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Generating Sparse Stochastic Processes Using
Matched Splines

Leello Dadi ¥, Shayan Aziznejad

Abstract—We provide an algorithm to generate trajectories of
sparse stochastic processes that are solutions of linear ordinary
differential equations driven by Lévy white noises. A recent pa-
per showed that these processes are limits in law of generalized
compound-Poisson processes. Based on this result, we derive an off-
the-grid algorithm that generates arbitrarily close approximations
of the target process. Our method relies on a B-spline represen-
tation of generalized compound-Poisson processes. We illustrate
numerically the validity of our approach.

Index Terms—Sparse stochastic processes, 1évy driven CARMA
processes, B-splines, compound-poisson processes.

1. INTRODUCTION

OTIVATED by tractability and results such as the
M central-limit theorem, most of the early work in statis-
tical signal processing has focused on Gaussian models [1]. In
particular, the theory of Gaussian stationary processes provided
justifications for the use of the discrete cosine transform [2] as
an approximation of the Karhunen-Loeve transform, and the
Kalman filter [3] as an optimal estimator.

However, the analysis of real-world signals has revealed
that the Gaussian framework may be insufficient to capture
the breadth of the underlying behaviors [4], [5]. An important
property that escapes the Gaussian framework is that of sparsity
in some transform domains [6]. Sparsity being an essential com-
ponent of modern signal processing [7]-[9], the authors of [10]
proposed a wider stochastic framework that encompasses both
Gaussian and sparsity-compatible models. Within this frame-
work, a continuous-time signal is a realization of a stochastic
process s that can be whitened by some linear, shift-invariant
operator L. The key here is that the resulting white noise, or
innovation, is not necessarily Gaussian. Put formally, signals
are solutions of

Ls = w, (D

where w is a well defined innovation process called a Lévy
white noise [11]. The term Lévy here comes from the fact that
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w is an object that can be interpreted as the derivative of a
Lévy process in the sense of distributions [12], [13]. Whenever
w is non-Gaussian, the realizations of s can be shown to be
sparse. Accordingly, they have been named sparse stochastic
processes [10]. Specific instances of such processes have been
used to model natural signals such as images [14], [15], RF
echoes in ultrasound [16], and network traffic in communication
systems [17]-[19].

The goal of this paper is to generate realizations of the
stochastic process s given its whitening operator L and a statis-
tical characterization of its innovation process w. The computer
generation of these signals can be of great interest to practitioners
who wish to evaluate their reconstruction algorithms. We are
thinking of works such as [20]-[23], where optimal estima-
tors for interpolating and denoising such processes have been
derived.

A possible approach to generate realizations of s would be to
notice that, if L is a differential operator such as D = % or a
polynomial in D, then (1) defines a stochastic differential equa-
tion (SDE) [24]. This becomes more apparent when notating
w with the alternative notation dZ;, where (Z;);cgr+ is a Lévy
process (Chapter 7.4 in [10]). For example, (D — al)s = w can
be rewritten as dS; = aS;dt + dZ;. A suitable SDE solver,
such as the one studied in [25], can then be used to generate
an approximation of the signal. In particular, a common method
is to solve the linear system of stochastic difference equations
that is obtained by considering the discrete counter-part of the
operator L (e.g. using finite differences instead of the derivative),
and by replacing the innovation process w with a discrete white
noise (see, for example, [26]).

It turns out that generic SDE solvers do not exploit the linearity
of L. Here, the analytic treatment of (1) can be pushed further
to obtain an explicit solution. Brockwell shows in [27] that
s corresponds to the integral of a deterministic function with
respect to a Lévy process. The integral can then be approximated
by substituting it with a Riemann sum defined on a partition of
the integration interval [28, Theorem 21].

These approaches, although valid, have drawbacks when it
comes to the generation of synthetic signals for the evaluation of
algorithms. First, they directly depend on the existence of a grid
on which the approximation of the continuous process is sam-
pled. This can lead to complication in the context of the multi-
resolution algorithms that manipulate grid-free descriptions of
signals. Second, the generated approximations are not solutions
of an SDE in the form of (1). In other words, the approximations
are not mathematical objects of the same nature as s.
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In what follows, we propose a method that addresses both
issues. It is based on a theoretical result by Fageot et al. [26]
that states that any solution s of (1) is the limit in law of a
sequence of simpler processes s,,. In other words, we have that

L
Sy, — 8, asn — 00.

