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Abstract

The goal of this thesis is to study continuous-domain inverse problems for the
reconstruction of sparse signals and to develop efficient algorithms to solve such
problems computationally. The task is to recover a signal of interest as a continuous
function from a finite number of measurements. This problem being severely ill-
posed, we choose to favor sparse reconstructions. We achieve this by formulating an
optimization problem with a regularization term involving the total-variation (TV)
norm for measures. However, such problems often lead to nonunique solutions, some
of which, contrary to expectations, may not be sparse. This requires particular care
to assert that we reach a desired sparse solution.

Our contributions are divided into three parts. In the first part, we propose
exact discretization methods for large classes of TV-based problems with generic
measurement operators for one-dimensional signals. Our methods are based on re-
presenter theorems that state that our problems have spline solutions. Our approach
thus consists in performing an exact discretization of the problems in spline bases,
and we propose algorithms which ensure that we reach a desired sparse solution.
We then extend this approach to signals that are expressed as a sum of compo-
nents with different characteristics. We either consider signals whose components
are sparse in different bases or signals whose first component is sparse, and the
other is smooth.

In the second part, we consider more specific TV-based problems and focus on
the identification of cases of uniqueness. Moreover, in cases of nonuniqueness, we
provide a precise description of the solution set, and more specifically of the sparsest
solutions. We then leverage this theoretical study to design efficient algorithms that
reach such a solution. In this line, we consider the problem of interpolating one-
dimensional data points with second-order TV regularization. We also study this
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same problem with an added Lipschitz constraint to favor stable solutions. Finally,
we consider the problem of the recovery of periodic splines with low-frequency
Fourier measurements, which we prove to always have a unique solution.

In the third and final part, we apply our sparsity-based frameworks to various
real-world problems. Our first application is a method for the fitting of sparse curves
to contour data. Finally, we propose an image-reconstruction method for scanning
transmission X-ray microscopy.



Résumé

Cette thèse se concentre sur l’étude de problèmes inverses dans le domaine
continu pour la reconstruction de signaux parcimonieux, et sur le développement
d’algorithmes efficaces pour résoudre ces problèmes en pratique. L’objectif d’un pro-
blème inverse est de reconstruire un signal d’intérêt sous forme de fonction continue
à partir d’un nombre fini de mesures. Ce type de problème étant extrêmement mal
posé, nous choisissons de favoriser les reconstructions parcimonieuses. Pour ce faire,
nous formulons un problème d’optimisation avec un terme de régularisation basé
sur la variation totale (VT) au sens des mesures. Cependant, de tels problèmes
conduisent souvent à des solutions multiples, dont certaines, contrairement aux at-
tentes, peuvent ne pas être parcimonieuses. Cela nécessite une attention particulière
pour s’assurer que nous atteignons une solution parcimonieuse souhaitée.

Nos contributions sont divisées en trois parties. Dans la première partie, nous
proposons des méthodes de discrétisation exactes pour de grandes classes de pro-
blèmes basés sur la VT avec des opérateurs de mesure génériques pour des signaux
unidimensionnels. Nos méthodes sont basées sur des théorèmes du représentant qui
stipulent que nos problèmes ont des solutions splines. Notre approche consiste donc
à effectuer une discrétisation exacte des problèmes dans des bases de splines, et
nous proposons des algorithmes qui garantissent que nous atteignons une solution
parcimonieuse souhaitée. Nous étendons ensuite cette approche à des signaux ex-
primés comme une somme de composantes ayant des caractéristiques différentes.
Nous considérons soit des signaux dont les composantes sont parcimonieuses dans
différentes bases, soit des signaux dont la première composante est parcimonieuse
et l’autre est lisse.

Dans la deuxième partie, nous considérons des problèmes plus spécifiques basés
sur la VT et nous nous concentrons sur l’identification des cas d’unicité. De plus,
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dans les cas de non-unicité, nous fournissons une description précise de l’ensemble
des solutions, et en particulier de la solution la plus parcimonieuse. Nous nous
appuyons ensuite sur cette étude théorique pour concevoir des algorithmes efficaces
permettant d’atteindre une telle solution. Dans cette ligne, nous considérons le
problème de l’interpolation de données unidimensionnelles avec une régularisation
basée sur la VT du second ordre. Nous étudions également ce même problème
avec une contrainte de Lipschitz additionnelle pour favoriser les solutions stables.
Enfin, nous considérons le problème de reconstruction de splines périodiques avec
des mesures de Fourier à basse fréquence, dont nous prouvons qu’il a toujours une
solution unique.

Dans la troisième et dernière partie, nous appliquons nos cadres basés sur la
parcimonie à divers problèmes concrets. Notre première application est une mé-
thode d’ajustement de courbes parcimonieuses à des points de contour. Enfin, nous
proposons une méthode de reconstruction d’image pour la microscopie à rayons X
à transmission par balayage.



A mes grands-parents, François et Fanfette.
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Chapter 1

Introduction

In this thesis, we study linear inverse problems for the reconstruction of continuous-
domain signals. The task in an inverse problem is to recover an unknown ground-
truth signal s0 of interest based on some measured data or observations y 2 RM ,
where M is the number of observations. For example, a computed tomography
(CT) scanner solves an inverse problem by reconstructing an image of the density
distribution of the sample based on X-ray projection data at various angles. The
assumption is that the physical model that governs the data acquisition process,
denoted as the operator ⌫ : s 7! ⌫(s) 2 RM and such that ⌫(s0) ⇡ y, is known.
In our CT example, this entails that if the density distribution of the sample were
known, then the noiseless X-ray projections could be computed. Discrepancies be-
tween ⌫(s0) and y, which are assumed to be small, can be due to measurement
noise and/or to the inaccurate modelling of the acquisition process ⌫. This phys-
ical model ⌫, which is typically linear, is known as the forward model, hence the
terminology “linear inverse problem” for the reverse procedure.

Our particular focus is on inverse problem where the signal s0 is a continuous-
domain function. This differs from the vast majority of the existing inverse-problem
literature, which is concerned with discrete problems, where the signal s0 is a vec-
tor. This is mainly for obvious practical considerations, since vectors are easier to
manipulate computationally. However, the forward model ⌫ is often an inherently
continuous operation and thus requires to be discretized (e.g., a line integral ap-
proximated as a finite sum in CT) in order to formulate a discrete problem. When

1



2 Introduction

poorly handled, this discretization can be a massive source of error which is absent
from continuous-domain formulations, as uncovered by a host of different works
[1, 2, 3]. This underscores the need for inverse-problem frameworks where calcu-
lations are exact in the continuous domain, which require particular care in the
discretization process in order to solve them computationally.

The most standard approach to solving an inverse problem is via a variational
formulation, which consists in minimizing a cost function. The latter involves a
data-fidelity term that enforces the consistency of the reconstructed signal with
the observations, i.e., ⌫(s⇤) ⇡ y. However, minimizing solely a data-fidelity term
usually leads to poor results due to noise overfitting and to the following potential
flaws in the problem formulation:

— ill-posedness, which means that different signals may lead to the same ob-
servations y. This issue is particularly conspicuous in continuous-domain
formulations, since the reconstructed signal lives in an infinite-dimensional
space, whereas there are a finite number M of observations y.

— ill-conditioning, which means that small variations in the measured data y

may lead to drastic variations in the reconstructed signal s⇤. Then, in the
presence of noise in the measurements, the reconstruction process is highly
unstable;

These issues are typically alleviated by adding a regularization term to the cost
function, which is solely based on our prior knowledge on the form of the ground-
truth signal. Historically, the first kind of regularization that was proposed is `2 or
Tikhonov regularization [4]; the inverse problem then typically amounts to solving
a linear system. In recent years, sparsity, i.e., the assumption that a signal can be
represented with few parameters, has become a prevalent choice of prior. This is due
to the well-known observation that many natural signals have sparse (approximate)
representations in certain bases, e.g., wavelets for natural images [5]. In discrete
problems, sparsity is typically enforced via the `1 norm, which leads to problems
such as the basis pursuit [6] or the LASSO [7]; this strategy is foundational to the
field of compressed sensing (CS) [8, 9, 10, 11]. The continuous counterpart of the
`1 norm is the total-variation (TV) norm for measures, in the sense that it also
promotes sparse solutions [12, 13, 14].

Sparsity-promoting regularization has proved to be very effective in practice, and
is considered to be superior to Tikhonov regularization [15, 16]. However, due to
the nondifferentiability of the `1 norm, the optimization procedure is more involved;
it is typically solved with iterative algorithms based on proximal operators [17] such
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as FISTA [18] or ADMM [19]. Another difficulty is that the underlying optimization
problem may not have a unique solution. Moreover, contrary to expectations, not
all solutions are necessarily sparse [20, 14]. Although this is also well known in the
discrete inverse-problem community [21], it is surprisingly rarely discussed. In fact,
standard proximal algorithms are not designed to reach a desired sparse solution,
which seemingly defeats the purpose of using sparsity-promoting regularization.
This “oversight” is partially due to the fact that CS frameworks typically consider
problems where the (sparse) ground-truth signal is the unique solution. However,
in practical application where the measurement operator cannot be chosen freely,
uniqueness does not hold in general, in which case the design of algorithms that
reach a sparse solution is a critical question.

In this thesis, we attempt to contribute to these questions in the context of
one-dimensional continuous-domain inverse problems with generalized TV (gTV)
regularization, i.e., where the TV norm for measures is used in combination with a
differential regularization operator L that specifies the transform domain in which
the signal is sparse. We propose discretization methods that are exact in the contin-
uous domain, and design efficient algorithms that are guaranteed to reach a desired
sparse solution in various generic settings. Our discretization methods are based on
representer theorems, either existing ones [14, 22] or our own, that guarantee that
our problems have spline (i.e., piecewise-polynomial) solutions. This motivates the
use of B-spline bases in our discretization methods. More generally, B-splines are
ideal bridges between the analog and digital worlds due to their simple parametric
form and their advantageous properties for numerical applications—most notably,
their short support [23, 24, 25]. Next, we study more particular settings, i.e.,
with specific measurement and regularization operators ⌫ and L, in which we are
able to precisely characterize the solution set of our problem. We leverage these
theoretical characterizations to design efficient algorithms that reach the sparsest
solution. Finally, we show how our continuous-domain sparsity-driven framework
can be applied to practical applications.

1.1 Organization of the Thesis
This thesis is divided into four parts; the interplay between the latter is il-

lustrated graphically in Figure 1.1. Their contents, contributions, and relevant
publications are summarized below.
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Figure 1.1: Roadmap of the thesis.

Background on TV-based Inverse Problems (Part I)

In the first part, we provide the mathematical background for the rest of the
thesis. In particular, we define the native spaces of our continuous-domain opti-
mization problems of interest in Chapter 2, which are matched to the regularization
operator L. This construction relies on [14] and [22] in the nonperiodic and periodic
settings, respectively. Finally, in Chapter 3, we present some background on poly-
nomial splines and the representer theorems of [14, 22], on which our discretization
methods are based, which state that many of our gTV-based problems of interest
have spline solutions.

Exact Discretization of TV-Based Inverse Problems on a Grid
(Part II)

We then present our grid-based discretization methods for various classes of
gTV-based problems. In Chapter 4, we focus on piecewise-polynomial signal models
with generic measurement operators ⌫. Inspired by the representer theorem of [14],
we propose a B-spline-based discretization method which is exact in the continuous
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domain, and we propose a multiresolution algorithm that is guaranteed to reach a
desired sparse solution. Next, in Chapter 5, we extend to multicomponent signal
models s = s1 + s2, where si is assumed to be sparse in a basis specified by a
regularization operator Li for i 2 {1, 2}, with L1 6= L2. Our discretization method
is again motivated by our multicomponent representer theorem which guarantees
that such problems admit a solution that is a hybrid spline, i.e., the sum of a
L1- and a L2-spline. Finally, in Chapter 6, we consider another multicomponent
signal model, but where the first component s1 is assumed to be sparse in a basis
specified by L1, and the second component s2 is assumed to be smooth. Likewise, we
prove a representer theorem for such problems which motivates our B-spline-based
discretization method.

Relevant publications:
— T. Debarre, J. Fageot, H. Gupta, and M. Unser, “Solving Continuous-Domain

Problems Exactly with Multiresolution B-Splines”, in Proceedings of the
Forty-Fourth IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP’19), Brighton, United Kingdom, May 2019, pp.
5122–5126.

— T. Debarre, J. Fageot, H. Gupta, and M. Unser, “B-Spline-Based Exact
Discretization of Continuous-Domain Inverse Problems with Generalized TV
Regularization”, IEEE Transactions on Information Theory, vol. 65, no. 7,
pp. 4457–4470, Jul. 2019.

— T. Debarre, S. Aziznejad, and M. Unser, “Hybrid-Spline Dictionaries for
Continuous-Domain Inverse Problems”, IEEE Transactions on Signal Pro-
cessing, vol. 67, no. 22, pp. 5824–5836, Nov. 2019.

— T. Debarre, S. Aziznejad, and M. Unser, “Continuous-Domain Formulation
of Inverse Problems for Composite Sparse-Plus-Smooth Signals”, IEEE Open
Journal of Signal Processing, vol. 2, pp. 545–558, Sep. 2021.

(Non)uniqueness and the Study of the Solution Set of TV-
Based Inverse Problems (Part III)

We then focus on more specific gTV-based problems, i.e., with a specific mea-
surement operator ⌫ and regularization operator L. Using duality theory [26], we
precisely describe the solution set, in particular by identifying cases of uniqueness,
and we leverage this description to design efficient algorithms that are guaran-
teed the reach the sparsest solution. The first class of problems we consider in
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Chapter 7 are interpolation problems, i.e., where the forward model is a sam-
pling operator ⌫(s) = (s(x1), . . . , s(xM )) (the xm are the sampling locations), with
second-order TV regularization, i.e., the regularization operator L is the second
derivative L = D2. In Chapter 8, we also consider interpolation problems with
second-order TV regularization, but with an additional constraint on the Lipschitz
constant of the reconstruction. Finally, in Chapter 9, we reconsider the reconstruc-
tion problem of periodic signals based on low-pass Fourier series measurements,
which we prove to always have a unique solution.

Relevant publications:
— T. Debarre, Q. Denoyelle, M. Unser, and J. Fageot, “Sparsest Piecewise-

Linear Regression of One-Dimensional Data”, Journal of Computational and
Applied Mathematics, vol. 406, p. 114044, May 2022.

— S. Aziznejad ∗, T. Debarre ∗, and M. Unser, “Sparsest Univariate Learning
Models Under Lipschitz Constraint”, IEEE Open Journal of Signal Process-
ing, vol. 3, pp. 140–154, Mar. 2022.

— T. Debarre, Q. Denoyelle, and J. Fageot, “On the Uniqueness of Solutions
for the Basis Pursuit in the Continuum”, arXiv preprint arXiv:2009.11855,
Feb. 2022.

— T. Debarre, Q. Denoyelle, and J. Fageot, “TV-Based Spline Reconstruction
with Fourier Measurements: Uniqueness and Convergence of Grid-Based
Methods”, arXiv preprint arXiv:2202.05059, Feb. 2022.

Applications (Part IV)
In this final part, we apply our sparsity-promoting continuous-domain inverse

problem formulations and B-spline-based discretization methods to real-world ap-
plications. In Chapter 10, we consider the problem of fitting a sparse curve based
on a collection of contour points. We prove a representer theorem and propose
a discretization method based on Chapters 4 and 5 for single-component and hy-
brid curve models, respectively. Finally, in Chapter 11, we propose a 2D image-
reconstruction algorithm for scanning transmission X-ray microscopy (STXM),
where the measurement operator ⌫ is a sampling operator on a nonuniform grid
and with sparsity-promoting Hessian-Schatten regularization [27].

Relevant publications:

∗. Equal contribution.
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— I. Lloréns Jover, T. Debarre, S. Aziznejad, and M. Unser, “Coupled Splines
for Sparse Curve Fitting”, arXiv preprint arXiv:2202.01641, Feb. 2022.

— T. Debarre, B. Watts, B. Rösner, and M. Unser, “Hessian Splines for Scan-
ning Transmission X-Ray Microscopy”, in Proceedings of the Seventeenth
IEEE International Symposium on Biomedical Imaging (ISBI’20), Iowa City
IA, USA, Apr. 2020, pp. 199-202.

1.2 Literature Review
We now give a more in-depth literature concerning generalized TV-based opti-

mization problem, which are typically of the form

f⇤ 2 arg min
f

0

B@E(⌫(f),y)| {z }
Data fidelity

+ �kL{f}kM| {z }
Regularization

1

CA , where: (1.1)

— y 2 RM are the observations;
— ⌫ : f 7! ⌫(f) 2 RM is the forward model ;
— E : RM ⇥RM ! R[{+1} is the data-fidelity cost functional that penalizes

the discrepancy between the observations y and the measurements ⌫(f⇤) of
the reconstructed signal f⇤;

— k · kM is the sparsity-promoting TV norm;
— L is the differential regularization operator that specifies the transform do-

main in which f⇤ is sparse;
— � > 0 is the regularization parameter that balances the weight between the

data-fidelity and regularization terms.

1.2.1 Discrete `1 Optimization
TV-based regularization lies in the realm of sparsity-promoting regularization

techniques, which were first introduced—and are, still, most commonly used—in
purely discrete settings. The sparsity of a discrete signal—i.e., a vector—is mea-
sured by the `0 “norm”, which counts the number of its nonzero entries. However,
`0-based optimization leads to NP-hard problems; hence, in practice, sparsity is
typically enforced via `1 norm, which can be seen as a convex relaxation of the
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(nonconvex) `0 “norm”. Analogously to (1.1), classical discrete problems with `1
regularization are of the form

c
⇤ 2 arg min

c2RN

0

B@E(Hc,y)| {z }
Data fidelity

+ �kLck1| {z }
Regularization

1

CA , (1.2)

where H 2 RM⇥N is the sensing matrix (discrete forward model), L 2 RN⇥N is the
regularization matrix. The choice of L allows us to promote the sparsity of c in a
chosen transform domain, e.g., a finite difference matrix (discrete TV regularization
[28]) or wavelets.

The use of `1 regularization was popularized in large part by the least absolute
shrinkage and selection operator (LASSO) [7]—where L is the identity matrix—and
the basis pursuit [6]—where E is an indicator function—, which were introduced in
the late 90s. These problems are at the cornerstone of sparse statistical learning [29,
16] and sparse signal processing [30].

Such problems are also central to the field compressed sensing (CS), which
surged in the mid 2000s [8, 31, 10, 11, 20]. In the CS framework, the goal is to
recover a signal c0 2 RN with very few observations y 2 RM with M ⌧ N via
problems of the form (1.1). The two key conditions for the recovery to be possible
are that c0 be sparse and that the sensing matrix H be incoherent [31, 32, 8].
Infinite-dimensional extensions of the CS framework have also been proposed [33,
3, 20, 34, 35, 36].

The benefits of `1 regularization have been extensively documented, including
its sparsity-promoting effect [7, 20], CS-type recovery guarantees, or its apparent
superiority over Tikhonov `2 regularization to recover many real-world signals [37,
16]. Moreover, despite its nondifferentiability, numerous efficient algorithms based
on the proximity operator of the `1 norm have emerged to solve `1-regularized
problems [38, 18, 39, 40, 19, 41, 17].

However, many inverse problems are inherently continuous, in which case the
purely discrete approach has several important pitfalls. Firstly, discretization is
typically performed in a pixel basis which is not necessarily matched to the charac-
teristics of the underlying continuous-domain signal. Moreover, the discrete forward
model H is often an approximation of its continuous counterpart ⌫ (e.g., the dis-
crete Fourier transform for the continuous Fourier transform), which introduces
discretization errors [1, 2, 3]. To avoid these issues, it is crucial to formulate and



1.2 Literature Review 9

to think about these problems in the continuous domain, even if they must be
eventually digitalized in some way in order to be solved computationally. This con-
tinuous approach—which includes some of the infinite-dimensional CS frameworks
listed above—is adopted by a growing number of works, some of which are reviewed
below.

1.2.2 Discretization in Hilbert Function Spaces
Despite its esthetic appeal, discretizing continuous-domain problems with a fi-

nite number of observations y leads to severely ill-posed problems. Indeed, although
discrete CS problems such as (1.2) are also ill-posed when M ⌧ N , this is all the
more the case when we have an infinite-dimensional search space and finitely many
observations. Kernel methods based on quadratic regularization are an elegant way
of removing this ill-posedness [42]; they lead to the restriction of the search space to
a finite-dimensional subset of a Hilbert space [43, 44, 45, 46]. The challenge is then
to choose this Hilbert space adequately. These approaches are fruitful; however,
they still ultimately revert to the finite-dimensional setting. Moreover, they do not
enforce the sparsity of the reconstructed signals, which has now become the prior
of choice in model-based reconstruction methods.

1.2.3 Optimization over Radon Measures
A prominent example of continuous-domain inverse-problem formulations with

sparsity priors in the literature is the problem of recovering sums of Dirac masses in
the continuum, which is known as sparse spikes deconvolution (or super-resolution)
[47, 48, 49, 12]. This type of problem has multiple data-science applications, in-
cluding radio-astronomy [50], super-resolution microscopy [51], or 3D image decon-
volution [52]. This question has received considerable attention in the 21st century,
including approaches that are not based on TV regularization [53], such as finite
rate of innovation (FRI) techniques [54, 55] and Prony’s methods [56, 57, 58].

However, the most common approach to sparse spikes deconvolution is to for-
mulate an optimization problem with TV regularization, i.e., problems of the
form (1.1) in the absence of a regularization operator L. The underlying optimiza-
tion problems, either formulated in a constrained form in the noiseless case [49] or in
a penalized form known as the Beurling LASSO (BLASSO) [47] in the presence of
noise, are thus solved over a nonreflexive Banach space. The role of the TV norm in
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variational methods has a rich history [59, 60] (see [61, Section 1] for additional refer-
ences). From a theoretical standpoint, many reconstruction guarantees are proved,
such as exact recovery of discrete measures (sums of Dirac masses) in the noiseless
case [49, 62], robustness to noise [12, 13, 63, 64], support recovery [65, 66, 67, 68]
and super-resolution for positive discrete measures [47, 69, 70, 71, 72, 73, 74].

From a numerical standpoint, there exist several strategies to solve these prob-
lems. A first one is based on spatial discretization which leads back to the LASSO
and algorithms such as FISTA [18]. Another approach is to use greedy algorithms
[75] such as continuous-domain orthogonal matching pursuit (OMP) [76, 77]. In
special setups (typically Fourier measurements), it is possible to reformulate the
optimization problems as semidefinite or convex programs [49, 78, 79, 80], or to use
projected gradient descent methods [81]. Recent developments based on the Frank-
Wolfe (FW) algorithm [82] stemming from [12] solve the BLASSO directly over the
space of Radon measures. These FW-based methods improve on the traditional
FW algorithm due to the possibility of moving the spikes in the continuous domain
to further decrease the objective function [83, 51, 84, 85, 52]. Finally, we mention
[86] which proposes a nonconvex gradient-descent algorithm.

1.2.4 From Sparse Measures to Splines and Beyond
In recent years, several works have extended the TV-based Dirac recovery frame-

work to smoother continuous-domain signals by considering gTV regularization,
i.e., problems such as (1.1) with a nontrivial regularization operator L. Interest-
ingly, the origins of these works predate by far the Dirac recovery literature and
can be traced back to the 70’s [87, 88]. They have been revived much more re-
cently in [14], in which Unser et al. revealed the connection between Problem (1.1)
and spline theory for general measurement functionals: the extreme-point solutions
are necessarily L-splines (Theorem 3.3). This result was revisited, extended, and
refined by several authors [45, 61, 89, 90, 91, 92, 22, 93, 94]. On the algorithmic
side, a host of recent works have proposed algorithms to solve problems with gTV
regularization or closely related ones, either grid-based [95] or grid-free [90, 96, 97].
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Background on TV-Based
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In this part, we present the mathematical foundations of the remainder of the
thesis. We properly introduce the functional-analysis framework of our generalized
total-variation (gTV)-based inverse-problem formulations of the form (1.1). More
specifically, problems related to (1.1) will be the focus of our works in Parts II and
III, as well as Chapter 10. This part is organized as follows.

— In Chapter 2, we define the search spaces of our Problems (1.1), which are
known as native spaces of the regularization operator L.

— In Chapter 3, we first provide some background on polynomial splines matched
to the operator L, which are at the core of our exact discretization strategies
throughout the thesis. Moreover, splines have been proved to be solutions
of problems of the form (1.1) by existing representer theorems. We formu-
late these problems in both the nonperiodic and periodic settings, and we
present their corresponding representer theorems, which are taken from [14]
and [22], respectively.
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Chapter 2

Native Spaces

In this chapter, we introduce the function spaces over which our optimization
problems are performed. The latter are Banach spaces that involve a differential
operator L. The terminology native space refers to the domain of L. This chapter
heavily relies on [14] and [22] for the nonperiodic and periodic settings, respectively.
This construction of the native spaces heavily relies on distribution theory and dual
spaces, the basics of which are presented in Section 2.1. Next, we introduce the
space of Radon measures and its associated Banach norm, the total-variation (TV)
norm for measures, in Section 2.2. In Section 2.3, we introduce weak derivatives,
which allow us to extend the domain of our operator L via distribution theory.
Finally, we introduce the native space of L is Section 2.4, and we uncover its Banach
structure.

