uses a similar strategy and is used in fields like drug discovery and
functional genomics (Caicedo et al., 2016, 2017). For example,
fixed cell features (e.g. cell morphology or staining intensity
profiles of the cell) can be extracted from high-throughput
microscopy acquisition and analysed with ML, and be reliably
used to identify promising new drug compounds and their
effects (Bray et al., 2016). Considering the success of these
implementations, future developments are likely to diversify the
range of the source of measurements or features. Morphological
features, relying on stains (such as for membrane, actin or nuclei,
among others), can be enriched with measurements like
biosensors (Dunn et al., 2021), polarisation of the transmitted
light (De Angelis et al., 2019) or Förster resonance energy
transfer (FRET) measurements (Sekar and Periasamy, 2003), to
generate quantitative phenotypic signatures for cells.
Another compelling example of an image-based profiling assay is

the multiplexed error-robust fluorescence in situ hybridisation
(MERFISH) system (Chen et al., 2015). MERFISH is a highly
multiplexed imaging technique, allowing thousands of RNA
species to be imaged in single cells through hybridisation of
encoded RNA probes. The technique provides a unique insight into
the intertwined relationship between RNA spatial distribution and
genetic content with cellular processes outcome.
Microscope systems, such as the lattice light-sheet microscope

(Chen et al., 2014) and MoNaLISA (Masullo et al., 2018), a
nanoscope capable of imaging the entire cell volume at low light

intensities at a scale of 45–65 nm, have been developed specifically
to produce 3D movies with improved temporal resolution and
lowered phototoxicity. Although movies of live cells or organisms
generated using these techniques often follow a high number of
molecular targets and provide unique and highly qualitative
information, they cannot be efficiently analysed with state-of-the-
art conventional analysis tools (Liu et al., 2021). We anticipate
that such imaging techniques will vastly benefit from being
combined with ML holistic analytics that can scale to high
dimensional data, retain temporal information and incorporate
nonlinear relationships.

Although most of the aforementioned methods aim to increase
information content overall, a new avenue of research in microscopy
focuses on designing smart ‘content-driven‘ microscopes (Alvelid
et al., 2022; André et al., 2023; Morgado et al., 2024; Shi et al.,
2024), which can be used to overcome certain limitations. For
example, acquisition limitations (e.g. photobleaching and
phototoxicity) can be partially circumvented by acquiring content-
enriched (i.e. better spatial and/or temporal resolution) data only
when the biological process of interest occurs (Mahecic et al.,
2022). These smart microscopes already heavily rely on ML and
have the potential to address well-defined biological questions, such
as mitochondria division events (Mahecic et al., 2022).

Overall, researchers face the challenge of navigating data
acquisition trade-offs, balancing the need for rich, comprehensive
data with considerations of cost, scalability and often human-made
annotations. Ultimately, the selection of acquisition methods
depends on the specific goals, constraints and priorities of each
research project, highlighting the importance of thoughtful decision-
making in data acquisition strategies for ML applications.

What does ML bring to microscopy?
ML serves several key utilities, including data curation, exploration,
prediction and explanation. In this section, we dive into each ML
utility, providing examples of its use in several fields and how these
strategies are or could be implemented for microscopy.