These simpler processes, called generalized Poisson pro-
cesses [10], have the advantage of having a grid-free numerical
representation despite having a continuously defined domain.
They fall within the category of (random) signals with a finite
rate of innovation [29], [30]. They also have the desirable
property of being whitened by the same operator L as the
approximated signal. This implies that they all have the same
correlation structure as the target signal (see Proposition 1).

Our method takes a sufficiently large value for n and generates
a realization of the process s, on a chosen interval. To do
s0, we consider an intermediary process called the generalized
increment process. Interestingly, this process can be represented
as a weighted sum of shifted B-splines and can be sampled very
efficiently [31], [32]. The desired stochastic process s,, is then
obtained from the latter by recursive filtering.

The outline of the paper is as follows: In Section II, we
provide the necessary mathematical background. In Section III,
we give a description of our algorithm: we begin by discussing
the simulation of the innovation process in Subsection III-A.
We then define the generalized increment process in Subsection
III-B and we show how to generate its trajectories in Subsection
III-C. Using this, we provide a recipe for generating sparse
stochastic processes in Subsection III-D. In Subsection III-E,
we show that our generation method perfectly reproduces the
correlation structure of the target stochastic process. Finally,
we conduct numerical investigations to show the validity of our
method in Section IV.

II. MATHEMATICAL FOUNDATIONS

In this section, we give a brief overview of the mathematical
concepts that underly our approach. For a more detailed expo-
sition, the reader is referred to [13], [26], [33], and references
therein.

The Schwartz space S(R) is the space of smooth and rapidly
decaying test functions. Its continuous dual, denoted by S'(R),
is the space of tempered distributions. It is the space of all
continuous linear functionals over S(R).

We denote by L an operator that is a continuous, linear, shift-
invariant mapping from S’(R) to S'(R). The operator L is said
to be shift-invariant if for any test function ¢ and any ¢y € R,
we have that

L{p}(t —to) = L{p(- — to) }(?),

where (- — tg) : t — p(t — to) is the shifted version of ¢ by
to.

We restrict ourselves to rational operators in D = %, written
L = P(D)Q(D) ', where P and Q are polynomials such that
deg(P) > deg(Q). The latter assumption is crucial to have
the minimum required regularity (point-wise definition) for the

teR,
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solution s of (1). The case L = D is atypical choice that appears,
for example, in the modeling of Brownian motion.

Rational operators are defined through their frequency
response

- P(w)
L) = Ghw)

They provide a succinct representation of the equation P(D)s =
Q(D)w that we can simply rewrite as Ls = w.

We are interested in generalized stochastic processes defined
over §'(R). A generalized stochastic process w can be viewed as
arandom element of S’'(R) in the sense that, for any ¢ € S(R),
the linear functional ¢ — (¢, w) € R is a well defined random
variable over R (See Appendix A for a formal definition).

A. Lévy White Noises

Lévy white noises constitute an important class of generalized
stochastic processes, whose specification is essential to our
framework. The three important operational properties of Lévy
white noises for our purpose are:

1) Stationarity: For any ¢ € S(R) and 7 € R, the ran-
dom variables (p,w) and {(p(- — 7),w) are identically
distributed.

2) Independence: For any @1, 2 € S(R) with disjoint sup-
ports, the random variables {1, w) and {2, w) are inde-
pendent.

3) Characterization of the probability law: For any Lévy
white noises w in S’(R) and for any test function ¢ €
S(R), the characteristic function of the random variable
X, = (p,w) can be specified as

Px, () = B[] = exp ( /R f(&so(r))dr>, )

where the function f : R — Cis called the Lévy exponent
of w.
Formally, this Lévy exponent can be obtained as

1) =Tog (Px(8))

where Xpee = (rectjg,1j, w)! is the observation of w through the
rectangular window

1, 0<z<1
0, otherwise.

rectpo q)(z) = {

The distribution of X gives us the Lévy exponent f that
defines (2), so that we can determine all the statistics of w from
the knowledge of Xiec.

In particular, the following Proposition from [10] connects
the second-order statistics of w to those of Xe.

