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ABSTRACT

Scanning transmission X-ray microscopy (STXM) produces images
in which each pixel value is related to the measured attenuation of
an X-ray beam. In practice, the location of the illuminated region
does not exactly match the desired uniform pixel grid. This error
can be measured using an interferometer. In this paper, we propose
a spline-based reconstruction method for STXM which takes these
position errors into account. We achieve this by formulating the re-
construction problem as a continuous-domain inverse problem in a
spline basis, and by using Hessian nuclear-norm regularization. We
solve this problem using the standard ADMM algorithm, and we
demonstrate the pertinence of our approach on both simulated and
real STXM data.

Index Terms— STXM, inverse problems, splines, interpolation,
Hessian nuclear-norm regularization

1. INTRODUCTION

Scanning transmission X-ray microscopy (STXM) is a non-invasive
microscopy technique that uses X-ray spectroscopy to generate con-
trast based on near-edge X-ray absorption fine structure (NEXAFS)
spectroscopy or associated dichroism to quantitatively map material
properties such as chemical oxidation state, molecular structure and
orientation, and magnetisation at the nanoscale [1]. A Fresnel zone
plate is used to focus the X-ray beam onto a small region of the sam-
ple (a pixel), and the transmitted beam intensity is measured while
the sample is raster-scanned in a rectangular array in order to pro-
duce a 2D image. With recent advances in the design of the zone
plate, X-ray spot sizes well below 10 nm can be achieved [2]. How-
ever, demonstrating STXM images with a resolution below 10 nm
also requires similarly high precision in positioning the X-ray beam
on the sample, which is challenging due to vibrations in the instru-
ment. This imprecision leads to an off-the-grid scanning pattern: in
fact, when measuring images close to the resolution limit, the dis-
placement error can easily be larger than the spacing between the
array points. This error can be measured using a heterodyne laser
interferometer, with spatial resolution 0.3 nm. The current state-of-
the-art resolution of 7 nm for STXM is thus achieved by regridding
the measured intensity values using linear interpolation [3].

In this work, we propose a more elaborate interpolation method
using a continuous-domain inverse problem formulation. For dis-
cretization purposes, we reconstruct the image as a parametric con-
tinuous 2D function using a spline-based generalized interpolation
model [4]. We then formulate the image reconstruction task as an
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optimization problem over the spline coefficients so as to minimize
the discrepancy between the measured data and the reconstructed
images.

In order to improve the robustness of the reconstruction, we add
a regularization term to the cost functional. In effect, this enables
us to reduce the effect of the noise in the measurements, as well as
the uncertainty in the interferometer measurements. Our algorithm
involves a second-order Hessian nuclear-norm regularization, which
has been successfully applied to many imaging problems [5-7]. The
key feature of this regularization is that it enjoys many advantages
of the popular total-variation (TV) semi-norm [8] such as convexity
translation, and scale invariance, without suffering from the staircas-
ing effect which typically plagues TV-based methods. As opposed to
the purely discrete framework of [5], we compute the Hessian in the
continuous domain, which yield a new brand of splines that we coin
Hessian splines. The resulting optimization problem is solved using
the standard ADMM algorithm [9]. We illustrate the effectiveness
of our approach on a simulated ground-truth image, by showing that
it outperforms linear interpolation used in state-of-the-art STXM re-
constructions. We also apply our algorithm to real high-resolution
STXM data. Note that our approach is pertinent for any imaging
modality with nonuniform measurements in which the displacement
error is nonnegligible.

2. IMAGING MODEL

In this work, we view 2D images as continuous-domain functions
f:Q — R, where Q C R?is the (bounded) image domain. Without
loss of generality, we assume that the pixels are located on the integer
grid, i.e., QN Z2.