2.1 Preliminaries on Distribution Theory

The construction of our native spaces builds upon distribution theory, which was
first introduced by Laurent Schwartz in [98]. The idea behind its use is that common
operators are mathematically well defined over function spaces that exclude many
functions of interest. By using distribution theory, the domain X of an operator can
be extended to the dual space X 0, which typically contains much larger—and hence
more interesting—classes of (generalized) functions. For example, it is well known

15
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by engineers that the derivative operator D can be applied to piecewise-constant
functions in the distributional sense, despite the fact their derivatives are undefined
in the classical sense at the jump locations.

2.1.1 Topological Vector Spaces
The most general spaces we will be dealing with are topological vectors spaces

(TVS). Although we will not go into their precise definition—for which we refer to
[15, Chapter 1]—, a TVS X is informally the most general type of vector space that
allows for the definition of limits. This is achieved by equipping X with a topology,
which specifies the open sets of X . TVSs are generalizations of normed spaces, since
norms induce a topology. However, a topology is not necessarily induced by a norm
or even a metric, as in the case of the Schwartz space introduced in Definitions 2.3
and 2.4.

2.1.2 Topological Dual Spaces
The definition of a topological dual space is given below.

Definition 2.1 (Topological Dual Space). Let X be a TVS. The topological dual
space of X , denoted by X 0, is the set of continuous linear functionals w : X ! R.

Given a dual pair (X ,X 0), for any ' 2 X and w 2 X 0, the action of w on '—or
duality product between ' and w—is denoted by

w(') = h', wiX⇥X 0 2 R (2.1)

In all that follows, the subscript X ⇥ X 0 that specifies the nature of the duality
product will often be omitted when there is no ambiguity as to which duality
product is implied, e.g., h', wi. Moreover, the order in the duality product might
not always be consistent, e.g., hw,'i instead of h', wi. Finally, a topological dual
space X 0 of X will be referred to as a dual space or simply a dual throughout this
thesis, and X will be referred to as the predual of X 0.

2.1.3 Dual Spaces and Topologies
The existence of a dual pair X and X 0 gives rise to various classical topologies

over both spaces, which we review below.
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Strong Topology

When X is a normed vector space over a scalar field K, X 0 inherits the normed
vector-space structure of X by way of the dual norm defined as

kwkX 0 , sup
'2X : k'kX1

|h', wiX⇥X 0 | (2.2)

for any w 2 X 0. The topology inherited from the dual norm over X 0 is known as the
strong topology. The dual space X 0 is complete with respect to the strong topology,
and is thus a Banach space.

Weak⇤ Topology

Even when X is not a normed space, the dual space X 0 inherits a topology
from X known as the weak⇤ topology. A sequence wn 2 X 0 converges to w 2 X 0

in the weak⇤ topology if for any ' 2 X , we have limn!+1h', wni = h', wi. This
convergence is written wn

w⇤! w. Note that when X is a normed space, the strong
topology is—as suggested by its name—stronger than the weak⇤ topology, in the
sense that the set of weak⇤-open sets is included in the set of strongly-open sets.
This implies that any linear functional ⌫ : X 0 ! R that is weak⇤-continuous is also
continuous for the strong topology.

Weak topology

Another topology deriving from distribution theory is the weak topology, which
is analogous to the weak⇤ topology, only the roles of X and X 0 are inverted. More
specifically, a sequence 'n 2 X converges to ' 2 X in the weak topology if for any
w 2 X 0, we have limn!+1h'n, wi = h', wi. This convergence is written 'n

w! '.
Finally, equipping X 0 with a topology—such as the strong or weak⇤ topologies—

enables the definition of the bidual (or double dual) space of X .

Bidual Space

The bidual space of X is defined as X 00 , (X 0)0. The space X is trivially always
included in its bidual X 00 via the canonical linear operator  : X ! X 00 defined as
 (') , (w 2 X 0 7! w(') 2 R), for both the strong and weak⇤ topologies. This
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inclusion  (X ) ⇢ X 00 is often slightly abusively written X ⇢ X 00. The space X is
called reflexive when this inclusion is an equality, i.e., X = X 00.

2.1.4 Adjoint Operators
We now define adjoint operators in the context of distribution theory. Although

this definition is well known in the context of Hilbert spaces, there are additional
subtleties when dealing with nonreflexive spaces, i.e., spaces X such that X 00 6= X .

Definition 2.2 (Adjoint Operator). Let (X ,X 0) and (Y,Y 0) be dual pairs of topo-
logical vector spaces, and let L : X ! Y be a linear operator. Then, the adjoint
operator of L is the unique linear operator L⇤ : Y 0 ! X 0 that satisfies

hf, L⇤{g}iX⇥X 0 , hL{f}, giY⇥Y0 8f, g 2 X ⇥ Y 0. (2.3)

Alternatively, let L : X 0 ! Y 0 be a linear operator. Then, the adjoint of L is the
operator L⇤ : Y ! X defined by

hL⇤{f}, giY⇥Y0 , hf, L{g}iX⇥X 0 8f, g 2 X 0 ⇥ Y. (2.4)

Remark 2.1. The adjoint operator may thus involve either the dual or the predual
spaces of X and Y, which are different spaces in the case of nonreflexive spaces,
which leads to different adjoint operators L. In the thesis, we will always specify
the domain of the adjoint operator, thus lifting this ambiguity. For an operator
L : X ! Y, if the domain of L⇤ is Y 0, then the definition (2.3) is implied. If it is
the predual of Y, then the definition (2.4) is implied.

2.1.5 The Schwartz Space
We now give a fundamental example of a dual pair (X ,X 0) that is central to the

construction of our native spaces: the Schwartz space S(K) and its dual, the space
of tempered distributions S 0(K). Throughout Part I, we denote by K the domain of
the functions in our function spaces, with either K = R or K = T = [0, 2⇡] the one-
dimensional torus when working with 2⇡-periodic functions. Note that virtually all
the material in Part I can be extended to multivariate domains such as Rd and Td

with d > 1. However, since our work does not require it, we restrict our attention
to the univariate case d = 1 for simplicity.

For K = R, the nonperiodic Schwartz space is defined below.
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Definition 2.3 (Schwartz Space). For any ↵,� 2 N, let k · k↵,� be the functional
defined for any f 2 C1(K) as kfk↵,� , supx2K

�
x�D↵{f}(x)

�
, where C1(R) is the

space of infinitely differentiable functions f : R! R. The Schwartz space S(R) is
the space of functions whose successive derivatives are smooth and rapidly decaying
functions defined as

S(R) = {f : R! R 2 C1(R) : 8↵,� 2 N, kfk↵,� < +1} . (2.5)

The family {k · k↵,�}(↵,�)2N2 are then seminorms over the Schwartz space, which is
a topological vector space equipped with the topology induced by this family.

The definition of the periodic Schwartz space (K = T) is very similar, only
without the rapid-decay aspect since the domain T is compact.

Definition 2.4 (Periodic Schwartz Space). For any ↵ 2 N, let k · k↵ be the func-
tional defined for any f 2 C1(T) as kfk↵ , supx2T (D↵{f}(x)), where C1(T) is
the space of 2⇡-periodic infinitely differentiable functions f : T ! R. The peri-
odic Schwartz space S(T) is the space of functions whose successive derivatives are
smooth defined as

S(T) = {f : T! R 2 C1(T) : 8↵ 2 N, kfk↵ < +1} . (2.6)

The family {k · k↵}↵2N are then seminorms over the periodic Schwartz space, which
is a topological vector space equipped with the topology induced by this family.

For both K = R and K = T, we define the complex-valued Schwartz space as

S(K,C) , {f1 + jf2 : K! C : f1, f2 2 S(K)} . (2.7)

For our purpose, the two main desirable properties of the Schwartz space are:
— differential operators applied to Schwartz functions are mathematically well

defined, since S(K) ⇢ C1(K);
— it is well adapted to Fourier analysis. More precisely, for K = R, the Fourier

transform F is well defined and is an automorphism on S(R,C), i.e., F :
S(R,C)! S(R,C) [98].

The topological dual of S(K) in the sense of Definition 2.1 is the space of tem-
pered distributions S 0(K). For K = R, the prototypical example of a tempered
distribution is the Dirac distribution � 2 S 0(R), whose action on test functions



20 Native Spaces

' 2 S(R) yields h', �i , '(0). Another example is its n-th derivative �(n) 2 S 0(R),
defined as h', �(n)i , '(n)(0). The periodic equivalent of � is the Dirac comb
X , Pk2Z �(· � 2k⇡) 2 S 0(T), where h',Xi = '(0) for any ' 2 S(T). Similarly
to the Schwartz space, we define the space of complex-valued tempered distributions
as

S 0(K,C) , {f1 + jf2 : S(K)! C : f1, f2 2 S 0(K)} , (2.8)

and the (complex) duality product between a pair (', w) 2 S(K,C) ⇥ S 0(K,C) is
defined as

h', wi , hRe('), Re(w)i+ jhIm('), Im(w)i. (2.9)

Remark 2.2. In standard distribution theory, duality products are directly defined
with complex values instead of via real-valued distributions [98]. However, the def-
inition in (2.9) is consistent with the complex-valued theory of Schwartz.

Remark 2.3. An important point to bear in mind is that some tempered distributions—
and more generally, elements of the dual of function spaces—are routinely assimi-
lated to ordinary functions, despite technically being functionals. This occurs when
the integral

R
K f(x)'(x)dx is well defined for any ' 2 S(K), which is for example

the case when f 2 Lp(K) for p � 1. Then, the linear functional ' 7!
R
K f(x)'(x)dx

is continuous and is thus an element of S 0(K). A common abuse of notation, which
we will adopt throughout this thesis, consists in identifying this distribution and its
natural representer f , i.e., f 2 S 0(K). In that sense, many classical function spaces
are included in S 0(K), e.g., Lp(K) ⇢ S 0(K).

However, distributions (such as the Dirac distribution �) do not always admit
such representers. We thus denote them as generalized functions, as opposed to
ordinary functions f : R ! R which have a pointwise interpretation. Nonetheless,
in the engineering community, generalized functions are commonly written as if they
had pointwise interpretations, e.g., �(x), and duality product are written as integrals
even when such integrals are undefined, e.g., h', �i =

R
K �(x)'(x)dx for ' 2 S(R).

These abuses of notation are less forgivable from a mathematical standpoint; we
will thus try to avoid them. Note that some of our notations can be misleading in
that respect, such as that of the shifted Dirac distribution �(· � x0). Although this
notation seems to imply a pointwise interpretation, �(·�x0) is in fact a generalized
function defined as h', �(·� x0)i , '(x0) for any ' 2 S(R).
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2.1.6 Fourier Transformations of Tempered Distributions
The Schwartz space being well-suited to the Fourier transform, the latter can

be extended by duality to all tempered distributions.

The Generalized Fourier Transform

For K = R, the (ordinary) Fourier transform is the operator F : S(R,C) !
S(R,C) given by

F{f} = bf ,
Z

R
f(x)e�jx(·)dx (2.10)

for any f 2 S(R), where (·) is a placeholder for the variable of bf . It is well
known that F is invertible, and its inverse F�1 : S(R,C) ! S(R,C) is given by
F�1 : f 7! 1

2⇡

R
R f(!)ej!(·)d!. When f 2 S(R) is a real-valued function, then bf is

Hermitian-symmetric, which means that bf(x) = bf(�x) for any x 2 R.
The Fourier transform can be extended by duality to F : S 0(R,C) ! S 0(R,C),

where for any w 2 S 0(R,C), F{w} = bw is the distribution defined as

h',F{w}i , hF⇤{'}, wi 8' 2 S(R,C) (2.11)

where F⇤ is the adjoint operator of F (Definition 2.2) given by F⇤ = 1
2⇡F

�1. Note
that the right side of (2.11) is valid since we have F⇤(S(R,C)) = S(R,C).

Note that this somewhat abstract definition is consistent with the classical in-
tegral definition (2.10) of the Fourier transform even for functions f 62 S(R,C). In
fact, it generalizes the definitions of the Fourier transform over classical function
spaces such as Lp(R) spaces for 1  p  2 due to their inclusion in S 0(R). The
prototypical example of a generalized Fourier transform is that of the Dirac dis-
tribution � given by b� = 1 2 S 0(R), which is defined as h', 1i ,

R
R '(x)dx for all

' 2 S(R).

Generalized Fourier Series

For periodic functions, i.e., K = T, the preferred Fourier-analysis tool is the
Fourier series. The Fourier series ( bf [k])k2Z of a Schwartz function f 2 S(T,C) is
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given by

bf [k] , 1

2⇡

Z

T
f(x)ek(x)dx 8k 2 Z, (2.12)

where ek , ejk· 2 S(T,C). It is well known that we have bf 2 S(Z,C), where

S(Z) ,
⇢

a 2 RZ : 8n 2 N, lim
|k|!+1

kna[k] = 0

�
(2.13)

is the space of Schwartz space of rapidly decaying sequences and S(Z,C) is its
complex-valued counterpart defined as in (2.7). Conversely, any Schwartz sequence
a 2 S(Z,C) leads to a periodic Schwartz function

P
k2Z a[k]ek 2 S(T,C), where

the sum is pointwise-convergent due to the rapid decay of a.
The dual of S(Z) is the space of slowly growing sequences

S 0(Z) =

⇢
b 2 RZ : 9n 2 N, lim

|k|!+1

k�nw[k] = 0

�
, (2.14)

and the duality product is given by ha, biS(Z)⇥S0(Z) ,
P

k2Z a[k]b[k], the sum always
being convergent due to the rapid decay of a. Following (2.8), we define S 0(Z,C) as
the complex-valued counterpart of S 0(Z), and the complex-valued duality product
between S(Z,C) and S 0(Z,C) as in (2.9). An important difference between S 0(Z)
and S 0(K) for K = R or T is that a slowly growing sequences b 2 S 0(Z) always has
a pointwise interpretation b[k] 2 R for any k 2 Z, which makes them much easier
to handle.

Conveniently, any distribution w 2 S 0(T,C) is uniquely characterized by its
generalized Fourier series ( bw[k])k2Z 2 S 0(Z,C) given by

bw[k] , hek, wi 8k 2 Z, (2.15)

which satisfies hw,'i =
P

k2Z b'[k] bw[k] for all ' 2 S(T,C). Analogously to the
Fourier transform, when w 2 S 0(T) is real-valued, then bw is Hermitian-symmetric,
which means that bw[�k] = bw[k] for any k 2 Z. We write the generalized Fourier
series decomposition of w 2 S 0(T,C) as the sum

w =
X

k2Z
bw[k]ek 8w 2 S 0(T,C), (2.16)
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which is a slight abuse of notation since w does not necessarily have a pointwise
interpretation (in which case the sum does not converge pointwise but in the weak⇤

sense). The prototypical example of a generalized Fourier series is that of the Dirac
comb X ,Pk2Z �(·� 2k⇡) given by cX[k] = 1 for all k 2 Z.

2.2 The Space of Radon Measures
We now introduce the space of Radon measures M(K), which plays a crucial

role in this thesis. For K = R, it is defined as the dual of the space C0(R) of
continuous functions that decay at infinity (Riesz-Markov theorem [99, Chapter
6]), i.e., M(R) , (C0(R))0. Here, C0(R) is equipped with the supremum norm
k · kL1 . For K = T, we similarly have M(T) , (C(T))0, where C(T) is simply the
space of continuous functions 1, also equipped with the supremum norm k · kL1 .
The inherited dual norm k·kM defined in (2.2) is called the TV norm for measures 2

and is given by

kwkM , sup
'2S(K): k'kL11

h', wiS(K)⇥S0(K) (2.17)

for any w 2 S 0(K).

Remark 2.4. This definition is different from the generic definition of the dual
norm (2.2), in which the supremum is taken over the predual space of M(K)
(C0(R) or C(T)) instead of S(K), and the duality product is that of the dual pair
(C0(R),M(R)) (or (C(T),M(T))) instead of (S(K),S 0(K)). However, it is well
known that C0(R) is the completion of S(R) in the supremum norm, which im-
plies that the duality product h·, ·iC0(R)⇥M(R) is compatible with the Schwartz duality
product h·, ·iS(R)⇥S0(R) and thus that the definition (2.17) is consistent with (2.2).
This stems from the fact that C0(R) is a Schwartz-Banach space; we refer to [91,
Section 2.1] for more information. The same reasoning applies to the dual pair
(C(T),M(T)).

This alternative definition has the advantage of defining the optimization over
the smaller and thus “nicer” space S(K), as well as properly defining the TV norm

1. Contrary to K = R, the decay at infinity is irrelevant since K = T has compact support.
2. The clarification “for measures” is to remove the ambiguity with the TV seminorm for

functions, which is widely used in the signal and image processing community [28]
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for any w 2 S 0(K), which is larger than M(K), i.e., M(K) ⇢ S 0(K). In fact, M(K)
can alternatively be defined via the definition (2.17) of the TV norm as

M(K) , {w 2 S 0(K) : kwkM < +1} . (2.18)

For our purpose, the two main features of the Banach space (M(K), k · kM) are
the following:

1. we have L1(K) ⇢M(K), and the TV norm generalizes the L1 norm in the
sense that kfkM = kfkL1 for any f 2 L1(K);

2. the k · kM norm of a weighted sum of Dirac impulses is k
PK

k=1 ak�(· �
xk)kM = kak1, where ak 2 R and the xk 2 R are pairwise distinct.

2.3 Derivative Operators

In this thesis, we will only consider N0th-order derivative operators

L = DN0 , (2.19)

with N0 � 1 as regularization operators. This choice is guided by a desire for
simplicity and by the fact that derivatives are used in the overwhelming majority
of applications for one-dimensional signals. For example, L = D leads to the well-
known space of functions with bounded variation MD(K)—commonly denoted by
BV(K) in the literature—, which is the native space of the classical TV seminorm
for functions [15].

All the results of this chapter and Theorem 3.3 can be extended to more general
operators, namely spline-admissible operators in the sense of [91, Definition 2]. An
example of a more general spline-admissible operators is the fractional derivative
L� with � 2 R \ N [100]. However, such a level of generality leads to significantly
more technicalities. The works in Chapters 4 to Chapter 10 in this thesis can be
adapted without major difficulties to ordinary differential operators of the form
L = DN + aN�1DN�1 + . . . + a0I where an 2 R [101] and even rational operators
[102]. The main requirement is the existence a finitely supported B-spline matched
to L (see Section 3.1.4).
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2.3.1 Weak Derivatives
In order to define differential operators over nondifferentiable (in the classical

sense) functions and even distributions, we introduce the notion of weak derivatives.
This is achieved in a similar fashion as the extension of the Fourier transform to
tempered distributions in Section 2.1.6 3.

By definition of the Schwartz spaces (2.5) and (2.6), derivative operators L =
DN0 are well defined in the classical sense over S(K) and clearly satisfy L : S(K)!
S(K). These operators then admits a unique continuous extension L : S 0(K) !
S 0(K) whose application to a distribution w 2 S 0(K) is defined as

h', L{w}i , hL⇤{'}, wi 8' 2 S(K), (2.20)

where L⇤ : S(K)! S(K) is the adjoint operator of L in the sense of Definition 2.2
given by

�
DN0

�⇤
= (�1)N0DN0 for any N0 � 1. Likewise, L⇤ admits a continuous

extension L⇤ : S 0(K) ! S 0(K). These extended operators L : S 0(K) ! S 0(K) are
known as weak derivatives.

2.3.2 Nonperiodic Setting
We now focus on the nonperiodic K = R scenario.

Frequency Response

It is well known that linear shift-invariant (LSI) operators L : S 0(K) ! S 0(K)
are equivalent to convolution operators and are conveniently represented by their
frequency response bL [98, Chapter 7, §5]. The frequency response of the N0th-order
derivative operator L = DN0 is given by

bL(!) = (j!)N0 . (2.21)

Then, for any w 2 S 0(R), we have F{L{w}} = bL bw, where the distributional
product bL bw is defined as

h', bL bwi , hbL', bwi 8' 2 S(R,C). (2.22)

3. This technique can be used to extend any linear operator L : S(K) ! S(K) to L : S0(K) !
S0(K) by continuity.
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The latter duality product in (2.22) is well defined since bL' is a product of ordinary
functions and bL' 2 S(R,C) due to the form (2.21) of bL. Note that when bw is an
ordinary function, the definition (2.22) is consistent with the standard function
product.

Null Space

We now introduce the null space NL of the operator L, which is defined as

NL , {w 2 S 0(R) : L{w} = 0} . (2.23)

It is well known that the null space of L = DN0 is the space of polynomials of order
less than N0

NL = span {x 7! xn}0nN0�1 , (2.24)

which has finite dimension N0 , dim(NL).

Green’s Function

A crucial property of derivative operators are the existence of a Green’s function,
which we define below.

Definition 2.5 (Green’s function). A Green’s function of a linear operator L :
S 0(R)! S 0(R) is a function ⇢L 2 S 0(R) such that L{⇢L} = �.

The causal Green’s function of L = DN0 is the one-sided power function

⇢L(x) =
xN0�1

+

(N0 � 1)!
, (2.25)

where x+ , max(x, 0).

Remark 2.5. The operator L = DN0 has infinitely many Green’s functions. Indeed,
any function ⇢L + p where p 2 NL yields another valid Green’s function. However,
imposing causality makes the choice unique. Throughout this thesis, we will always
choose the causal Green’s function (2.25) since it has a simpler expression (and a
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smaller support) than the perhaps mathematically purer alternative, the canonical
Green’s function given by

⇢L(x) , F�1

⇢
1
bL

�
= F�1

⇢
1

(j·)N0

�
=

sign(x)xN0�1

2(N0 � 1)!
, (2.26)

where the distribution 1
(j·)N0

is understood in the Cauchy principal value sense, i.e.,
⌧
',

1

(j·)N0

�
, lim

✏!0+

Z

R\[a�✏,a+✏]

'(!)

(j·)N0
d! 8' 2 S(R), (2.27)

the limit being well defined due to the smoothness of '.

It can easily be verified that ⇢L is the N0th-fold convolution of the Heaviside
step function + like

⇢L = ⇢D ⇤ . . . ⇤ ⇢D| {z }
N0 times

= + ⇤ . . . ⇤ +| {z }
N0 times

, (2.28)

where ⇢D is the causal Green’s function (2.25) of the derivative operator D.

2.3.3 Periodic Setting
We now focus on the periodic K = T scenario, which is ideally suited to the use

of Fourier series. As in the nonperiodic case, we restrict to Ndth-order derivative
operators L = DNd : S 0(T) ! S 0(T), with Nd � 1. Note that we use the exponent
Nd instead of N0 because contrary to the nonperiodic case, the order of the deriva-
tive does not coincide with the dimension of the null space NL. Again, there is no
additional technical difficulty in generalizing our works to any spline-admissible op-
erators in the sense of [22, Definition 2] (in fact, this generalization is much simpler
than in the nonperiodic case).

Frequency Response

It is well known [22, Proposition 1] that a periodic LSI operator L : S 0(T) !
S 0(T) is characterized by its frequency response bL 2 S 0(Z,C) that satisfies

L{w} =
X

k2Z

bL[k] bw[k]ek 8w 2 S 0(T). (2.29)
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In the case of the operator L = DNd , we have

bL[k] = (jk)Nd 8k 2 Z. (2.30)

Null Space

Contrary to the nonperiodic case, the null space of L = DNd does not depend
on the order of differentiation Nd, since no polynomial is periodic except for the
constant. Hence, the null space of L is

NL = span{x 7! 1} (2.31)

for any Nd � 1, and has dimension N0 = 1.

Green’s function

The Green’s function of L = DNd is defined as

gL ,
X

k2Z\{0}

ek
bL[k]

=
X

k2Z\{0}

ek
(jk)Nd

, (2.32)

It is the unique solution to the equation L{gL} = X � 1. Contrary to the non-
periodic setting, there is no solution g 2 S 0(T) to the equation L{g} = X since
[L{g}[0] = bL[0]bg[0] = 0 for any g 2 S 0(T), whereas cX[0] = 1.

2.4 Definition and Topology of ML(K)

We now have all the required tools to properly introduce the native space of
our derivative operator L, i.e., the largest function space over which functional
kL{·}kM takes a finite value, which is defined as

ML(K) , {f 2 S 0(K) : L{f} 2M(K)} K = R or T. (2.33)

The native space ML(K) inherits many crucial topological features from M(K),
in particular its Banach structure and the existence of a predual space. We uncover
these properties in this section, which requires the construction of some form of
inverse operator of L.
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2.4.1 Nonperiodic Case
We first focus on the nonperiodic K = R scenario, which is technically more

involved. This section mostly relies on the results of [14], which we present in the
special case when L is the N0th-order derivative operator. For the most general
and in-depth treatment of the topic, we refer to [91].