Proposition 1 ([10], Theorem 4.15): Let w be a Lévy white
noise such that X, ..; = (rect[o,l], w) has zero mean and a finite

- 2 _ 2
variance o7, = E[X},]. Then,

V1,92 € S(R)v E[(gpl,w><cp2,w>] = 0120<901a ©2).

lAlthough rect(g 1) is not in S(R), the random variable Xy et can still be
defined. For more details, see [34].
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TABLE I
INFINITELY DIVISIBLE DISTRIBUTIONS AND THEIR LEVY EXPONENTS

Distribution Lévy exponent
Gaussian (p, o) jpE —a2¢?/2
Symmetric a-stable (e, ¢), € (0,2] | —|c€|*

Gamma(a, 3)
Laplace (p, b)

—Plog (1 —j¢/a)
jug —log (1+ b%¢2)

It turns out that X\ is an infinitely divisible random variable
in the sense of Definition 1 [35].

Definition 1: A real-valued random variable X is said to be
infinitely divisible if, for any natural number M € N, there exist
M independent and identically distributed random variables
X1, ..., X such that

X=X+ -+ Xu.

To check the infinite divisibility of X,.., one can note that,
for any M € N, we have that

M-1
Xreor = (rect)y 1), w) = <Z rect[%nﬁl},w>

m=0
M-1
= Z <rectm mi1 ,w>. 3)
0 [I\/I’ M ]

The terms in the sum (3) are independent and identically dis-
tributed random variables as a consequence of the independence
and stationarity properties of white noises, which certifies that
(rect(g,q], w) is infinitely divisible.

The converse is also true: for any regular? infinitely divisible
random variable X with Lévy exponent f(&) = log (E[e’*X]),
there exists a well defined Lévy white noise w whose statistics
are determined by (2) [35]-[37]. This shows that there is a one-
to-one correspondence between infinitely divisible distributions
and Lévy white noises through (rectjo 1}, w).

The Gaussian, gamma, and «-stable distributions are classical
examples of infinitely divisible distributions [12]. We can plug
in their Lévy exponents in (2) to define their corresponding
Lévy white noises. We repeat in Table I some infinitely divisible
distributions of interest, along with their Lévy exponents [35].

A case of special interest is when f is the Lévy exponent of a
compound-Poisson distribution. A compound-Poisson random
variable X, with rate A and amplitude law v, is defined as

K
X = ZAk,
k=1

where the number K is a Poisson random variable with pa-
rameter A and (A)E_| is an i.i.d. sequence drawn according
to v. We refer to the corresponding Lévy white noise w as a
compound-Poisson innovation. It is known to be equal in law to

w:ZAk(S(-—Tk), (4)

keZ

2The random variable X is said to be regular, if E[|X|¢] < +oco for some
e> 0.
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where (7 )rez are the locations of impulses with rate A\ [13].
The law of these impulses is as follows: for any interval [a, b],
the number of impulses in [a, b] is a Poisson random variable
with parameter A(b — a).

On any finite interval, compound-Poisson innovations have a
finite representation. They can be stored on a computer with the
quantization of real numbers as sole source of information loss.
They are therefore well adapted to simulation purposes.

B. Generalized Lévy Processes

The sparse-stochastic-process framework of Unser et al. [10]
is a comprehensive theory of generalized Lévy Processes. These
are stochastic processes that can be whitened by some admissible
linear, shift-invariant operator. More precisely, s is a generalized
Lévy process if there exists an operator L such that w = Lsis a
Lévy white noise. Equivalently, one may view generalized Lévy
processes as the solution of the stochastic differential equation

Ls = w. (5)

It has been shown that, under mild technical assumptions on
L and w, a solution s of (5) exists and constitutes a properly
defined generalized stochastic process over S’ (R) [36].

When L is an operator with a trivial null space, such as L. =
(D — o) with () # 0, we can write that

s=L"1w,

where L~! is the inverse of L. However, when the null space
is nontrivial, for instance when L corresponds to an unstable
ordinary differential equation, the specification of the boundary
conditions become necessary to uniquely identify the solution.
The boundary conditions take the form

de(s) = cu,

where ¢y : s — ¢(s) € R are appropriate linear functionals,
cy € R, and Ny is the dimension of the null space of L. For
instance, one can impose that the process s takes fixed values at
reference locations 1 < ... < ty,; thatis, ¢o(s) = s(ts) = ¢
for¢ =1,..., Ny. Such boundary conditions appear in the clas-
sical definition of Lévy processes (including Brownian motion),
where we have that ¢(s) = s(0) = 0 (Chapter 7 of [10]). We
formally write

‘€:17"'7N07 (6)

s = L(;lw,

where L‘;l is the right inverse of L. It incorporates the boundary
conditions (6) (Chapter 5.4 of [10]).