2.1. Reconstruction Basis

Following the generalized interpolation approach of [4], we
parametrize the reconstructed signal f : @ — R in a spline basis
as

fl@) =Y clklp(x — k), 0

where = (z1,32) € R?, (c[k])req, are the spline coefficients
and ¢ is a suitable spline generating function. The domain Q, =
{k € Z* : Supp(p(- — k)) NQ # 0} simply selects the integer grid
points k such that the support of the corresponding basis function
(- — k) intersects the image domain €. In this work, we choose
the tensor-product cubic B-spline ¢ () = 8%(z1)3>(x2), where the



univariate cubic B-spline is defined as
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Our choice of cubic B-splines is motivated by their simplicity and
their popularity in applications [10-13], in part due to their short
support. Moreover, they are twice differentiable, which is required
to compute the Hessian of f. Since the basis function ¢ is supported
in a square of size 4 X 4, there is a finite number of spline coefficients
c|k] such that k € Q. We denote these coefficients by ¢ € RY,
where N = #, (the cardinality of the set).

2.2. Forward Model

In STXM imaging, the task is to reconstruct a continuous-domain
function fo : 2 — R (the ground-truth image) based on the mea-
sured data y € RM, where M is the number of measurements, i.e.,
pixels. The data are acquired via the forward model A : f +—
(FEY), ..., f#™) € RM, where t™ = (t7",t3") € R? are the
sampling locations measured by the interferometer. The data is cor-
rupted by some additive noise . € RM, so thaty = A{fo} + n.

Using the parametrization (1) and due to the linearity of A, we
specify the discrete forward model by the matrix A € R™*Y such
that Ac = A{f}, where the vector ¢ € R collects the spline co-
efficients of f. Note that if the pixel grid used for the reconstruction
is the same as the one intended by the hardware (which is a natu-
ral choice), N is slightly larger than M. This is due to the fact that
the length of the support of 3% is larger than 2, which leads to Q.
containing points outside of the image domain near the boundaries,
i.e., Q, ¢ €. Since there are more unknowns than data points, the
problem is thus ill-posed.

2.3. Regularization

In order to increase the robustness of the reconstruction and to han-
dle its aforementioned ill-posedness, we add a Hessian nuclear-norm
regularization term to the cost function. This regularization was first
introduced in [5], which proposes a discrete version of the functional
R(f) = [, IB{f}()|l«da, where H{f}(x) is the Hessian ma-
trix of f at the location @, and || - ||« is the nuclear norm (also
known as the trace or 1-Schatten norm). The latter is defined as
M. =3, |0(M)ql|, where the o (M) 4 are the singular values of
the matrix M. The choice of a second-order differential operator —
the Hessian —, as opposed to first-order for TV regularization, is de-
signed to promote piecewise-linear reconstructions. Indeed, planes
(i.e., first-order polynomials) induce no regularization cost as their
Hessian is zero.

Here, we adapt the purely discrete setting of [5] to our
continuous-domain representation (1). More precisely, instead of
discretizing the Hessian with finite differences, we compute the con-
tinuous Hessian operator in terms of the spline coefficients ¢ of
f. However, due to the nonlinearity of the singular value decom-
position, computing the analytical expression of R(f) as a func-
tion of the coefficients ¢ proves challenging. However, comput-
ing the Hessian of f on the integer grid can be done efficiently
with digital filtering using the B-spline kernels b[k] = (8°(k))rez.
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where k € Z2, and the h; ;[k] are the tensor-product digital filters
hialk] = b3 [k1]blka], ha2[k] = b [k1]6™) (k2] and hoo[k] =
blk1]b™ [ks]. Here, % denotes the 2D discrete convolution. We then
approximate the integral with a sum over the pixel values, which
yields our discretized regularization functional

R(e)= Y D lo(Helk])dl

kcQnNz2 d=1
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Note that we only consider the pixels inside the image domain {2
instead of €2, which contains additional grid points near the bound-
aries. This avoids unwanted boundary effects, due to the fact that the
reconstructed signal (1) goes to zero near the boundaries. In particu-
lar, planes (i.e., first-order polynomials) are not penalized using (4),
which is a key desired feature of Hessian nuclear-norm regulariza-
tion.