Biorthogonal System for NL

The main difficulty in uncovering the Banach structure of ML(R) is the handling
of the null space NL. For this, we rely on a biorthogonal system for NL, as defined
in Definition 2.6.

Definition 2.6 (Biorthogonal System). Let N ⇢ S 0(R) be a N0-dimensional vector
space with N0 > 0. Then, the pair (�,p) with p = (p1, . . . , pN0) 2 NN0 and
� = (�1, . . . ,�N0) 2 S(R)N0 forms a biorthogonal system for N if (pn)N0

n=1 is a
basis of N and if any p 2 N admits the unique expansion

p =
N0X

n=1

h�n, pipn. (2.34)

Remark 2.6. As we will see later on in Proposition 2.2, the requirement �n 2 S(R)
can be relaxed to �n 2 CL(R), where CL(R) is the predual of ML(R). However, since
CL(R) is not yet properly defined—it will be in Theorem 2.3—, following [91], we
initially restrict to imposing �n 2 S(R).

Proposition 2.1 then ensures the existence of such biorthogonal systems.

Proposition 2.1 (Existence of a Biorthogonal System [91, Proposition 3]). Let
N ⇢ S 0(R) be a N0-dimensional vector space with N0 > 0. Then, there always
exists a biorthogonal system (�,p) for N in the sense of Definition 2.6.

An explicit construction of a valid biorthogonal system, based on Hermite poly-
nomials, is given in [91, Example 3].

Stable Right-Inverse of L

Next, we introduce a right-inverse operator of L matched to a biorthogonal
system, which is a crucial element to uncover the Banach structure of ML(R).
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Theorem 2.1 (Stable Right-Inverse of L [14, Theorem 3]). Let L = DN0 : S 0(R)!
S 0(R) with N0 � 1, and let (p,�) = (pn,�n)N0

n=1 be a biorthogonal system for NL

in the sense of Definition 2.6. Then, there exists a unique operator L�1
� : S(R) !

ML(R) that satisfies the following properties for any ' 2 S(R):
— Right-inverse property: LL�1

� {'} = ';
— Boundary conditions: h�, L�1

� {'}i = 0,
where h�, fi , (h�n, fi)N0

n=1 2 RN0 for any f 2 S 0(R). This operator L�1
� is defined

via its Schwartz kernel g� : R2 ! R as

L�1
� {'} ,

Z

R
g�(·, y)'(y)dy 8' 2 S(R), (2.35)

where the Schwartz kernel g� is given by

g�(x, y) , ⇢L(x� y)�
N0X

n=1

pn(x)qn(y) (2.36)

with qn(y) , h�n, ⇢L(·� y)i. The operator L�1
� then admits a continuous extension

L�1
� : M(R) !ML(R), which still satisfies the two original properties of L�1

� for
any ' 2M(R).

Although we do not rigorously prove Theorem 2.1, the following observations
give an intuition of this result.

— The Schwartz kernel g� satisfies the stability condition

ess sup
x,y2R

⇣
|g�(x, y)|(1 + |x|)�(N0�1)

⌘
< +1, (2.37)

which implies that the integral (2.35) is well defined. This condition also
enables the extension of the domain of L�1

� from S(R) to M(R) via [14,
Theorem 3].

— The right-inverse property can be proved by observing that

LL�1
� {'} = L

⇢Z

R
g�(·, y)'(y)dy

�
=

Z

R
L{g�(·, y)}'(y)dy =

Z

R
�(·� y)'(y)dy = ',

(2.38)



2.4 Definition and Topology of ML(K) 31

for any ' 2 S(R). This property also explains why the image of M(R) by
L�1
� is ML(R), since for any w 2 M(R), we have LL�1

� {w} = w 2 M(R)

which by definition (2.33) of the native space implies that L�1
� {w} 2ML(R).

— The boundary condition property can be proved by computing

h�n, L�1
� {'}i =

Z

R
h�n, g�(·, y)i'(y)dy (2.39)

=

Z

R

�
h�n, ⇢L(·� y)i � qn(y)

�
'(y)dy = 0 (2.40)

for any ' 2 S(R), using the biorthogonality of (p,�) and by definition of
qn.

Banach Structure of ML(R)

We now have all the necessary elements to uncover the direct-sum structure of
the native space ML(R), from which we can deduce its Banach structure.

Theorem 2.2 (Banach Structure of ML(R) [14, Theorem 5]). Let L be a derivative
operator of the form (2.19), and let (p,�) = (pn,�n)N0

n=1 be a biorthogonal system
for NL in the sense of Definition 2.6. Next, let ML,�(R) ⇢ML(R) be defined as

ML,�(R) , {f 2ML(R) : h�, fi = 0} . (2.41)

Then, L�1
� (defined in 2.2) is a bijection from M(R) to ML,�(R), and ML,�(R)

is a Banach space equipped with the norm kL{·}kM. Moreover, the native space
ML(R) admits the direct-sum decomposition

ML(R) = ML,�(R)�NL. (2.42)

Hence, any f 2ML(R) admits the unique decomposition

f = L�1
� {w} + p, (2.43)

with w = L{f} 2 M(R) and p =
PN0

n=1h�n, fipn 2 NL. Finally, ML(R) is a
Banach space equipped with the norm

k · kML,� , kL{·}kM + kh�, ·ik2. (2.44)



32 Native Spaces

Remark 2.7. The Banach structure of ML(R) hangs upon on the existence of
biorthogonal system (p,�), which is guaranteed by Proposition 2.1. Moreover, the
norm defined in (2.44) depends on the choice of this biorthogonal system. However,
any admissible choice leads to the same native space ML(R) = ML,�(R)�NL; this
is clear in the definition of ML(R) as a set in (2.33), which does not depend on �
or p. Moreover, all possible norms k · kML,� are equivalent [91, Theorem 5].

Remark 2.8. The decomposition (2.43) proves that ML(R) is a space of ordinary
functions that have a pointwise interpretation. More precisely, we have ML(R) ⇢
L1,N0�1(R), where

L1,n(R) ,
⇢

f : R! R measurable : ess sup
x2R

|f(x)|(1 + |x|)�n < +1
�

. (2.45)

Indeed, by [14, Theorem 3], due to the stability condition (2.37), the image of M(R)
by L�1

� is included in L1,N0�1(R), and we clearly also have NL ⇢ L1,N0�1(R).

The Measurement Space of L

The final necessary element of the construction of our native spaces is the iden-
tification of the predual space of ML(R). The latter is necessary to endow ML(R)
with the weak⇤ topology, which is crucial to our inverse-problem formulations. We
call it the measurement space of L, for reasons that will be explained in Remark 3.4.

Theorem 2.3 (Measurement Space of L [14, Theorem 6]). Let L = DN0 : S 0(R)!
S 0(R) with N0 � 1, and let (p,�) = (pn,�n)N0

n=1 be a biorthogonal system for NL

in the sense of Definition 2.6 with �n 2 S(R). We define the space

CL(R) , L⇤(C0(R))� span{�n}N0
n=1, (2.46)

and the linear operator L�1
�

⇤

: CL(R) ! C0(R) where for any f = L⇤{f1} + f2 2
CL(R) with f1 2 C0(R) and f2 2 span{�n}N0

n=1 (following the unique decomposition
(2.46)), we have L�1

�

⇤{f} , f1. Then, CL(R) is a Banach space equipped with the
norm

k · kCL,�,p , kL�1
�

⇤{·}kL1 + khf,pik2 (2.47)

where hf,pi , (hf, pni)N0
n=1 2 RN0 . Moreover, we have (CL(R))0 = ML(R), and

k · kML,� is the dual norm—in the sense of (2.2)—of k · kCL,�,p.
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Remark 2.9. As suggested by the notation, the operator L�1
�

⇤ is the adjoint
operator—in the sense of (2.4) in Definition 2.2 – of L�1

� : M(R) ! ML(R)
defined in Theorem 2.2. However, one cannot define this adjoint operator before
identifying the predual of the native space ML(R). Yet the topology of CL(R) is
defined using L�1

�

⇤; this circularity can be broken by defining L�1
�

⇤ independently,
which allows us to equip CL(R) with a norm, and then verifying that it is indeed the
adjoint operator of L�1

� . This subtlety is overlooked in [14, Theorem 6], which does
not affect the validity of the construction, as demonstrated in [91].

Now that the predual of ML(R) has been identified, we can expand the definition
of a valid biorthogonal system for NL from Definition 2.6.

Proposition 2.2 (Admissible Biorthogonal Systems [103, Proposition 5]). Theo-
rems 2.1, 2.2, and 2.3 remain valid for any pair (p,�) = (pn,�n)N0

n=1 that satisfies
(2.34) and such that �n 2 CL(R). In this case, all the duality product involving the
�n in these Theorems become duality products between the dual pair (CL(R),ML(R))
instead of (S(R),S 0(R)).

Remark 2.10. The measurement space CL(R) is the largest possible space X such
that �n 2 X in order for Theorems 2.1, 2.2, and 2.3 to remain valid. Indeed, the
requirement is that ML(R) ⇢ X 0, the dual space of X , which holds for X = CL(R)
and X 0 = ML(R). A larger space X would lead to a smaller space X 0.

The measurement space of L will play a major role in our inverse-problem for-
mulations. In particular, an important question is the inclusion of the Dirac distri-
bution in CL(R), which we answer in the following proposition.

Proposition 2.3 (Sampling Admissibility for N0 � 2). Let L = DN0 with N0 � 1.
Then, we have � 2 CL(R) if and only if N0 � 2.

Proof. We first consider the N0 = 1 case. Let (�, p) be a biorthogonal system
for ND in the sense of Definition 2.6 with � 2 S(R) and p 2 ND. Assume by
contradiction that we have � 2 CD(R). By (2.46), this implies the existence of a
function f1 2 C0(R) such that � = D{f1} + ↵� with ↵ 2 R. Hence, due to the fact
that D{ +} = � where + is the Heaviside function, we have that D{ +�f1} = ↵�.
The function + � f1 is discontinuous and thus cannot be differentiable, whereas
its derivative ↵� 2 S(R) is smooth, which yields a contradiction. This proves that
� 62 CD(R).
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It only remains to prove that � 2 CL(R) when N0 � 2. The case N0 = 2 is
proved [103, Theorem 1, Item 2]. For the N0 > 2 case, we refer to [22, Proposition
9], where this property is proved in the periodic setting and can be adapted to the
nonperiodic one.

Proposition 2.3 allows us to introduce a convenient biorthogonal system for
operators L = DN0 with N0 � 2, which we call the canonical biorthogonal system.
The latter will be used for theoretical purposes in this thesis.

Proposition 2.4 (Canonical Biorthogonal System for N0 � 2). Let L = DN0 with
N0 � 2. Then, (p,�) with p =

⇣
x 7! 1, . . . , x 7! xN0�1

(N0�1)!

⌘
and � = (�, . . . , �(N0�2),

�(· � 1)(N0�2) � �(N0�2)) is a valid biorthogonal system for NL in the sense of
Proposition 2.2. We call it the canonical biorthogonal system.

Proof. Let us first prove the following lemma.

Lemma 2.1. Let g 2 CDN0 (R). Then, D{g} 2 CDN0+1(R).

Proof. Let ( ,q) be a biorthogonal system for NDN0 in the sense of Definition 2.6.
Next, let eq1, . . . , eqN0 2 NDN0+1 such that D{eqn} = �qn for 1  n  N0. We
thus have the biorthonormality relations hD{ n}, eqmi = h n, qni = �[n�m] for all
1  n, m  N0. Next, we introduce eqN0+1 2 NDN0+1 such that eq , (eq1, . . . , eqN0+1)
forms a basis of NDN0+1 and such that hD{ n}, eqN0+1i = 0 for all 1  n  N0.
Such a eqN0+1 exists and is unique up to a constant since there are N0 + 1 poly-
nomial coefficients for eqN0+1, which must satisfy N0 linearly independent equa-
tions. Finally, let e N0+1 2 S(R) such that h e N0+1, eqni = �[n � (N0 + 1)] for all
1  n  N0 + 1, for which there are clearly infinitely many possible choices. Then,
( e , eq) forms a biorthogonal system for NDN0+1 in the sense of Definition 2.6 with
e , (D{ 1}, . . . , D{ N0}, e N0+1).

Next, let g 2 CDN0 (R). Using the decomposition (2.46), we have g = DN0{f1}+
f2 with f1 2 C0(R) and f2 2 span{ n}N0

n=1. Hence, we have D{g} = DN0+1{f1} +

D{f2}. By definition of e , we have D{f2} 2 span{ e n}N0
n=1, and so D{g} 2

DN0+1{C0(R)}� span{ e n}N0+1
n=1 = CDN0+1(R).

Using Proposition 2.3 and Lemma 2.1, we have that �, . . . , �(N0�2) 2 CL(R)
for any N0 � 2. We thus have � 2 CL(R)N0 , and it can easily be verified that
the biorthonormality relations h�n, pmi = �[n�m]—and thus (2.34)—are satisfied.
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Hence, by Proposition 2.2, (p,�) is an admissible biorthogonal system in the sense
of Proposition 2.2.

Remark 2.11. The case of the derivative operator L = D is excluded from Proposi-
tion 2.4. As pointed out in [91, Section 5.2], we have L1(R) ⇢ CD(R), and thus any
� 2 L1(R) such that

R
R �(x)dx = 1 leads to a valid biorthogonal system (p , 1,�),

e.g., � = rect.

Finally, we introduce in Proposition 2.5 another valid biorthogonal system for
operators L = DN0 , which is similar to the canonical one of Proposition 2.4 but is
more convenient for implementation purposes.

Proposition 2.5 (Implementation-Friendly Biorthogonal System). Let L = DN0

with N0 � 1. Then, for any ✏ > 0, (p,�) with p =
⇣
1, (·), . . . , (·)N0�1

(N0�1)!

⌘
⇤ �(· � ✏

2 )

and

� =

(
1
✏ rect

�
·

✏ �
1
2

�
if N0 = 1�

�, . . . , �(N0�2), �(N0�1) ⇤ 1
✏ rect

�
·

✏

��
⇤ �(·� ✏

2 ) if N0 > 1,
(2.48)

where rect(t) = 1 for �1/2  t < 1/2 and 0 elsewhere, is a valid biorthogonal for
NL in the sense of Proposition 2.2.

Proof. For N0 = 1, as pointed out in Remark 2.11, we have �1 2 L1(R) ⇢ CL(R).
Next, for N0 > 1, we have proved in Proposition 2.4 than �1, . . . ,�N0�1 2 CL(R),
and using Lemma 2.1, we also have that �N0 2 CL(R) since rect 2 CD(R). One can
easily verify that the biorthonormality relation h�n, pmi = �[n �m] are satisfied,
which implies by Proposition 2.2 that (p,�) is a valid biorthogonal system.

2.4.2 Periodic Case
In the periodic setting K = T, uncovering the Banach structure of ML(T) is a

much less arduous task than in the nonperiodic case. In particular, the definition
of an inverse operator is more straightforward: it does not require the introduction
of biorthogonal systems. This increased simplicity is due to the convenience of the
Fourier series representation for periodic signals. This section mostly relies on the
results [22], which deals with more general operators L. Note that in contrast with
the nonperiodic case, this generality does not significantly increase the technicality
of this construction.
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Pseudoinverse Operator of L

As in the nonperiodic setting, we require some kind of inverse operator of L.
In the periodic setting, this inverse takes the form of a pseudoinverse instead of a
right-inverse, as specified in Proposition 2.6.

Proposition 2.6 (Pseudoinverse Operator of L [22, Proposition 2]). Let L = DNd

with Nd � 1. Then, the operator L† : S 0(T)! S 0(T), characterized by its frequency
response

cL†[k] =

(
1

bL[k]
= 1

(jk)Nd
for k 2 Z \ {0}

0 for k = 0,
(2.49)

is the only operator that satisfies the relations LL†L = L, L†LL† = L†, (LL†)⇤ =
LL†, and (L†L)⇤ = L†L. The operator L† is called the Moore-Penrose pseudoinverse
of L.

Proof. We start by observing that we indeed have L† : S 0(T) ! S 0(T), since its
frequency response satisfies cL† 2 S 0(Z,C) and is Hermitian-symmetric. Next, for
any w 2 S 0(T), using the Fourier series expansion (2.16), we have

LL†L{w} =
X

k2Z

bL[k]cL†[k]bL[k] bw[k]ek =
X

k2Z

bL[k] bw[k]ek = L{w}, (2.50)

which proves the first relation. The second one is proved in a similar fashion, and
it is clear that cL† is the unique sequence that satisfies both relations.

Banach Structure of ML(T)

We now have all the necessary elements to uncover the direct-sum and Banach
structure of ML(T).

Theorem 2.4 (Banach Structure of ML(T) [22, Theorem 1]). Let L = DNd with
Nd � 1. Then, the native space ML(T) admits the direct-sum decomposition

ML(T) = L†(M0(T))�NL, where (2.51)

M0(T) , {w 2M(T) : bw[0] = 0} (2.52)
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is the space of zero-mean Radon measures. Hence, any f 2 ML(T) admits the
unique decomposition

f = L†{w} + p, (2.53)

where w = L{f} 2 M0(T) and p = bf [0] 2 NL. Moreover, ML(T) is a Banach
space equipped with the norm

kfkML , kL{f}kM +
��� bf [0]

��� . (2.54)

Remark 2.12. The direct sum (2.51) remains valid by replacing M0(T) with
M(T), as presented in [22, Theorem 1]. Indeed, we have L†(M0(T)) = L†(M(T)),
since NL† = M(T)/M0(T) ⇠ span{x 7! 1}. However, the uniqueness of w in the
decomposition (2.53) only holds true for w 2 M0(T), in contrast with the nonpe-
riodic case (2.43) where w 2 M(R), i.e., the full space of Radon measures. This
is because in the periodic case, the pseudoinverse operator L† has a nonempty null
space over M(T) since 1 2 NL† \M(T), whereas L�1

� is injective over M(R) (in
particular, 1 62M(R)).

Measurement Space of L

As in the nonperiodic case, the final required element for the construction of
our native spaces is the identification of the predual space of ML(T), which we call
the measurement space of L. The latter is defined as follows:

CL(T) , {g 2 S 0(T) : L†
⇤{g} 2 C(T)}, (2.55)

where L†
⇤ is the adjoint operator of L† whose Fourier sequence is given by dL†

⇤[k] ,
cL†[k]. Analogously to CL(R), CL(T) admits a direct-sum decomposition and a Ba-
nach structure.

Theorem 2.5 (Banach Structure of CL(T) [22, Theorems 2 and 3]). Let L =
DNd with Nd � 1. Then, the space CL(T) defined in (2.55) admits the direct-sum
decomposition

CL(T) = L⇤(C(T))�NL, (2.56)
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and it is a Banach space equipped with the norm

kgkCL ,
���L†

⇤{g}
���
L1

+ |bg[0]| . (2.57)

Moreover, we have (CL(T))0 = ML(T), and k · kML is the dual norm—in the sense
of (2.2) of k · kCL .

The measurement space CL(T) plays a key role in our inverse-problem formu-
lations. A first useful observation is that we have S(T) ⇢ CL(T) (this can easily
be verified from (2.55) in the Fourier domain). Analogously to the � 2 CL(R)
question, an important question is to determine whether we have X 2 CL(T).
Proposition 2.7—the periodic equivalent of Proposition 2.3—answers this question
for Ndth-order derivative operators.

Proposition 2.7 (Sampling Admissibility in the Periodic Setting [22, Proposition
9]). Let L = DNd with Nd � 1. Then, we have X 2 CL(T) if and only if Nd � 2.



Chapter 3

The Optimality of Splines for
Generalized TV-Based
Problems

In this chapter, we present our variational problems of interest with generalized
total-variation (gTV) regularization, in both the nonperiodic and periodic settings.
These problems, which are stated in Section 3.2, are formulated over the native
spaces defined in Chapter 2. We also present existing representer theorems for
these problems in Section 3.3, which prove that they have spline solutions. Hence,
we first present some background on polynomial splines in Section 3.1.

3.1 Polynomial Splines

Polynomial splines, i.e., splines matched to N0-order derivative operators L =
DN0 with N0 � 1, are historically the first variety of splines to have been studied
[23]. To this day, they are by far the most commonly used in practice, be it
in this thesis or in the rest of the literature. In fact, the term “spline” refers
specifically to polynomial splines in most communities. Polynomial splines are
piecewise-polynomial functions of degree N0�1 with smooth junctions at the knots,

39
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i.e., their (N0 � 2)th derivative is continuous for N0 � 2.
Splines are extremely useful tools to solve continuously-defined tasks computa-

tionally, as they serve as ideal bridge between the digital and analog world:
— they are parametric functions whose parameters can be handled computa-

tionally;
— their simple analytical expressions enable the computation of continuous

operations such as differentiation, rotations, etc. [25];
— they admit computationally-friendly representations in the B-spline basis

[23];
— they have the highest approximation power among any basis whose generator

has a prescribed support [104];
— as we expose in Section 3.3, they are optimal solutions to large classes of

continuous-domain inverse problems.

3.1.1 Definitions

3.1.2 Nonperiodic Setting
We define L-splines matched to derivative operators in Definition 3.1.

Definition 3.1 (Nonuniform L-Spline). Let L = DN0 : ML(R) ! M(R) with
N0 � 1. A nonuniform L-spline is a function s 2ML(R) that satisfies

L{s} =
KX

k=1

ak�(·� xk), (3.1)

where K � 0 is the number of knots, the ak 2 R are the amplitudes, and the xk 2 R
are the pairwise-distinct knot locations. The distribution w , PK

k=1 ak�(· � xk) 2
M(R) is known as the innovation of the spline s.

An example of a D-spline (or piecewise-constant spline) with its innovation is
given in Figure 3.1.

Any L-spline can conveniently be represented in the Green’s function basis.
Although this representation is well known [105], we prove it in the specific context
of the native space ML(R).
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Figure 3.1: Nonuniform D-spline (thin curve). The vertical arrows rep-
resent the innovation D{s} =

P
k ak�(·� xk).

Proposition 3.1 (Green’s Function Representation of Nonuniform L-splines). Let
L = DN0 : ML(R) ! M(R) with N0 � 1, and s 2 ML(R) be a nonuniform L-
spline in the sense of Definition 3.1 with L{s} =

PK
k=1 ak�(· � xk). Then, s is

given by

s = p +
KX

k=1

ak⇢L(·� xk), (3.2)

for some p 2 NL and where ⇢L is the Green’s function of L in the sense of Defini-
tion 2.5.

Proof. Let s̃ , PK
k=1 ak⇢L(· � xk). By definition of the Green’s function (Defini-

tion 2.5) we have L{s} = L{s̃} =
PK

k=1 ak�(· � xk) , w. Since s, s̃ 2 ML(R),
using the decomposition (2.43), for some stable right-inverse L�1

� of L given by
Theorem 2.1, we have s = L�1

� {w}+ q and s̃ = L�1
� {w}+ q̃, with q, q̃ 2 NL. Hence,

we have s = s̃ + q � q̃, which proves the desired result with p , q � q̃ 2 NL.

We will often use the Green’s function representation (3.2) rather than the
decomposition (2.43) for L-splines. This is due to the simple expression of the basis
function ⇢L given by (2.25), in contrast with L�1

� {�} (see Theorem 2.1).
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For discretization purposes, we will rely in the works of Part II on uniform
splines, i.e., splines whose knots are on a uniform grid. When using a uniform
grid, many continuous-domain operations on splines such as interpolation or dif-
ferentiation can be performed using efficient digital-filtering techniques [106, 107].
Moreover, approximation theory results provide informative bounds on the approx-
imation power of the used basis (see Theorem 3.1).

A uniform spline is a spline in the sense of Definition 3.1 whose knots xk are
on a uniform grid with step size h > 0, i.e., xk 2 hZ, and that can have infinitely
many knots. We thus introduce the space of uniform splines with knot spacing h,
which is a subspace of ML(R).

Definition 3.2 (Space of Uniform L-Spline). Let L = DN0 : ML(R)!M(R) with
N0 � 1 and let h > 0. The space of uniform L-splines with knot spacing h is given
by

ML,h(R) ,
⇢

s = p +
X

k2Z
a[k]⇢L(·� kh) : a 2 `1(Z), p 2 NL

�
, (3.3)

where ⇢L is the Green’s function of L defined in (2.25) and NL is the null space of
L given by (2.24).

3.1.3 Periodic Setting
The definition of a periodic L-spline with L = DNd is almost identical to the

nonperiodic setting (Definition 3.1): the Dirac distribution � is simply replaced
with the Dirac comb X ,Pk2Z �(·� 2k⇡).

