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ABSTRACT We present a novel framework for the reconstruction of 1D composite signals assumed to
be a mixture of two additive components, one sparse and the other smooth, given a finite number of linear
measurements. We formulate the reconstruction problem as a continuous-domain regularized inverse problem
with multiple penalties. We prove that these penalties induce reconstructed signals that indeed take the desired
form of the sum of a sparse and a smooth component. We then discretize this problem using Riesz bases,
which yields a discrete problem that can be solved by standard algorithms. Our discretization is exact in
the sense that we are solving the continuous-domain problem over the search space specified by our bases
without any discretization error. We propose a complete algorithmic pipeline and demonstrate its feasibility
on simulated data.

INDEX TERMS Composite signals, total variation, Tikhonov regularization, B-splines.

I. INTRODUCTION
In the traditional discrete formalism of linear inverse prob-
lems, the goal is to recover a signal c0 ∈ RN based on some
measurement vector y ∈ RM . These measurements are typi-
cally acquired via a linear operator H ∈ RM×N that models
the physics of our acquisition system (forward model), so that
Hc0 ≈ y. The recovery is often achieved by solving an opti-
mization problem that aims at minimizing the discrepancy be-
tween the measurements Hc of the reconstructed signal c and
the acquired data y. This data fidelity is measured with a suit-
able convex loss function E : RM × RM → R, the prototyp-
ical example being the quadratic error E (x, y) = 1

2‖x − y‖2
2.

A regularization term is often added to the cost functional,
which yields the optimization problem

arg minc∈RN

⎧⎪⎨⎪⎩E (Hc, y)︸ ︷︷ ︸
Data fidelity

+ λR(Lc)︸ ︷︷ ︸
Regularization

⎫⎪⎬⎪⎭ , (1)

where R is the regularization functional, L specifies a suit-
able transform domain, and λ > 0 is a tuning parameter that

determines the strength of the regularization. The use of regu-
larization can have multiple motivations:

1) to handle the ill-posedness of the inverse problem,
which occurs when different signals yield identical mea-
surements;

2) to favor certain types of reconstructed signal (e.g.,
sparse or smooth) based on our prior knowledge;

3) to improve the conditioning of the inverse problem and
thus increase its numerical stability and robustness to
noise.

Historically, the first instance of regularization dates back
to Tikhonov [1] with a quadratic regularization functional
R = ‖ · ‖2

2. Tikhonov regularization constrains the energy of
Lc which, when L is a finite-difference matrix, leads to a
smooth signal c. Tikhonov regularization has the practical
advantage of being mathematically tractable which leads to a
closed-form solution. More recently, there has been growing
interest in �1 regularization R = ‖ · ‖1, which has peaked in
popularity for compressed sensing (CS) [2]–[5]. With �1 reg-
ularization, the prior assumption is that the transform signal
Lc0 is sparse, meaning that it has few nonzero coefficients:
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indeed, the �1 norm can be seen as a convex relaxation of the
�0 “norm,” which counts the number of nonzero entries of a
vector. The sparsity-promoting effect of �1 regularization is
well understood and documented [6]–[8]. It is now generally
considered to be superior to Tikhonov regularization for most
applications [9]. Moreover, despite its non-differentiability,
numerous efficient proximal algorithms based on the prox-
imity operator of the �1 norm have emerged to solve �1-
regularized problems [10]–[13].

A. DISCRETE INVERSE PROBLEMS FOR COMPOSITE
SIGNALS
Despite their success, �1 and �2 regularization methods are too
simple to model many real-world signals. In this paper, we
investigate composite models of the form s = s1 + s2 where
the two components have different characteristics. More pre-
cisely, s1 is assumed to be sparse in some given domain and
is treated with �1 regularization, while s2 is assumed to be
smooth and is treated with �2 regularization. In discrete set-
tings, a natural way of reconstructing such signals is to solve
the optimization problem

min
c1,c2∈RN

{
E (H(c1 + c2), y) + λ1‖L1c1‖1 + λ2‖L2c2‖2

2

}
,

(2)

where c1, c2 are the two components of the signal c = c1 +
c2, λ1, λ2 > 0 are tuning parameters, L1 ∈ RN×N is a spar-
sifying transform for c1, and L2 ∈ RN×N is a low-energy-
promoting transform for c2. Amongst others, this modeling
is considered in [14]–[18].

B. CONTINUOUS-DOMAIN FORMULATION
Until now, we have focused on the discrete setting, as it consti-
tutes the vast majority of the inverse-problem literature for the
obvious reason of computational feasibility. However, most
real-world signals are inherently continuous. Therefore, when
feasible, to formulate the inverse problem in the continuous
domain is a natural and desirable objective.

In this work, we adapt the discrete approach of (2) to 1D
continuous-domain composite signals by solving an optimiza-
tion problem of the form

min
s1,s2

{
E (ν(s1 + s2), y) + λ1‖L1{s1}‖M + λ2‖L2{s2}‖2

L2

}
,

(3)

where s1, s2 are the two components of the signal s =
s1 + s2 : R → R, ν = (ν1, . . . , νM ) : s �→ ν(s) ∈ RM is the
continuous-domain linear forward model, and L1, L2 are suit-
able continuously defined regularization operators. Typical
choices are Li = DN0,i for i ∈ {1, 2}, where D is the deriva-
tive operator and N0,i the order of the derivative. The reg-
ularization norm ‖ · ‖M is the total-variation (TV) norm for
measures, which is the continuous counterpart of the discrete
�1 norm [19]–[21]. We refer to this term as the generalized
TV (gTV) regularizer due to the presence of the operator L1.
Finally, ‖ · ‖L2 is the usual norm over the space L2(R) of
signals with finite energy; we refer to the corresponding term

as the generalized Tikhonov (gTikhonov) regularizer, which
promotes smoothness in combination with the operator L2.

C. REPRESENTER THEOREMS AND DISCRETIZATION
A classical way of discretizing a continuous-domain problem
is to reformulate it as a finite-dimensional one by relying on
a representer theorem that gives a parametric form of the so-
lution. Prominent examples include representer theorems for
problems formulated over reproducing-kernel Hilbert spaces
(RKHS), which are foundational to the field of machine learn-
ing [22], [23]. As demonstrated in [24, Theorem 3], the mini-
mization problem (3) over the component s2 (with a fixed s1)
— i.e., gTikhonov regularization — falls into this category:
the representer theorem states that there is a unique solution
of the form

s∗
2(x) = p2(x) +

M∑
m=1

am,2hm(x), (4)

where the additional component p2 lies in the null space of
L2 (i.e., L2{p2} = 0), hm is a (typically quite smooth) kernel
function that is fully determined by the choice of νm and L2,
and am,2 ∈ R are expansion coefficients. Therefore, to solve
the continuous-domain problem, one need only optimize over
the am,2 coefficients and the null-space component p2 which
lives in a finite-dimensional space. This leads to a standard
finite-dimensional problem with Tikhonov regularization.

Concerning the minimization over the component s1 (gTV
regularization), several representer theorems give a parametric
form of a sparse solution in different settings [20], [25]–[27],
the most general one that includes ours being [28]. The more
specific case of our setting is tackled by [24, Theorem 4],
which states that there is an L1-spline solution of the form

s∗
1(x) = p1(x) +

K∑
k=1

ak,1ρL1 (x − xk ), (5)

where ak,1, xk ∈ R, ρL1 is a Green’s function of L1 (i.e.,
L1{ρL1} = δ, where δ is the Dirac impulse), K is the number
of atoms of s1 which is bounded by K ≤ (M − N0,1), N0,1

being the dimension of the null space of L1, and p1 lies
in the null space of L1. For example, when L1 = DN0,1 , s1

is a piecewise polynomial of degree (N0,1 − 1) with smooth
junctions at the knots xk . These representer theorems have
paved the way for various exact discretization methods. In the
gTikhonov case, one can optimize over the am,2 coefficients
in (4) directly [24]. For the gTV case (5), grid-based tech-
niques using a well-conditioned B-spline basis [29] as well as
grid-free techniques [30] have been proposed.

D. OUR CONTRIBUTION
In this work, we show that the representer theorems presented
in the previous section can be combined into a composite one
when dealing with Problem (3). More specifically, we prove
that there exists a solution to (3) of the form s∗

1 = s∗
1 + s∗

2 such
that s∗

1 is of the form (5) and s∗
2 is of the form (4): a “sparse

plus smooth” solution. Building on this representation, we
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propose an exact discretization scheme. Both components si

for i ∈ {1, 2} are expressed in a suitable Riesz basis as si =∑
k ci[k]ϕi,k , where ci[k] are the coefficients to be optimized.

This leads to an infinite-dimensional optimization problem
reminiscent of the infinite-dimensional compressed sensing
framework of Adcock and Hansen [31] and the wavelet-based
model of Daubechies et al. [32]. However, these frameworks
differ from our original Problem (3) in that their native spaces
admit a countable basis which leads to a more straighforward
discretization process.

To solve this infinite-dimensional problem numerically, we
cast it as a finite-dimensional problem under some mild as-
sumptions. This requires a careful handling of the boundaries
of our interval of interest. In our implementation, we choose
basis functions ϕ1,k = βL1 (· − k) and ϕ2,k = βL∗

2L2 (· − k),
where βL is the B-spline for the operator L. B-splines are
popular choices of basis functions [33]–[35], in large part due
to their minimal-support property. Indeed, βLi has finite sup-
port when Li = DN0 , and it is the shortest-support generating
function of the space of uniform Li splines [36]. We show
that optimizing over the spline coefficients leads to a discrete
problem similar to (2) of the form

min
(c1,c2)∈RN1 ×RN2

{E (H1c1 + H2c2, y) + λ1‖L1c1‖1

+λ2‖L2c2‖2
2

}
, (6)

where Hi ∈ RM×Ni and Li ∈ RPi×Ni for i ∈ {1, 2}. This dis-
cretization is exact in the sense that it is equivalent to the
continuous problem (3) when each component si lies in the
space generated by the basis functions {ϕi,k}k∈Z. This is a
consequence of our informed choice of these basis functions
ϕi,k . Moreover, the short support of the B-splines leads to
well-conditioned Hi matrices and, thus, to a computationally
feasible problem.