When w is a compound-Poisson innovation of the form (4),
the process s = L;w (L~ s, respectively, when the null space
of L is trivial) is called a generalized Poisson process.

The fundamental property for this work is that any sparse
stochastic process s that is the solution of (5) can be specified as
the limit in law of a sequence {s,, },,en of generalized Poisson
processes [26]. The corresponding driving processes w,, = Ls,,
are compound-Poisson innovations of the form

Wy = ZAk,n(S( - Tk,n) (7)

keZ
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Fig. 1. Green’s functions (left) and B-splines (right) associated with specific
operators L.

with rates A\, =n and with ii.d. amplitudes Ay, that are
infinitely divisible random variables with Lévy exponent f, =
% f, where f is the Lévy exponent of w.

C. Green’s Functions

The Green’s function of a differential operator L is a tempered
distribution pr, € S'(R) that satisfies

LpL =J4.

It can be viewed as the impulse response of the inverse of L. The
canonical Green’s function is

=F 1! _ ,
PL L(w)

where L is the frequency response of L (Chapter 5.2 of [10]).
This definition can be made to stay valid even when L vanishes
1

at some points, as long as ] isin 8’'(R). For details on how to

compute Green’s functions, the reader is referred to Appendix
B. We have plotted the Green’s function of several operators in
Fig. 1 to highlight their variety and their dependence on L.
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III. METHOD

In this section, we introduce our method for generating (ap-
proximate) trajectories of a sparse stochastic process s that is
whitened by an operator L and whose innovation noise is w.
When necessary, we assume general boundary conditions of the
form ¢4(s) = 0 for £ = 1,..., Ny, where N is the dimension
of the null space of L.

As mentioned earlier, the process s is the limit of general-
ized compound-Poisson processes s,, driven by w, = Ls,, a
compound-Poisson innovation of the form (7). The process s,,
can therefore be written

Sn = Z Ak,an(' - Tk,n) + Po,n»
keZ
where pr, is a Green’s function of L and pg ,, is an element of the
null space of L determined by boundary conditions (it vanishes
when L is invertible). Indeed, we have that

L ZAk,an(' — Tkn) +Pon ¢ = ZAk,nL{PL(' — Tkm)}

keZ keZ

= Z Ak,né( - Tk,n)

keZ
= Wy,

For large values of n, the process s,, is assumed to be a good
approximation of s. So, our goal is to generate samples of s,, on
any uniform grid over any interval [0, T']. More precisely, once
an interval [0, T'] is specified and a regular grid with step size h is
provided, our aim is to obtain the vector s,, whose components
are [s,]; = s,,(ih), fori =0,...,([£] —1).

A. Simulating the Innovation Process

‘We begin by obtaining a realization of the driving innovation
wy,. It consists of a sequence of impulse locations (7 ,,) and a
corresponding sequence of amplitudes (Ay, ).

The sequence (7, ) is a point Poisson process. Its realization
on the interval [0, T is simulated in two steps. First, a Poisson
random variable K with parameter A = n" is generated. Then,
K impulse locations (7y,, ) kef1,..., x} are sampled uniformly on
[0, T7.

The next step is to simulate the K corresponding amplitudes
(Akn)keq,..., k- The characteristic function of the amplitudes
variable A is

£ — exp <%f(€)) :

We refer to it as the nth root of the law of (rectjy 1}, w). Our
assumption in this paper is that there exists, for any n € N, a
known method® to generate infinitely divisible variables with
Lévy exponent % f(&). For common parametric distributions
such as a-stable, Laplace, and gamma distributions, such sam-
pling methods [39] are well known and implemented in scientific

3Workarounds exists for when a sampling method for the nth root % f(&)is
unavailable. For instance, one can opt for an approximate sampling scheme such
as in [38].

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 09,2020 at 15:31:51 UTC from IEEE Xplore. Restrictions apply.