Definition 3.3 (Periodic Nonuniform L-Spline). Let L = DNd : ML(T) !M(T)
with Nd � 1. A periodic nonuniform L-spline is a function s 2ML(T) that satisfies

L{s} =
KX

k=1

akX(·� xk), (3.4)

where K � 0 is the number of knots, the amplitudes ak 2 R necessarily satisfy

KX

k=1

ak = 0, (3.5)
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and the xk 2 T are the pairwise-distinct knot locations. The distribution w ,PK
k=1 akX(·� xk) is known as the innovation of the spline.

Remark 3.1. The constraint (3.5) does not appear in the nonperiodic case. It
comes from the fact that w = L{s} has zero mean—i.e., bw[0] = 0—since bL[0] = 0,
whereas the mean of the right side of (3.4) is

PK
k=1 ak. In particular, the Green’s

function gL = L†{X} of L is not a periodic L-spline, since we have L{gL} = X�1.
However, gL � gL(·� x0) is a periodic L-spline for any x0 2 T.

Proposition 3.2 (Green’s Function Representation of Periodic Nonuniform L-splines
[22, Proposition 3]). Let L = DNd : ML(T)!M(T) with Nd � 1, and s 2ML(T)
be a periodic nonuniform L-spline in the sense of Definition 3.3 with L{s} =PK

k=1 akX(·� xk) and
PK

k=1 ak = 0. Then, s is given by

s = bs[0] +
KX

k=1

akgL(·� xk), (3.6)

where gL is the Green’s function of L defined in (2.32).

Similarly to the nonperiodic setting, we can define the space of periodic uniform
splines with knot spacing h > 0.

Definition 3.4 (Space of Periodic Uniform L-Spline). Let L = DNd : ML(T) !
M(T) with Nd � 1 and h > 0 such that P , 2⇡

h 2 N. The space of periodic uniform
L-splines with knot spacing h is given by

ML,h(T) ,
⇢

s 2 S 0(T) : L{s} =
P�1X

p=0

a[p]X(·� ph)

�
⇢ML(T), (3.7)

where a = (a[0], . . . , a[P � 1]) 2 RP .

3.1.4 Cardinal B-Splines
The main benefit of using spline functions is arguably the availability of a basis

function with short support, the B-spline. This fundamental result was first discov-
ered by Schoenberg [23]. This short-support property is crucial for numerical con-
ditioning in computational applications. We now introduce polynomial B-splines,
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i.e., B-splines matched to operators L = DN0 with N0 � 1. Note that B-splines
can be derived for more general classes of operators, such as ordinary differential
operators [101], rational operators [102], fractional derivatives [100], or Laplacian
operators in higher dimensions [108]. In fact, differential and rational operators
still have a compactly supported B-spline, which implies that B-spline-based works
in this thesis (Part II and Chapters 9 and 10) can be extended to these classes of
operators.

The causal B-spline �D matched to the derivative L = D is the causal rectangle
function

�D(x) , [0,1)(x). (3.8)

For N0th-order derivative operators L = DN0 , the B-spline is defined as the convo-
lution of first-order B-splines

�L , �D ⇤ · · · ⇤ �D| {z }
N0 times

. (3.9)

The support of �L is supp(�L) = [0, N0], and it has (N0 + 1) knots {0, . . . , N0}.
It is the cardinal L-spline, i.e., a spline in the sense of Definition 3.1 with integer
knots xk 2 Z, with the shortest support. Its innovation is given by

L{�L} =
N0X

k=0

dL[k]�(·� k), (3.10)

where dL is the N0th order finite-difference sequence defined by its z transform

DL(z) , (1� z�1)N0 , (3.11)

which is supported in {0, . . . , N0}. It can also be expressed as a series of discrete
convolutions dL = dD ⇤ · · · ⇤ dD| {z }

N0 times

, where dD[k] = �[k]��[k�1] and �[k] is the discrete

Dirac impulse. Due to the fact that it is defined as a series of convolutions in (3.9),
the B-spline has a convenient expression in the Fourier domain given by

c�L(!) =
DL(ej!)
bL(!)

=

✓
1� e�j!

j!

◆N0

. (3.12)
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L ⇢L(x) �L(x) (dL[0], . . . , dL[N0])

D +(x) �D(x) =

(
1, 0  x < 1

0, otherwise
(1,�1)

D2 x+ �D2(x) =

8
><

>:

x, 0  x < 1

2� x, 1  x < 2

0, otherwise
(1,�2, 1)

D3 x2
+/2 �D3(x) =

8
>>><

>>>:

x2/2, 0  x < 1

�x2 + 3x� 3/2, 1  x < 2

(3� x2)/2, 2  x < 3

0, otherwise

(1,�3, 3,�1)

D4 x3
+/6 �D4(x) =

8
>>>>>><

>>>>>>:

x3/6, 0  x < 1

�x3/2 + 2x2 � 2x + 2/3, 1  x < 2

x3/2� 4x2 + 10x� 22/3, 2  x < 3

(4� x)3/6, 3  x < 4

0, otherwise

(1,�4, 6,�4, 1)

Table 3.1: Characteristics of N0th-order derivative operators.

The analytical expression of the B-splines for small values of N0 are provided
in Table 3.1, and their graphs are shown in Figure 3.2.

Since polynomial splines are symmetric with respect to the x = N0/2 line, it is
often more convenient to use centered B-splines instead of the causal ones shown
in Figure 3.2. This is particularly relevant for even values of N0, since the centered
B-spline still has integer knots, whereas they are half-integers for odd values of
N0. Hence, in certain chapters of this thesis, we will use widely-used notation
�n , �DN0 (· + N0/2) where n = N0 � 1 is the degree of the spline for centered
polynomial B-splines.
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Figure 3.2: Cardinal polynomial B-splines of operators L = DN0 for
N0 = 1, . . . , 4.

3.1.5 Scaled B-Splines

3.1.6 Nonperiodic Setting
The scaled B-Spline with knot spacing h > 0 matched to the operator L = DN0

is given by

�L,h(x) , �L

⇣x

h

⌘
, (3.13)

which yields

d�L,h(!) =
1

hN0�1

✓
1� e�j!h

j!

◆N0

(3.14)

in the Fourier domain. Using (3.10), we get the innovation of the scaled B-spline

L{�L,h} =
1

hN0�1

N0X

k=0

dL[k]�(·� hk). (3.15)

We now prove the fundamental property of the scaled B-spline, i.e., that it is a
basis function of the space of uniform splines ML,h(R). Proposition 3.3 is a general-
ization from polynomial to exponential splines of the seminal and widely publicized
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result of Schoenberg [23]. Moreover, we explicitly define the resulting function space
ML,h(R) and sequence space for our setting, which is often overlooked.

Proposition 3.3. The discretized native space ML,h(R) defined in Definition 3.2
of the N0th order derivative operator L = DN0 with N0 � 1 can be represented in
the B-spline basis as

ML,h(R) =

(
s =

X

k2Z
c[k]�L,h(·� kh) : c 2 `1,L(Z)

)
(3.16)

where �L,h is defined as in (3.13) and

`1,L(Z) ,
n

c 2 S 0(Z) : (dL ⇤ c) 2 `1(Z)
o

, (3.17)

with S 0(Z) the space of slowly growing sequences defined in (2.14).

Proof. We first prove the reverse inclusion c 2 `1,L(Z) ) s =
P

k2Z c[k]�L,h(· �
kh) 2ML,h(R). A simple calculation using (3.15) yields

L

(
X

k2Z
c[k]�L,h(·� kh)

)
=

1

hN0�1

X

k2Z
(dL ⇤ c)�(·� kh), (3.18)

with (dL ⇤ c) 2 `1(Z). This together with the fact that s 2 S 0(R) (due to the fact
that c 2 S 0(Z)) implies that s 2ML,h(R).

We now show the direct inclusion, i.e., that any s , p +
P

k2Z a[k]⇢L(·� kh) 2
ML,h(R) with p 2 NL and a 2 `1(Z) is spanned by B-splines. To achieve this, we
prove that the Green’s function ⇢L and the null space NL are spanned by B-splines.
Following standard discrete signal processing theory, there exists a unique causal
sequence given by pL[n] , u[n] for N0 = 1 and pL[n] , (n+1)...(n+N0�1)

(N0�1)! u[n] for
N0 � 1, characterized by its z transform PL(z) = 1

(1�z�1)N0
, that is an inverse of

dL for the convolution product. It can easily be verified that we have

⇢L(x) = hN0�1
X

k2Z
pL[k]�L,h(x� hk). (3.19)
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Next, it is well known that any polynomial x 7! xn for 0  n  N0 � 1 can be
reproduced using B-splines like 1 =

P
k2Z �L,h(·� hk) for n = 0 and

xn = hn
X

k2Z
(k + 1) . . . (k + n)�L,h(x� hk) 1  n  N0 � 1, (3.20)

which proves that NL is spanned by B-splines. Hence, there only remains to prove
that the sequence c of B-spline coefficients of s = p +

P
k2Z a[k]⇢L(· � kh) 2

ML,h(R) satisfies c 2 `1,L(Z) =. A simple calculation yields
P

k2Z a[k]⇢L(·�kh) =
hN0�1

P
k2Z(pL⇤a)�L,h(x�hk), where the convolution (pL⇤a) 2 S 0(Z) is clearly well

defined when a 2 S(Z) (the space of rapidly-decreasing sequences) since pL is slowly
growing. Next, S(Z) is dense in `1(Z), which allows us to extend this definition to
any a 2 `1(Z) by continuity [20, Theorem 16]. We thus have dL ⇤ c = a 2 `1(Z).
Finally, for the component p 2 NL, the sequence cp of B-spline coefficients verifies
dL⇤cp = 0 2 `1(Z). This proves the direct inclusion and thus the desired result.

The major advantage of using the B-spline representation of ML,h(R) over the
Green’s function representation (3.3) for computational tasks is the limited support
of the basis function, the shifted B-spline �L,h. In fact, �L,h is the nonzero member
of ML,h(R) that has minimal support. This makes the B-spline basis close to
being orthogonal (it is a Riesz basis [101, Theorem 1]), which leads to efficient
implementations and well-conditioned computational tasks. Conversely, the basis
function in (3.3)—the Green’s function ⇢L—has infinite support and is sometimes
even increasing at infinity, which leads to severely ill-conditioned computational
tasks.

3.1.7 Periodic Setting

Let L = DNd with Nd � 1 and h > 0 such that P , 2⇡
h 2 N. In a periodic

setting, one can simply define the 2⇡-periodized B-spline as

�per
L,h ,

X

k2Z
�L,h(·� 2k⇡). (3.21)

Note that when the grid is sufficiently fine, i.e., P � Nd, the periodic B-spline
is not aliased, since we have supp(�L,h) = [0, hNd] ⇢ [0, 2⇡] = T: we thus have
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�per
L,h(x) = �L,h(x) for x 2 T. One readily shows using standard Fourier analysis

that the Fourier series coefficients of �per
L,h are given by

d�per
L,h[k] =

1

2⇡
d�L,h(k) =

h

2⇡

✓
1� e�jkh

jkh

◆Nd

. (3.22)

Moreover, �per
L,h is a periodic L-spline in the sense of Definition 3.3, and using (3.15),

its innovation is given by

L
n
�per

L,h

o
=

1

hNd�1

P�1X

p=0

dper
L [p]X(·� ph), (3.23)

where dper
L is the P -periodization of dL

dper
L [k] ,

X

n2Z
dL[k + nP ], (3.24)

whose discrete Fourier transform (DFT) is given by

Dper
L [k] = DL

�
ejkh

�
=
�
1� e�jkh

�Nd
. (3.25)

When P > Nd, since supp(dL) = {0, . . . , Nd}, dper
L does not suffer from aliasing

in that dper
L [k] = dL[k] for any k 2 {0, . . . , P � 1}. For example, for L = D, dper

L
is the P -periodized finite-difference sequence dper

L [k] = �P [k] � �P [k � 1] where
�P [k] =

P
n2Z �[k + nP ].

Periodic B-splines share the same celebrated property as their nonperiodic coun-
terparts: they are generators of the space of uniform (periodic) splines ML,h(T)
introduced in (3.3), as demonstrated in Proposition 3.4. This representation leads
to the same computational benefits as in the nonperiodic case.

Proposition 3.4. Let LNd with Nd � 1 and h > 0 such that P , 2⇡
h 2 N. Then,

the periodic B-spline �per
L,h is a generator of the space ML,h(T), i.e., we have

ML,h(T) =
n

s =
P�1X

p=0

c[p]�per
L,h (·� ph) , c = (c[0], . . . , c[P � 1]) 2 RP

o
. (3.26)
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Proof. We first observe that the space ML,h(T) is a P -dimensional vector space:
there are (P � 1) degrees of freedom for the a[p] coefficients in (3.3) (P coefficients
and one linear constraint

PP�1
p=0 a[p] = 0), and one for the mean bs[0] (see Propo-

sition 3.2). Next, we prove that for any c = (c[0], . . . , c[P � 1]) 2 RP , we have
s =

PP�1
p=0 c[p]�per

L,h(·� ph) 2ML,h(T). Indeed, we have that

L{s} =
1

hNd�1

P�1X

p=0

P�1X

q=0

c[p]dper
L [q]X (·� (p + q)h)

=
1

hNd�1

P�1X

p=0

(dL ⇤ c)[p]X (·� ph) , (3.27)

where (3.23) was used for the first line, and (dL ⇤ c) denotes here the cyclic con-
volution between the vectors dL = (dper

L [0], . . . , dper
L [P � 1]) and c. This proves

that s 2ML,h(T) with coefficients (a[0], . . . , a[P � 1]) = hNd�1(dL ⇤ c), and thus
that the space generated by shifts of �per

L,h is included in ML,h(T). Yet both are
P -dimensional vector spaces, which proves that they are in fact equal.

3.1.8 Approximation Power
In this section, we give some brief insights on uniform splines from approx-

imation theory. More precisely, we discuss their approximation power, i.e., the
asymptotic upper bound on the approximation error between a generic function
and a uniform spline as the grid size h goes to zero.

Theorem 3.1 (Approximation Power of Polynomial Splines [109, Theorem 4.3]).
Let L = DN0 , h > 0, V ,

�
f 2 L2(R) : DN0{f} 2 L2(R)

 
,

Vh ,
(

s =
X

k2Z
c[k]�L,h(·� kh) : c 2 `2(Z)

)
, (3.28)

and let Ph : V ! Vh be the orthogonal projector of V onto Vh. Then, for any f 2 V,
we have

kf � Ph{f}kL2 = O
�
hN0

�
. (3.29)
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Remark 3.2. Theorem 3.1 does not directly apply to our setting, since the spaces
under consideration are L2(R) 6= ML(R) and Vh 6= ML,h(R). However, the im-
portant high-level message to remember is that the approximation power of uniform
L-splines increases with the order of differentiation N0 of L, and the approximation
error is in O

�
hN0

�
, which is in keeping with the well-known Strang-Fix conditions

[110].

3.2 Generalized TV-Based Inverse Problem Formu-
lations

We now have all the necessary tools to introduce our continuous-domain inverse
problems of interest. The goal of these problems is to recover a continuous-domain
ground-truth signal f0 : R! R, based on an observation vector y 2 RM , which are
acquired via a measurement operator ⌫ : f 7! ⌫(f) 2 RM where ⌫(f0) ⇡ y. In the
case of an additive noise model, we have

y = ⌫(f0) + n, (3.30)

where n 2 RM models the measurement errors. To reconstruct an estimate f⇤ of
f0, we solve the following optimization problem:

f⇤ 2 V , arg min
f2ML(K)

0

B@

J (f)
z }| {

E(⌫(f),y)| {z }
Data-fidelity term

+ �kL{f}kM| {z }
Regularization term

1

CA , (3.31)

whose search space ML(K) is defined in (2.33). The cost function J can be de-
composed into the following two terms.

1. A data-fidelity term E(⌫(f),y), which consists of the following elements:
— a measurement operator (or forward model) ⌫ = (⌫1, . . . , ⌫M ) : ML(K)!

RM whose null space is defined as N⌫ , {f 2ML(K) : ⌫(f) = 0};
— an observation vector y = (y1, . . . , yM ) 2 RM ;
— a data-fidelity cost functional E : RM ⇥ RM ! R+ [ {+1}.
This term enforces the consistency between the observations y and mea-
surements ⌫(f⇤) of the reconstructed signal f⇤ 2 V, i.e., we typically have
⌫(f⇤) ⇡ y.
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2. A regularization term �kL{f}kM, which consists of the following elements:
— a regularization parameter � > 0;
— a regularization operator L : ML(K) !M(K), where M(K) is defined

in (2.18), whose null space NL defined in (2.23) has dimension N0;
— the regularization norm k·kM, which is the TV norm for measures defined

in (2.17).
This term enforces that the reconstructed signal f⇤ 2 V be of a prescribed
form based solely on our prior knowledge, i.e., independent of the measured
data y. Our choice of regularization norm, the TV norm for measures, pro-
motes sparse reconstructions in a sense that will be clarified in Theorems 3.3
and 3.4. The regularization operator specifies the transform domain in which
the reconstruction is sparse. Finally, the regularization parameter � controls
the balance between the data-fidelity and regularization terms, and should
be chosen in accordance with the noise level and the degree of ill-posedness
of the problem.

Example 3.1. The two main examples of data-fidelity cost functional that we will
use throughout this thesis are:

— the indicator function 1 E(z,y) , i{y}(z), which leads to the constrained
problem

V , arg min
f2ML(K): ⌫(f)=z

kL{f}kM. (3.32)

This choice is pertinent when the observations y are assumed to be noiseless;
the regularization parameter � then plays no role.

— the quadratic loss function E(y, z) , 1
2kz�yk

2
2, which, from a Bayesian point

of view, is well suited when the noise n in (3.30) follows an independent and
identically distributed (i.i.d.) Gaussian model (see for example [111, Section
4.3]).

Other classical data-fidelity cost functionals can be found in [92, Section 7.5].

1. The indicator function of a set A is defined as iA(x) = 0 if x 2 A, and iA(x) = +1 if
x 62 A.
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3.3 Representer Theorems

3.3.1 Preliminaries on Convex Sets and Extreme Points
Before presenting existing representer theorems for Problem 3.31, we provide

some preliminaries on the geometry of convex sets. In particular, the concept of
extreme point will play an important role in these representer theorems.

Definition 3.5 (Extreme Point). Let C be a convex subset of a real or complex
vector space. An element c 2 C is an extreme point of C if c cannot be written as
c = tc1 + (1� t)c2 where c1, c2 2 C with c1 6= c2, and with 0 < t < 1.

Intuitively, the extreme points are the corner points of a convex set; for example,
the extreme points of a convex polygon are its vertices. However, a convex set may
well have infinitely many extreme points; for example, the extreme points of a disk
are all the points of the corresponding circle. Next, we define the convex hull of a
set.

Definition 3.6 (Convex Hull). Let S be a subset of a real or complex vector space
X . The convex hull of S is the set of points x 2 X such there exist s1, . . . , sN 2 S
and 0  t1, . . . , tN  1 with

PN
i=1 ti = 1 such that x =

PN
i=1 tisi.

We can now recall the classical Krein-Milman theorem, which underscores the
crucial role of extreme points in the geometry of convex sets.

Theorem 3.2 (Kein-Milman Theorem [15, p.75]). Let C be a compact convex subset
of a Hausdorff locally convex topological vector space (Section 2.1.1). Then, C is
the closed convex hull of its extreme points.

Defining Hausdorff locally convex spaces is out of the scope of this thesis. What
is important for our purpose is that they include all spaces introduced in Chapter 2,
in particular the native space ML(K) defined in (2.33) equipped with the weak⇤

topology.

3.3.2 Nonperiodic Representer Theorem
We now present existing representer theorems for Problem (3.31), which guaran-

tee the existence of spline solutions. We first consider the nonperiodic case K = R.
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Theorem 3.3 (Nonperiodic Representer Theorem [14, Theorem 1]). Assume that
the following conditions are met:

— the regularization operator L : ML(R) ! M(R) is the N0-th derivative
operator L = DN0 ;

— the measurement operator ⌫ = (⌫1, . . . , ⌫M ) : ML(R) ! RM is a weak⇤-
continuous linear operator;

— the observation vector is of the form y = (y1, . . . , yM ) 2 RM ;
— the data-fidelity cost functional E : RM ⇥ RM ! R+ [ {+1} is such that

E(·,y) : RM ! RM is a proper convex function that it strictly convex over
its effective domain 2 for any y 2 RM ;

— we have NL \N⌫ = {0} (well-posedness assumption).
Then, the solution set V ⇢ML(R) of the optimization Problem (3.31) is a nonempty
weak⇤-compact convex set whose extreme points (Definition 3.5) s⇤ are nonuniform
L-splines (Definition 3.1) of the form

s⇤(x) = p +
KX

k=1

ak⇢L(x� xk), (3.33)

where p 2 NL, ak, xk 2 R, and whose number of knots K is bounded by K M�N0.

Theorem 3.3 has a long history in the literature, stemming from [87], where this
result was proved in a compact-support setting (which differs from the periodic
setting we will present in Theorem 3.4). It was revived much later in 2017 by [14],
which sparked several recent similar results [45, Theorem 4], [90] and generalizations
[61, 112].

Remark 3.3. Theorem 3.3 is an adaptation of [14, Theorem 1]; this adaptation
is better suited to how this theorem is used in our works. More precisely, the data-
fidelity functional E is not present in [14], which instead enforces that ⌫(f) 2
C, where C is a convex set. It is straightforward to show that the hypotheses of
Theorem 3.4 can be reformulated as such. Moreover, as stated earlier, the operator
L takes a more general form in [14]: Theorem 3.3 remains valid for any spline-
admissible operator in the sense of [14, Definition 1].

Remark 3.4. It is well known that the assumption that ⌫ is weak⇤ continuous is
equivalent to ⌫ 2 CL(R)M [113, Theorem IV.20, p. 114], where CL(R) is the predual

2. The effective domain of a convex function g : X ! R+ [ {+1} is {x 2 X : g(x) < +1}.
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of ML(R) defined in (2.46). This explains why we call CL(R) the measurement
space of L: it is the space in which the measurement functionals can lie. Here, we
follow the standard practice of identifying a linear functional with a (generalized)
function, i.e., ⌫m(f) = h⌫m, fiCL(R)⇥ML(R). What is less standard with this notation
is that the functional ⌫m is an element of the predual of ML(R) instead of its dual;
note however that we have CL(R) ⇢ML(R)0.

Example 3.2. By Proposition 2.3, an example of a weak⇤-continuous measurement
functional when N0 � 2 is the shifted Dirac impulse ⌫m = �(·�xm) for any xm 2 R,
which yields ⌫m(f) = f(xm), i.e., the spatial sampling operator. These are used in
the works of Part II and Chapters 7 and 8.

Example 3.3. Another example of a valid measurement operator is the windowed
Fourier-domain sampling functional ⌫m = [0,T ] cos(!m·��m), which yields ⌫m(f) =
R T
0 f(x) cos(!mx � �m)dx. Indeed, we have ⌫m 2 L1(R) ⇢ CD(R) (as pointed out

in Remark 2.11), and by Lemma 2.1, we clearly have ⌫m 2 CL(R) for any DN0 with
N0 � 1. These are used in the works of Part II.

Remark 3.5. The well-posedness assumption in Theorem 3.3 is needed to ensure
that V is bounded. Otherwise, for any f⇤ 2 V and p 2 NL \ N⌫ , we would have
f⇤ + ↵p 2 V for any ↵ 2 R (since we clearly have J (f⇤) = J (f⇤ + ↵p)). Although
this would not pose any theoretical problem, having a bounded solution set is a
desirable property to solve optimization problems numerically, which explains why
this additional assumption is made.

Theorem 3.3 demonstrates the sparsity-promoting effect of the TV norm for
measures. Indeed, the argument of the TV norm in (3.31) for the extreme-point so-
lutions s⇤ of the form (3.33) satisfies w⇤ , L{s⇤} =

PK
k=1 ak�(x�xk). The measure

w⇤ is sparse in the sense that it has a discrete support supp(w⇤) = {x1, . . . , xK},
whose number of elements is “small” since it is upper-bounded by M � N0. This
definition of sparsity is analogous to the more common discrete-domain definition,
where a vector is considered sparse if it has a small support, i.e., few nonzero ele-
ments. However, an important point to bear in mind is that this sparsity-promoting
effect only applies to the extreme-point solutions of Problem (3.31). In cases of
nonuniqueness, interior-point solutions f⇤ 2 V may be highly nonsparse (i.e., the
support of L{f⇤} may have nonzero Lebesgue measure), as we will demonstrate for
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example in Chapter 7. In fact, the study of the solution set V in terms of unique-
ness, its sparsest solutions, and how to reach them algorithmically is a major topic
of this thesis, and particularly of Part III.

Moreover, the role of L is made clear from the form of the solutions s⇤ given
by (3.33): it specifies the transform domain in which s⇤ is sparse, i.e., the Green’s
function basis {⇢L(·�x0)}x02R. For example, for L = D, s⇤ is a piecewise-constant
function with fewer than M�1 jumps. A remarkable feature of Theorem 3.3 is that
the basis in which the solution is sparse is solely determined by the regularization
L. This differs for example from the L2—or Tikhonov—regularization scenario,
where this basis also depends on the measurement operator ⌫ [45, Theorem 3].