E. RELATED WORKS
The use of multiple regularization penalties is quite common
in the literature. However, in most cases, each penalty is
applied to the full signal instead of a component-wise [37]–
[42]. A prominent example of such an approach is the elas-
tic net [43], which is widely used in statistics. The spirit of
these approaches is however quite different from ours: the
reconstructed signal is encouraged to satisfy different priors
simultaneously. Conversely, in (2), each component satisfies
different priors independently from the others, which will give
very different results.

Closer to our framework is the popular low-rank plus sparse
matrix decomposition model [44], which imposes some form
of sparsity on both components.

The model of Meyer [45] and its generalization by Vese and
Osher [46], [47] follow the same idea as Problem (3), with
the important difference that they use calculus-of-variation
techniques to solve it. There is a connection as well with the
Mumford-Shah functional [48], which is commonly used to

segment an image in piecewise-smooth regions. The main dif-
ference lies in the fact that the optimization is not performed
over the different components of the signal, but over the region
boundaries. Another difference is that these models assume
that one has full access to the noisy signal over a continuum,
whereas (3) assumes that we only have access to some discrete
measurements specified by the forward model ν.

F. OUTLINE
In Section II, we give the necessary mathematical prelimi-
naries to formulate our optimization problem. In Section III,
we formulate the continuous-domain problem and present our
representer theorem, which is our main theoretical result. In
Section IV, we explain our discretization strategy, which relies
on the selection of suitable Riesz bases. Finally, in Section VI,
we present experiments on simulated data.

II. PRELIMINARIES
In this section, we provide the mathematical background
needed for this manuscript, which includes tools from func-
tional analysis, particularly distribution theory. We refer to the
textbook [49] for more in-depth background on this topic.

A. OPERATORS AND SPLINES
The crucial elements of our formulation are the regularization
operators L1 and L2. In this section, we specify which type of
operators are suitable in our framework.

Let S′(R) denote the space of tempered distributions, de-
fined as the dual of the Schwartz space S(R) of infinitely
smooth functions on R whose successive derivatives are
rapidly decaying. Let F be the generalized Fourier transform
with f̂ � F{ f }. Then, it is a standard result in distribution the-
ory that the frequency response L̂ = F{L{δ}} of an ordinary
differential operator L : S′(R) → S′(R) is a slowly increas-
ing smooth function L̂ : R → C [49, Chapter 7, §5]. More-
over, for any f ∈ S′(R), we have that F{L{ f }} = L̂ f̂ ∈ S′(R).
Next, we require L to be spline-admissible in the sense of
Definition 1.

Definition 1 (Spline-admissible operator): A continuous
linear shift-invariant operator L : S′(R) → S′(R) is spline-
admissible if it verifies the following properties:
� there exists a function of slow growth ρL : R → R (the

Green’s function of L) that satisfies L{ρL} = δ;
� its null space NL = { f ∈ S′(R) : L{ f } = 0} has finite

dimension N0.
The prototypical example of a spline-admissible opera-

tor is the multiple-order derivative L = DN0 for N0 ≥ 1. Its
causal Green’s function is the one-sided power function ρL =

x
N0−1
+

(N0−1)! , where x+ = max(0, x). The null space of L is the
space of polynomials of degree less than N0.

A spline-admissible operator L specifies the family of L-
splines provided in Definition 2.

Definition 2 (Nonuniform L-spline): Let L be a spline-
admissible operator in the sense of Definition 1. A nonuniform
L-spline with K knots x1 < · · · < xK is a function s : R �→ R
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that verifies

L{s}(x) =
K∑

k=1

akδ(x − xk ), (7)

where ak ∈ R is the amplitude of the kth singularity. The
weighted sum of Dirac impulses in (7) is known as the in-
novation of s. The spline s can equivalently be written as

s(x) = p(x) +
K∑

k=1

akρL(x − xk ), (8)

where p ∈ NL.
For example, the operator L = DN0 leads to the well-known

polynomial splines, which are piecewise polyomials of degree
(N0 − 1) and of differentiability class CN0−2.

B. NATIVE SPACES
1) SPARSE COMPONENT
The other crucial elements of our framework are the na-
tive spaces for each component. Let M(R) be the space
of bounded Radon measures, which is known by the Riesz-
Markov theorem [50, Chapter 6] to be the continuous dual
of C0(R). The latter is the space of continuous functions
vanishing at infinity, which is a Banach space when equipped
with the supremum norm ‖ · ‖∞. The sparsity-promoting reg-
ularization norm ‖ · ‖M is defined for a tempered distribution
w ∈ S′(R) as

‖w‖M � sup
ϕ∈S(R),‖ϕ‖∞=1

〈w, ϕ〉. (9)

Practically, the two critical features of the ‖ · ‖M norm are the
following:

1) it generalizes the L1 norm in the sense that ‖w‖M =
‖w‖L1 for any w ∈ L1(R);

2) the ‖ · ‖M norm of a weighted sum of Dirac impulses is
‖∑k akδ(· − xk )‖M =∑k |ak|.

Accordingly, the native space for s1 in (3) is defined as

ML1 (R) = {s ∈ S′(R) : L1{s} ∈ M(R)}, (10)

which is a Banach space when equipped with the direct-sum
topology. It is also the largest space for which the regulariza-
tion is well-defined. We refer to [51] for technical details on
the construction of ML1 (R).

2) SMOOTH COMPONENT
The regularization norm ‖ · ‖L2 for the smooth component s2

in (3) is defined over the Hilbert space L2(R). The correspond-
ing native space of the smooth component s2 is the Hilbert
space

HL2 (R) = { f ∈ S′(R) : L2{ f } ∈ L2(R)}. (11)

III. CONTINUOUS-DOMAIN INVERSE PROBLEM
When the intersection N0 = NL1 ∩ NL2 of the null spaces
of our two native spaces is non-trivial, we need to specify
boundary conditions on one of the two spaces to ensure the

well-posedness of our optimization problem. This is done
by introducing a biorthogonal system (φ0, p0) for N0 in the
sense of [20, Definition 3]. An example of a valid choice is
given in (56) in Appendix B. The search space with boundary
conditions φ0 is then given by

ML1,φ0 (R) = { f ∈ ML1 (R) : φ0( f ) = 0}. (12)

We now present in Theorem 1 our problem formulation to
reconstruct sparse-plus-smooth composite signals. This repre-
senter Theorem gives a parametric form of a solution of our
optimization problem; the proof is given in Appendix A.

Theorem 1 (Continuous-domain representer theorem): Let
E : RM × RM → R be a nonnegative, coercive, proper, con-
vex, and lower-semicontinuous functional. Let L1, L2 be
spline-admissible operators in the sense of Definition 1
and let ν = (ν1, . . . , νM ) be a linear measurement operator
composed of the M linear functionals νm : f �→ νm( f ) ∈ R
that are weak∗-continuous over ML1 (R) and over HL2 (R).
We assume that Nν ∩ (NL1 + NL2 ) = {0}, where Nν is the
null space of ν (well-posedness assumption). Then, for any
λ1, λ2 > 0, the optimization problem

S =
⎧⎨⎩arg mins1∈ML1,φ0 (R)

s2∈HL2 (R)

J(s1, s2)

⎫⎬⎭ with

J(s1, s2) = E(ν(s1 + s2), y)

+ λ1‖L1{s1}‖M + λ2‖L2{s2}‖2
L2

(13)

has a solution (s∗
1, s∗

2 ) ∈ S with the following components:
� the component s∗

1 is a nonuniform L1-spline of the form

s∗
1(x) = p1(x) +

K1∑
k=1

a1,kρL1 (x − xk ) (14)

for some K1 ≤ (M − N0,1), where p1 ∈ NL1 , and
a1,k, xk ∈ R;

� the component s∗
2 is of the form

s∗
2(x) = p2(x) +

M∑
m=1

a2,mhm(x), (15)

where hm(x) = (νm ∗ F−1{ 1
|̂L2|2 })(x), p2 ∈ NL2 , a2,k ∈

R, and where
∑M

m=1 a2,m〈q2, νm〉 = 0 for any q2 ∈ NL2 .
Moreover, for any pair of solutions (s∗

1, s∗
2 ), (s̃∗

1, s̃∗
2 ) ∈ S, s∗

2
and s̃∗

2 differ only up to an element of the null space NL2 , so
that (s∗

2 − s̃∗
2 ) ∈ NL2 .

A pleasing outcome of Theorem 1 is that it combines The-
orems 3 and 4 of [24] into one. There is, however, an added
technicality due to the boundary conditions φ0. The latter are
necessary to ensure the well-posedness of Problem (13). Oth-
erwise, for any (s∗

1, s∗
2 ) ∈ S and p ∈ N0, we would have that

(s∗
1 + p, s∗

2 − p) ∈ S which would imply that S is unbounded.
Note, however, that these conditions do not restrict the search
space, since ML1,φ0 (R) + HL2 (R) = ML1 (R) + HL2 (R).
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IV. EXACT DISCRETIZATION
In order to discretize Problem (13), we restrict the search
spaces ML1,φ0 (R) and HL2 (R). The standard approach to
achieve this is to choose a sequence of appropriate basis func-
tions {ϕi,k}k∈Z that span the reconstruction spaces

Vi(R) =
{∑

k∈Z

ci[k]ϕi,k : ci ∈ Vi(Z)

}
(16)

for i ∈ {1, 2} that are subject to the constraints V1(R) ⊂
ML1,φ0 (R) and V2(R) ⊂ HL2 (R). These continuous spaces
are linked to discrete spaces Vi(Z), the choices of which will
be made explicit in (20) and (27). More precisely, there is a
one-to-one mapping between them using the basis functions
ϕi,k .