Data curation – improving microscopy data
The definition of ML-based data curation might vary across different
fields and disciplines. Here, we adopt a broader definition, where
curation consists of automated techniques, taking raw data as input,
and aiming at increasing quality and usefulness (e.g. data cleaning, the
process of removing incorrect or uninformative data within a dataset),
as well as reproducibility (Fig. 3A). These pre-analysis pipelines are a
requirement for reliable quantification, scalability and decision-
making processes at later stages. Representative examples of ML-
based data curation in microscopy include methods based on deep
learning (DL), a subcategory of ML. This involves image filtering,
segmentation and cell tracking (Chai et al., 2023), as well as
improving the signal-to-noise ratio. Noise2Void (Krull et al., 2018
preprint), for example, is a widely adopted unsupervised DL model
for microscopy image denoising. Tasks such as cell or nuclei
segmentation are automated with the help of supervised ML models
such as Stardist (Schmidt et al., 2018 preprint). Cellpose (Stringer
et al., 2021), a DL-based generalist model, allows the segmentation of
cells from a wide range of image types. More recently, a computer
vision foundation model capable of generalising segmentation of any
object – the Segment Anything Model (SAM) – was released
(Kirillov et al., 2023 preprint). SAM has been successfully applied to
microscopy datasets (Archit et al., 2023 preprint), accelerating the
annotation of images and their ground truth masks – the correct
outlines – for cells or organelles thanks to the user prompt. DL
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methods have also been employed for the removal of outliers from
image datasets, with models being capable of generating a low-
dimensional representation of the data representing the shapes of cells.
This representation allowed the profiling of cellular phenotypes and
consequent discrimination of outliers (Burgess et al., 2024). For all
the above-mentioned examples, pre-trained models are readily
available (Chamier et al., 2021; Ouyang et al., 2022a preprint,
2022b), allowing researchers to use models built for specific tasks for
inference in their own data.

Data exploration – applications in cell biology
Microscopy often produces highly dimensional and complex
datasets. ML-based exploration provides tools to explore these
datasets, with the aim of unravelling novel patterns, relationships
and trends within the data itself that are not directly accessible from
the collected images. Unlike manual feature engineering, where
domain experts predefine features to be extracted based on prior
knowledge, explorative models autonomously discover relevant
features inherent to the data and generate a novel representation of
the data without requiring explicit human intervention (Fig. 3B).
They consist of a fully data-driven approach.
Unsupervised ML algorithms like principal component analysis

(PCA) (Jolliffe and Cadima, 2016) or uniform manifold
approximation and projection (UMAP) (McInnes et al., 2018),
aim to convert the input data into a low-dimensional space
representation, called latent space (Fig. 3B). Latent spaces typically
provide users with a much simpler visualisation (typically a 2D or 3D
point pattern) of the original high-dimensional dataset (i.e. images).
By exploring the latent space generated by these dimensionality
reduction algorithms, where clustering and trends of the original data

are easily accessible, it is possible to unravel cellular phenotypes or
states with no a priori knowledge. Dimensionality reduction
algorithms allowed the discovery of differentiation pathways of
dendritic cells (See et al., 2017), the quantification of myofibroblast
cells activation (Hillsley et al., 2022), and to differentiate between
excitatory and inhibitory neurological synapses (Unterauer et al.,
2024). However, these dimensionality reduction techniques come
with inherent limitations. Though they aim to preserve the most
relevant information, the process of reducing high-dimensional data
to a low-dimensional representation inevitably results in some
information loss. Traditional methods like PCA and UMAP might
struggle to capture complex, non-linear relationships in the data,
potentially overlooking subtle but important features (Diaz-
Papkovich et al., 2021; Fernandes et al., 2024). To address this
issue, autoencoders (Bank et al., 2020 preprint), a type of
unsupervised DL method, have been increasingly adopted. During
training, autoencoders compress the original data (i.e. images) into the
latent space. Then, using only the information from the latent space
(i.e. point pattern), autoencoders reconstruct it back into an image that
should ‘look’ exactly like the original one. This approach ensures that
the essential information about the data used to train the model is
retained, as the reconstruction process forces the model to learn how
to retrieve the original data from the low-dimensional latent space.
This opens doors for using these models to interpret cell biology data
(i.e. identifying underlying cellular processes and/or dynamics that
could not be directly observable from acquired data) and infer novel
information. For example, latent spaces generated by autoencoders
have been used to infer cell cycle phases (Ulicna et al., 2023 preprint),
cell lineage information (Yang et al., 2020) and cell outcome after
drug treatment (Umarov et al., 2021).
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Fig. 3. ML utilities for microscopy. (A) Data curation, which
includes data cleaning and processing task automation. One use-
case example in microscopy is data denoising using the Noise2Void
ML model. (B) Data exploration, encompassing data visualisation
and interpretation. In microscopy, this can be done by doing a
principal component analysis (PCA) for dimensionality reduction of
the data into a latent space representation, where data is plotted as
a 2D point pattern. (C) Data prediction, which involves classification
and regression. One prominent example of microscopy data
prediction is the classification of cell types, by using a cell classifier
model. (D) Data explanation, which aims at finding what cell features
drove a specific model outcome. In this example, given a model
outcome (cell fate 0), using an interpretable model would help
interpret why the model chose fate 0 for the input data (in this case,
it was due to the cell size). Ex, example.
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The approach of learning from latent space representations of
complex data, also known as representation learning, has shown
immense potential in microscopy and beyond (Blaschke et al., 2018;
Gómez-Bombarelli et al., 2018; Gunawan et al., 2023; Pyzer-Knapp
et al., 2022). Importantly, the scientific community is making
strides in democratising these tools. User-friendly platforms like
CellProfiler Analyst 3.0 (Stirling et al., 2021) are making advanced
ML methods for data exploration and quantification accessible to a
broader range of researchers. Additionally, standardised workflows
for learning morphological representations of microscopy images
are being developed (Caicedo et al., 2017).
After using techniques for data exploration, it is common to