3.3.3 Periodic Representer Theorem
We now present the equivalent of Theorem 3.3 in the periodic setting.

Theorem 3.4 (Periodic Representer Theorem [22, Theorem 4]). Assume that the
following conditions are met:

— the regularization operator is the Nd-th order derivative L = DNd : ML(T)!
M(T) with Nd � 1;

— the measurement operator (or forward model) ⌫ = (⌫1, . . . , ⌫M ) : ML(T)!
RM is a weak⇤-continuous linear operator;

— the observation vector is of the form y = (y1, . . . , yM ) 2 RM ;
— the cost functional E : RM⇥RM ! R+ is such that E(·,y) : RM⇥RM ! R+

is a proper convex function that it strictly convex over its effective domain
for any y 2 RM .

Then, the solution set V ⇢ML(T) of Problem (3.31) is a nonempty weak⇤-compact
convex set whose extreme points (Definition 3.5) are periodic nonuniform L-splines
(Definition 3.3) that satisfies

s⇤(x) = bs⇤[0] +
KX

k=1

akgL(x� xk), (3.34)

where bs⇤[0] 2 R, ak, xk 2 R, and whose number of knots K is bounded by K M+1.

Remark 3.6. Once again, Theorem 3.4 is an adaptation of [22, Theorem 4], which
is more general: it remains valid for any spline-admissible operator L in the sense
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of [22, Definition 2]. Examples of periodic spline-admissible operators are given in
[22, Table 1].

Example 3.4. As in nonperiodic case (see Remark 3.4), the weak⇤-continuity of ⌫
is equivalent to ⌫m 2 CL(T) for any 1  m M . By Proposition 2.7, an example of
a weak⇤-continuous measurement functional when N0 � 2 is the shifted Dirac comb
⌫m = X(· � xm) for any xm 2 R, which yields ⌫m(f) = f(xm), i.e., the spatial
sampling operator. These are used in Chapter 10.

Example 3.5. Other examples of weak⇤-continuous functionals are the sinusoids
⌫m = cos(k·) 2 S(T) ⇢ CL(T) and ⌫m = sin(k·) with k 2 N, which lead to
⌫m(f) = Re( bf [k]) and ⌫m(f) = Im( bf [k]), respectively, i.e., Fourier-sampling op-
erators. These are used in Chapter 9.

Note that the bound K  M + 1 in Theorem 3.4 is higher than that of the
nonperiodic case K  M � N0 in Theorem 3.3. However, the constraint (3.5) on
the amplitudes ak reduces the number of degrees of freedom for s⇤. More precisely,
there are 2M + 2 degrees of freedom in the periodic case (3.34) (M + 1 for the
xk, M for the ak and 1 for bs⇤[0]), compared to 2M � N0 in the nonperiodic case
(3.33) (M �N0 for the ak and the xk, and N0 for p 2 NL). These numbers remain
valid for the more general operators L presented in [14] and [22]. Despite these
differences, the role of the TV norm (to promote sparsity) and of L (to specify a
transform domain for this sparsity) are analogous in both settings.
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Part II

Exact Discretization of
TV-Based Inverse Problems on

a Grid

59
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In this part, we propose exact discretization methods for continuous-domain
inverse problems with generalized total-variation (gTV) regularization related to

arg min
f2ML(R)

(E(⌫(f),y) + �kL{f}kM) (II.1)

(see Part I for a definition of the notations). We discretize such problems using
B-spline bases on a grid. The choice of these bases are suggested by representer
theorems, more specifically Theorem 3.3 for Chapter 4 and our own for Chapters 5
and 6. The key feature of our approach is that contrary to purely discrete settings,
our discretization is exact in the continuous domain, in that the forward and regu-
larization operators ⌫ and L in Problem (II.1) are applied in the continuous domain
without any discretization error.

Our discretization methods impose the locations of the spline knots on a prede-
fined grid. They are thus unable to locate the jumps at super-resolution, contrary
to the techniques developed for the sparse spikes deconvolution problem described
in Section 1.2.3. Although super-resolution is a sensible objective when the recon-
structed signal consists of Dirac impulses, in our spline-based framework, finding
the exact locations of the jumps is less critical since the reconstructed signals are
smoother. Hence, we take the stance of using a grid and B-splines, at the expense
of (arbitrarily small) localization errors on the jumps. Moreover, this choice has
the following two advantages:

— the use of a grid leads to standard convex finite-dimensional problems with
`1 regularization for which off-the-shelf efficient solvers can be used. By
contrast, sparse spikes super-resolution methods lead to nonconvex problems
which are computationally much more challenging, all the more so with an
added regularization operator L [90];

— as explained in Section 3.1.4, the short support of B-spline basis functions
leads to well-conditioned optimization problems, unlike the Green’s function
basis [45].

Note that the reformulation of problems based on (II.1) on the grid as standard
problems with `1 regularization requires a careful treatment of the boundaries in
order for the discretization to remain exact.
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Outline
In this part, we consider the following formulations:
— In Chapter 4, we consider problems of the form (II.1), which lead to sparse

L-spline signals models as demonstrated in Theorem 3.3. We propose a
multiresolution B-spline-based exact discretization method for this problem
which is guaranteed to reach a desired sparse L-spline solution.

— In Chapter 5, we extend to composite signal models; more specifically, we
consider hybrid spline models s = s1 + s2, where si is a sparse Li-spline
for i 2 {1, 2}. We formulate a suitable continuous-domain inverse prob-
lem, for which we prove a representer theorem and apply our B-spline-based
discretization method.

— In Chapter 6, we consider a different composite model, namely s = s1 +
s2, where s1 is a sparse L1-spline and s2 is a smooth component. Again,
we formulate the corresponding optimization problem, prove a representer
theorem, and discretize using B-splines.



Chapter 4

Single-Component Signal
Models

This chapter is based on the following publication [114]:
T. Debarre, J. Fageot, H. Gupta, and M. Unser, “B-Spline-Based Exact Dis-

cretization of Continuous-Domain Inverse Problems with Generalized TV Regular-
ization”, IEEE Transactions on Information Theory, vol. 65, no. 7, pp. 4457–4470,
Jul. 2019.

4.1 Introduction

In this chapter, we consider inverse problems with generalized total-variation
(gTV) regularization of the form (II.1) with a least-square data fidelity loss E(y,⌫(f)) =
1
2k⌫(f)� yk22, i.e.,

V , arg min
f2ML(R)

0

BB@
1

2
k⌫(f)� yk22 + �kL{f}kM
| {z }

J (f)

1

CCA , (4.1)
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where ML(R) is defined in (2.33), ⌫ : ML(R) ! RM , y 2 RM , and � > 0. The
regularization operator L is the N0th-order derivative 1 L = DN0 where N0 � 1.
For more background on Problem 4.1, we refer to Chapter 3. Theorem 3.3 states
that Problem (4.1) has extreme-point solutions of the form

s⇤(x) =
KX

k=1

ak⇢L(x� xk) +
N0X

n=1

bnpn(x), (4.2)

where K  M � N0, ak, xk 2 R, ⇢L is the Green’s function of L defined in (2.25)
and {pn}N0

n=1 form a basis of the null space NL of L defined in (2.24).

4.1.1 Green’s Function Discretization

The form of the solutions (4.2) suggests a natural basis to discretize Prob-
lem (4.1). As demonstrated in [45], by using basis functions {pn}N0

n=1 and {⇢L(· �
xn)}Nn=1 where the knots xn lie on a uniform finite grid, we get the following discrete
optimization problem:

min
(a,b)2RN+N0

✓
1

2
kH⇢La + Hpb� yk22 + �kak1

◆
(4.3)

with system matrices H⇢L 2 RM⇥N and Hp 2 RM⇥N0 . This problem is a standard
finite-dimensional problem with `1 regularization and can thus be solved using off-
the-shelf convex optimization algorithms such as FISTA [18]. The major asset of
this approach is that the discrete problem is exactly equivalent to the underlying
continuous problem restricted to the search space spanned by the basis functions.
By making the grid finer, this search space includes functions arbitrarily close to
solutions (4.2) of the full continuous-domain problem. However, the Green’s func-
tion usually has infinite support (e.g., ⇢D = +), which makes the Green’s function
basis ill-suited for practical problems. In particular, Problem (4.3) is severely ill-
conditioned, making the convergence of solvers slow and potentially numerically
unstable.

1. As in most chapters of the thesis, all the results and algorithms from this chapter can be
extended to more general operators L, e.g., rational operators [102].
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4.1.2 Our Approach: B-Spline Discretization

We therefore propose to improve this discretization method by using an equiv-
alent dictionary basis consisting of shifted B-splines, i.e., {�L,h(·� xn)}Nn=1 where
the knots xn lie on a uniform finite grid with knot spacing h > 0, and �L,h is
the scaled B-spline of L defined in Section 3.1.5. This basis leads to the following
discrete optimization problem:

min
c2RN

✓
1

2
kH�Lc� yk22 + �kLck1

◆
(4.4)

where L is a finite difference-like regularization matrix. This problem is of the
same form as standard discrete compressed sensing (CS)-type problems, with the
advantage that the chosen basis is matched to the form of the continuous-domain
solution (4.2). Moreover, Problem (4.4) shares the exact discretization property
of the Green’s function basis, since—setting aside boundary issues—both bases
are equivalent. However, as explained in Section 3.1.5, the finite support of the
B-splines makes this basis better suited for practical applications, and it induces
well-conditioned problems. This leads to a rapid convergence of solvers for Prob-
lem (4.4), a prediction which will be confirmed by our experimental results.

4.1.3 Outline and Contributions

In terms of contribution, the work in this chapter extends [45] and parts of our
experimental pipeline are adapted from this work. However, the use of B-splines is
a critical improvement which leads to the following contributions:

— In Section 4.2, we introduce the search space consisting of L-splines with
knots on a uniform grid. We have shown in Proposition 3.3 that it has an
equivalent formulation in the B-spline basis;

— In Section 4.3, we show that the corresponding continuous-domain inverse
problem can be recast as a finite-dimensional problem of the form (4.4) in
an exact way. We also demonstrate that the algorithm introduced in [45]
can be adapted to our framework, and that it yields sparse solutions (with
lower sparsity than in [45]);

— In Section 4.4, we prove that the optimal cost of the discrete problem con-
verges to that of the continuous problem when the grid size goes to zero.
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We leverage this result to devise a multiresolution algorithm which refines
the grid until the desired level of accuracy is met (termination criterion);

— In Section 4.5, we demonstrate experimentally the effectiveness of our algo-
rithm using different measurement types (ideal sampling in the spatial and
Fourier domains). We also show that it compares favorably with standard
purely discrete methods.

4.2 Specification of the Search Space
In order to discretize Problem (4.1), we restrict the search space to the space

ML,h(R) of uniform L-splines with grid size h > 0 introduced in (3.3). This choice
is obviously guided by Theorem 3.3, which states that Problem (4.1) has L-spline
solutions, although their knots are not on a uniform grid. This search space there-
fore contains functions which are close approximations of a solution when the grid
size h is small. A more explicit mathematical justification is given in Section 4.4.1.

The key property of the search space ML,h(R) is that it has an alternative
representation in the B-spline basis (Proposition 3.3) given by

ML,h(R) ,
(

s = p +
X

k2Z
a[k]⇢L(·� kh) : a 2 `1(Z), p 2 NL

)
(4.5)

=

(
s =

X

k2Z
c[k]�L,h(·� kh) : c 2 `1,L(Z)

)
(4.6)

where �L,h is defined as in (3.13) and

`1,L(Z) ,
n

c 2 S 0(Z) : (dL ⇤ c) 2 `1(Z)
o

(4.7)

where dL is defined in (3.11) by its z transform DL(z) , (1 � z�1)N0 ; we refer to
Sections 3.1.4 and 3.1.5 for more background on scaled polynomial B-splines.

The major contribution of this chapter is the use of the B-spline representa-
tion (4.6) of ML,h(R) throughout the discretization process, whereas [45] uses the
Green’s function representation (4.5). The point of doing so is that contrary to the
Green’s function, B-splines have finite support, which leads to Problem (4.4) being
well-conditioned (see the discussion after Proposition 3.3).
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The conditioning of an inverse problem is a measure of its numerical stability: a
problem is well-conditioned if a small perturbation of the signal coefficients leads to
a small perturbation of its measurements. When the basis functions have limited
support as in the B-spline case, it is clear that a slight disturbance of the basis
coefficients does not change the signal - and thus its measurements - significantly.
However, this is not the case for the Green’s function basis, since not only do the
basis functions have infinite support, but they are nonvanishing or even increasing
as one moves away from the center, since ⇢L(x) = xN0�1

+ for L = DN0 . Therefore, a
small perturbation of a basis coefficient greatly affects the reconstructed signal ev-
erywhere. The measurements are thus greatly impacted and the problem is severely
ill-conditioned [115, 45]. This intuition is confirmed in practice: we observe that
in identical settings (i.e., same regularization operator L, measurement operator
⌫, regularization parameter � and grid size h), the relevant condition number is
systematically greater in Problem (4.3) than in Problem (4.4). For example, in the
experiment shown in Fig. 4.3, the condition number of the matrix to be inverted
is cond(HT

�L
H�L + �LT

L) = 5.7 ⇥ 104 using the B-spline formulation, compared
to cond(HT

⇢L
H⇢L + �I) = 1.5 ⇥ 1012 in the Green’s function case. This difference

of conditioning largely justifies the use of the B-spline representation of ML,h(R)
rather than its Green’s function representation.

4.3 Exact Discretization in the Search Space

4.3.1 Discrete Problem Formulation

Let h > 0; in order to discretize Problem (4.1) in ML,h(R), we use the B-spline
representation of s 2ML,h(R) given in (4.6)

s(x) =
X

k2Z
c[k]�L,h(x� kh) (4.8)

where c 2 `1,L(Z). Using (3.15), the sparsity of s in the Green’s function basis
is given by kdL ⇤ ck0, where k · k0 is the `0 "norm" which counts the number of
nonzero entries of a sequence or vector. When we feed (4.8) into the continuous-
domain Problem (4.1), using (3.18) we get the following discretized optimization
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problem

Vd , arg min
c2`1,L(Z)

0

BBBBB@

1

2

�����
X

k2Z
c[k]⌫(�L,h(·� hk))� y

�����

2

2

+
�

hN0�1
kdL ⇤ ck1

| {z }
Jd(c)

1

CCCCCA
. (4.9)

By adapting Lemma 20 in [20], it can be shown that Vd is a nonempty weak⇤-
compact subset of `1,L(Z). Note that Problem (4.9) is exactly equivalent to the
continuous-domain Problem (4.1) restricted to the search space ML,h(R). This
is the key feature of our formulation: the standard approach to discretize an in-
verse problem is to use an approximate discrete forward model as a surrogate for
a continuous model, which leads to discretization errors. This is not the case of
our method, in which the discrete forward model is equal to the continuous one;
the former is simply restricted to the native space ML,h(R). To the best of our
knowledge, aside from [45] of which this chapter is an extension, no other work
in the literature discretizes nonquadratic continuous-domain problems exactly by
using a dictionary.

4.3.2 Finite Problem

In real-world applications, the signal of interest usually has a given finite sup-
port, which we can assume to be IT = [0, T ] without loss of generality. Hence,
in all that follows, we can assume that the measurement functionals ⌫m, be they
ordinary functions or distributions such as Dirac impulses, are supported in IT .
This assumption is completely inconsequential for signals supported in IT , but it
is necessary to express (4.9) as a finite-dimensional problem. In this case, only a
finite number of B-spline coefficients affect the data fidelity term in (4.9); we denote
by I = {imin, . . . , imax} ⇢ Z the set of their indices and N , #I. Assuming that
T/h 2 N, we have imin , �N0 + 1, imax , T/h � 1 and thus N = T/h + N0 � 1.
To make Problem (4.9) finite, we optimize over the N B-spline coefficients in I,
which are denoted by c 2 RN . By imposing natural boundary conditions for the
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regularization term, we get the following discrete finite-dimensional problem:

Vf , arg min
c2RN

0

BB@
1

2
kHc� yk22 + �kLck1
| {z }

Jf (c)

1

CCA (4.10)

where the system matrix H 2 RM⇥N is

H , (himin , . . . ,himax) : hk , ⌫(�L,h(·� hk)) (4.11)

and the Toeplitz-like regularization matrix L 2 R(N�N0)⇥N is a finite section of the
infinite-dimensional regularization matrix in Problem (4.9), i.e.,

L , 1

hN0�1

0

BBBB@

dL[N0] · · · dL[0] 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 dL[N0] · · · dL[0]

1

CCCCA
. (4.12)

Despite the seemingly arbitrary boundary conditions on the regularization term
(we are representing a convolution involving an infinite sequence as a finite ma-
trix multiplication), remarkably, thanks to the finite support assumption, Problem
(4.10) is exactly equivalent to the infinite Problem (4.9):

Proposition 4.1. Under the assumptions of Theorem 3.3 and assuming that the
functionals ⌫m are supported in IT :

— We have kerH\ kerL = {0}, and the solution set Vf of Problem (4.10) is a
nonempty compact convex set;

— Problems (4.9) and (4.10) are equivalent, and there exists a natural bijection
between their solution sets which maps any sequence c⇤ 2 Vd ⇢ `1,L(Z) to a
vector c

⇤ 2 Vf ⇢ RN such that c⇤|I = (c⇤[imin], . . . , c⇤[imax]) = c
⇤.

Proof. The second item of Proposition 4.1 entails the existence of bijective linear
map ✓ : Vf ! Vd such that ✓(c⇤)|I = c

⇤ for any c
⇤ 2 Vf . In order to construct this

mapping, we rely on the following lemma:

Lemma 4.1. Assume that the functionals ⌫m (1  m  M) are supported in
IT . Then solutions c⇤ 2 Vd of Problem (4.9) are uniquely determined by their N
coefficients c⇤|I .
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Proof. Let c⇤ 2 Vd be a solution of the discrete Problem (4.9). Consider a sequence
c such that c|I = c⇤|I and whose remaining coefficients are free. The latter do
not affect the data fidelity term due to the finite support assumption on the ⌫m.
When N > N0, c[imax + 1] can be uniquely chosen such that (dL ⇤ c)[imax + 1] =PN0

k=0 dL[k]c[imax � k + 1] = 0. Similarly, all coefficients c[k] for k > imax can be
uniquely determined recursively to nullify (dL ⇤ c)[k] as a linear combination of the
N0 � 1 previous coefficients. The same can be done for coefficients c[k] with k  0,
using this time the N0�1 following coefficients of c. By construction, this sequence
c yields a regularization cost smaller or equal to that of c⇤, and since both yield
the same data fidelity cost, we have Jd(c)  Jd(c⇤). Since c⇤ is a solution of (4.9)
and the construction of c is unique, we necessarily have c = c⇤.

The proof of Lemma 4.1 details the construction of an injective linear map
e✓ : RN ! `1,L(Z) such that for any c 2 RN , e✓(c)|I = c. Let c 2 RN , and
consider the corresponding sequence e✓(c) 2 `1,L(Z). Following the proof of Lemma
4.1, Jd(e✓(c)) can be computed using only the N coefficients c. Indeed, all other
coefficients (e✓(c)[k])k 62I do not affect the data fidelity term and cancel out all the
regularization terms which they affect. This implies that Jd(e✓(c)) = Jf(c) =
1
2kHc�yk22+�kLck1, where H and L are defined as in (4.11) and (4.12) respectively.
Since by Lemma 4.1, Vd ⇢ e✓(RN ), problems (4.9) and (4.10) are equivalent in the
sense that e✓(Vf) = Vd, and the restriction ✓ = e✓|Vf : Vf ! Vd is a bijective linear
map.

Concerning the first item of Proposition 4.1, let c 2 kerH \ kerL, the cor-
responding signal s verifies s =

P
k2Z

e✓(c)[k]�L,h(· � kh) 2 N⌫ \ NL = {0}
(well-posedness assumption in Theorem 3.3), which implies that c = 0. Hence,
kerH\ kerL = {0}, which implies that Problem (4.10) is well-posed and thus that
its solution set Vf is a nonempty compact set. The latter is also convex due to the
convexity of the cost function Jf .

We refer to Problem (4.10) as being well-posed due to the property kerH \
kerL = {0}, which implies that its solution set Vf is bounded, but not necessarily
unique. Proposition 4.1 demonstrates that the finite Problem (4.10) is equivalent
to the continuous-domain Problem (4.1) restricted to the search space ML,h(R).
This is quite a remarkable outcome: we are able to solve an infinite continuous-
domain problem in an exact way as a standard discrete inverse problem with `1
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regularization. Once again, this is to the best of our knowledge a novelty, which is
this time not present in [45].

Despite the proven equivalence between problems (4.9) and (4.10), one might
wonder how to proceed in practice to reconstruct the underlying continuous-domain
signal s once a solution c

⇤ 2 Vf is reached. By Proposition 4.1, there exists a
unique sequence c⇤ 2 Vd such c⇤|I = c

⇤. The following observations, which are
direct consequences of the proof of Proposition 4.1, can be made concerning s:

— The continuous-domain reconstructed signal is s =
P

k2Z c⇤[k]�L,h(·� kh);
— The N B-spline coefficients c

⇤ are sufficient to reconstruct s exactly in the
interval of interest IT ;

— The sparsity of s in the Green’s function basis is given by kLc⇤k0.
These observations indicate that all the relevant information concerning the

reconstructed signal s (i.e., its expression in IT and sparsity) is directly encoded in
the vector c

⇤ 2 Vf of Problem (4.10). Hence, computing the corresponding infinite
sequence c⇤ 2 Vd is unnecessary. In practice, the infinite Problem (4.9) can thus be
altogether forsaken in favor of the computationally feasible finite Problem (4.10).

4.3.3 Reaching a Sparse Solution
In this section, we study the so-called penalized basis pursuit (PBP) problem

formulated in (4.10)

Vf , arg min
c2RN

✓
1

2
kHc� yk22 + �kLck1

◆
(4.13)

where the system and regularization matrices H and L are defined in (4.11) and
(4.12) respectively. This problem is close to typical CS problems (L is a finite-
difference-like regularization matrix), which have been studied at length in the
literature [20, 11] and are known to yield sparse solutions in a certain basis. The
specificity of this problem lies in the fact that L is not invertible. However, Theo-
rem 3.3 strongly suggests that (4.10) has sparse solutions, since it is a discretized
version of the continuous-domain problem. This instinct is confirmed by the fol-
lowing representer theorem.

Theorem 4.1 (Discrete Representer Theorem). Let 0  N0  M < N , H 2
RM⇥N and L 2 R(N�N0)⇥N such that kerH \ kerL = {0} and L is of full rank,



72 Single-Component Signal Models

i.e., ranL = N �N0. Then the solution set Vf of the optimization problem

Vf , arg min
c2RN

✓
1

2
kHc� yk22 + �kLck1

◆
(4.14)

is a compact convex set whose extreme points (Definition 3.5) c
⇤ verify kLc⇤k0 

M �N0.

Proof. Let Jf : c 7! 1
2kHc � yk22 + �kLck1. Since Jf is continuous and coercive

due to the well-posedness assumption kerH\kerL = {0}, Vf is a nonempty, closed
compact set. Therefore, by the Krein-Milman theorem (Theorem 3.2), it is the
closed convex hull of its extreme points.

Let c⇤ be an extreme point of Vf . Assume by contradiction that Lc⇤ has sparsity
K > M � N0, i.e., Lc⇤ =

PK
k=1 ankenk where the nk 2 {1, . . . , N} are distinct,

ank 6= 0 and {ei}N�N0
i=1 is the canonical basis of RN�N0 . Consider the vector space

T = ranL \ span{enk}Kk=1. To find a lower bound on the dimension of T , we use
the relation

dim (X \ Y ) = dim X + dim Y � dim (X + Y )

� dim X + dim Y � P, (4.15)

where X and Y are vector subspaces of RP . Since the rank of L is N � N0, for
X = ranL and Y = {enk}Kk=1, (4.15) yields R = dimT � K > M � N0 (with
P = N �N0). Let {tr}Rr=1 be a basis of T . By definition of T , there exist vectors
gr and coefficients trk 2 R such that tr = Lgr =

PK
k=1 trkenk .