A. RIESZ BASES AND B-SPLINES
For numerical purposes, a desirable property is that our basis
functions satisfy the Riesz property. Riesz bases are highly
important concepts in that they generalize orthonormal bases,
while leaving more flexibility for other desirable properties
such as short support [52].

Definition 3 (Riesz basis): A sequence of functions
{ϕk}k∈Z with ϕk ∈ L2(R) is said to be a Riesz basis if there
exist constants 0 < A ≤ B such that, for any c ∈ �2(Z), we
have that

A‖c‖�2 ≤
∥∥∥∥∥∑

k∈Z

c[k]ϕk

∥∥∥∥∥
L2

≤ B‖c‖�2 . (17)

Popular examples of Riesz bases are B-spline bases, which
are introduced in Definition 4.

Definition 4 (B-spline): The B-spline for a spline-
admissible operator L is characterized by a finite-difference-
like filter (dL[k])k∈Z, and is defined as

βL(x) = F−1

{∑
k∈Z dL[k]e−jk(·)

L̂(·)

}
(x). (18)

The criteria for choosing a valid filter dL for a general class of
operators L are given in [53, Theorem 2.7].

The best-known example of a B-spline is the polynomial
B-spline for the operator L = DN0 , whose filter dL is char-
acterized by its z-transform DL(z) = (1 − z−1)N0 . The corre-
sponding B-spline βL is supported in [0, N0].

A key feature of B-splines is that they are the L-splines
with the shortest support or, when finite support is impossible,
with the fastest decay. Moreover, by [53, Theorem 2.7], for a
valid B-spline βL as specified by Definition 4, the sequence of
functions {βL(· − k)}k∈Z forms a Riesz basis in the sense of
Definition 3.

It is clear from (18) that the innovation of the B-spline is a
sum of Dirac impulses given by

L{βL} =
∑
k∈Z

dL[k]δ(· − k). (19)

B. CHOICE OF BASIS FUNCTIONS
We now present and discuss our choice for the basis functions
ϕ1,k and ϕ2,k .

1) SPARSE COMPONENT
For the sparse component, we choose basis functions ϕ1,k =
βL1 (· − k) (defined in (18)) for all k ∈ Z. With this choice,

V1(R) =
{

f =
∑
k∈Z

c1[k]ϕ1,k : c1 ∈ V1(Z)

}
⊂ ML1,φ0 (R)

with the digital-filter space

V1(Z) =
{

(c1[k])k∈Z : (dL1 ∗ c1) ∈ �1(Z) and

∑
k∈Z

c1[k]φ0(ϕ1,k ) = 0
}
, (20)

is the largest possible native reconstruction space [54, Equa-
tion (22)]. The choice of the basis functions ϕ1,k is guided by
the following considerations:
� they generate the space of uniform L1 splines. This con-

forms with Theorem 1, which states that the component
s∗

1 is an L1-spline;
� they enable exact computations in the con-

tinuous domain. In particular, we have that
‖L1{

∑
k∈Z c1[k]ϕ1,k}‖M = ‖dL1 ∗ c1‖�1 ;

� the Riesz-basis property of B-splines leads to a well-
conditioned system matrix, which is paramount in nu-
merical applications.

B-splines are the only functions that satisfy all these prop-
erties. Based on these criteria, B-splines are thus optimal.

2) SMOOTH COMPONENT
At first glance, the most natural choice for ϕ2,k is to select
the basis functions suggested by (15) in Theorem 1: hm for
1 ≤ m ≤ M and a basis of NL2 , which yield a finite number
M + N0,2 of basis functions. However, this approach runs into
the following hitches:
� the basis functions hm are typically increasing at infinity,

which contradicts the Riesz-basis requirement and leads
to severely ill-conditioned optimization tasks [24];

� depending on the measurements operator ν, hm may lack
a closed-form expression.

We therefore focus on these criteria, in a spirit similar
to [55]. The ϕ2,k are chosen to be regular shifts of a generating
function ϕ2, with ϕ2,k = ϕ2(· − k) such that {L2{ϕ2,k}}k∈Z
forms a Riesz basis in the sense of Definition 3. Contrary to
ϕ1,k , these requirements allow for many choices of ϕ2,k . In
order to perform exact discretization, one then only needs to
compute the following autocorrelation filter.

Proposition 1 (Autocorrelation filter for the smooth com-
ponent): Let ϕ2 be a generating function such that ϕ2,k =
ϕ2(· − k) form a Riesz basis. Then, the following two items
hold:
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� the inner product 〈L2{ϕ2,k}, L2{ϕ2,k′ }〉L2 only depends
on the difference (k − k′). We can thus introduce the
autocorrelation filter

ρ[k] = 〈L2{ϕ2,k}, L2{ϕ2,0}〉L2

= 〈L2{ϕ2,k+k′ }, L2{ϕ2,k′ }〉L2 (21)

for any k, k′ ∈ Z;
� the filter ρ is positive semidefinite, with∑

k,k′∈Z c[k]c[k′]ρ[k − k′] ≥ 0 for any finitely
supported real digital filter c.

Proof: The first item is proved with a simple change of
variable in the integral that defines the inner product. The
second item is derived by observing that, for any c2, we have∥∥∥∥∥L2

{∑
k∈Z

c2[k]ϕ2,k

}∥∥∥∥∥
2

L2

=
∑

k,k′∈Z

(
c2[k]c2[k′]

〈L2{ϕ2,k}, L2{ϕ2,k′ }〉)
=
∑

k,k′∈Z

c2[k]c2[k′]ρ[k − k′] ≥ 0.

(22)

�
For our implementation, we make a specific choice of basis

function ϕ2 among the many choices for which the autocorre-
lation filter (21) can be computed analytically. We choose the
L∗

2L2 B-spline basis ϕ2 = βL∗
2L2 and ϕ2,k = ϕ2(· − k), where

L∗
2 denotes the adjoint operator of L2. This choice has the

following additional advantages:
� the generator ϕ2 has a simple explicit expression that

does not depend on the measurement operator ν;
� the autocorrelation filter ρ also has a simple expression,

as will be shown in Proposition 4;
� in the special case of the sampling operator νm = δ(· −

xm), where the xm are the sampling locations, this choice
conforms with (15) in Theorem 1 since s∗

2 is then an
L∗

2L2-spline. Note, however, that we do not exploit the
knowledge that s∗

2 has knots at the sampling locations
xm.

With this basis function ϕ2 = βL∗
2L2 , there is no straight-

forward choice of the digital-filter space V2(Z). Our practi-
cal choice is given in (27); it depends on our discretization
method for reasons that are discussed in Remark 1.

C. FORMULATION OF THE DISCRETE PROBLEM
The autocorrelation filter introduced in Proposition 1 enables
us to discretize Problem (13) in an exact way in the Vi(R)
spaces.

Proposition 2 (Riesz-basis Discretization): Let ϕi,k be cho-
sen as specified in Section IV-B for i ∈ {1, 2}, k ∈ Z, and

Sd = {arg min(c1,c2 )∈V1(Z)×V2(Z)Jd(c1, c2)
}
. (23)

The cost function is given by

Jd(c1, c2) = E

⎛⎝∑
k1∈Z

c1[k]ν(ϕ1,k ) +
∑
k∈Z

c2[k]ν(ϕ2,k ), y

⎞⎠
+ λ1‖dL1 ∗ c1‖�1 + λ2〈c2, ρ ∗ c2〉�2 , (24)

where dL1 is the finite-difference-like filter from Definition 4,
ρ is defined in Proposition 1, and 〈·, ·〉�2 is the inner product
over �2(Z). Then, Problem (23) is equivalent to a restriction of
the search spaces ML1,φ0 (R) and HL2 (R) to the spaces V1(R)
and V2(R) defined in (16), respectively, so that

Sres = {arg min(s1,s2 )∈V1(R)×V2(R)J(s1, s2)
}
, (25)

in the sense that there exists a bijective linear map-
ping (c1, c2) �→ (

∑
k∈Z c1[k]ϕ1,k,

∑
k∈Z c2[k]ϕ2,k ) from Sd

to Sres.
Proof: By plugging the expansions si =∑k∈Z ci[k]ϕi,k

into the cost function J, using the linearity of ν, we get the
data-fidelity term of (24). Using (19), we readily deduce that
‖L1{

∑
k∈Z c1[k]ϕ1,k}‖M = ‖dL1 ∗ c1‖�1 [29, Equation (25)].

As for the second regularization term, we observe that

〈c2, c2 ∗ ρ〉�2 =
∑

k,k′∈Z

c2[k]c2[k′]ρ[k − k′]

=
∥∥∥∥∥L2

{∑
k∈Z

c2[k]ϕ2,k

}∥∥∥∥∥
2

L2

, (26)

using (22) for the last step. This proves the equivalence be-
tween Problems (25) and (23), up to the specified mapping
which is indeed a bijective linear mapping due to the Riesz-
basis properties of {ϕ1,k}k∈Z and {ϕ2,k}k∈Z. �

V. PRACTICAL IMPLEMENTATION
We now discuss how to solve our discretized problem (23)
in practice, which involves recasting it as a finite-dimensional
problem.