DADI et al.: GENERATING SPARSE STOCHASTIC PROCESSES USING MATCHED SPLINES

TABLE II
THE nTH ROOT OF INFINITELY DIVISIBLE DISTRIBUTIONS

Distribution nth Root

Gaussian (£, -2-)

nUm
Ifa#1 (o8, 5, —1),

Gaussian (p, o)

a-Stable (a, 8, p, ¢)

na

fa=1 (a8 - 2cpin) <)

n n

Gamma(c, 3) Gamma($, B)
Compound-Poisson of intensity %
Xn =L 4 pG" —ai)

with Gg"), G<1") ~ Gamma(%, 1)

Compound-Poisson of intensity A

Laplace (p,b)

computing libraries.* Simulating from their nth root is a simple
matter of rescaling their parameters, as summarized in Table II.
By applying the correct rescaling, we simulate /K independent
amplitudes and thus obtain the sequence (A )req1,.... k-

B. Generalized Increment Process

With the impulse locations (7, )keq1,..., x} and amplitudes
(Ak.n)kef1,.... ky in hand, we can compute samples of

K
$n() = AknpL(- = Thn) + Dom )
k=1

on a grid.

A directapproach to generate s,, is to use the expansion (8) and
represent the process as a sum of shifted Green’s functions. How-
everin this case, the determination of s,, (¢) atany point¢ € [0, T']
may require nontrivial computation of each and every term in
(8). This stems from the fact that Green’s functions are infinitely
supported in general. There are therefore potential drawbacks to
expansions in the basis of shifted Green’s functions like (8). To
overcome these issues, we propose instead an alternative method
based on B-splines.

Recall that L is a rational operator of the form P(D)Q(D) ",
where we take {1, ..., 0iqeg(py} to be the roots of P, with
possible repetitions. Its discrete counterpart Lﬁ is defined as

deg(P)

Li{f}= > rlmlf(- —mh),

m=0

where the sequence r is determined through its Fourier transform

deg(P) deg(P)
R(e®) = Y rmlem = [] (1—eteivh)
m=0 m=1

It is a finite impulse-response filter (FIR). Its null space con-
tains the null space of L [31]. The function ﬁf = LQ{pL}
is called the B-spline corresponding to L [40]. The B-spline
has the fundamental property of being the shortest possible
function within the space of cardinal L-splines (its support is
included in [0, deg(P) x h]) [41], [42]. This will turn out to be

4E. Jones, et al., “SciPy: Open source scientific tools for Python,” 2001.
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crucial for the numerical efficiency of our method. Moreover,
they reproduce both the Green’s function and elements in the
null space of their corresponding operator L [10, Section 6.4.].
Examples of relevant generalized B-splines are shown in Fig. 1
(right figures). Note how they contrast with the corresponding
infinitely supported Green’s functions (left figures).

The application of L to s,, yields

deg(P)
u, (t) = LA {s,}(t) = Z r[m]s,(t —mh). 9)
m=0

The process u,, in (9) is called the generalized increment process.
Interestingly, it can be written as a sum of compactly supported
terms, like

up(t) = Lg{sn}(t>

K
=D AvaLd{on( = 7o) }(8) + Li{po.} (t)
k=1

Ak,nﬂﬁ(t - Tk,n) + 0.

I
]~

=
Il
—

The process u,,, along with boundary conditions, is our alternate
representation of s,,. Now, let u,, be the vector whose compo-
nents are [u,]; = u(ih), fori =1,..., ([%1 — 1). This vector
can be computed more efficiently than s,, since the process
u,, admits a representation with compactly supported terms.
Moreover, u,, is linearly related to the vector s,, via a discrete
system of difference equations. Indeed, we have that

deg(P)

Z rim|[Snli—m,

m=0

[un); = (10)

for deg(P) <4 < ([£]—1). For 0 < i < deg(P), we have
that

deg(P)

Z r[mls, ((i —m)h),

m=0

[un]i =

where the values s, (—mh) form =0,. .., (deg(P) — 1) pro-
vide the boundary values. These relations are established by
writing (9) with ¢ = ih. The boundary values are determined
by the null-space term pg ,,, which is itself determined by the
boundary conditions.

Thus, once we have evaluated u,,, we can obtain s,, by solving
(10), which is accomplished by applying a recursive reverse filter
to u,,. This is performed by rewriting (10) as

deg(P)

>

m=1

1

[Sn}i = m

[u,]; — Y

r[m] [Sn]ifm

By substitution of the boundary values when necessary (i.e.,
taking s,,((¢ — m)h) instead of [s,];—, when (i —m) <0),
(11) allows one to recursively compute the components of s,,.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on October 09,2020 at 15:31:51 UTC from IEEE Xplore. Restrictions apply.
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Fig. 2.  For a single B-spline term, it is only the grid points that sit within the
support of the B-spline that are incremented (black stems).