perform data prediction. This is because the insights gained from
exploring datasets inform the selection and engineering of both
features as well as output classes, which is crucial for accurate
predictions.

Data prediction – advancing cell biology and disease research
Data prediction withML refers to forecasting outcomes based on the
training data. Data prediction typically consists of using supervised
MLmodels for classification (Fig. 3C) or regression tasks. Common
applications of ML-driven classification are cell state (e.g. healthy
and diseased cells), cell type or cell cycle phase. For these tasks,
software like Advanced Cell Classifier (Piccinini et al., 2017),
containing user-friendly access to ML models for classification,
have been made available. Models for regression have also been
applied in microscopy research, for tasks like estimating cell
counting (Xue and Ray, 2017 preprint) and cell detection (Xue and
Ray, 2017 preprint). Moreover, data prediction can be done directly
in latent space representations produced for exploration (Lafarge
et al., 2019; Palma et al., 2023 preprint; Yang et al., 2024; Chow
et al., 2022; Lu et al., 2019). The examples mentioned in the data
exploration section have all been used for prediction, namely,
dendritic cell differentiation pathways (See et al., 2017),
myofibroblast cell subgroups (Hillsley et al., 2022) and types of
neurological synapses (Unterauer et al., 2024), among others.

Data explanation – understanding microscopy data with ML
Most of the models mentioned for data curation, exploration and
prediction are based on DL. These models are typically termed as
‘black boxes’, given that their decision-making processes are not
understandable by humans. However, if we could understand how
or why these models made a prediction from the input dataset, we
cannot only understand more about how the model works but also
about the data itself. This lies within the field of ‘explainable and
interpretable’ML (Rudin, 2019). In the context of microscopy, this
translates to asking, ‘what visual features in the image contributed
the most for the outcome of the model’ (Fig. 3D). Researchers
have started to develop models that are inherently interpretable
for microscopy images, by coupling classifier models with
interpretable latent space representations (for an overview, see
Soelistyo and Lowe, 2024 preprint). For example, from a live-cell
movie, a model was developed that predicted each cell outcome (i.e.
apoptosis or mitosis). From this model, what the most important
biophysical properties of cells that drove the specific outcome could
be determined – the most important feature was related to cellular
environment (i.e. cellular density) (Soelistyo et al., 2022). In
another study, an interpretable model was built to understand what
drives the classification of embryo cells into good or bad quality for
in vitro fertilisation. It was found that the most important cellular
features were the blastocyst size and the quality of trophectoderm
(a layer surrounding the blastocyst) (Rotem et al., 2024). These are

just a few examples of an emerging field of AI that potentially
allow us to learn from what these models have learned (Sadafi
et al., 2023; Xu et al., 2021). In the future, we see that questions
that can be addressed range from what biological marker
contributes the most for the cell outcome, or, in the case
of live-cell movies, when did a given outcome start being
predictable.

In conclusion, the integration of ML techniques in microscopy
workflows – from data curation and exploration to prediction and
explanation – offers a powerful method that not only enhances the
quality and utility of microscopic data but also provides a gateway to
uncovering novel insights into cellular mechanisms.