A. FINITE DOMAIN ASSUMPTIONS
To solve problem (23) numerically in an exact way, we must
make assumptions that will enable us to restrict the problem
to a finite interval of interest.

1) The operators Li for i ∈ {1, 2} admit a B-spline with
finite support, which implies that the filters dLi (intro-
duced in Definition (18)) and ρ (Proposition 4) have
finite support. Without loss of generality, the support
of dLi is chosen to be [0 . . . Di − 1] (of length Di > 0),
which leads to causal B-splines βLi .

2) The measurement functionals νm are supported in an
interval IT = [0, T ], where T ∈ N.

The first item is fulfilled for common one-dimensional
operators L1 such as ordinary differential operators [56] or
rational operators [57].

The second assumption is natural and is often fulfilled in
practice, for instance in imaging with a finite field of view. The
support length T then roughly corresponds to the number of
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FIGURE 1. Examples of boundary basis functions ϕi,mi
and ϕi,Mi

for
i ∈ {1, 2}.

grid points in the interval of interest. Note that, for simplicity,
we only consider integer grids. However, the finesse of the
grid can be tuned at will by adjusting T and rescaling the
problem over the interval of interest.

B. FORMULATION OF THE FINITE-DIMENSIONAL
PROBLEM
Our choice of basis functions together with the assumptions
in Section V-A enable us to restrict Problem (23) to the in-
terval of interest IT . More precisely, we introduce the indices
mi, Mi ∈ Z for i ∈ {1, 2}; the range [mi . . . Mi] corresponds
to the set of indices k for which Supp(ϕi,k ) ∩ IT �= ∅, so that
the basis function ϕi,k affects the measurements. Hence, the
number of active basis functions (i.e., the number of spline co-
efficients to be optimized) is Ni = (Mi − mi − 1). It can eas-
ily be verified that we have m1 = (−D1 + 2), M1 = (T − 1),
m2 = (−D2 + 2), and M2 = (T + D2 − 2). See Fig. 1 for an
illustrative example.

Finally, we introduce the native digital-filter space

V2(Z) = {(c2[k])k∈Z : Supp(dL2 ∗ c2) ⊂ [1 . . . M2]
}
, (27)

which is a valid choice because V2(R) ⊂ HL2 (R). Indeed,
we can verify that, for any c2 ∈ V2(Z), the function s2 =∑

k∈Z c2[k]ϕ2,k satisfies ‖L2{s2}‖2
L2

= ‖g ∗ c2‖2
�2

= ‖b1/2 ∗
(dL2 ∗ c2)‖2

�2
< +∞, which proves that s2 ∈ HL2 (R). This is

due to the finite support of both (dL2 ∗ c2) and b1/2, where
the filter b1/2 and the decomposition g = b1/2 ∗ dL2 are intro-
duced in Proposition 4 in Appendix C.

Remark 1: Contrary to V1(Z) defined in (20), our
choice of V2(Z) in (27) is not the largest valid space:
there exist larger vector spaces such that V2(R) ⊂ HL2 (R).
However, the support restriction implies that for any
s2 =∑k∈Z c2[k]βL∗

2L2 (· − k) ∈ V2(R), the function L2{s2} =∑
k∈Z(dL2 ∗ c2)[k]β∨

L2
(· − k) has a finite support. This is a

desirable property both for simplicity of implementation and
because it conforms with Theorem 1, since s∗

2 in (15) also
satisfies this property. Our specific choice of support for

(dL2 ∗ c2) is guided by boundary considerations and will be
justified in the proof of Proposition 3.

The restriction to a finite number of active spline coeffi-
cients leads to finite-dimensional system and regularization
matrices. The system matrices are of the form

Hi =
[
ν(ϕi,mi ) · · · ν(ϕi,Mi )

]
∈ RM×Ni . (28)

The regularization matrix for the sparse component, denoted
by L1 ∈ R(N1−D1+1)×N1 , is of the form

L1 =⎛⎜⎜⎜⎜⎜⎝
dL1 [D1 − 1] · · · dL1 [0] 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 dL1 [D1 − 1] · · · dL1 [0]

⎞⎟⎟⎟⎟⎟⎠ .

(29)

The second component requires a careful handling of the
boundaries in order to achieve exact discretization. This leads
to a more complicated expression for the associated regular-
ization matrix, which is given in (61) in Appendix C.

Finally, we introduce the matrix A ∈ RN0×N1 associated to
the boundary condition functionals φ0. Our choice of bound-
ary condition functionals φ0 is presented in Appendix B.
With this choice, the constraint φ0(

∑
k∈Z c1[k]ϕ1,k ) = 0

leads to N0 linear constraints on the coefficients c1 =
(c1[m1], . . . , c1[M1]), which can be written in matrix form
as Ac1 = 0. In common cases, these constraints simply lead
to the N0 first coefficients of c1 to be set to zero, which thus
reduces the dimension of the optimization problem.

These matrices enable an exact discretization of Prob-
lem (23), as shown in Proposition 3, the proof of which being
given in Appendix D.

Proposition 3 (Recasting as a finite problem): Let ϕ1,k =
βL1 (· − k), ϕ2,k = βL∗

2L2 (· − k), and let the assumptions in
Section V-A be satisfied. Then, Problem (23) is equivalent to
the optimization problem

S =
{

arg min(c1,c2)∈RN1 ×RN2
Ac1=0

J (c1, c2)

}
, (30)

where the cost function is given by

J (c1, c2) = E (H1c1 + H2c2, y) (31)

+ λ1‖L1c1‖1 + λ2‖L2c2‖2
2. (32)

The matrices Hi and Li for i ∈ {1, 2} are defined in (28), (29),
and (61). This equivalence holds in the sense that there exists
a bijective linear mapping from Sd to S

(c1, c2) �→ ((c1[m1], . . . , c1[M1]), (c2[m2], . . . , c2[M2]))
(33)

between their solution sets.
The combination of Propositions 2 and 3 allows us to solve

the continuous-domain infinite-dimensional problem (25) by
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finding a solution (c∗
1, c∗

2 ) ∈ S of the finite-dimensional prob-
lem (30). We obtain the corresponding solution of (25) by ex-
tending these vectors to digital filters (c∗

1, c∗
2 ) ∈ Sd (this exten-

sion is unique as specified by Proposition 3), which yields the
continuous-domain reconstruction s∗ = s∗

1 + s∗
2, where s∗

i =∑
k∈Z c∗

d [k]ϕi,k .

C. SPARSIFICATION STEP
Although problem (30) can be solved using standard solvers
such as the alternating-direction method of multipliers
(ADMM), there is no guarantee that such solvers will yield
a solution of the desired form specified by Theorem 1, i.e., s∗

1
is an L1-spline with fewer than (M − N0,1) knots, and s∗

2 is
a sum of M kernel functions and a null space element. This
is a particularly relevant observation for the first component
since, at fixed second component s∗

2, only extreme-point solu-
tions s∗

1 of Problem (13) take the prescribed form [20]. This
problem can be alleviated by computing a solution (c∗

1, c∗
2 )

to Problem (30), and then finding an extreme point of the
solution set cextr

1 ∈ arg minc1∈RN1 J (c1, c∗
2 ), which leads to a

solution (cextr
1 , c∗

2 ) of the prescribed form. This is achieved
by recasting the problem as a linear program and using the
simplex algorithm [58] to reach an extreme-point solution [24,
Theorem 7].

VI. EXPERIMENTAL VALIDATION
We now validate our reconstruction algorithm in a simulated
setting.

A. EXPERIMENTAL SETTING
1) GRID SIZE
We rescale the problem by a factor T so that the interval of
interest IT is mapped into [0, 1]. We tune the finesse of the
grid (and the dimension of the optimization task) by varying
T , which amounts to varying the grid size h = 1/T in the
rescaled problem.

2) GROUND TRUTH
We generate a ground-truth signal sGT = sGT

1 + sGT
2 . The

sparse component sGT
1 is chosen to be an L1-spline of the form

(8) with few jumps, for which gTV is an adequate choice
of regularization, as demonstrated by (14) in our represen-
ter theorem. For the smooth component sGT

2 , we generate a
realization of a solution s2 of the stochastic differential equa-
tion L2s2 = w, where w is a Gaussian white noise with stan-
dard deviation σ2 by following the method of [59]. The op-
erator L2 then acts as a whitening operator for the stochastic
process s2. The reason for this choice is the connection be-
tween the minimum mean-square estimation of such stochas-
tic processes and the solutions to variational problems with
gTikhonov regularization ‖L2s2‖2

L2
[22], [60], [61].

3) FORWARD OPERATOR
Our forward model is the Fourier-domain cosine sampling
operator of the form ν1(s) = ∫ 1

0 s(t )dt (DC term) and

νm(s) =
∫ 1

0
cos(ωmt + θm)s(t )dt (34)

for 2 ≤ m ≤ M, where the sampling pulsations ωm are chosen
at random within the interval (0, ωmax], and the phases θm are
chosen at random within the interval [0, 2π ). Notice that νm

is a Fourier-domain measurement of the restriction of s to the
interval of interest [0,1], in conformity with the finite-domain
assumption in Section V-A.

For the data-fidelity term, we use the standard quadratic
error E (x, y) = 1

2‖x − y‖2
2.