2.4. Positivity

Since STXM image represent photon counts which are positive by
nature, the reconstructed image should satisfy f(x) > 0 for any
x € ). This positivity constraint does not readily translate into a
constraint on the coefficients ¢ of f — for instance, we do not nec-
essarily have ¢, > 0 for all n. A simple and easily-computable
surrogate is to impose the positivity on the pixel locations N Z2.
As before, this can be achieved with digital filtering with f(k) =
(cx (b®b))[k], where (b® b)[k] = b[k1]b[k2] is the tensor-product
B-spline filter. We thus impose the positivity constraint on the co-
efficients k € Q N Z2, which can be written in terms of the matrix
B e RP*N a5

Be = (fIk]keanz = (c* (b @ b)[K]) )

keonz2’
where P = #(Q N Z?) is the number of pixels. Note that we typi-
cally have P = M, but this is not a requirement of our method.

3. INVERSE PROBLEM FORMULATION AND
ALGORITHM

We now formulate the image reconsctruction task as an optimiza-
tion problem over the spline coefficients c. By piecing together the
elements of Section 2, we get the following problem

ce argmin{HAc—yH% + AR(¢) —&-iZO(Bc)}, (6)
ceRN
where A > 0, and ¢ is the indicator function defined by
0 ifVn, z, >0
. _ , > 7
iz0(@) {Jroo otherwise. @

The first term in (6) is known as the data fidelity term, and
ensures that the reconstructed signal conforms with the measured
data y. The second term is the Hessian nuclear-norm regularization,
which tends to promote piecewise-linear reconstructed images. The
balance between these two terms is controlled by the regularization
parameter A > 0, which should be tuned according to the noise level



(a) Ground-truth image. (b) Hessian splines

(SNR = 16.21 dB, A = 0.0079).

(c) Linear interpolation
(SNR = 14.89 dB).

(d) Hessian splines with
uncorrected measurements
(SNR = 6.33 dB, A = 0.079).

Fig. 1: Simulations on a star-like sample.

n and the error in the forward model, i.e., on the sampling locations
t"". Finally, the last term in (6) guarantees that the reconstructed im-

age f(x) = Zkenq, c[k]p(x — k) has positive values at the pixel
locations & € QN Z>2.

Despite its somewhat daunting appearance, problem (6) is a con-
vex problem that can be solved with standard proximal algorithms.
This is due to the availability of proximal operators for the sum of
nulcear norms [5] and for the indicator function 7>¢. We solve it by
applying the alternating direction method of multipliers (ADMM)
[9], which we implemented in Matlab using GlobalBiolm [15], an
inverse-problem library developed at the Biomedical Imaging Group
at EPFL. The linear step of ADMM is solved using an inner-loop
conjugate gradient (CG) algorithm. Thanks to the modularity of
GlobalBiolm, the only block that required implementation was the
continuous Hessian operator (H(k))recq,, and its adjoint operator.

Although the theoretical convergence speed of ADMM is rather
slow — O(k), where k is the number of iterations —, in practice,
few iterations are necessary to obtain a decent accuracy in few iter-
ations. This is all the more true in STXM due to the availability of
a good warm-start initialization for ADMM. The latter can be ob-
tained by computing the spline coefficients of the uncorrected image
(i.e., assuming that the measurements are taken on the desired pixel
grid) using inverse filtering.

4. EXPERIMENTAL RESULTS

4.1. Simulated Data

In order to assess the pertinence of our Hessian-spline framework,
we apply our algorithm to a simulated continuous-domain ground-
truth image fo : R? — [0, 1], and we evaluate its reconstruction
performance in terms of signal-to-noise ratio (SNR). For the ground
truth, we use the star-like sample shown in Figure 1 (a), taken from

201

GlobalBiolm. This sample has high-frequency content at the center
of the star and lower frequencies towards the end of the branches,
and is thus a good benchmarking example. In order to better conform
with real STXM images, we add a constant background of 0.1, and
we rescale the image so that it ranges from 0.1 to 1.