C. Computing the Generalized Increment Process

We now describe an efficient procedure to compute the gen-
eralized increment process. The components of u,, are given
by

K
[Wnli =Y Agn Bt (ih — 7).

k=0

The naive approach here would be to iterate through each grid
point ¢ independently and compute [u,,];. Doing so would re-
quire one to read the entire sequence of impulse locations (7, ) for
each 7. This cannot be avoided since there is no information on
the sequence (7%), aside from its inclusion in [0, T']. We simply
would not know which B-spline terms are inactive, so we would
have to iterate through them all. A more efficient approach is to
iterate through the list of impulses instead of the grid points.

The idea is as follows: First, initialize the vector u,, to zeros.
Then, read the list of impulse locations one by one. For each
impulse at 7y, find the grid points that lie within the support of
the B-spline at 7. Then, increment the value of u,, on those grid
points by the contribution of the considered B-spline (see Fig. 2).
In one pass over the list of impulses, this method computes the
values [u,]; = u,(ih).

This intermediate computation of the generalized-increment
process provides a considerable gain in terms of efficiency. In-
stead of having a number of operations that scales with [%] x K
for the Green’s function representation, we have one that scales
with deg(P) x ([£7 + K).

D. Recipe to Generate Trajectories

Here is a summary of the procedure that generates trajectories
of Ls,, = w,.

First, fix the infinitely divisible distribution® that corresponds
to w and define the operator L by identifying the polynomials
P and Q.

Pick a sufficiently large value for n. Intuitively, n should be
large enough to ensure the occurrence of several jumps in each
bin. In other words, we expect n to be of the same order as
h~!. This has been validated with our numerical experiments as
well, where we show that it provides a good approximation of

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

) L "
o

©

E ﬁ—fjj

K]

©

£

£

©

o

o

o

&

3

©

o

1%}

S

%]

0 1 2 3 4 5
Fig. 3. Trajectories of Lévy processes (L = D) with different innovations.

From top to bottom: Laplace (0, 1), gamma (1, 1), Gaussian (0,1), and symmetric-
a-stable with o = 1.23.

o
i
o
D

Q
<
+
=]

0 20 40 60 80 100
Fig. 4. Trajectories of the solution s of Ls = w for different operators L. In

all cases, we considered a symmetric-c-stable white noise w with o = 1.23.

the underlying statistics of the process (see Subsection [V-C and
Figs. 5, 6, and 7).

Pick a simulation interval [0, 7'] and generate wy,, as described
in section III-A. Determine an explicit form for pr,. At this point,
the grid-free approximation s,, (expressed as in (8)) is available
and can be stored.

Fix a grid on [0, T'] by choosing a step size h. Then determine
the vector s,, with component [s,]; = s,(ih). Compute the
FIR filter L? and obtain 3} = L{py,}. Then, compute the
generalized increment vector u,, as described in Section III-C.

To obtain s,,, apply the reverse filter to u,, following (11). Take
the values s, (—mh) form = 0, .. ., (deg(P) — 1) to be zero for
most cases except when L has a nontrivial null space, in which
case it is derived from boundary conditions. The pseudocode of
our method is provided in Algorithm 1.

SThe choice here is restricted to parametric families we can rescale and
simulate.
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n =300
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Fig. 5. Approximations of Brownian motion (solution to Ds = w, with w a
Gaussian white Lévy noise) as n increases.
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Fig. 6. Convergence of E[|(rect(g 1], sn)|"] to E[|(rect|q 1], s)[P] for p =
0.4, h = 0.01, and several symmetric-a-stable Lévy white noises w. The
expectations are estimated with 10,000 trajectories for each n.
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Fig. 7. Kolmogorov-Smirnov (KS) divergence versus the average number of

jumps per bin (Njymps = nh).

E. Correlation Structure

In this section, we show a merit of our method by proving that
the generated approximations preserve the correlation structure
of the target process.

First note that for any white Lévy noise w, we have that

L
Wy — W,
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Algorithm 1: Procedure to Obtain s,,.