B. COMPARISON WITH NON-COMPOSITE MODELS
We now validate our new sparse-plus-smooth model against
more standard non-composite models. More precisely, for i ∈
{1, 2} we solve the regularized problems

arg min f ∈Xi
{E (ν( f ), y) + λRi( f )} (35)

with regularizers R1( f ) = ‖L1{ f }‖M (sparse model with na-
tive space X1 = ML1 (R)) and R2( f ) = ‖L2{ f }‖L2 (smooth
model with native space X2 = HL2 (R)). We discretize these
problems using the reconstruction spaces Vi(R) described in
this paper (without restricting V1(R) with the boundary condi-
tions φ0). The sparse model thus amounts to an �1-regularized
discrete problem which we solve using ADMM, while the
smooth model has a closed-form solution that can be obtained
by inverting a matrix.

For this comparison, we choose regularization operators
L1 = D and L2 = D2 with M = 50 Fourier-domain measure-
ments (cosine sampling with ωmax = 100). We generate the
ground-truth signal according to Section VI-A2, with K1 = 5
jumps whose i.i.d. Gaussian amplitudes have the variance
σ 2

1 = 1 for sGT
1 . For the smooth component sGT

2 , we generate
a realization of a Gaussian white noise w with the variance
σ 2

2 = 100, such that L2{sGT
2 } = w. The measurements are cor-

rupted by some i.i.d. Gaussian white noise n ∈ RM so that y =
ν(sGT) + n. We set the signal-to-noise ratio (SNR) between
ν(sGT) and n to be 50 dB. The regularization parameters are
selected through a grid search with h = 1/29 to maximize the
SNR of the reconstructed signal s with respect to the ground

truth (defined as SNR = 10 log10(
∫ T

0 (sGT(t ))2dt∫ T
0 (s(t )−sGT(t ))2dt

)).

The results of this comparison in terms of SNR are shown
in Table 1 for varying grid sizes h. For all methods, the SNR
values increase when the grid size decreases, which is to be
expected since the grids are embedded. The only exception
is the sparse-plus-smooth reconstruction for the finest grid
size, which is likely due to numerical issues arising from the
increased dimension (N ≈ 211) of the optimization problem.
The effect of the grid size on the quality of the reconstruction
varies between the models: it is almost non-existent for the
smooth-only model, whereas it is most significant for our
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FIGURE 2. Comparison between our sparse-plus-smooth model and non-composite models with regularization operators L1 = D, L2 = D2, and M = 50
Fourier-domain measurements.

TABLE 1 SNR Values (In Db) of the Reconstructed Signal With Respect to
the Ground Truth With Varying Grid Size h

sparse-plus-smooth model. Over all grid sizes, due to the fact
that our sparse-plus-smooth signal model matches the ground
truth, our reconstructed signal yields a higher SNR (27.02 dB)
than the sparse-only (23.04 dB) and smooth-only (18.16 dB)
models.

The reconstruction results for the grid size h = 1/29 are
shown in Fig. 2. Our sparse-plus-smooth reconstruction is
qualitatively much more satisfactory. As can be observed in
the zoomed-in section, the sparse-only model is subject to a
staircasing phenomenon in the smooth regions of the ground-
truth signal, a well-known shortcoming of total-variation reg-
ularization. Conversely, our reconstruction is remarkably ac-
curate in the smooth regions. Finally, the smooth-only model

fails both visually and in terms of SNR, due to its inability to
represent sharp jumps.

VII. CONCLUSION
We have introduced a continuous-domain framework for the
reconstruction of multicomponent signals. It assumes two ad-
ditive components, the first one being sparse and the other
being smooth. The reconstruction is performed by solving a
regularized inverse problem, using a finite number of mea-
surements of the signal. The form of a solution to this problem
is given by our representer theorem. This form justifies the
choice of the search space in which we discretize the problem.
Our discretization is exact, in the sense that it amounts to solv-
ing a continuous-domain optimization problem restricted to
our search space. The discretized problem is then solved using
our ADMM-based algorithm, which we validate on simulated
data.

APPENDIX
A. PROOF OF THEOREM 1
The main technical part of our proof is to show the existence
of a minimizer; once this is ensured, the optimization problem
can be decoupled into two separate problems. Then, we can
invoke representer theorems proven in [24] for these problems
to obtain a parametric form of the solution of the original
problem. Finally, the uniqueness of the smooth component
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follows from the strict convexity of the associated regulariza-
tion penalty. We now recall some relevant notions that will be
used throughout the proof.

Preliminaries
We extend the biorthogonal system (φ0, p0) for N0 to the

biorthogonal systems (φ̃1, p̃1) and (φ̃2, p̃2) for NL1 and NL2 ,

respectively, where φ̃i =
[
φ0 φi

]
and p̃i =

[
p0 pi

]
for i ∈

{1, 2}. It is known from [51, Theorem 4] that any function
s1 ∈ ML1 (R) has the unique decomposition

s1 = L−1
1,φ̃1

{w} + c̃T
0 p0 + cT

1 p1, (36)

where w ∈ M(R), c̃0 = φ0(s1) ∈ RN0 , c1 = φ1(s1) ∈
RN0,1−N0 , and L−1

1,φ̃1
is the pseudo-inverse operator of L1

for the biorthogonal system (φ̃1, p̃1) [51, Section 3.2]. Using
this decomposition, we can equip the space ML1 (R) with the
norm

‖s1‖ML1
� ‖w‖M + ‖c̃0‖2 + ‖c1‖2. (37)

Finally, an element s1 ∈ ML1 (R) is in the restricted search
space ML1,φ0 (R) if and only if c̃0 = 0.

Similarly, for any s2 ∈ HL2 (R), there is a unique decompo-
sition

s2 = L−1
2,φ̃2

{h} + cT
0 p0 + cT

2 p2, (38)

where c0 = φ0(s2) ∈ RN0 , c2 = φ2(s2) ∈ RN0,2−N0 , and h ∈
L2(R). Consequently, the associated norm for the space
HL2 (R) is defined as

‖s2‖HL2
� ‖h‖L2 + ‖c0‖2 + ‖c1‖2. (39)

Existence of a Solution
The first step is to prove that (13) has a minimizer. We do so

by reformulating the problem as the minimization of a weak*-
lower semicontinuous functional over a weak*-compact do-
main. We then prove the existence by relying on the general-
ized Weierstrass theorem.

We denote the cost at the trivial point (0,0) as J0 =
J(0, 0) = E (0, y). Adding the constraint J(s1, s2) ≤ J0 does
not change the solution set of the original problem, as it must
hold for any minimizer of (13). So, from now on, we assume
that the cost functional is upper-bounded by J0. This readily
implies that

E (ν(s1 + s2), y) ≤ J0, (40)

‖L1{s1}‖M ≤ J0

λ1
, (41)

‖L2{s2}‖L2 ≤
√
J0

λ2
. (42)

The coercivity of E (·, y) implies the existence of a con-
stant C1 > 0 such that E (z, y) ≤ J0 ⇒ ‖z‖2 ≤ C1. Together
with (40), this yields

‖ν(s1 + s2)‖2 ≤ C1. (43)

Moreover, since ν is weak*-continuous over ML1 (R), it is
also continuous. This is due to the fact that a Banach space (in
this case, the predual of ML1 (R)) is isometrically embedded
in its bidual [50]. Moreover, by assumption, ν is continuous
over HL2 (R). Hence, there exists a second constant C2 > 0
such that

‖ f1‖ML1
+ ‖ f2‖HL2

≤ J0

λ1
+
√
J0

λ2
⇒ ‖ν( f1 + f2)‖2 ≤ C2.

(44)
Now, by taking

f1 = s1 − φ1(s1)T p1,

f2 = s2 − φ0(s2)T p0 − φ2(s2)T p2, (45)

and, together with (41) and (42), we deduce that∥∥ν (s1 − φ1(s1)T p1 + s2 − φ0(s2)T p0 − φ2(s2)T p2
)∥∥

2

≤ C2. (46)

By using the triangle inequality and the two bounds (43)
and (46), we have∥∥ν (φ1(s1)T p1 + φ0(s2)T p0 + φ2(s2)T p2

)∥∥
2 ≤ C1 + C2.

(47)
Finally, the well-posedness assumption in Theorem 1 ensures
the existence of a constant B > 0 such that

∀q ∈ NL1 + NL2 : B‖φi(q)‖2 ≤ ‖ν(q)‖2, i ∈ {0, 1, 2}.
(48)

Hence, by taking

q = φ1(s1)T p1 + φ0(s2)T p0 + φ2(s2)T p2 (49)

and by applying the Inequality (48), we have that

‖φ1(s1)‖2, ‖φ0(s2)‖2, ‖φ2(s2)‖ ≤ C1 + C2

B
. (50)

Therefore, the original problem (13) is equivalent to the
constrained minimization problem

min
s1∈ML1,φ0 (R)

s2∈HL2 (R)

J(s1, s2) s.t. ‖s1‖ML1
≤ A1, ‖s2‖HL2

≤ A2,

(51)

where A1 = J0
λ1

+ C1+C2
B and A2 =

√
J0
λ2

+ C1+C2
B .

The cost functional in (51), which is the same as in (13), is
weak* lower-semicontinuous. Moreover, the constraint cube
is weak*-compact in the product topology due to the Banach-
Alaoglu theorem [62, Theorem 3.15]. Hence, (51) reaches its
infimum, and so does (13).

Form of the Solution Let (s̃1, s̃2) be a solution of (13) and
consider the minimization problem

min
s1∈ML1,φ0

(R)
‖L1{s1}‖M s.t. ν(s1) = ν(s̃1). (52)

Unser et al. have shown in [20] that (52) has a minimizer s∗
1

of the form (14). One can also readily verify that (s∗
1, s̃2) is a
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minimizer of the original problem. Similarly, one can consider
the minimization problem

min
s2∈HL2 (R)

‖L2{s2}‖L2 s.t. ν(s2) = ν(s̃2). (53)

It is known from [24, Theorem 3] that (53) has a minimizer s∗
2

of the form (15). Again, (s∗
1, s∗

2 ) is a solution of the original
problem, which matches the form specified by Theorem 1.