For the forward model A, the sampling pattern t™, m =
1,... M is taken from the real STXM data described in Section 4.2.
Note that this pattern is quite far from being uniform: the average
displacement with respect to the desired pixel grid is 2.7 nm, which
is larger than the pixel size (1 nm). The image size is 200 x 200,
which yields M = 40000 measurements. The latter are corrupted
by a Poisson noise term n € R, which is applied to the rescaled
ground truth image such the maximum pixel value corresponds to
the maximum number of photon counts in the real STXM data. We
thus have measurements y = A{fo} + n.

We then apply our Hessian-spline algorithm to solve problem
(6). The problem dimension is N = 42436, which leads to reason-
able computations times (in the order of 30 seconds on commodity
hardware). For ADMM, we use 5 inner CG iterations . We op-
timize the regularization parameter A using grid search in order to
maximize the SNR of the reconstructed image with respect to the
ground truth fo. The reconstructed image is shown in Figure 1 (b),
and achieves an SNR of 16.21 dB with a regularization parameter
A = 0.0079.

Next, we compare the performance of Hessian splines with lin-
ear interpolation, which is used for achieving the state-of-the-art 7
nm resolution in STXM [3], using the Matlab function “scattered-
Interpolant”. This method also uses the knowledge of the sampling
locations ¢™, but it does not apply regularization and is therefore
more sensitive to noise. The reconstruction image is shown in Fig-
ure 1 (c), and achieves an SNR of 14.89 dB.

Finally, we show the effect of the sampling location error by run-
ning our algorithm with an uncorrected forward model Ap;ix, which
does not take into account the sampling locations t™* measured by
the interferometer. As before, we optimize the regularization param-
eter using grid search, which yields the reconstructed image shown
in Figure 1 (d) and achieves an SNR of 6.33 dB with a regularization
parameter A = 0.079. We see that the reconstruction fails dramat-
ically, which indicates that using the corrected forward model A is
critical in order to achieve good reconstruction results.

4.2. Real Data

We now apply our Hessian spline algorithm to real high-resolution
STXM data provided by the Paul Scherrer Institute. The sample
being imaged is a grating structure that is part of a Fresnel zone
plate. The image size is 200 x 200 pixels, and the pixel size is 1 nm.

In Figure 2 (a), we show the uncorrected image, assuming that
the measurements are taken on the desired pixel grid. Although the
effect of the displacement errors is not as glaring as in the simulation
in Figure 1 (d), they lead to noticeable jitter artefacts.

In Figure 2 (b), we show our reconstruction results using the
corrected sampling locations t" and the Hessian spline framework
with a regularization parameter A = 5. Although the reconstruction
performance cannot be evaluated quantitatively due to the absence of
a ground-truth image, we notice that the jitter artefacts as well as the
noise are attenuated, due to the use of the corrected forward model
A and the regularization respectively.
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(a) Uncorrected image.

4000

3500

3000

2500
(b) Hessian splines reconstruction with A = 5.

Fig. 2: Real STXM data of a grating structure.

5. CONCLUSION

We introduced a new framework, coined as Hessian splines, for re-
constructing STXM images. This framework takes into account the
sampling location errors (i.e., the fact that the measurements are not
acquired on a uniform pixel grid), which are measured using an in-
terferometer. We formulated the reconstruction task as a continuous-
domain inverse problem with Hessian nuclear-norm regularization.
We then discretized the problem in a cubic spline basis, and solved
it using ADMM. On the experimental side, we evaluated our method
on simulated data, and showed that it outperforms linear interpola-
tion that is used in state-of-the-art high-resolution STXM. We also
applied our algorithm to real STXM data.
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