Next, we define yr = Hgr 2 RM for all r 2 {1, . . . , R}, and zn = Hpn 2 RM

for all n 2 {1, . . . , N0} where {pn}N0
n=1 is a basis of kerL. The collection of vectors

{y1, . . . ,yR, z1, . . . , zN0} has R + N0 � K + N0 > M elements, and is thus linearly
dependent. Therefore, there exist coefficients ↵r,�n 2 R such that

PR
r=1 ↵ryr +PN0

n=1 �nzn = 0 and (↵,�) 6= 0. We then define c0 =
PR

r=1 ↵rgr +
PN0

n=1 �npn 2
RN , which is clearly in kerH. Assume by contradiction Lc0 =

PR
r=1 ↵rtr = 0. We

thus have c0 2 kerH\kerL = {0}. Moreover, since the tr are linearly independent,
we have ↵ = 0, and thus c0 =

PN0

n=1 �npn = 0. Yet the pn are also linearly
independent, which means that � = 0, which contradicts (↵,�) 6= 0. Therefore,
we have Lc0 6= 0, which implies that c0 6= 0.
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Finally, we pick an ✏ > 0 such that

✏ <
mink ank

maxk |
PR

r=1 ↵rtrk|
. (4.16)

Note that ✏ is well defined since for all k, ank > 0 and
PR

r=1 ↵rtrk = 0 for all k

would imply that Lc0 =
PR

r=1 ↵rtr =
PK

k=1

⇣PR
r=1 ↵rtrk

⌘
enk = 0, which we have

proved to be false. We can then compute:

kL(c⇤ ± ✏c0)k1 =

�����

KX

k=1

 
ank ± ✏

RX

r=1

↵rt
r
k

!
enk

�����
1

=
KX

k=1

 
ank ± ✏

RX

r=1

↵rt
r
k

!

= kLc⇤k1 ± ✏
KX

k=1

RX

r=1

↵rt
r
k

since by definition of ✏, ank ± ✏
⇣PR

r=1 ↵rtrk

⌘
> 0 for all k. Notice that both

vectors (c⇤ ± ✏c0) yield the same data fidelity cost as c⇤ in Problem (4.10): indeed,
H(c⇤ ± ✏c0) = Hc

⇤ since c0 2 kerH. Therefore, if
PK

k=1

PR
r=1 ↵rtrk 6= 0, then

either (c⇤ + ✏c0) or (c⇤ � ✏c0) yields a cost strictly smaller than that of c
⇤ in

Problem (4.10), which is impossible since c⇤ is a solution of the latter. Consequently,PK
k=1

PR
r=1 ↵rsrk = 0 and so (c⇤ ± ✏c0) 2 Vf . Yet c

⇤ = 1
2 (c⇤ + ✏c0) + 1

2 (c⇤ � ✏c0),
and since ✏c0 6= 0, c⇤ is not an extreme point of Vf , which contradicts our initial
assumption. This proves the desired result K M �N0.

Theorem 4.1 is a generalization of Theorem 6 in [20], since it allows for more
general regularization matrices (L must be right-invertible). It is also similar to
Theorem 2.4 in [87], but with a tighter bound on the sparsity, and with an ele-
mentary proof using only standard linear algebra. This result directly applies to
Problem (4.10), since kerH \ kerL = {0} by Proposition 4.1 and L in (4.12) is
of full rank. Remarkably, the bound on the sparsity M � N0 is the same as for
the continuous-domain Problem (4.18) (Theorem 3.3), which confirms the close
connection between both problems. This is not the case in the Green’s function
formulation of [45], where the sparsity is bounded by M .
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Although Theorem 4.1 guarantees that Problem (4.10) has sparse solutions, only
the extreme points of Vf are known to be sparse, and in general, Vf is nonunique.
Therefore, while a solution of Problem (4.10) can readily be reached using standard
solvers such as ADMM (see Appendix A), there is no guarantee that this solution
will be sparse. In fact, we will demonstrate experimentally later on that, as ob-
served with FISTA in [45], ADMM often converges towards nonsparse solutions,
i.e., vectors c

⇤ such that kLc⇤k0 > M � N0. To circumvent this issue, we use
the following lemma, which is well known in the absence of a regularization matrix
[21, Lemma 1]. As it turns out, the latter does not make it more challenging: an
elementary proof is given for the sake of completeness.

Lemma 4.2. Let H 2 RM⇥N , L 2 RP⇥N , y 2 RM and � > 0. We assume that
the problem is well posed, i.e., kerH \ kerL = {0}. Then the solution set Vf of
the PBP Problem (4.10) is a compact convex set which has a unique measurement
vector y� 2 RM such that 8c 2 Vf , Hc = y�. Moreover, for any two solutions
c1, c2 2 Vf , we have

(Lc1)i ⇥ (Lc2)i � 0 8i 2 {1, . . . , P}. (4.17)

Proof. Due to the well-posedness assumption, the cost function Jf is coercive and
since it is continuous, Vf is non-empty and bounded. Let c1, c2 2 Vf be two (possibly
identical) solutions. We have Jf(c1) = Jf(c2) , J 0

f , and for any ↵ 2 [0, 1], we
define c↵ = ↵c1 + (1 � ↵)c2. The convexity of Jf yields Jf(c↵)  ↵Jf(c1) +
(1 � ↵)Jf(c2) = J 0

f . Yet, since J 0
f is the minimum of the cost function Jf , we

have Jf(c↵) = J 0
f , which implies that c↵ 2 Vf and thus that Vf is a convex set.

Another implication is that the convexity inequality is in fact an equality. For
the data fidelity term, the strict convexity of the squared `2 norm implies that
Hc1 � y = Hc2 � y, Hc1 = Hc2 = y�.

The second property (4.17) results from the case of equality in the triangular
inequality of the `1 norm: we have kLc↵k1 = ↵kLc1k1 + (1 � ↵)kLc2k1. Each
coordinate can be treated separately, yielding

| (Lc↵)i | = ↵|(Lc1)i| + (1� ↵)|(Lc2)i|
, (Lc1)i ⇥ (Lc2)i � 0 8i 2 {1, . . . , P}.
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Note that in the case of Problem (4.10), as shown in Proposition 4.1, we have
kerH \ kerL = {0}, which implies that Lemma 4.2 applies to our problem for
P = N �N0. Lemma 4.2 provides an indirect way of reaching an extreme point of
Vf : any solution c

⇤ 2 Vf has a fixed measurement Hc
⇤ = y�. Therefore, Problem

(4.10) can be recast as a constrained optimization problem

arg min
c2RN

kLck1 s.t. Hc = y�, (4.18)

which clearly has the same solution set Vf , since the constraint is satisfied for any
c 2 Vf . This constrained problem can, in turn, be recast as a linear program by
introducing the slack variable u 2 RN�N0 :

VLP
f , arg min

(c,u)2R2N�N0

 
N�N0X

i=1

ui

!
s.t. u + Lc � 0; u� Lc � 0; Hc = y�,

(4.19)

where (c,u) is the concatenation of the vectors c 2 RN and u 2 RN�N0 . The
following proposition characterizes its solution set VLP

f in terms of Vf :

Proposition 4.2. VLP
f is a compact convex set which has extreme points (c⇤,u⇤)

such that c⇤ is an extreme point of Vf .

Proof. We prove the following statement, which is clearly stronger than that of
Proposition 4.2:
VLP

f is a compact convex set, and Vf and VLP
f have corresponding extreme points

through the one-to-one mapping � : Vf ! VLP
f defined by �(c) , (c, |Lc|) and its

inverse ��1 : VLP
f ! Vf defined by ��1((c,u)) , c.

Let us first observe that VLP
f is of the form VLP

f = {(c, |Lc|) 2 R2N�N0 , c 2
RN}, where |x| is the vector of component-wise absolute values of x. This implies
that {c 2 RN , (c, |Lc|) 2 VLP

f } is the solution set of the constrained optimization
Problem (4.18), which is equal to Vf . Therefore, we have proved that Vf = {c 2
RN , (c, |Lc|) 2 VLP

f }, and thus that VLP
f = {(c, |Lc|) 2 R2N�N0 , c 2 Vf}. Hence,

VLP
f is a nonempty compact set as the continuous image of the nonempty compact

set Vf through �. Moreover, VLP
f is convex as the solution set of a linear program.

Next, (4.17) in Lemma 4.2 implies that � : Vf ! VLP
f is a linear map. Moreover,

� is invertible and its inverse ��1 : VLP
f ! Vf is also linear. The desired result

immediately follows.
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Proposition 4.2 allows us to apply the well-known simplex or dual-simplex al-
gorithms [116, 117] to the linear program (4.19). These algorithms are known to
converge to an extreme point (c⇤,u⇤) of the solution set VLP

f . Since c⇤ is an extreme
point of Vf , Theorem 4.1 then ensures that it is a sparse solution we are looking for.
However, to run this linear program, y� needs to be known: hence, we must find a
solution (though not necessarily an extreme point) of the PBP Problem (4.10) be-
forehand using ADMM or any other suitable algorithm. This solution cADMM 2 Vf

is then used to compute y� = HcADMM, which is used in turn to run the simplex
algorithm. This procedure is adapted from [45], in which the same idea is used in
the Green’s function basis.

4.4 Refining the Grid
In the previous sections, we have established an experimental pipeline to solve

the continuous-domain problem in ML,h(R) for a fixed grid size h. We now study
the behavior of the solutions when the grid size h decreases, and how they relate
to solutions of the full continuous-domain Problem (4.1).

4.4.1 Convergence of the Cost Function
We place ourselves in the conditions of Theorem 3.3, which states that there

exists at least one solution to the continuous-domain Problem (4.1) of the form
s(x) = p(x)+

PK
k=1 ak⇢L(x�xk) with p 2 NL. This solution does not a priori have

knots on a uniform grid, and is thus not included in ML,h(R). However, by picking
h sufficiently small, it can be approached arbitrarily closely by

sh(x) = p(x) +
KX

k=1

ak⇢L(x� xh
k) 2ML,h(R), (4.20)

where xh
k 2 hZ converges to xk.

The following lemma shows that sh is indeed a good approximation of s in terms
of cost:

Lemma 4.3. Let all the hypotheses of Theorem 3.3 be met. Then, there exists
a family of functions of the form sh = p +

PK
k=1 ak⇢L(· � xh

k) 2 ML,h(R) where



4.4 Refining the Grid 77

p 2 NL, K M �N0 and xh
k 2 hZ for any h > 0 such that

lim
h!0

J (sh) = min
f2ML(R)

J (f) , J 0. (4.21)

Proof. We first recap some useful properties of ML(R) given in Section 2.4. Let
(�,p) be an admissible biorthogonal system for NL in the sense of Proposition 2.2.
By (2.43) in Theorem 2.2, any element f 2 ML(R) has a unique decomposition
as f = L�1

� {w} + q where w 2M(R), q 2 NL, and the operator L�1
� is defined in

Theorem 2.1.
By Theorem 3.3, there exists a solution s to Problem (4.1) such that L{s} =PK

k=1 ak�(· � xk) where K  M �N0 and all xk are pairwise distinct. Therefore,
s can be represented as s = L�1

� {w} + p where w = L{s} =
PK

k=1 ak�(· � xk)

and p 2 NL. We thus have J (s) = J0 = k⌫(s) � yk22 + �kak1. For a given
h > 0, let xh

k 2 hZ be the grid element closest to xk for all k 2 {1, . . . , K}, i.e.,
|xk � xh

k |  h
2 . For small enough values of h, all xh

k are pairwise distinct; we place
ourselves in this configuration. We then define sh = p +

PK
k=1 akL

�1
� {�(· � xh

k)},
where sh 2ML,h(R) since it can also be written sh = q +

PK
k=1 ak⇢L(·�xh

k) where
q 2 NL. It yields a cost J (sh) = 1

2k⌫(sh)� yk22 + �kak1 since the xh
k are pairwise

distinct.
Hence, there only remains to prove that ⌫(sh) converges to ⌫(s) when h ! 0.

We now show that sh
w⇤
! s when h! 0, i.e., hsh, fi ! hs, fi for any f 2 CL(R) (see

Section 2.1 for some background on weak⇤ convergence). Using the decomposition of
CL(R) in (2.46) in Theorem 2.3, for any f 2 CL(R), there is a unique decomposition
f = L⇤{f1}+ f2 such that f1 2 C0(R) and f2 2 span{�n}N0

n=1. We first notice that
�(s�sh) = 0 since �(L�1

� {w}) = 0 for any w 2M(R) by Theorem 2.1. Therefore,
since f2 2 span{�n}N0

n=1 we have hs� sh, f2i = 0. Next, we have

hs� sh, f1i = hs� sh, L⇤{f1}i
= hL{s� sh}, f1i

=
KX

k=1

akh�(·� xk)� �(·� xh
k), f1i

=
KX

k=1

ak(f1(xk)� f1(x
h
k)).
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Moreover, by definition of C0(R), f1 is continuous, and since limh!0 xh
k = xk, we

have limh!0hs � sh, f1i = 0. We have thus proved that sh
w⇤
! s. Since by the

hypotheses of Theorem 3.3, ⌫ is weak⇤-continuous, we have limh!0 ⌫(sh) = ⌫(s)
and thus limh!0 J (sh) = J (s) = J 0.

Going back to polynomial B-splines, let J 0
d (h) , minc2`1,L(Z) Jd(c) be the op-

timal cost of the discrete Problem (4.9). We derive the following theorem, which
stems directly from Lemma 4.3 and is similar to Lemma 8 in [90].

Theorem 4.2 (Convergence of the Cost Function of the Discrete Problem). Let
all the hypotheses of Theorem 3.3 be met. Then

lim
h!0

J 0
d (h) = J 0. (4.22)

Proof. Firstly, we observe that for any h > 0, we have

J 0
d (h) � J 0 (4.23)

since for any c 2 `1,L(Z), we can define s(x) =
P

k2Z c[k]�L,h(x � hk) 2ML,h(R)
which verifies Jd(c) = J (s) � J 0. Next, let sh be a family of functions for any
h > 0 as specified by Lemma 4.3. Since sh 2ML,h(R), by (4.6), sh can be expressed
in the B-spline basis as sh(x) =

P
k2Z c[k]�L,h(x�hk) where c 2 `1,L(Z). Therefore,

we have

J 0
d (h)  Jd(c) = J (sh)

h!0! J 0

which together with (4.23) proves the desired result.

Theorem 4.2 shows that the choice of ML,h(R) as a search space for the continuous-
domain problem is a sound one: by solving the discrete problem, we recover a solu-
tion which is arbitrarily close in terms of cost to the solution(s) of the continuous
problem if h is sufficiently small. Moreover, note that there is no requirement in
Theorem 4.2 that the natural gridded approximation sh defined in (4.20) is a so-
lution of the discrete Problem (4.9): J 0

d (h) might actually be smaller than J (sh).
We can therefore hope for a faster convergence than that of J (sh)! J 0.
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4.4.2 Multiresolution Strategy
Although Section 4.3.3 provides an experimental pipeline to solve the continuous-

domain problem in ML,h(R) for a fixed grid size h, the choice of the latter is some-
what arbitrary. In practice, in order to choose the grid size, we use the convergence
results of Theorem 4.2. We recursively split the grid in half by taking hi = T/2i

for increasing values of i 2 N, and we solve the corresponding finite problems. This
way, the finest grid (highest value of i) contains all its coarser predecessors, which
implies that the search spaces are embedded, i.e., ML,hi(R) ⇢ML,hi+1(R). This
allows us to use the solution obtained with the previous grid as a starting point
of ADMM, which leads to considerable time gains. Another consequence of this
embedding is that J 0

d (hi) � J 0
d (hi+1), which indicates that splitting the grid in

half can only improve the solution in terms of cost. Theorem 4.2 then guarantees
that limi!+1 J 0

d (hi) = J 0. This gives us a natural stopping criterion: we incre-
ment i until the relative decrease of cost (J 0

d (hi�1)� J 0
d (hi))/J 0

d (hi�1) is smaller
than some tolerance parameter ✏. When ✏ is sufficiently small, we consider that the
cost function has converged and that there is no need to make the grid any finer.
Note that the simplex step is only necessary for the final grid size. This complete
procedure is detailed in Algorithm 4.1.

Input: ⌫, L, T , y, �, imin, ✏
Output: c

⇤

i = imin; c = 0; costp = +1; error = ✏+ 1;
while error > ✏ do

h = T/2i;
update H, L ; // Depend on h,⌫, L, T
c = ADMM(c"2;H,L,y,�);
error = |cost(c)� costp|/costp;
costp = cost(c);
i = i + 1;

end
y� = Hc;
c
⇤ = Simplex(H,L,y,�,y�);

Algorithm 4.1: Pseudocode of our algorithm

In Algorithm 4.1, ADMM(c"2;H,L,y,�) runs ADMM on Problem (4.10) with
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the starting point c"2. The latter corresponds to the vector of B-spline coefficients
c converted to the current grid size, which is twice as fine as that of c. This
conversion is made possible by the embedding of the search spaces. Similarly,
Simplex(H,L,y,�,y�) runs the simplex algorithm on the constrained Problem
(4.19) (no starting point is required). The output c⇤ of this algorithm is therefore a
vector whose size is not predetermined, but which represents a continuous-domain
signal in IT that is sparse in the Green’s function basis, and yields a cost close to
J0.

4.5 Experimental Results
We now discuss our implementation of Algorithm 4.1 and present some results.

The ADMM algorithm is implemented using GlobalBioIm [118], an inverse problem
library developed in our group (see Appendix A for more details on how ADMM
is used to solve Problem (4.10)). The Gurobi optimizer 2 is used for the simplex
algorithm.

4.5.1 Experimental Setting
Test signal

We attempt to reconstruct sparse signals of the form

s(x) =
KsX

k=1

ak⇢L(x� xk) +
N0X

n=1

bnpn(x), (4.24)

for which gTV regularization is an adequate prior by Theorem 3.3. The sparsity
index Ks is chosen by the user and the knots xk are drawn at random in the interval
of interest IT following a uniform distribution. The coefficients ak and bn are i.i.d
Gaussian random variables projected on the subspace of vectors (a,b) 2 RK+N0 for
which s is supported in IT . This is to enforce the finite support assumption on the
test signal, which is implicit in the discrete problem formulation (4.10). Therefore,
aside from the approximation error on the knot locations, the test signal in (4.24)
is in the span of feasible signals reconstructed by the discrete problem, which is
obviously a desirable property.

2. LLC Gurobi Optimization, Gurobi optimizer reference manual, 2018.
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Measurements

We implemented two types of measurement operators ⌫ = (⌫1, . . . , ⌫M ):
— Ideal sampling: This case corresponds to a measurement operator ⌫m =

�(· � xm), i.e., ⌫(f) ,
�
f(x1), . . . , f(xM )

�
, where xm 2 IT for any m 2

{1, . . . , M}. As discussed in Example 3.2, this choice is technically only
admissible—in the sense that ⌫m is weak⇤ continuous and thus satisfies the
assumptions of Theorem 3.3—when N0 � 2. However, even when N0 = 1,
one can choose a Dirac mollifier such as (2.48), which leads numerically to
taking the right limit ⌫m(f) = f(x+

m). Given the form of NL in (2.24), it
can be shown that ⌫ satisfies the well-posedness assumption N⌫ \NL = {0}
as soon as M � N0 and all sampling points xm are pairwise distinct. We
either take uniformly spaced knots or random samples following a uniform
distribution in IT for x1, . . . , xM .

— Fourier-domain sampling: We take the inner product with functions
x 7! [0,T ](x) cos(!mx + ✓m), where we have !1 = 0 and !m 2 (0,!max]
for m = {2, . . . , M}. The maximum pulsation !max is chosen so that the
spectrum of s has small energy above this threshold. We take ✓1 = 0 and
the ✓m are drawn from a uniform distribution in [0,⇡) for m 2 {2, . . . M}.
We thus have

⌫ ,
⇣

[0,T ], [0,T ] cos(!2 · +✓2), . . . , [0,T ] cos(!M · +✓M )
⌘
,

which leads to ⌫m(f) =
R T
0 f(x) cos(!mx + ✓m)dx. As discussed in Exam-

ple 3.3, this is a valid choice in the sense that ⌫m is weak⇤-continuous.
We compare experimental results using these measurement operators, predicting

that reconstructed signals should be closer to the test signals when sampling in
the Fourier domain than with ideal sampling. This ensues from the theory of CS:
Fourier matrices are known to have good recovery properties with few measurements
[119], whereas sampling matrices clearly do not. In order to be more realistic and to
verify the robustness of our algorithm, we add Gaussian noise to the measurements
with standard deviation � computed from a given signal-to-noise ratio (SNR).

Regularization Parameter

The choice of the regularization parameter � is critical, as it greatly affects
the reconstructed signal: high values of � can lead to overly regularized solutions,
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whereas low values tend to suppress the effect of regularization. The value of
� should be tuned according to the type of measurement. To this end, in our
experiments, we choose a value of � among a list of potential values such that the
SNR between the reconstructed signal and the test signal is the highest for a certain
value of h. The selected � is then used for all values of h, as specified in Algorithm
4.1.

4.5.2 Experimental Results
We now present several results of our numerical implementation.

Sparsity

In our experiments, we observe that, as predicted by Theorem 4.1, the final
reconstructed signal has sparsity K M �N0 in the Green’s function basis.

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

Ground truth
Measurements
ADMM
Simplex

Figure 4.1: Reconstruction results for L = D, M = 15 (ideal sampling),
grid size h = 1

128 .
Sparsity: 118 after ADMM, 13 after simplex.

However, running the simplex after ADMM is far from being superfluous: recon-
structed signals after ADMM are typically not sparse at all. This is best illustrated
in the case of ideal sampling, where we observe a staircase effect between measure-
ments (Fig. 4.1). Although this phenomenon does not affect the cost function, it
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is clearly not optimal in terms of sparsity, and it illustrates the nonuniqueness of
Vf . However, after the simplex step, the sparsity improves dramatically, going from
118 to 13 M �N0 in Fig. 4.1, as predicted by Theorem 4.1.

Measurement Types Comparison

In the experiment shown in Figure 4.2, we set L = D2. We compare the re-
construction results for both types of measurement operators presented above on
the same ground-truth signal with the same number M = 10 of measurements, and
the same grid size h = 1/28. As predicted by the theory of CS (i.e., Fourier ma-
trices are known to have good recovery properties [119]), the reconstruction using
Fourier-domain samples is very accurate despite the small number of measurements
and the presence of noise. Conversely, the reconstruction using ideal samples is less
faithful since we have no information on the behavior of the signal between sam-
pling points. This disparity is underlined by the difference in SNR values (12.03 dB
versus 18.07 dB). Note that in both cases, the reconstructed signals have sparsity
K M �N0 = 8 which conforms with Theorem 4.1.

0 0.2 0.4 0.6 0.8 1

0

50

100

Ground truth
Measurements (samples)
Simplex (samples)
Simplex (Fourier)

Figure 4.2: Reconstructions using ideal samples (SNR= 12.03 dB) and
Fourier-domain measurements (SNR= 18.07 dB) for L = D2, M = 10 and
h = 1/28.
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Decreasing Grid Size

As the grid size decreases, the search space of our optimization problem becomes
larger: we can therefore reconstruct functions in finer detail. This is illustrated in
Fig. 4.3, in which we observe that very coarse grids approximate complex signals
very poorly, whereas after splitting the grid in half recursively, these signals can
rapidly be approximated much better (Fig. 4.3c).

To illustrate the effect of the decreasing grid size in terms of cost, we present an
example run of Algorithm 4.1 with a regularization operator L = D3 in Fig. 4.4.
The final reconstructed signal is shown in Fig. 4.4a: notwithstanding the reasonably
fine grid size (h = 1/28), the reconstruction is near-perfect. The evolution of the
cost function with respect to the grid size in our example is shown in Fig. 4.4b:
we observe that after an initial rapid decrease, the cost function starts plateauing,
which is in line with Theorem 4.2. Given the aspect of this evolution, it is safe
to assert that the cost is very close to its limit value J0 specified by Theorem 4.2.
Although we could consider tightening the tolerance ✏ to get a marginally smaller
cost, this is not necessarily a sensible choice. Indeed, for very fine grids (e.g.,
h < 1/211), the increased scale of the problem can cause computational problems
larger than the potential gain in terms of cost. We found the choice of ✏ = 10�3 to
be a good compromise in our experimental setting: the final grid size h is typically
coarser than 1/210, even for very nonsparse test signals (Ks ⇡ 100) and with
many measurements (M ⇡ 100). For such grid sizes, due to the good conditioning
of the system matrix H, the optimization problems are entirely feasible (ADMM
typically converges in a few seconds with a properly tuned penalty parameter ⇢)
and computational problems are avoided.

In order to compare reconstruction results for different grid sizes, we applied the
simplex step as described in Sec. 4.3.3 for every grid size h in our example. Despite
the convergence of the cost function for the finer grid sizes observed in Fig. 4.4b,
the variations in the sparsity (Fig. 4.4c) indicate that the reconstructed signals are
not identical from one grid size to the next. However, in regard to the optimization
problem, there is no reason to decrease the grid size any further or to favor one
solution over another if both yield the same cost within a user-defined tolerance.
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4.5.3 Comparison with Discrete Methods

In this section, we assess the pertinence of our framework by comparing it
with a purely discrete method. The standard way of discretizing Problem (4.1)
would be to consider uniform samples of the reconstructed function, i.e., a pixel
basis, and to approximate derivative operators with finite differences. Within this
framework, the underlying discrete optimization problem of the form (4.10) is very
similar for both methods. Indeed, in both cases, the regularization matrix L is a
finite difference-type matrix as in (4.12). However, since the basis functions are
different, the number of coefficients N and the system matrix H differ. We solve
both problems using our pipeline described in 4.3.3.