Uniqueness of the Second Component To prove the fi-
nal statement of Theorem 1, let us consider two arbitrary
pairs of solutions ( f̄1, f̄2) and ( f̃1, f̃2) of Problem (13) and
let us denote by Jmin their minimal cost value. The convex-
ity of the cost functional yields that, for any α ∈ (0, 1) and
( fα,1, fα,2) = α( f̄1, f̄2) + (1 − α)( f̃1, f̃2), we have

J( fα,1, fα,2) ≤ αJ( f̄1, f̄2) + (1 − α)J( f̃1, f̃2) = Jmin.

(54)
The optimality of ( f̄1, f̄2) and ( f̃1, f̃2) implies that (54) must
be an equality. In particular, we must have that

‖L2{ fα,2}‖2
2 = α‖L2{ f̄2}‖2

2 + (1 − α)‖L2{ f̃2}‖2
2. (55)

Now, due to the strict convexity of ‖L2{·}‖2
L2

, we deduce

that L2{ f̄2 − f̃2} = 0, and hence that ( f̄2 − f̃2) ∈ NL2 . This
implies that all solutions have the same second component up
to a term in the null space of L2.

B. CHOICE OF BOUNDARY CONDITION FUNCTIONALS φ0

We discuss here our choice of the boundary-condition func-
tionals φ0 for certain common choices of operators Li. We
focus on multiple-order derivative operators Li = DN0,i , al-
though the discussion remains valid for the more general class
of rational operators [57], which, to the best of our knowledge,
is the largest class of spline-admissible operators that satisfy
the first assumption in Section V-A. The null spaces NLi are
thus the spaces of polynomials of degree smaller than N0,i.
We assume for now that we have N0,1 ≤ N0,2, in which case
we have NL1 ⊂ NL2 and thus N0 = NL1 and N0 = (D1 − 1).
Then, for any ε > 0, the functionals φ0 = 1

ε
rect( ·

ε
) for N0 = 1

and

φ0 =
(

δ, . . . , δ(N0−2), δ(N0−1) ∗ 1

ε
rect

( ·
ε

))
∗ δ(· − ε

2
),

(56)

for N0 > 1, where rect(t ) = 1 for −1/2 ≤ t < 1/2 and 0 else-
where, are valid choices of a biorthogonal system matched to

the basis p0 = (1, (·), . . . , (·)N0−1

(N0−1)! ) ∗ δ(· − ε
2 ) of N0. Indeed,

one can easily verify that this choice satisfies the biorthonor-
mality relation 〈φ0,i, p0, j〉 = δi− j (Kronecker delta). More-
over, we have φ0,i ∈ XL1 (the predual of ML1 (R)), which
implies that (p0, φ0) is indeed a valid biorthogonal system
of N0 [51, Proposition 5]. The fact that φ0,i ∈ XL1 is proved
in [63] for the case N0 = 2; this proof can readily be extended
to higher orders.

The boundary conditions (56), along with a choice of ε

such that ε
h is arbitrarily small, is numerically equivalent to

φ0( f ) = ( f (0), . . . , f (N0−1)(0+)), where f (N0−1)(0+) is the

right limit of f (N0−1) at 0. It can easily be shown in this case
that, for s1 =∑k∈Z c1[k]ϕ1,k ∈ V1(R) with ϕ1,k = βL1 (· −
kh), we have φ0( f ) = 0 ⇔ c1[−N0 + 1] = · · · = c1[0] = 0,
which leads to the constraints Ac1 = (c1,1, . . . , c1,N0 ) = 0 in
Problem (30). This choice simplifies the optimization task
by reducing the dimension of the problem, whereas other
boundary conditions could lead to more complicated linear
constraints and would make the optimization task more diffi-
cult.

So far, we have assumed that N0,1 ≤ N0,2 since this condi-
tion is always satisfied for the most common case L1 = D.
However, if N0,1 > N0,2, then it is more convenient to ap-
ply the boundary conditions φ0 to the second component,
which leads to the same simple boundary conditions Ac2 =
(c2,1, . . . , c2,N0 ) = 0. By default, we implicitly consider the
more common case N0,1 ≤ N0,2 throughout the paper and thus
impose the boundary conditions on the first component.

C. EXPRESSION OF THE REGULARIZATION MATRIX L2

Factorization of the Autocorrelation Filter
To specify the regularization matrix for the second com-

ponent, we must first express in a convenient form the auto-
correlation filter ρ defined in Proposition 1. This is done in
Proposition 4, which gives the expression of ρ and its “square
root” g for the choice of basis function ϕ2 = βL∗

2L2 made in
Section IV-B2.

Proposition 4 (Factorization of the autocorrelation filter):
Let the assumptions in Section V-A be satisfied, and let ϕ2 =
βL∗

2L2 = βL2 ∗ β∨
L2

. Then, the basis {ϕ2,k}k∈Z forms a Riesz
basis as required in Section IV-B, and the autocorrelation filter
ρ defined in Proposition 1 is of the form

ρ = dL2 ∗ d∨
L2

∗ b, (57)

where b[k] = βL∗
2L2 (k) is the B-spline kernel of the opera-

tor L∗
2L2, which is a positive-semidefinite filter supported in

[−(D2 − 2) . . . D2 − 2]. The filter ρ can thus be factorized as
ρ = g ∗ g∨ with

g = dL2 ∗ b1/2, (58)

where the filter b1/2 satisfies b = b1/2 ∗ (b1/2)∨ and is of
length B = (D2 − 1), and g is thus of length G = 2B =
2(D2 − 1).

Proof: We have that

ρ[k] = 〈L2{ϕ2,k}, L2{ϕ2,0}〉L2

= 〈L∗
2L2{ϕ2,k}, ϕ2,0〉H′

L2
×HL2

= 〈
∑
k′∈Z

dL∗
2L2 [k]δ(· − (k + k′)), ϕ2,0〉H′

L2
×HL2

=
∑
k′∈Z

dL∗
2L2 [k]b[k + k′]

= (dL∗
2L2 ∗ b∨)[−k]

= (dL∗
2L2 ∗ b)[k],
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TABLE 2 Relevant Filters and Their Supports (C =
√

2−√
3

6 )

where 〈·, ·〉H′
L2

×HL2
denotes the duality product between

HL2 (R) and its dual H′
L2

(R), and the last line results from
the symmetry of ρ and b.

Next, we prove that b is positive-semidefinite. Indeed, for
any finitely supported filter c, we have that

∑
k,k′∈Z

c[k]c[k′]b[k − k′] =
∥∥∥∥∥∑

k∈Z

c[k]βL2 (· − k)

∥∥∥∥∥
2

L2

≥ 0,

(59)

where we have used the property

b[k] = (βL2 ∗ β∨
L2

)(k) = 〈βL2 , βL2 (· − k)〉L2 . (60)

Finally, to prove the existence of b1/2, we notice that b has
the finite support [−(B − 1) . . . B − 1] due to the finite sup-
port (−D2, D2) of βL∗

2L2 , and we have B = (D2 − 1). Since

b is also symmetric, its z-transform satisfies B(z) = B(z−1);
therefore, for any zero zk of B(z), z−1

k is also a zero. More-
over, it is well known that B(±1) �= 0, so that zeros must
come in pairs zk �= z−1

k . Hence, B(z) can be written as B(z) =∏B
k=1(1 − zkz)(1 − zkz−1). Hence, to take b1/2 to be the in-

verse z-transform of B1/2(z) =∏B
k=1(1 − zkz−1) is a valid

choice (we clearly have b = b1/2 ∗ (b1/2)∨), and (58) is read-
ily obtained. �

We summarize in Table 2 the different filters and their
mutual relations. Without loss of generality, we take the filters
dLi for i ∈ {1, 2} to be causal, which leads to causal B-splines.
These filters will be useful for the definition of the regulariza-
tion matrix L2.

Expression of L2

The regularization matrix L2 ∈ R(N2−1)×N2 for the smooth
component is given by

L2 =

⎛⎜⎝M− 0
M

0 M+

⎞⎟⎠ . (61)

The central matrix M ∈ R(N2−G+1)×N2 is given by

M =

⎛⎜⎜⎜⎜⎜⎝
g[G − 1] · · · g[0] 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 g[G − 1] · · · g[0]

⎞⎟⎟⎟⎟⎟⎠ ,

(62)

where g is defined in Proposition 4. The matrices M± ∈
R(B−1)×(G−1) are defined as [M−]i, j = g−(B2−i)[G − B +
(i − 1) − ( j − 1)] and [M+]i, j = g+i[G + (i − 1) − j)] for
1 ≤ i ≤ (B2 − 1) and 1 ≤ j ≤ (G − 1), where the filter g±k

are given by g−k = b1/2|{0,...,B−1−k} ∗ dL2 (supported in
[0 . . . G − 1 − k]) and g+k = b1/2|{k,...,B−1} ∗ dL2 (supported
in {k, . . . G − 1}). Here, the notation a|J refers to the filter a
restricted to the set J of indices, with a|J [k] = a[k] if k ∈ J ,
and a|J [k] = 0 otherwise.

As an illustration, for L2 = D, we have that B = 1 and,
hence, simply that L2 = M. For L2 = D2, we have B = 2 and

L2 =

⎛⎜⎝C −2C C 0 · · · · · · 0

M
0 · · · · · · 0 C′ −2C′ C′

⎞⎟⎠ , (63)

where C =
√

2−√
3

6 and C′ = C(2 + √
3).

