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Abstract—We study 1D continuous-domain inverse problems for mul-
ticomponent signals. The prior assumption on these signals is that each
component is sparse in a different dictionary specified by a regularization
operators. We introduce a hybrid regularization functional matched to
such signals, and prove that corresponding continuous-domain inverse
problems have hybrid spline solutions, i.e., they are sums of splines
matched to the regularization operators. We then propose a B-spline-
based exact discretization method to solve such problems algorithmically.

The task in an inverse problem is to recover a signal s0 based on M
measurements y ≈ ν(s0) ∈ RM , where the measurement operator
ν models the physics of the acquisition system (forward model).
This is typically achieved by minimizing the distance between the
data y and the measurements ν(s) of the reconstructed signal s
(data fidelity). In order to inject some prior knowledge on the form
of the signal, a regularization term is commonly added to the cost
functional. In recent years, the advent of compressed sensing (CS) has
led to an increasing popularity of sparsity-promoting regularization
norms such as the `1 norm [1], [2] for discrete signals. Then,
the prior assumption is that the signal s0 is sparse in a certain
dictionary basis specified by a regularization operator. However, real-
worlds signals are typically composite and are thus not sparse in a
single dictionary basis. We therefore focus on multicomponent signals
s = s1+ . . .+sD , where each component sd is assumed to be sparse
in a different dictionary basis. This framework is closely related to
the data separation problem [2, Chapter 11], as well as the study of
redundant dictionary bases [3]–[8]. This approach has been applied
successfully in practice for imaging tasks such as morphological
component analysis [9], [10] or image restauration [11].

These works dealing with multicomponent signals focus on purely
discrete models. Yet many real-world signals are continuously de-
fined, and this mismatch leads to discretization errors. This obser-
vation has lead to an abundance of research on continuous-domain
problems with sparsity-promoting norms [12]–[15]. However, to the
best of our knowledge, until our submitted work [16] that we present
here, no such attempts have been made for multicomponent signals.

We focus on generalized total-variation regularization (gTV)

‖f‖TV(N0) := ‖DN0{f}‖M = sup
ϕ∈S(R)
‖ϕ‖∞=1

〈f,DN0{ϕ}〉, (1)

where D is the derivative operator and S(R) is the Schwartz space
on R. It is known that gTV promotes sparsity in the sense that it
leads to reconstructed signals that are sparse polynomial splines of
order N0 [15]. A polynomial spline of order N0 can be expressed as
s(x) = 1

(N0−1)!

∑
k ak(x− xk)

N0−1
+ + p(x) where ak, xk ∈ R and

p is a polynomial of degree no greater than N0 − 1. The sparsity of
a spline refers here to the number of knots xk.

In order to deal with multicomponent signals, we introduce the
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hybrid regularization functional

Rhyb(f) = min
f1,...fD

f1+...+fD=f

D∑
d=1

αd‖fd‖TV
(N0,d) (2)

where the αd control the weight between each regularization term
with α1 + . . .+ αD = 1. This regularization function is well suited
for multicomponent signals whose components sd are sparse in the
dictionaries consisting of sparse polynomial splines of degree N0,d.
We now state our main theoretical result.

Theorem 1. Let 0 < N0,1 < . . . < N0,D and let ν : f 7→ ν(f) ∈
RM be a weak∗-continuous operator1. Assume that ν(p) 6= 0 for all
polynomials of degree less than N0,D (well-posedness assumption).
Then, for any λ > 0, the optimization problem

S = argmin
f

(
‖ν(f)− y‖22 + λRhyb(f)

)
(3)

has a solution s of the form s = s1 + . . . + sD + p, where p is
a polynomial of degree no greater that N0,D − 1, and the sd are
polynomial splines of the form

sd(x) =
1

(N0,d − 1)!

Kd∑
k=1

ak,d(x− xk,d)
N0,d−1

+ , (4)

where ak,d, xk,d ∈ R. Moreover, the sparsity indices Kd verify K1+
· · ·+KD ≤M .

Theorem 1 was proved in [16] and extends the main result of
[15]. It states that Problem (3) has a sparse hybrid spline solution,
i.e., a sum of different splines. A remarkable feature of Theorem 1
is that the number of components D does not affect the sparsity of
the solution, which is bounded by the number of measurements M .

In order to discretize Problem (3), we restrict its search space
to the sum of spaces of splines with knots on a grid, i.e., {(· −
xn)

N0,1−1
+ }Nn=1+ . . .+{(·−xn)

N0,D−1

+ }Nn=1+{(·)n}
N0,D−1

n=0 where
the xn lie on a uniform grid. This approach has many appealing
properties: firstly, Theorem 1 guarantees that the search space is
matched to the form of the solution (4). Next, critically, it leads
to an exact discretization in the continuous domain: in the chosen
search space, there is no discretization error. Finally, it allows for
the use of B-spline as basis functions, which have compact support
and thus lead to well-conditioned problems. These problems are then
solved with a multiresolution algorithm introduced in [17] that uses
a combination of ADMM [18] and the simplex algorithm [19].

We show some examples of our algorithm that demonstrate its
pertinence for D = 2 components. Figure 1 is a curve fitting
example, where the measurements are samples of the signal, i.e.,
ν(f) = (f(x1), . . . , f(xM )) where the xm are the sample locations.
We can see that he reconstructed signal satisfactorily interpolates the
data points. In Figure 2, the measurements are samples of the Fourier
transform of the signal. We notice that the reconstructed signal is very
close to the ground truth signal s0.

1This is a mild technical assumption. We refer to [15] for the definition.
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Fig. 1: Curve fitting for L1 = D, L2 = D2, M = 200, λ = 1.3,
α1 = 0.95, α2 = 0.05. This figure is taken from [16].
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Fig. 2: Reconstruction result with noiseless Fourier measurements
for L1 = D, L2 = D4, M = 30, λ = 10−15, α1 = 1 − 5 × 10−5,
α2 = 5× 10−5. This figure is taken from [16].
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