Input : Coefficients of P and (), approximation level
n, interval size 7', step size h

Qutput: Vector s,
Compute pr, and the FIR filter r[m)]
Compute 3% = L {p1}
Generate [(11, A1), ..., (Tk, Ak)]
Initialize u,, with zeros as an array of size [7 |
foreach (75, A) do

Find closest grid point igriq = | |

foreach i in {igia, ..., %ia + deg(P)} do

‘ [un]z — [un]i + Ak X ﬂ’i(lh — Tk)

end
end
Recursively apply a reverse filter to u,, following (11)

where the sequence of compound-Poisson innovations (w,, ) ,eN
is defined in (7). We refer to this approximating sequence in
Proposition 2.

Proposition 2: Let w be a Lévy white noise such that
Xrect = (rect|o 1), w) has zero mean and the finite variance
o2 =E[X2.] Let n € N and let w,, be a compound-Poisson
innovation that approximates w as defined in (7). Denoting
Xrect,n = (rect, 1], wn), we have that

E[Xrect,n} = E[Xrect] =0
and

on =E[X]

w rect,n

] = ]E[Xl?ect] = 07211'

The proof can be found in Appendix C. Now, if 5,, = L™ 1w,
is a generalized Poisson process that approximates s = L~ w,
then

E[{1, 50) (2, 50)] = E[{p1, L™ wn) (0o, L™ w,)]
= E[(L™ o1, wa ) (L2, wn)]

oo (L0, L )

oo (L o1, L)

E[{¢1, s)(¢2, 5)].

From (12), we concluded that, more than just approximated, the
correlation structure is preserved exactly in our method.

12)

IV. NUMERICAL EXPERIMENTS

In this section, we validate our approach by conducting sev-
eral numerical experiments. Let us also mention that a Python
library that implements our algorithm can be found online.
Moreover, an accompanying web interface is also designed and
is available.’

Ohttps://github.com/Biomedical-Imaging-Group/Generating-Sparse-
Processes
"https://saturdaygenfo.pythonanywhere.com
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A. Generating Lévy Processes

Among all processes we can generate, those that are solutions
to Ds = w are called Lévy processes when the boundary condi-
tionis s(0) = 0. We showcase in Fig. 3 different Lévy processes
that correspond to several infinitely divisible distributions. For
all four simulations, we took n = 1,000 and h = 0.001. As
we demonstrate in Section IV-C, a reasonable choice for these
parameter is to set nh to be a small integer (here, nh = 1).
The visual appearance of the trajectories matches our expecta-
tions: The trajectory driven by a Gaussian innovation has the
appearance of Brownian motion; the gamma Lévy process is
nondecreasing.

B. Choice of the Operator

Our framework allows for any rational operator of the form
P(D)Q(D) ", so long as deg(P) > deg(Q). In Fig. 4, we
generate trajectories of s that are solution of Ls = w, where
w is a symmetric-a-stable innovation with o = 1.23. Here we
took n = 200 and h = 0.001. We see that, for various choices of
L, the characteristics of the signal are markedly different, which
exhibits the breadth of the modeling framework proposed in [10].

C. Convergence as n Grows

In Fig. 5, we illustrate how an increase in n improves the
approximation. In addition, we have depicted the convergence
of moments in Fig. 6. While the two figures emphasize the effect
of n, they are insufficient to provide a quantitative way to choose
n.

Here, we propose a measure that is based on the statistics
of the generalized increment process. Since the process u,, is
maximally decoupled, we can estimate the distribution of U,, =
(B w,,) from the samples {[u,];}; of the generalized incre-
ment process on the grid and obtain the empirical cumulative
distribution function (CDF) F,,(-) of U,,. We then compare this
empirical function to the reference CDF F(-) of U = (B}, w).
For the comparison, we use the Kolmogorov-Smirnov (KS)
divergence [43] defined as

KS(F,, F) = max |F,(z) — F(z)|.

zeR

We then select n such that the KS-divergence is smaller than
a certain threshold (e.g., smaller than 0.1). The choice of the
threshold is conditioned by the desired numerical precision: The
lower the threshold, the more faithful the trajectories, but the
higher the computational cost of the algorithm.

Intuitively, we expect that it is necessary to have several jumps
in each bin in order to properly approximate the statistics of the
process. The average number of jumps in each bin of length h
is Njumps = nh, so we expect n to be in the order of hL.