D. PROOF OF PROPOSITION 3
Let si =∑k∈Z ci[k]ϕi,k with ci ∈ Vi(Z) for i ∈ {1, 2}. The
filters ci are assumed to have values determined by the vector
ci = (ci[mi], . . . , ci[Mi]) at certain points. By definition of mi

and Mi, the values of ci outside these intervals do not affect the
measurements ν(si ), and we clearly have that ν(si ) = Hici.
Therefore, these coefficients solely affect the regularization
terms. We now show that, for a solution (c1, c2) ∈ Sd to
problem (23), the coefficients are uniquely determined by the
vectors ci, and that the regularization terms ‖dL1 ∗ c1‖�1 and
〈c2, ρ ∗ c2〉�2 can thus be expressed exclusively in terms of
these vectors.
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Concerning the first component, this is proved in [29,
Proposition 2], which shows that ‖L1{s1}‖M = ‖L1c1‖1. The
additional constraint Ac1 comes from φ0(s1) = 0 imposed on
the search space V1(Z) of Problem (23).

We now consider the regularization term for the compo-
nent 〈c2, ρ ∗ c2〉�2 . By Proposition 4, we have that ρ = g ∗
g∨, and, hence, that 〈c2, ρ ∗ c2〉�2 = 〈g ∗ c2, g ∗ c2〉�2 = ‖g ∗
c2‖2

�2
, where g = b1/2 ∗ dL2 . We also have g ∗ c2 = b1/2 ∗

a, where a = dL2 ∗ c2 is supported in [1 . . . M2] by defini-
tion of the native space V2(Z) given in (27). Since a[n] =∑D2−1

k=0 dL2 [k]c2[n − k], a[n] is entirely determined by the
vector c2 for 1 ≤ n ≤ M2, which justifies our choice of the
space V2(Z). For values of n outside this interval, there is a
unique way of setting the coefficients c2[k] in order to nullify
a[n] and thus obtain that c2 ∈ V2(Z). For example, c2[M2 + 1]
can be set to nullify a[M2 + 1] based on the (D2 − 1) previous
coefficients of c2, and, similarly, all the c2[n] for n > M2 + 1
can be set recursively to nullify all the a[k] for all k > M2 + 1.
The same argument can be made to show that there is a unique
choice c2[n] for n < m2 that nullifies a[k] for all k < 1.

We now compute the values of (g ∗ c2)[n] in different
regimes for n. We have that (g ∗ c2)[n] = (b1/2 ∗ a)[n] =∑B2−1

k=0 b1/2[k]a[n − k] where a is supported in [1 . . . M2].
For B2 ≤ n ≤ M2, this sum is solely affected by the coef-
ficients c2 = (c2[m2], . . . , c2[M2]), so that the correspond-
ing terms can be written in matrix form as Mc (the central
part of the L2 matrix defined in (61)). Outside this inter-
val, for example for n = M2 + 1, we have that (g ∗ c2)[n] =∑

k∈Z b1/2|{1,...,B2−1}[k]a[n − k], since the k = 0 term is any-
way nullified by the fact that a[n] = 0. An analogous refor-
mulation allows us to have (g ∗ c2)[n] only depend on the c2

coefficients. The same reformulation for all the coefficients
M2 + 1 ≤ n ≤ (M2 + B2 − 1) leads to the matrix M+ in (61),
while a similar argument for coefficients (g ∗ c2)[n] with 1 ≤
n ≤ (B2 − 1) leads to the matrix M−.

We have thus proved that the solutions (c1, c2) ∈ Sd

to Problem (23) are uniquely determined by their coeffi-
cients ci = (ci[mi], . . . , ci[Mi]) for i ∈ {1, 2}, and that the
regularization terms can be written ‖dL1 ∗ c1‖�1 = ‖L1c1‖1

and ‖g ∗ c2‖2
�2

= ‖L2c2‖2
2. This, together with the fact that

ν(
∑

k∈Z ci[k]ϕi,k ) = Hici, proves that Jd(c1, c2) = J (c1, c2).
Conversely, for any (c1, c2) ∈ RN1 × RN2 , there is a unique
extension of these vectors to filters ci ∈ Vi(R) such that ci =
(ci[mi], . . . , ci[Mi]) and Jd(c1, c2) = J (c1, c2). These exten-
sions are explicited in [29, Proposition 2] for c1 and earlier
in this proof for c2. This proves the existence of the bijective
linear mapping between the solution sets Sd and S specified
in Proposition 3.

REFERENCES
[1] A. Tikhonov, “Solution of incorrectly formulated problems and the

regularization method,” Sov. Math., vol. 4, pp. 1035–1038, 1963.
[2] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,

no. 4, pp. 1289–1306, Apr. 2006.
[3] E. Candès, “Compressive Sampling,” in Proc. Int. Congr. Mathemati-

cians, Madrid, Spain, 2006, pp. 1433–1452.

[4] Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Appli-
cations. Cambridge, U.K.: Cambridge Univ. Press, 2012.

[5] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive
Sensing. Cambridge, MA, USA: Birkhäuser Basel, 2013.

[6] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J.
Roy. Stat. Soc.: Ser. B. (Methodol.), vol. 58, no. 1, pp. 267–288, 1996.

[7] E. Candès, J. Romberg, and T. Tao, “Stable signal recovery from in-
complete and inaccurate measurements,” Commun. Pure Appl. Math.,
vol. 59, no. 8, pp. 1207–1223, 2006.

[8] M. Unser, J. Fageot, and H. Gupta, “Representer theorems for sparsity-
promoting �1 regularization,” IEEE Trans. Inf. Theory, vol. 62, no. 9,
pp. 5167–5180, Sep. 2016.

[9] T. Hastie, R. Tibshirani, and M. Wainwright, Statistical Learning With
Sparsity. London, U.K.: Chapman and Hall/CRC, 2015.

[10] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183–202, 2009.

[11] A. Beck and M. Teboulle, “Fast gradient-based algorithms for con-
strained total variation image denoising and deblurring problems,” IEEE
Trans. Image Process., vol. 18, no. 11, pp. 2419–2434, Nov. 2009.

[12] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” J. Math. Imag. Vis.,
vol. 40, no. 1, pp. 120–145, 2010.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2011.

[14] C. De Mol and M. Defrise, “Inverse imaging with mixed penalties,” in
Proc. URSI EMTS, Pisa, Italy, 2004, pp. 798–800.

[15] A. Gholami and S. Hosseini, “A balanced combination of tikhonov and
total variation regularizations for reconstruction of piecewise-smooth
signals,” Signal Process., vol. 93, no. 7, pp. 1945–1960, 2013.

[16] V. Naumova and S. Peter, “Minimization of multi-penalty functionals
by alternating iterative thresholding and optimal parameter choices,”
Inverse Problems, vol. 30, no. 12, 2014, Art. no. 125003.

[17] M. Grasmair, T. Klock, and V. Naumova, “Adaptive multi-penalty reg-
ularization based on a generalized lasso path,” Appl. Comput. Harmon.
Anal., vol. 49, no. 1, pp. 30–55, 2018.

[18] V. Debarnot, P. Escande, T. Mangeat, and P. Weiss, “Learning low-
dimensional models of microscopes,” IEEE Trans. Comput. Imag.,
vol. 7, pp. 178–190, Dec. 2021, doi: 10.1109/TCI.2020.3048295.

[19] E. J. Candès and C. Fernandez-Granda, “Towards a mathematical the-
ory of super-resolution,” Commun. Pure Appl. Math., vol. 67, no. 6,
pp. 906–956, 2014.

[20] M. Unser, J. Fageot, and J. Ward, “Splines are universal solutions of
linear inverse problems with generalized TV regularization,” SIAM Rev.,
vol. 59, no. 4, pp. 769–793, 2017.

[21] S. Aziznejad and M. Unser, “Multi-kernel regression with sparsity con-
straint,” J. Math. Data Sci., vol. 3, no. 1, pp. 201–224, 2021.

[22] G. Wahba, Spline Models for Observational Data. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 1990.

[23] B. Schölkopf, R. Herbrich, and A. Smola, “A generalized representer
theorem,” in Lecture Notes Computer Science, D. Helmbold and R.
Williamson, Eds. Berlin, Germany: Springer, 2001, pp. 416–426.

[24] H. Gupta, J. Fageot, and M. Unser, “Continuous-domain solutions of
linear inverse problems with tikhonov versus generalized TV regular-
ization,” IEEE Trans. Signal Process., vol. 66, no. 17, pp. 4670–4684,
Sep. 2018.

[25] S. Fisher and J. Jerome, “Spline solutions to L1 extremal problems in
one and several variables,” J. Approximation Theory, vol. 13, no. 1,
pp. 73–83, 1975.

[26] K. Bredies and M. Carioni, “Sparsity of solutions for variational inverse
problems with finite-dimensional data,” Calculus Variations Partial Dif-
fer. Equ., vol. 59, no. 1, pp. 1–26, 2019.

[27] J. Fageot and M. Simeoni, “TV-based reconstruction of periodic func-
tions,” Inverse Problems, vol. 36, no. 11, 2020, Art. no. 115015.

[28] C. Boyer, A. Chambolle, Y. De Castro, V. Duval, F. de Gournay, and P.
Weiss, “On representer theorems and convex regularization,” SIAM J.
Optim., vol. 29, no. 2, pp. 1260–1281, 2019.

[29] T. Debarre, J. Fageot, H. Gupta, and M. Unser, “B-spline-based ex-
act discretization of continuous-domain inverse problems with gen-
eralized TV regularization,” IEEE Trans. Inf. Theory, vol. 65, no. 7,
pp. 4457–4470, Jul. 2019.