We consider noiseless Fourier-domain measurements (dephased cosine sampling)
with M = 100. As explained earlier, this bolsters the recovery properties of the re-
construction, and thus allows us to use similarity metrics between the reconstructed
and test signals to compare both methods.

Such a comparison is made in Figure 4.5, with L = D4 and � = 10�15. For
the sake of fairness, we use a piecewise-linear test signal, since the latter does not
resemble the basis functions of either method. Figure 4.5a shows the reconstruc-
tion result, using a coarse grid for visualization purposes. Our continuous-domain
reconstruction is clearly a lot closer to the test signal; this observation is confirmed
by the SNR values of both reconstructions in Figure 4.5b. We notice that the
SNR is similar for both methods using finer grids: this is in keeping with [120],
which demonstrates some form of convergence of discrete methods towards solu-
tions of continuous-domain problems as the grid size goes to zero. However, our
continuous-domain method converges much faster (i.e., for coarser grids) towards
a very faithful reconstruction.

Note that the observed linear regime of the blue curve in Fig. 4.5b is consis-
tent with the approximation power of pixels, which is well known to be in O(h).
Moreover, using finite differences instead of the derivative yields additional errors
which increase with the order N0 of the operator and when the grid gets coarser.
Conversely, our method is exact in the continuous domain for any grid size, which
explains why a grid of h = 1/25 can be sufficiently fine. Finally, note that although
the discrete method leads to a slightly better-conditioned problem, the difference
in speed is negligible due to the Riesz basis property of B-splines.
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4.6 Conclusion
In this chapter, we have devised an efficient multiresolution algorithm to nu-

merically compute sparse solutions of continuous-domain inverse problems with
gTV regularization. Our grid-based discretization uses the B-spline dictionary ba-
sis matched to the regularization operator L. On the theoretical side, we proved
that this is an exact discretization of the underlying continuous-domain problem
restricted to a search space, and that this discrete problem converges in terms of
cost towards the continuous problem when the grid size decreases. On the experi-
mental side, we implemented this discretization scheme for higher-order derivative
regularization operators L, and different measurement operators. Our experimen-
tal results demonstrate that our formulation is computationally inexpensive, well-
suited for practical problems and compares favorably with standard, purely discrete
methods.
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Figure 4.3: Reconstruction results after simplex for L = D2, M = 31
(dephased cosine sampling) with decreasing h.
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Figure 4.4: Example run for L = D3 (quadratic splines), M = 31 (de-
phased cosine sampling).
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Figure 4.5: Comparison between our continuous model and the pixel-
based discrete model for L = D4, M = 100 (dephased cosine sampling).
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Chapter 5

Hybrid-Spline Signal Models

This chapter is based on the following publication [121]:
T. Debarre, S. Aziznejad, and M. Unser, “Hybrid-Spline Dictionaries for Continuous-

Domain Inverse Problems”, IEEE Transactions on Signal Processing, vol. 67, no.
22, pp. 5824–5836, Nov. 2019.

5.1 Introduction

The compressed sensing (CS) approach to find a sparse representation of a
signal given its measurements is to solve an inverse problem with sparsity-promoting
regularization. The aim is to reconstruct a signal c 2 RN given measurements
y = Hc + n 2 RM (with M ⌧ N), where H : RN ! RM is the system (or
measurement) matrix and n is some additive noise which models measurement
errors. The a priori assumption on the signal c is that it is sparse in a certain
dictionary frame D : RP ! RN , so that c = Da, where the vector of coefficients
a 2 RP is sparse. When the dictionary basis is orthonormal (i.e., P = N and D is
orthogonal), and the system matrix H and the noise n satisfy certain conditions,
standard CS theory guarantees that the signal c can be recovered exactly (see
Section 1.2.1 for more information). This is achieved by solving the optimization

91
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problem

â 2 arg min
a2RP

�
kHDa� yk22 + �kak1

�
, (5.1)

where � > 0 is a regularization parameter, and by computing ĉ = Dâ.
In many cases, however, the sparsity of a signal is expressed in a dictionary

basis that is redundant and thus not orthonormal. More precisely, in this work,
we are interested in multicomponent signals c =

PQ
i=1 ci such that each of the Q

components ci is sparse in a different dictionary Di (i 2 {1, . . . , Q}). For simplicity
of exposition, we set Q = 2. A natural way of formulating the recovery problem is
to solve (5.1) with a concatenated dictionary D = (D1,D2), where we can assume
for now that D1 and D2 are orthonormal bases. In this case, P = 2N and the
dictionary basis is clearly highly redundant. Although this setting introduces prac-
tical and theoretical difficulties, it is extremely useful in many applications when a
single dictionary is insufficient to represent the richness of a signal.

The problem of accurately reconstructing both components c1 and c2 is known
as data separation [10, Chapter 11], and has been studied extensively both the-
oretically and practically. In fact, some of the first theoretical works concerning
sparse vector recovery using `1-norm minimization involved a concatenated dictio-
nary consisting of a mixture of sinusoids and spikes [122, 123]. The goal was to
provide a condition under which `0 and `1 minimization yield the same solution.
This sparked an abundance of research, which extended and improved these results
for more general (nonorthonormal) dictionaries [124, 125, 126, 127]. An overview is
given in [128]. Later, these results were extended to images to separate point-like
and curve-like structures [129]. These works mostly tackle denoising problems char-
acterized by H = IN and M = N . In the CS field, in which we have M ⌧ N , [130]
considers redundant dictionaries in general. On the practical side, data separation
is intimately related to morphological component analysis (MCA), a method pop-
ularized by Starck et al. [131, 132, 133, 134, 135] with applications in inpainting
removal or the separation of texture and natural parts of an image.

5.1.1 Analysis Formulation with Unions of Dictionaries
For overcomplete dictionaries D in general, optimizing over the synthesis co-

efficients a as in (5.1) seems natural, since the sparsity of the signal is precisely
enforced on a. This leads to a separable (if not differentiable) regularization term
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and, thus, to standard soft-thresholding-based algorithms. Conversely, optimizing
over the analysis coefficients c is less straightforward since the representation of the
signal c by the synthesis coefficients a is not unique. Therefore, the enforcement
of the sparsity of the signal would require one to find its sparsest representation in
the dictionary basis, which seems to add unnecessary complications. This explains
why most of the published works choose to optimize over the synthesis coefficients.

However, in the case of a concatenated dictionary D = (D1,D2), one can also
think of optimizing over both analysis coefficients c1 and c2. This leads to an
analysis problem of the form

(ĉ1, ĉ2) 2 arg min
c1,c22RN

✓
1

2
kH(c1 + c2)� yk22 + � (kL1c1k1 + kL2c2k1)

◆
, (5.2)

which yields the reconstructed signal ĉ = ĉ1+ĉ2. When D1 and D2 are orthonormal
bases, taking L1 = D

T
1 and L2 = D

T
2 makes Problems (5.1) and (5.2) exactly

equivalent. In other cases, the Moore-Penrose pseudoinverses of D1 and D2 can
be used for L1 and L2, in which case (5.1) and (5.2) are not equivalent. Although
the analysis formulation (5.2) may seem more tedious, there are several reasons to
believe that it might be appealing:

— in recent years, efficient splitting algorithms that overcome the nonsepara-
bility of the regularization terms in Problem (5.2) have been designed (e.g.,
[136] or the well-known alternating-direction method of multipliers (ADMM)
[19]);

— many successful practical CS applications favor the analysis formulation,
e.g., [37];

— there is an intimate connexion between regularization operators (e.g., L1 and
L2 in (5.2)) and splines. Indeed, it has recently been proved that continuous-
domain inverse problems with generalized total-variation (gTV) regulariza-
tion have sparse spline solutions (Theorem 3.3). The analysis formulation
(5.2) therefore seems like the natural discrete counterpart to this continuous
framework, as we clarify in Section 5.2.

The difference between the two formulations has been studied in [137] where the
authors conclude that, in the general case, both problems are inherently different.
Several practicioners have used the analysis formulation for data-separation prob-
lems, most notably Starck et al. in the context of MCA [131, 132, 133, 134]. More
recently, Problem (5.2) was applied to the task of separating cartoon and texture
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parts of an image in [138]. There, the authors favor the analysis formulation for
general redundant dictionaries. A similar approach is used in low-rank plus sparse
decomposition methods [139].

Despite these empirical works, virtually no theoretical study of Problem (5.2)
has been carried out. In [140], Candès et al. have named it the “split-analysis”
problem. They recommend solving it precisely in the case of concatenated dictio-
naries (without further investigation). A theoretical study was later done by Lin et
al. in [141], where they show that the data-separation problem (i.e., the recovery of
both components of the original signal) can be solved via Problem (5.2). This result
requires that H satisfies the restricted-isometry property adapted to a dictionary
(D-RIP) and that L1 and L2 satisfy a mutual coherence condition.

While the literature on the topic is scarce in the discrete setting, to the best of
our knowledge, it is nonexistent in the continuous domain. Since most real-world
signals are continuously defined, the reconstruction of continuous-domain solutions
is a desirable objective. Moreover, although handling discrete signals is obviously
appealing from a computational perspective, it introduces discretization errors in
the measurements.

5.1.2 Continuous-Domain Problems for Hybrid Splines
In this chapter, we propose to use unions of dictionaries in a continuous-domain

framework. Our goal is to reconstruct a multicomponent continuous-domain 1D
signal s = s1 + s2, where s1 and s2 have different characteristics. Similarly to the
discrete setting, we are given measurements y = ⌫(s) + n 2 RM , where ⌫ : s 7!
⌫(s) 2 RM is a (continuous-domain) linear measurement operator and n 2 RM is
some additive noise. We focus on continuous-domain inverse problems of the form

s⇤ 2 arg min
f

⇣1

2
k⌫(f)� yk22 + �Rhyb(f)

⌘
, (5.3)

where � > 0 is the regularization parameter. The hybrid regularization term is
given by

Rhyb(f) , min
f1,f2

f1+f2=f

⇣
(1� ↵)kL1{f1}kM + ↵kL2{f2}kM

⌘
, (5.4)

where ↵ 2 (0, 1) controls the weighing of the two regularization terms.
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Although they are formulated in slightly different forms, there is an obvious con-
nection between Problem (5.3) and the discrete analysis Problem (5.2). Similarly
to the discrete case, the sparsity of each component si is promoted in a different
dictionary, which is determined by the choice of the regularization operator Li for
i 2 {1, 2}. Our main theoretical result is a representer theorem that states that,
for differential operators Li, Problem (5.3) leads to spline solutions s⇤ = s⇤1 + s⇤2,
where each component s⇤i is an Li-spline. The reconstructed signal s⇤ is therefore
a sum of different splines, which we coin as a hybrid spline. Moreover, the total
sparsity of s⇤ in this union of spline dictionaries is no larger than the number of
measurements M . This representer theorem generalizes the main result of [14].

An important characteristic of our framework is its compatibility with the class
of piecewise-polynomial functions, which can accurately model a large variety of
real-world signals. For example, by taking L1 = D (piecewise-constant splines) and
L2 = D4 (cubic splines), the dictionary consists of piecewise-cubic polynomials that
admit discontinuities.

A key feature of our continuous-domain formulation is that Problem (5.3) can be
discretized in an exact way using B-splines, based on the methodology of Chapter 4.

5.1.3 Outline

This chapter is organized as follows: in Section 5.2, we present the continuous-
domain framework of Problem (5.3), which is a multicomponent extension of Sec-
tion 3.2. We then prove our representer theorem; it states that Problem (5.3)
admits a global minimizer that is a hybrid spline. In Section 5.3, we show how
we discretize Problem (5.3) in an exact way using B-splines and propose a practi-
cal solution to the corresponding discrete problem. In Section 5.4, we present our
proposed multiresolution algorithm. Finally, we illustrate some applications of our
algorithm in Section 5.5, including curve fitting and CS-type problems.

5.2 Continuous-Domain Inverse Problem

In this section, we present a class of continuous-domain inverse problems that
involve hybrid gTV regularization. These problems extend the continuous-domain
inverse-problem framework of Section 3.2.
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5.2.1 Definitions and Notations
Following the notations of Section 3.2, our aim is to recover a continuous-

domain signal s : R ! R given M noisy measurements modeled as y = ⌫(s) + n,
where n 2 RM is some additive noise. The noiseless measurements ⌫(s) are ac-
quired through M linear measurement functionals ⌫ = (⌫1, . . . , ⌫M ), with ⌫(s) =
(h⌫1, si, . . . , h⌫M , si).

Next, we sum up all the relevant information and notations that concern the
regularization operators Li (i 2 {1, 2}); for more details, we refer to Chapter 2.

1. The operator Li is assumed to be the N0,ith-order derivative operator 1. It
has a Green’s function ⇢Li defined in (2.25) which verifies Li{⇢Li} = �.

2. The native space MLi(R) of Li is defined in (2.33); we then have Li :
MLi(R) ! M(R), where M(R) is the space of Radon measures defined
in (2.18).

3. The null space NLi , {f 2 S 0(R) : L{f} = 0} of Li is given in (2.24) and
has finite dimension N0,i.

4. The intersection of the null spaces is denoted by N0 = NL1 \ NL2 and has
dimension N0. If N0 > 0, we introduce the biorthogonal system (�0,p0) =
(�n, pn)N0

n=1 for N0 in the sense of Definition 2.6, where �0 : ML1(R)! RN0

and p0 2 NN0
0 .

5. The restricted search space for L1 is defined as

ML1,�0(R) , {f 2ML1(R) : �0(f) = 0}. (5.5)

Finally, we introduce the hybrid regularization functional for functions f 2
ML1,�0(R) + ML2(R) as

Rhyb(f) , min
f12ML1,�0 (R)
f22ML2 (R)
f1+f2=f

⇣
(1� ↵)kL1{f1}kM + ↵kL2{f2}kM

⌘
. (5.6)

Proposition 5.1. The hybrid regularization functional Rhyb defined in (5.6) has
the following properties:

1. As in most chapters of the thesis, all the results and algorithms from this chapter can be
extended to more general operators Li, e.g., rational operators [102].
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1. it is well defined in the sense that, for any f 2ML1,�0(R) +ML2(R), there
exist functions (f1, f2) 2ML1,�0(R)⇥ML2(R) such that f = f1 + f2 and

Rhyb(f) = (1� ↵)kL1{f1}kM + ↵kL2{f2}kM; (5.7)

2. it is convex.

Proof. Recall that (�0,p0) is a biorthogonal system in the sense of Definition 2.6
for N0 = NL1 \ NL2 . The latter can be extended to two biorthogonal systems
( e�1, ep1) and ( e�2, ep2) for NL1 and NL2 , respectively, such that e�i = [�0 �i] and
epi = [p0 pi] for i 2 {1, 2}.

Using Theorem 2.1, there exist stable right-inverse operators L�1
e�i

such that any
f 2MLi(R) has a unique representation as

f(x) = L�1
e�i
{wi}(x) + c

T
0 p0(x) + c

T
i pi(x), (5.8)

where wi 2M(R), c0 2 RN0 , and ci 2 RN0,i�N0 with i 2 {1, 2}. We then proceed
in two steps.

The minimum is reached in (5.6). Let us denote

Cf , {(f1, f2) 2ML1,�0(R)⇥ML2(R) : f = f1 + f2} (5.9)

the set of feasible pairs (f1, f2) and

R1,2(f1, f2) = (1� ↵)kL1{f1}kM + ↵kL2{f2}kM. (5.10)

The hybrid regularization can be rewritten as

Rhyb(f) = min
(f1,f2)2Cf

R1,2(f1, f2). (5.11)

The feasible set Cf is nonempty since f 2 ML1,�0(R) + ML2(R). Therefore,
there exists a sequence (f1,k, f2,k)k2N 2 Cf that monotonically decreases to the
infimum of R1,2 over Cf . Using (5.8), both components can be represented as
f1,k = L�1

e�1
{w1,k}+c

T
1,kp1 and f2,k = L�1

e�2
{w2,k}+c

T
0,kp0 +c

T
2,kp2. The assumption

of monotonic decrease implies that

8k 2 N, i 2 {1, 2} : 0  kwi,kkM  A, (5.12)
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where A , R1,2(f1,0, f2,0). Next, since (f1,k, f2,k)k2N 2 Cf , we have that

8k 2 N : f = L�1
e�1
{w1,k} + L�1

e�2
{w2,k} +

2X

i=0

c
T
i,kpi. (5.13)

Therefore, for all test functions ' 2 S(R), we have that

hf,'i =
D
w1,k, L

�1⇤
e�1

{'}
E

+
D
w2,k, L

�1⇤
e�2

{'}
E

+

*
2X

i=0

c
T
i,kpi,'

+
, (5.14)

where L�1⇤
e�1

is the adjoint operator of L�1
e�1

. Let Bk , maxi(kci,kk1), and

bi,k ,
n ci,k

Bk
, Bk 6= 0,

1, otherwise. (5.15)

Clearly, the vectors bi,k are in the unit ball. Moreover, as stated in (5.12), wi,k is
in the ball of radius A, which is weak⇤-compact according to the Banach-Alaoglu
theorem [15, Theorem 3.15]. Therefore, there exists a subsequence (f1,kn , f2,kn)n2N
with the following properties

— the sequences (w1,kn)n2N and (w2,kn)n2N are converging for the weak⇤-topology.
Their limits are denoted by w1,lim, w2,lim 2M(R), respectively;

— there exist vectors bi,lim such that limn!+1 bi,kn = bi,lim for i 2 {0, 1, 2}, at
least one of which is nonzero since, for any k 2 N, there exists an i 2 {0, 1, 2}
such that bi,k = 1;

— we have the convergence limn!+1 Bkn = Blim where Blim 2 R [ {+1}.
Rewriting (5.14) for k = kn yields

hf,'i �
D
w1,kn , L�1⇤

e�1
{'}

E
�
D
w2,kn , L�1⇤

e�2
{'}

E
= Bkn

*
2X

i=0

b
T
i,kn

pi,'

+
. (5.16)

Assume by contradiction that Blim = +1. As the left-hand side of the equality in
(5.16) converges to a finite limit, so must the right-hand side, which implies that
limn!+1h

P2
i=0 b

T
i,kn

pi,'i = 0. Since limn!+1h
P2

i=0 b
T
i,kn

pi,'i = hqlim,'i for
all ' 2 S(R), where qlim =

P2
i=0 b

T
i,limpi, it follows that qlim = 0. Yet, {p0,p1,p2}

are linearly independent while not all bi,lim are zero, which yields a contradiction.
Therefore, we must have that Blim < +1.
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Let f1 = L�1
e�1
{w1,lim} + c

T
1,limp1 and f2,lim = L�1

e�2
{w2,lim} + c

T
0,limp0 + c

T
2,limp2,

where ci,lim = Blimbi,lim for i 2 {0, 1, 2}. By taking the limit in (5.16), we get that

hf,'i �
D
w1,lim, L�1⇤

e�1
{'}

E
�
D
w2,lim, L�1⇤

e�2
{'}

E
=

*
2X

i=0

c
T
i,limpi,'

+
. (5.17)

Since (5.17) is valid for all ' 2 S(R), we have that f = f1,lim+f2,lim and Rhyb(f) =
R1,2(f1,lim, f2,lim).

The regularizer Rhyb is convex. Consider two functions f, g 2ML1,�0(R) +
ML2(R) and let f = f1 + f2 and g = g1 + g2 be their decomposition, as specified
by (5.7). Denote h� = �f + (1 � �)g as a convex combination of f and g, where
� 2 [0, 1]. Since h� = (�f1 + (1� �)g1) + (�f2 + (1� �)g2), we have that

Rhyb(h�)  (1� ↵)k�f1 + (1� �)g1kM + ↵k�f2 + (1� �)g2kM
 (1� ↵)(�kf1kM + (1� �)kg1kM) + ↵(�kf2kM + (1� �)kg2kM)

= �Rhyb(f) + (1� �)Rhyb(g). (5.18)

5.2.2 Representer Theorem
We now have the necessary tools to present the main theoretical result of this

chapter, on which our implementation is based.

Theorem 5.1 (Continuous-Domain Representer Theorem). Let L1, L2 be deriva-
tive operators of the form 2.19, and let ⌫ = (⌫1, . . . , ⌫M ) be a linear measurement
operator composed of the M linear functionals ⌫m : f 7! ⌫m(f) 2 R which are
weak⇤-continuous over both ML1(R) and ML2(R). Assume that N⌫\(NL1+NL2) =
{0}, where N⌫ is the null space of ⌫ (well-posedness assumption). Then, the linear
inverse problem

V , arg min
f2ML1,�0 (R)+ML2 (R)

⇣1

2
k⌫(f)� yk22 + �Rhyb(f)

⌘

| {z }
J (f)

(5.19)
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has a solution s of the form s = s1 + s2, where si are nonuniform Li-splines (in
the sense of Definition 3.1) of the form

si(x) =
KiX

k=1

ai,k⇢Li(x� xi,k) + qi(x) (5.20)

for qi 2 NLi , ai,k, xi,k 2 R. Moreover, the sparsity indices Ki verify K1 +K2 M .

The proof of Theorem 5.1 is given in Appendix B.1.

Remark 5.1. As in Theorem 3.3, we restrict to derivative operators for L1 and
L2. However, Theorem 5.1 and our proof technique remain valid for any spline-
admissible operators in the sense of [14, Definition 1].

Theorem 5.1 is a powerful generalization of Theorem 3.3 for hybrid regulariza-
tion terms. It states that the continuous-domain Problem (5.19) has a hybrid spline
solution that consists of the sum of a L1-spline and a L2-spline. The unknowns are
the locations xi,k and amplitudes ai,k of the knots (which specify the innovation of
the spline corresponding to the vertical arrows in Figure 3.1), as well as the null-
space components qi. The total sparsity of this solution is bounded by the number
of measurements M , meaning that it is characterized by very few parameters. The
following observations can be made concerning Theorem 5.1:

— We use the restricted search space ML1,�0(R) defined in (5.5) instead of
the complete space ML1(R) in order to ensure that Problem (5.19) is well-
posed 2. This does not restrict the native space of the reconstructed signal
s since ML1,�0(R) + ML2(R) = ML1(R) + ML2(R).

— Theorem 5.1 can readily be extended to Q operators L1, . . . , LQ: however,
for Q > 2, the handling of the pairwise null space intersections would make
the general formulation more tedious. For the sake of clarity, we therefore
only consider the case Q = 2.

— A remarkable feature of Theorem 5.1 is that the bound on the sparsity
of the solutions does not increase with the number Q of operators. This is
particularly appealing from a theoretical point of view since, compared to the
single-operator framework of Chapter 4, we essentially enrich our dictionary
at no cost in terms of sparsity.

2. An unbounded solution set V would arise if we allowed ourselves to add contributions (p,�p)
to a solution, with arbitrary p 2 N0. Indeed, the extended solution would still be an element of
V.
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5.3 Exact Discretization

We now detail our discretization method for Problem (5.19), which is based on
the methodology of Chapter 4. For all that follows, the conditions of Assumptions
5.1 apply.

Assumptions 5.1.
— The measurement functionals ⌫m are supported in an interval IT = [0, T ]

where T 2 hZ.
— The regularization operators are L1 = DN0,1 and L2 = DN0,2 where N0,1 <

N0,2; this implies that N0 = NL1 and thus that N0 = N0,1.
— For the space ML1,�0(R) defined in (5.5), we choose the implementation-

friendly boundary conditions �0 : ML1(R) ! RN0 from Proposition 2.5
given by

�0 =

(
1
✏ rect

�
·

✏ �
1
2

�
if N0 = 1�

�, . . . , �(N0�2), �(N0�1) ⇤ 1
✏ rect

�
·

✏

��
⇤ �(·� ✏

2 ) if N0 > 1,
(5.21)

for some small ✏ > 0.

The first assumption is natural and is often fulfilled in practice, for instance in
imaging with a finite field of view. Since L1 and L2 have almost symmetrical roles,
the second assumption is only significant in relation to the boundary conditions �0.
It implies that N1 ⇢ N2 and N0 = NL1 . Finally, our choice of boundary conditions
�0 is guided by computational considerations, which will be detailed in Remark 5.2.

5.3.1 Specification of the Search Spaces

We now briefly recall the necessary tools to perform our exact discretization,
which are taken from Section 4.2. Following Proposition 3.3, the space of uniform
Li-splines with grid size h > 0 for i 2 {1, 2} can be expressed in the B-spline basis
as

MLi,h(R) =

(
X

k2Z
c[k]�Li,h(·� kh) : c 2 `1,Li(Z)

)
, (5.22)
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where �L,h is the scaled B-spline of Li defined in (3.13). The analytical expressions
of polynomial B-spline for low derivative orders are given in Table 3.1.