Challenges and risks
Although relatively new in microscopy, ML has been used for
decades in fields such as computer vision (Voulodimos et al., 2018)
and natural language processing (Nadkarni et al., 2011). A number
of pitfalls and challenges associated with ML use have been
identified in this context and partially addressed. In this section, we
anticipate the impact of such limitations for ML in microscopy,
alongside proposed solutions to tackle them.

Dataset shift
Dataset shift describes when there are significant differences
between the dataset used for training and the dataset used for
inference (Uhlmann et al., 2022), and results in less accurate or
biased inference on the investigated dataset. Artefacts associated
with data shift are common for models with very well-defined tasks
that cannot easily be generalisable across cell types or conditions
(Hallou et al., 2021). Concept shift, more specifically, consists of
using different input data types between training and inference. In
microscopy, that typically translates to training a model on a given
imaging modality while using the trained model to infer information
on another type of imaging modality. For example, if a
segmentation model is trained on brightfield microscopy images
and later used on fluorescence microscopy images, the mismatch
in imaging modalities can introduce a concept shift, potentially
leading to worsened segmentation accuracy. Some models for
which the tasks are not specific to either the imaging modality or
the biological question being asked can bypass data shift by being
trained on broad scope datasets. For example, the Segment
Anything Model (Kirillov et al., 2023 preprint) has proven to be
extremely generalisable for segmentation of any object, given that
it was trained on millions of images, with hundreds of millions of
parameters optimised during training.

Novelty hindering
Strikingly, generalisable models are far from a fit for all applications.
The risk with very general models designed for simple repetitive tasks
is that when applied to a well-posed biological question, they hinder
any information in the inputted distribution that deviates from that
simple task. This leads to hindering novelty, overlooking statistically
low-occurring representations in the data. For instance, in image
recolouring (Wang et al., 2022), training data contains rare or unique
cellular structures or biological features that have limited occurrence.
The generalisation of the model is therefore likely to result in less
accurate and distinctive colorizations for these specific elements.
Interestingly, this issue has partially been alleviated in fields like
natural language processing, where selective sampling strategies
(Figueroa et al., 2012; Magar and Farimani, 2023; Weinstein et al.,
2019 preprint) are incorporated to ensure sufficient representation of
rare or unique instances in the training dataset. This involves using
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active learning methods that focus on collecting data points that are
most informative or challenging for the model, such as sentences that
contain ambiguous content. Because there is a tradeoff between
dataset shift and novelty when it comes towhat type of data should be
used for training, an important prerequisite for successful analyses is
to determine whether the question being asked requires a general or
specific model.

Hallucinations
Another possible challenge related to using generative ML models
is the phenomenon known as ‘computer hallucinations’, wherein
MLmodels generate misleading or fake information with seemingly
great confidence, posing a threat to their reliability. Although such
artefacts, e.g. artificial sharpening (Marsh et al., 2018), have also
been observed in conventional image processing, it is a challenge
that needs to be addressed if ML is to become a broadly used tool for
image reconstruction and synthetic image generation. A commonly
used safeguard is to retain some user feedback in the loop with
reinforcement learning (RL) (Cao et al., 2023 preprint). RL consists
of a trial-and-error-based learning strategy, very similar to the
human learning process; the user is presented with a small subset of
the proposals generated by the trained model and then asked to
discriminate between ‘likely’ and ‘unlikely’ proposals, which are
associated with positive rewards and penalties, respectively. This
partial annotation systematically assesses hallucinations as unlikely.
The model then learns to adjust its parameters to maximise rewards
and minimise penalties, leading to a decrease of unlikely outputs,
which includes hallucinations as well as unrealistic proposals. This
approach has been successfully applied for drug design, for which
ML is very well established. For instance, by incorporating human
preferences into the ML models, such as known biological
properties of compounds, the accuracy and usability of the
proposed model is vastly improved in novel drug design (Liu
et al., 2023). In the case of microscopy, this framework translates to
providing the user with a small subset of the images or output
generated by the trained model to annotate as likely or unlikely
based on a priori knowledge of the biological process studied.
More recently, DL-based architectures incorporating physics-
informed components have been successfully implemented in
order to not only mitigate hallucinations but also to improve
model accuracy (Burns and Liu, 2022 preprint; Li et al., 2022).
For example, the Richardson–Lucy DL network (RLN) was
developed for the deconvolution of fluorescence microscopy
images (Li et al., 2022). RLN adds the image formation process as
a model constraint, allowing more accurate image reconstructions.
This approach has been used in super-resolution microscopy
reconstruction, achieving better performance than widely used DL
methods, such as content-aware image restoration (CARE)
(Weigert et al., 2018).