VOLUME 2, 2021 557

https://dx.doi.org/10.1109/TCI.2020.3048295


DEBARRE ET AL.: CONTINUOUS-DOMAIN FORMULATION OF INVERSE PROBLEMS FOR COMPOSITE SPARSE-PLUS-SMOOTH SIGNALS

[30] A. Flinth and P. Weiss, “Exact solutions of infinite dimensional total-
variation regularized problems,” Inf. Inference: J. IMA, vol. 8, no. 3,
pp. 407–443, 2019.

[31] B. Adcock and A. Hansen, “Generalized sampling and infinite-
dimensional compressed sensing,” Found. Comput. Math., vol. 16,
no. 5, pp. 1263–1323, 2016.

[32] I. Daubechies, M. Defrise, and C. De Mol, “Sparsity-enforcing regu-
larisation and ISTA revisited,” Inverse Problems, vol. 32, no. 10, 2016,
Art. no. 104001.

[33] C. de Boor, A Practical Guide to Splines. Berlin, Germany: Springer-
Verlag GmbH, 2001.

[34] M. Unser, A. Aldroubi, and M. Eden, “B-spline signal processing: Part
I-theory,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 821–833,
Feb. 1993.

[35] M. Unser, “Splines: A perfect fit for signal and image processing,” IEEE
Signal Process. Mag., vol. 16, no. 6, pp. 22–38, Nov. 1999.

[36] I. Schoenberg, Cardinal Spline Interpolation. Philadelphia, PA, USA:
SIAM, 1973.

[37] M. Belge, M. Kilmer, and E. Miller, “Efficient determination of mul-
tiple regularization parameters in a generalized l-curve framework,”
Inverse Problems, vol. 18, no. 4, pp. 1161–1183, 2002.

[38] S. Roth and M. Black, “Fields of experts: A framework for learning
image priors,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., San Diego, CA, USA, Jun. 2005, pp. 860–867.

[39] Z. Chen, Y. Lu, Y. Xu, and H. Yang, “Multi-parameter tikhonov reg-
ularization for linear ill-posed operator equations,” J. Comput. Math.,
vol. 26, no. 1, pp. 37–55, 2008.

[40] S. Lu and S. Pereverzev, “Multi-parameter regularization and its nu-
merical realization,” Numerische Mathematik, vol. 118, no. 1, pp. 1–31,
2010.

[41] Z. Wang, “Multi-parameter tikhonov regularization and model function
approach to the damped morozov principle for choosing regularization
parameters,” J. Comput. Appl. Math., vol. 236, no. 7, pp. 1815–1832,
2012.

[42] R. Abhishake and S. Sivananthan, “Multi-penalty regularization in
learning theory,” J. Complexity, vol. 36, pp. 141–165, 2016.

[43] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” J. Roy. Stat. Soc.: Ser. B. (Stat. Methodol.), vol. 67, no. 2,
pp. 301–320, 2005.

[44] R. Otazo, E. J. Candès, and D. K. Sodickson, “Low-rank plus sparse
matrix decomposition for accelerated dynamic MRI with separation of
background and dynamic components,” Magn. Reson. Med., vol. 73,
no. 3, pp. 1125–1136, 2015.

[45] Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear
Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memo-
rial Lectures. Providence RI, USA: Amer. Math. Soc., Sep. 2001, doi:
10.1090/ulect/022.

[46] L. Vese and S. Osher, “Modeling textures with total variation mini-
mization and oscillating patterns in image processing,” J. Sci. Comput.,
vol. 19, no. 1–3, pp. 553–572, 2003.

[47] L. Vese and S. Osher, “Image denoising and decomposition with total
variation minimization and oscillatory functions,” J. Math. Imag. Vis.,
vol. 20, no. 1/2, pp. 7–18, 2004.

[48] D. Mumford and J. Shah, “Optimal approximations by piecewise
smooth functions and associated variational problems,” Commun. Pure
Appl. Math., vol. 42, no. 5, pp. 577–685, 1989.

[49] L. Schwartz, Théorie Des Distributions. Paris, France: Hermann Paris,
1951.

[50] W. Rudin, Real and Complex Analysis. New York, NY, USA: McGraw-
Hill, 1986.

[51] M. Unser and J. Fageot, “Native Banach spaces for splines and varia-
tional inverse problems,” 2019, arXiv:1904.10818.

[52] I. Daubechies, Ten Lectures on Wavelets. Philadelphia PA, USA: Soc.
Ind. Appl. Math., Jan. 1992, doi: 10.1137/1.9781611970104.

[53] A. Amini, R. Madani, and M. Unser, “A universal formula for general-
ized cardinal B-splines,” Appl. Comput. Harmon. Anal., vol. 45, no. 2,
pp. 341–358, 2018.

[54] T. Debarre, S. Aziznejad, and M. Unser, “Hybrid-spline dictionaries
for continuous-domain inverse problems,” IEEE Trans. Signal Process.,
vol. 67, no. 22, pp. 5824–5836, Nov. 2019.

[55] P. Bohra and M. Unser, “Computation of “best” interpolants in the lp
sense,” in Proc. 45th IEEE Int. Conf. Acoust., Speech, Signal Process.,
Barcelona, Spain, May 2020, pp. 5505–5509.

[56] M. Unser and T. Blu, “Cardinal exponential splines: Part I-Theory
and filtering algorithms,” IEEE Trans. Signal Process., vol. 53, no. 4,
pp. 1425–1438, Apr. 2005.

[57] M. Unser, “Cardinal exponential splines: Part II-Think analog, act
digital,” IEEE Trans. Signal Process., vol. 53, no. 4, pp. 1439–1449,
Apr. 2005.

[58] G. Dantzig, A. Orden, and P. Wolfe, “The generalized simplex method
for minimizing a linear form under linear inequality restraints,” Pacific
J. Math., vol. 5, no. 2, pp. 183–195, 1955.

[59] L. Dadi, S. Aziznejad, and M. Unser, “Generating sparse stochastic
processes using matched splines,” IEEE Trans. Signal Process., vol. 68,
pp. 4397–4406, Jul. 2020, doi: 10.1109/TSP.2020.3011632.

[60] M. Unser and T. Blu, “Generalized smoothing splines and the optimal
discretization of the Wiener filter,” IEEE Trans. Signal Process., vol. 53,
no. 6, pp. 2146–2159, Jun. 2005.

[61] A. Badoual, J. Fageot, and M. Unser, “Periodic splines and Gaussian
processes for the resolution of linear inverse problems,” IEEE Trans.
Signal Process., vol. 66, no. 22, pp. 6047–6061, Nov. 2018.

[62] W. Rudin, Functional Analysis (International Series in Pure and
Applied Mathematics.) New York, NY, USA: McGraw-Hill, Inc., 1991.

[63] M. Unser, “A representer theorem for deep neural networks,” J. Mach.
Learn. Res., vol. 20, no. 110, pp. 1–30, 2019.

THOMAS DEBARRE graduated from Mines ParisTech, Paris, France, in
2016 and received the M.Sc. degree in applied mathematics from the École
Normale Supérieure, Cachan, France, in 2017. He is currently working toward
the Ph.D. degree with the Biomedical Imaging Group under the direction
of Prof. Unser and Dr. Fageot, EPFL. His research interests include splines,
inverse problems, and variational methods for reconstructing sparse signals.

SHAYAN AZIZNEJAD received the B.Sc. degree in electrical engineering
and mathematics in 2017 from the Sharif University of Technology (SUT),
Tehran, Iran. He is currently working toward the Ph.D. degree under the direc-
tion of M. Unser with the Biomedical Imaging Group, Ecole Polytechnique
Fédérale de Lausanne, Switzerland. His research interests include variational
formulation of inverse problems and machine learning, spline theory, and
stochastic processes. He was the recipient of the Best Student Paper Award at
ICASSP 2019.

MICHAEL UNSER (Fellow, IEEE) is a Professor and the Director of EPFL’s
Biomedical Imaging Group, Lausanne, Switzerland. His primary area of in-
vestigation is biomedical image processing. He is internationally recognized
for his research contributions to sampling theory, wavelets, the use of splines
for image processing, stochastic processes, and computational bioimaging.
He has authored or coauthored more than 350 journal papers on those topics.
He is the author with P. Tafti of the book “An introduction to sparse stochastic
processes”, Cambridge University Press 2014. From 1985 to 1997, he was
with the Biomedical Engineering and Instrumentation Program, National
Institutes of Health, Bethesda USA, conducting research on bioimaging. Dr.
Unser was on the Editorial Board of most of the primary journals in his
field including the IEEE TRANSACTIONS ON MEDICAL IMAGING (Associate
Editor-in-Chief 2003–2005), IEEE TRANSACTIONS IMAGE PROCESSING, Proc.
of IEEE, and SIAM Journal of Imaging Sciences. He is the Founding Chair of
the technical committee on Bio Imaging and Signal Processing (BISP) of the
IEEE Signal Processing Society.

He is an EURASIP fellow (2009), and a member of the Swiss Academy
of Engineering Sciences. He was the recipient of several international prizes
including five IEEE-SPS best paper awards, two Technical Achievement
Awards from the IEEE (2008 SPS and EMBS 2010), the Technical Achieve-
ment Award from EURASIP (2018), and a recent Career Achievement Award
(IEEE EMBS 2020).

558 VOLUME 2, 2021

https://dx.doi.org/10.1090/ulect/022
https://dx.doi.org/10.1137/1.9781611970104
https://dx.doi.org/10.1109/TSP.2020.3011632


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