In Fig. 7, we have validated this intuition by plotting the KS-
divergence for different values of Njymps in various settings. In
all cases, as Njumps increases, the KS-divergence decreases to a
baseline error value, due to the finite-sample estimation of the
underlying distribution.
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Fig. 9. Average computation time for a trajectory of the solution of (D —

0.5I)s = w, where w a Gaussian white noise. The simulation interval is [0, 1]
with step size h = 0.001.

D. Benefits of Grid-Free Approximations

Recall that a main motivation for our algorithm was to make
it compatible with multi-grid methods. In our approach, the ap-
proximation s, lives off the grid. It is only after the specification
of the step size h that s,, is sampled on a grid. The generation
of the random variables to determine s,, and the sampling on
a grid are completely decoupled. This means that the same
approximation s,, can be viewed through different grids, which
we illustrate in Fig. 8. The solution to (D + 1)?s = w, where w
is a Gaussian white Lévy noise, is first approximated by s19g0-
Then, it is viewed on different regular grids on [0, 1].

E. Computational Efficiency

A crucial component of our approach is the computation of the
generalized increment u in order to obtain the values of s,, on a
grid. This provides a gain in numerical efficiency that can be felt
even on moderately sized simulations. As can be seen in Fig. 9,
using a Green’s function representation requires significantly
more time than using an intermediate B-spline representation.
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V. CONCLUSION

We have described a novel approach for generating sparse
stochastic processes. Our method leverages the properties of
B-splines to guarantee good numerical efficiency. A possible
direction for future work is to provide theoretical guidance on
how one should choose the parameter n in terms of a prescribed
tolerance on the approximation error.

APPENDIX A
GENERALIZED STOCHASTIC PROCESSES

Generalized stochastic processes are random elements of
S'(R) that can be fully specified by their characteristic func-
tionals. Those are infinite-dimensional generalizations of the
characteristic functions of real random variables.

Definition 2: The characteristic functional of the generalized
stochastic process s is the functional Py : S(R) — C such that

Py(p) = E[e/¥9)], forall p € S(R).

It is a continuous, positive-definite functional and P, (0) = 1.

Just as in finite dimensions, 735 contains all the statistical
information of s. In particular, for any test function ¢ € S(R),
the distribution of the real random variable (¢, s) is entirely
determined by 73S as its probability density function p is given
by

p(t) o FH{E ] (1) = F P we) | (1),

where F~! is the inverse Fourrier transform. The construction
of such objects was initiated in [44]. Their use for modeling
sparse signals was introduced in [10].

APPENDIX B
COMPUTING GREEN’S FUNCTIONS

Here, we describe a method to compute Green’s functions of
rational operators. We begin with the intermediate computation

of the Green’s function of L = (D — aI)*. We have that
paslt) = FH b0
- Uw‘*aﬁ
Ly (t) igyye® R(ar) <0
_ +( )(k 1)t‘k ) ( ) = (13)

—14(=1) me"‘t, otherwise

is a Green’s function of L.

Now, recall that rational operators are of the form
L = P(D)Q(D) ", where P and Q are polynomials. Tak-
ing {a1,...,a;,} to be the roots of P with multiplicity
{71, y¥m}, the inverse of the frequency response is given
by

1 Qw)
Lw) [iZi(w— o)
This inverse is known to admit a partial-fraction decomposition
of the form

mo i

i=1 k=1

r‘)

JOJ—OéZ
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for some constants ¢;;, € C. The corresponding Green’s function
is then given by:

pL(t) = F! L(lw) (t)
m Vi 1
= cinF L _7 (t)

mo i
= g E Czkpo/l,
=1 k=1

The Green’s function of L is then be obtained by summing the
Green’s function of the partial fractions given in (13).

APPENDIX C

Proof of Proposition 1: Since w,, is a compound-Poisson
innovation, X, n 1S @ compound-Poisson random variable. It
can be written

ZA

where N is a Poisson random variable with rate A =n and
the A, are independent identically distributed infinitely divisible
random variables with Lévy exponent % f independent from N.
We have by independence of the (A;), that

I'CCt n

n
Xrect,n = E Az =d Xrect

i=1

because the characteristic function of Y ! ; A; is (ew) =
ef. This directly implies that Xiectn and Xy have the same
moments.
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