Data privacy
Data privacy has emerged as a key challenge in the context of health
data analysis or more broadly data-driven life science over the past
decade (Holub et al., 2023; Jadon and Kumar, 2023; Norori et al.,
2021). ML-based pipelines are far from immune to privacy leakage.
The community often considers that when working with mostly in
vitro systems for microscopy, this issue can be overlooked – but this
is only partially accurate. With the rise of smart, high-throughput
computational microscopy strategies for diagnosis and personalised
medicine, privacy will inevitably become a parameter to mitigate
with. Overall, data privacy itself remains very much an active field
of research. Although methods such as differential privacy, where

noise is added to a sample from an individual in order to protect its
privacy, but keep the global distribution (Abadi et al., 2016) are
relatively well-established and provide privacy guarantees, they
tend to impact negatively on the usability of the output. More
tailored research into how microscopy images with sensitive patient
information can be handled, will need to be undertaken in the
coming years.

Bias
BecauseML relies on data for training, it is particularly susceptible to
biases (Chandak and Tatonetti, 2020; Grossmann et al., 2023; Lee
et al., 2024; Norori et al., 2021; Takan et al., 2023). One salient
example in life sciences comes from an investigation of a commercial
algorithm for prioritising care for patients, which was found to
underestimate illness severity in black patients relative to white
patients due to imbalanced data from those populations (Obermeyer
et al., 2019). Within microscopy, analogous representation issues
could emerge if models are trained on datasets that undersample
certain experimental conditions, cell types, rare phenotypes or
imaging modalities. By examining the training datasets and their
distributions, evaluating model performance across subgroups,
and proactively addressing observed skew through pre-processing
methods, data augmentation and weighting schemes, we can work to
maximise discovery potential and reliability in microscopy data
analysis.

Conclusions and future outlooks
As ML becomes an essential tool in life science, we reflect in this
Review on its integration into microscopy-based research. With
users in mind, it is imperative that we truly understand the technical
requirements of ML-based pipelines so we can fully benefit from its
uses in microscopy image processing and analysis. Similar to
microscopy acquisition, ML-based analytics are bound by a
fundamental trade-off: what kind of datasets do you have and
what do you want to get out of it? This comes down to three
important dataset characteristics for ML (quantity, transferability
and content), how they can be prioritised during acquisition, and
how they impact on the trained models. Three potential uses of ML
in microscopy include data curation, exploration, prediction and
explanation. These span frommore task-driven strategies, with more
‘human-guided’ objectives, such as cell segmentation, to open-
ended exploration of visual patterns within images in a more data-
driven manner. Importantly, lessons learned from fields with more
extensive ML experience can inform strategies for mitigating
challenges and risks associated with ML for microscopy. By
leveraging these insights, researchers can navigate complexities
such as dataset shift, hallucinations, novelty hindering, model biases
and privacy concerns more effectively, fostering greater reliability
and reproducibility in microscopy research.

In conclusion, the intersection of ML and microscopy holds
immense promise for advancing our understanding of life and
disease, and unlocking novel insights into complex biological
systems. Importantly, we should pursue a symbiotic path where ML
aids in data analysis and hypothesis generation, while biologists
continue to provide essential domain knowledge and validate
discoveries through experimental interventions. Rather than viewing
AI as a replacement for human expertise, we suggest it is very much a
complementary tool that enhances our ability to decipher the
complexities of biological systems.
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