`1,Li(Z) =
n

c 2 S 0(Z) : (dLi ⇤ c) 2 `1(Z)
o

, (5.23)

where dLi is the finite-support B-spline filter defined in (3.11). We refer to Sec-
tions 3.1.4 and 3.1.5 for more background on polynomial B-splines.

The discretized search space for L1 with boundary conditions �0 is given by

ML1,�0,h(R) =
�
s 2ML1,h(R) : �0(s) = 0

 
(5.24)

=

⇢X

k2Z
c[k]�L1,h(·� kh) : c 2 `1,L1(Z), �0,h(c) = 0

�
, (5.25)

where �0,h : `1,L(Z)! RN0 satisfies �0,h(c) = �0(s). We thus define the matching
search space for B-spline coefficients as

`1,L1,�0(Z) =
n

c 2 `1,L1(Z) : �0,h(c) = 0

o
. (5.26)

Remark 5.2. The reason why the boundary conditions �0 in (5.21) are implementation-
friendly is that for a choice of ✏ such that ✏

h is arbitrarily small, they are nu-
merically equivalent to �0(f) = (f(0), . . . , f (N0�1)(0+)), where f (N0�1)(0+) is the
right limit of f (N0�1) at 0. It can easily be shown in this case that, for s =P

k2Z c[k]�L1,h(·� kh) 2ML1,�0,h(R), we have

�0(s) = �0,h(c) = 0, c[�N0 + 1] = · · · = c[0] = 0. (5.27)

This choice simplifies the upcoming optimization task by reducing the number of
coefficients c[k] to be optimized, since some are set to zero. Other boundary con-
ditions would lead to more complicated linear constraints over the coefficients c[k]
that would make the optimization task more difficult.

5.3.2 Discrete Problem Formulation
Next, we introduce the sets of indices Ii = {mi, . . . , Mi} of cardinality Ni =

#Ii = Mi �mi + 1 such that k 2 Ii if and only if the support of the B-spline atom
�Li(·�kh) and IT have a nontrivial intersection. The indices {�N0,1+1, . . . , 0} are
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excluded from I1 due to the boundary conditions (5.27). We thus have that m1 = 1,
m2 = (�N0,1 + 1), and M1 = M2 = (T/h� 1), which implies that N1 = (T/h� 1)
and N2 = (T/h + N0,2 � 1). By optimizing over the B-spline coefficients in Ii, we
get the following finite optimization problem

Vf , arg min
(c1,c2)2RN1⇥RN2

Jf(c1, c2) where (5.28)

Jf(c1, c2) ,
1

2
kH1c1 + H2c2 � yk22 + �

�
(1� ↵)kL1c1k1 + ↵kL2c2k1

�
. (5.29)

The system matrices Hi 2 RM⇥Ni are defined as

Hi ,
⇥
hmi · · · hMi

⇤
: hk , ⌫(�Li(·� kh)), (5.30)

and the Toeplitz-like regularization matrices are given by L1 2 RN1⇥N1 , with

L1 , 1

hN0,1�1

0

BBBBBBBBBB@

dL1 [0] 0 · · · · · · · · · 0
...

. . . . . .
...

dL1 [N0,1]
. . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 dL1 [N0,1] · · · dL1 [0]

1

CCCCCCCCCCA

, (5.31)

and L2 2 R(N2�N0,2)⇥N2 , with

L2 , 1

hN0,2�1

0

BBBB@

dL2 [N0,2] · · · dL2 [0] 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 dL2 [N0,2] · · · dL2 [0]

1

CCCCA
. (5.32)

The cost function can thus be rewritten as

Jf(c1, c2) =
1

2

����H
✓
c1

c2

◆
� y

����
2

2

+ �

����L
✓
c1

c2

◆����
1

, (5.33)
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where the concatenated system and regularization matrices are

H ,
�
H1 H2

�
2 RM⇥(N1+N2) and (5.34)

L ,
✓

(1� ↵)L1 0

0 ↵L2

◆
2 R(N1+N2�N0,2)⇥(N1+N2), (5.35)

respectively. Therefore, Problem (5.28) is a standard penalized basis pursuit (PBP)
problem which can be solved using off-the-shelf algorithms such as ADMM (see
Appendix A). Furthermore, it satisfies the property of Theorem 5.2.

Theorem 5.2. Under the assumptions of Theorem 5.1 and Assumptions 5.1, the
following conditions hold true.

— We have that kerH\ kerL = {0}, and the solution set Vf of Problem (5.28)
is a nonempty compact convex set.

— Problem (5.28) is truly equivalent to the continuous Problem (5.19) in the
discretized search spaces ML1,h,�0(R) and ML2,h(R) defined in (5.22) and
(5.24), respectively, with

Vres , arg min
f2ML1,h,�0 (R)+ML2,h(R)

J (f), (5.36)

in the sense that there exists a bijective linear mapping between the solution
sets.

— The reconstructed signal associated to a solution (c1, c2) 2 Vf of Problem
(5.28) is a hybrid spline

s = s1 + s2 =
X

k2Z

⇣
c1[k]�L1(·� kh) + c2[k]�L2(·� kh)

⌘
, (5.37)

where the sequences (c1, c2) 2 `1,L1,�0(Z)⇥`1,L2(Z) satisfy ci|Ii = (ci[mi], . . . , ci[Mi]) =
ci;

— The sparsity of si in the Green’s function basis is given by kLicik0.

Proof. We first prove the following lemma.

Lemma 5.1. Let s⇤ = s⇤1 + s⇤2 2 Vres be a solution of Problem (5.36) and let
(c⇤1, c

⇤

2) 2 `1,L1,�0(Z) ⇥ `1,L2(Z) be the corresponding sequences of B-spline coeffi-
cients. Under Assumptions 5.1, c⇤i is uniquely determined by its Ni coefficients
c⇤|ii .
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Proof. Let us first observe that Problem (5.36) can be rewritten by using the B-
spline representations of ML1,h,�0(R) and ML2,h(R) as in (5.22). By optimizing
over the spline coefficients, we get the optimization problem

Vd , arg min
(c1,c2)2`1,L1,�0 (Z)⇥`1,L2 (Z)

J
 
X

k2Z
c1[k]�L1(·� kh),

X

k2Z
c2[k]�L2(·� kh)

!

| {z }
Jd(c1,c2)

,

(5.38)

where the reconstructed signal for (c⇤1, c
⇤

2) 2 Vd is given by s⇤ = s⇤1 +s⇤2, whose com-
ponents s⇤i are Li-splines with B-spline coefficients c⇤1. Using (3.18), the regulariza-
tion term associated to a signal si 2MLi(R) with B-spline coefficients ci 2 `1,Li(Z)
can be expressed as kLi{si}kM = 1

hN0,i�1 kdLi ⇤ cik1. Next, consider a sequence c1

such that c1|i1 = c⇤1|i1 , c1[�N0,1+1] = · · · = c1[0] = 0 (boundary conditions (5.27)),
and whose remaining coefficients are free. This freedom does not affect the data
fidelity term due to the finite-support assumption on ⌫m. The coefficient c1[M1 +1]

is uniquely chosen such that (dL1 ⇤ c1)[M1 + 1] =
PN0,1

k=0 dL1 [k]c1[M1 � k + 1] = 0.
Similarly, all c[k] coefficients for k > M1 can be uniquely determined recursively to
nullify (dL1 ⇤ c1)[k] as a linear combination of the (N0,1 � 1) previous coefficients.

Next, due to the boundary conditions, we have that (dL1⇤c1)[0] =
PN0,1

k=0 dL1 [k]c1[�k] =
0 ) c[�N0,1] = 0. Analogously, the unique way of canceling all coefficients
(dL1 ⇤ c1)[k] for k  0 is to set c1[k] = 0 for all k  (�N0,1). By construction,
this sequence c1 yields a regularization cost no greater than that of c⇤1. Indeed, we
have that (dL1 ⇤ c⇤1)[k] = (dL1 ⇤ c1)[k] for 1  k  M1 and that (dL1 ⇤ c1)[k] = 0
otherwise. Since the two sequences c1 and c⇤1 yield the same measurements, we
have that Jd(c1, c⇤2)  Jd(c⇤1, c

⇤

2). Yet, since (s⇤1, s
⇤

2) is a solution of (5.36) and the
construction of c1 is unique, we necessarily have that c1 = c⇤1.

Finally, we construct a sequence c2 in a similar fashion. The only difference
is the absence of boundary conditions, which means that the coefficients c2[k] for
k < m2 are determined as a linear combination of the (N0,2 � 1) next coefficients
to cancel out (dL2 ⇤ c2)[k] for all k  0. The same argument as for c1 can then be
used to prove that c2 = c⇤2.

The proof of Lemma 5.1 details the construction of two injective linear maps e✓1 :
RN1 ! `1,L1,�0(Z) and e✓2 : RN2 ! `1,L2(Z) such that, for any ci 2 RNi , e✓i(ci)|ii =
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ci and �0,h(e✓1(c1)) = 0. We then define the mapping e✓ : RN1 ⇥ RN2 : (c1, c2) 7!
(e✓1(c1), e✓2(c2)). Let (c1, c2) 2 RN1⇥N2 and consider e✓(c1, c2) 2 `1,L1(Z)⇥ `1,L2(Z).
Following the proof of Lemma 5.1, Jd(e✓(c1, c2)) can be computed using only the
N1 + N2 coefficients c1 and c2. Indeed, all other coefficients (e✓i(ci)[k])k 62Ii do
not affect the data fidelity term and cancel out all the regularization terms which

they affect. This implies that Jd(e✓(c1, c2)) = Jf(c1, c2) = 1
2

����H
✓
c1

c2

◆
� y

����
2

2

+

�

����L
✓
c1

c2

◆����
1

, where H and L are defined as in (4.11) and (4.12), respectively. Since,

by Lemma 5.1, Vd ⇢ e✓(RN1 ⇥ RN2), Problems (5.38) and (5.28) are equivalent in
the sense that e✓(Vf) = Vd, and the restriction ✓ = e✓|Vf : Vf ! Vd is a bijective
linear map.

Concerning the first item of Theorem 5.2, let
✓
c1

c2

◆
2 kerH \ kerL. Since L1

is invertible (5.31), we have that c1 = 0. Hence, the continuous-domain signal s =P
k2Z

e✓2(c2)[k]�L2(·� kh) verifies s 2 N⌫ \NL2 = {0} (well-posedness assumption
in Theorem 5.1). We thus have that e✓2(c2) = 0, which yields c2 = 0. Therefore,
kerH \ kerL = {0}, which implies that Problem (5.28) is well-posed and that its
solution set Vf is a nonempty compact set. It is also convex due to the convexity
of the cost function Jf .

The proof of Theorem 5.2 is a multicomponent extension of Proposition 4.1.
The main difference is to be found in the boundary conditions. Note that, by
definition of Ii, the B-spline coefficients outside Ii do not affect the reconstructed
signal outside the interval of interest IT . Therefore, by Theorem 5.2, the expression
of s over IT and its sparsity is entirely determined by the coefficients ci. Computing
the complete sequences of B-spline coefficients ci is therefore unnecessary.

5.3.3 Reaching a Sparse Solution
Since by (5.33), Problem (5.28) can be rewritten as a standard PBP problem of

the form

Vf , arg min
c2RN

⇣1

2
kHc� yk22 + �kLck1

⌘
, (5.39)
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where N = N1+N2, all the results of Section 4.3.3 are applicable. Since L is clearly
of full rank, its null space has dimension N0,2, which therefore plays the role of N0

in Chapter 4. We now sum up the properties of Problem (5.28).
— By Theorem 4.1, its solution set Vf is a compact convex set whose extreme

points c
⇤ = (c⇤1, c

⇤

2) are sparse, in the sense that they verify kLc⇤k0 
(M �N0,2).

— By Lemma 4.2, all its solutions yield the same measurements y�, so that
8c 2 Vf , Hc = y�.

— By Proposition 4.2, it is equivalent to the linear program

VLP
f , arg min

(c,u)2RN⇥R(N�N0,2)

0

@
N�N0,2X

n=1

un

1

A

s.t. u + Lc � 0, u� Lc � 0, Hc = y�, (5.40)

where for any x,y 2 RP , x  y implies that xp  yp for all p 2 {1, . . . , P}.
Moreover, an extreme point (c⇤,u⇤) of VLP

f yields an extreme point c⇤ of Vf .
The same pipeline can also be used to compute a sparse extreme point of Vf . The
procedure is as follows:

1. Run any iterative solver (e.g., ADMM) to find a solution cADMM 2 Vf of
Problem (5.28).

2. Compute y� = HcADMM.
3. Solve the linear program (5.40) using the simplex or dual-simplex algorithm

[116, 117]. These algorithms are known to converge to an extreme point
(c⇤,u⇤) of VLP

f , where c
⇤ is an extreme point of Vf .

5.4 Multiresolution Strategy
Although the algorithm introduced in Section 5.3.3 yields a sparse solution of

Problem (5.28), it does so for a fixed grid size h. Yet, choosing a suitable grid
size clearly depends on the problem at hand. We therefore propose a multires-
olution strategy that selects the grid size automatically. We introduce the opti-
mal costs of the continuous and discrete problems, which are defined as J 0 ,
minf2ML1,�0 (R)+ML2 (R) J (f) and J 0

f (h) , min(c1,c2)2RN1⇥RN2 Jf(c1, c2), respec-
tively. Our approach is based on Theorem 5.3.
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Theorem 5.3 (Convergence of the Cost Function of the Discrete Problem). As-
sume that the hypotheses of Theorem 5.1 and Assumptions 5.1 are met. Then,

lim
h!0

J 0
f (h) = J 0. (5.41)

Proof. Let s = s1 + s2 2 V, where s1 and s2 are of the form (5.20). Assume by
contradiction that there exists a knot x1,k0 62 IT . We can then construct a spline s̃1

which has the same expression as s1 in IT and the same knot locations, except for
the knot at x1,k0 which is removed. Since the functionals ⌫m are supported in IT , we
have that ⌫(s1) = ⌫(s̃1) and that kL1{s1}kM = kL1{s̃1}kM+ |a1,k0 | > kL1{s̃1}kM.
This implies that J (s) > J (s̃1 + s2), which contradicts s 2 V. Therefore, we have
that x1,k � 0 for all k; we can thus construct the spline

s1,h(x) = q1(x) +
K1X

k=1

a1,k⇢L1(x� xh
1,k), (5.42)

where xh
1,k 2 hZ and such that xh

1,k � 0 converges to x1,k when h goes to zero—we
choose xh

1,k = 0 if x1,k = 0. Since this spline has the same expression as s1 in the
neighborhood of zero, we have that �0(s1) = 0 ) �0(s1,h) = 0 and, thus, that
s1,h 2ML1,h,�0(R). Similarly, we construct s2,h 2ML2,h(R). The desired result
then follows from the proof of Theorem 4.2.

Theorem 5.3 justifies our choice of the search space (5.22) since it contains
functions which yield costs arbitrarily close to the optimal cost J 0 of the continuous-
domain Problem (5.19). It also justifies the use of a multiresolution algorithm
based on Algorithm 4.1. We provide the pseudocode of its hybrid-spline version in
Algorithm 5.1.

The principle of this algorithm is to split the grid in half by taking grid sizes
(hn = T/2n)n�n0 , where hn0 is an initial coarse grid size. We stop the refinement
as soon as the optimal cost J 0

f (hn) ceases to decrease within a certain tolerance
✏ chosen by the user. Further refinement of the grid is then useless, since the
reconstructed signal does not vary significantly anymore. The variable costp de-
notes the cost J 0

f (hn�1) from the previous grid size. Because the search spaces are
embedded like ML1,hn,�0(R) ⇢ ML1,hn+1,�0(R) and ML2,hn(R) ⇢ ML2,hn+1(R),
a decrease in the grid size can only improve the reconstruction in terms of cost,
i.e., (J 0

f (hn))n�n0 is decreasing. Moreover, Theorem 5.3 states that this quantity
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Input: ⌫, N0,1, N0,2, T , y, �, ↵, n0, ✏
n = n0; c1 = 0; c2 = 0; costp = +1; error = ✏+ 1 while error > ✏ do

h = T/2n

update H, L ; // Depend on h,⌫, N0,1, N0,2, T
(c1, c2) ADMM((c1,"2, c2,"2);H,L,y,�)
error = |Jf(c1, c2)� costp|/costp
costp = Jf(c1, c2)
n n + 1

end

y� = H

✓
c1

c2

◆

return (c⇤1, c
⇤

2) = Simplex(H,L,y,�,y�)

Algorithm 5.1: Pseudocode of our algorithm.

converges to J 0, which guarantees the convergence of our algorithm. This embed-
ding also allows us to use the reconstruction from the previous grid size as a warm
start for ADMM. This is done by converting the B-spline coefficients to ci,"2 for
i 2 {1, 2}, which represent the same continuous-domain signal on the finer grid. In
practice, for a tolerance ✏ = 10�3, Algorithm 5.1 typically converges for a grid size
of h = 1/29 or coarser in our experiments, which leads to reasonable computation
times of a few seconds in the conditions of Section 5.5.

5.5 Experimental Results
Our algorithms are implemented using GlobalBioIm [118], a Matlab inverse-

problem library developed in our group, as well as the Gurobi optimizer 3 for the
simplex algorithm. In order for our hybrid regularization (5.6) to be an adequate
prior, the ground-truth signal in our experiments is a sparse hybrid spline s =
s1 + s2. Each component si is a sparse Li-spline of the form

si(x) =

KsiX

k=1

ai,k⇢Li(x� xi,k) +

N0,iX

n=1

bi,npi,n(x), (5.43)

3. LLC Gurobi Optimization, Gurobi optimizer reference manual, 2018.
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where {pi,n}N0,i

n=1 form a basis of NLi . The sparsity Ksi of si is chosen by the user,
the knot locations xi,k 2 IT are chosen at random and the coefficients ai,k and bi,n
are i.i.d. Gaussian random variables. The tuning parameters � and ↵ are selected
using grid search, and we pick a tolerance ✏ = 10�3.

5.5.1 Curve Fitting
Curve fitting is particularly well-suited for smoothing problems, which consist

in fitting a continuous-domain function which is sparse in a certain dictionary basis
from many noisy data points. The measurement functionals are then given by
⌫m(s) = s(xm) where xm 2 [0, T ] are the sampling locations. As discussed in
Example 3.2, this choice is technically only admissible—in the sense that ⌫m is
weak⇤-continuous and thus satisfies the assumptions of Theorem 5.1—when N0,i �
2 for i 2 {1, 2}. However, even when N0,1 = 1, one can choose a Dirac mollifier
such as (2.48), which leads numerically to taking the right limit ⌫m(s) = s(x+

m).
Such reconstruction problems are commonly tackled in a single-operator frame-

work, where the dictionary is associated with a single brand of splines. A limit case
is polynomial regression, which is achieved by taking L = DN0 and picking a very
high value of the regularization parameter �.

In contrast with standard single-operator frameworks, our approach allows for
the joint use of several families of basis functions, and can therefore represent a
richer class of signals. An example of a curve-fitting reconstruction using Algo-
rithm 5.1 is given in Figure 5.1a. The chosen regularization operators are L1 = D
and L2 = D2; our dictionary thus consists of both piecewise-constant and piecewise-
linear splines. We compare our results to single-operator reconstructions with reg-
ularization operators L = D and L = D2 in Figure 5.1b.

Observe that the reconstructed signal is quite sparse (K1 = 14 and K2 = 6), and
is satisfactory in that it is close to what a human would reconstruct, except for some
shearing effects around x = 0 and x = 0.6 that are typical of regularization methods.
It was not obvious a priori that such results could be achieved. Indeed, although
we are using the sparsity-promoting `1 norm, the large number of measurements M
leads us far from a CS-type framework. Theorem 4.1 states that the sparsity of the
reconstructed signal is bounded by (M � N0,2). We observe experimentally that
increasing � tends to produce sparser solutions, and that the level of sparsity can
be adjusted at will by tuning �. This is not altogether surprising, since � = +1
yields a reconstructed signal in the null space of L2 with sparsity zero.
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Another promising feature of this experiment is that our algorithm is able to
strike the right balance between both dictionaries (i.e., D-splines and D2-splines),
in that the selected dictionary elements explain the ground-truth signal well. Note
that this requires careful tuning of the weight parameter ↵. Indeed, a badly tuned
↵ leads to a lopsided use of one of the dictionaries, the other being too strongly
penalized. We observe that a suitable balance can consistently be found when the
ground truth fits the signal model as in (5.43).

By contrast, the single-operator reconstructions in Figure 5.1b do not do well
in regions that call for different dictionary elements. More precisely, linear regimes
in the ground truth signal lead to a staircasing effect in the piecewise-constant
reconstruction (D), which results in a loss of sparsity. As for the sharp jumps in the
ground truth, they lead to gradual increases in the piecewise-linear reconstruction
(D2). This is because sharp increases are heavily penalized by the regularization,
which is undesirable given the form of the ground truth.

5.5.2 Compressed Sensing

A second application of our framework is CS-type problems, which attempt to
recover a sparse multicomponent signals given a small number of measurements 4.
We use the same type of test signals as in (5.43), namely hybrid splines with low
sparsity Ks1 + Ks2 . The measurement functionals are assumed to take the form

⌫m(s) ,
Z T

0
cos(!mx + �m)s(x)dx, (5.44)

where !m 2 R are the sampling frequencies and �m 2 [0, 2⇡) some given phase
offsets. This amounts to sampling in the Fourier space—a rectangular window
is applied in order to satisfy Assumptions 5.1. Moreover, as discussed in Exam-
ple 3.3, ⌫m is weak⇤-continuous and thus satisfies the assumptions of Theorem 5.1.
We choose Fourier measurements because they are known to have good recovery
properties according to the theory of CS [119]. However, the absence of a D-RIP-
type assumption prevents us from making any theoretical claims on the quality of
the recovery.

4. Note that we are not interested in the data separation problem as in [141], but only in
recovering the complete multicomponent signal.
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In this setting, perfect recovery is illusory since the xi,k are not on a grid and the
si signals are thus not included in the search spaces ML1,�0,h(R) and ML2,h(R).
Even in purely discrete settings, the recovery of a multicomponent discrete signal
is a difficult problem, which requires conditions on the measurement matrix H and
some form of incoherence between dictionaries [129, 141]. Here, no such assumptions
are made, which makes the recovery problem even more challenging. To avoid
adding to the difficulty, we only consider noiseless measurements.

An example run is shown in Figure 5.2 for a test signal with sparsity 15 (Ks1 = 5
and Ks2 = 10) and M = 30. Since the measurements are noiseless and we are
interested in recovering the test signal as faithfully as possible, the data-fidelity
term should be penalized much more than the regularization term. We therefore
pick the regularization parameter � = 10�15 ⌧ 1. The reconstructed signal in
Figure 5.2a is remarkably close to the test signal, considering the difficulties of the
problem. Notice that the final grid size selected by Algorithm 5.1 (h = 1/28) is still
computationally tractable. The separate components of the reconstructed signal
compared to those of the test signal are provided in Figure 5.2b. We observe that
the separation is not perfect: there is a small compensation effect between the two
reconstructed components.

5.6 Conclusion
We have established a representer theorem that states that hybrid splines are

solutions of continuous-domain inverse problems with multiple gTV regularization.
The regularization operators L1 and L2 are taken to be multiple-order derivatives,
which lead to piecewise-polynomial splines. This result implies that such prob-
lems can be solved exactly using a concatenated dictionary that consists of L1 and
L2-splines. We propose an exact B-spline-based discretization scheme and a mul-
tiresolution algorithm to solve the continuous-domain problem in a suitable search
space. We then apply our algorithm to curve fitting and CS-type problems, and
show that it is both computationally feasible and very successful experimentally.

To the best of our knowledge, this is the first instance of a continuous-domain
inverse problem for multicomponent signals. Our algorithm can be viewed as the
continuous-domain counterpart of discrete data-separation problems, such as mor-
phological component analysis.
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(a) Hybrid spline reconstruction with L1 = D, L2 = D2, � = 2,
↵ = 0.04 and grid size h = 1/29. Sparsity of the reconstruction:

14 + 6 = 20.
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(b) Single-operator reconstructions L = D (� = 3, sparsity 26) and
L = D2 (� = 0.1, sparsity 15).

Figure 5.1: Curve fitting comparison with M = 200 data points.
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Ground truth
Reconstructed signal

(a) Complete reconstructed signal (SNR = 22.2 dB, sparsity 17 + 7
= 24)
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Figure 5.2: Reconstruction result with noiseless Fourier measurements
for L1 = D, L2 = D4, M = 30, � = 10�15, ↵ = 5 ⇥ 10�5. Final grid size:
h = 1/28.



Chapter 6

Sparse-Plus-Smooth Signal
Models

This chapter is based on the following publication [142]:
T. Debarre, S. Aziznejad, and M. Unser, “Continuous-Domain Formulation of

Inverse Problems for Composite Sparse-Plus-Smooth Signals”, IEEE Open Journal
of Signal Processing, vol. 2, pp. 545–558, Sep. 2021.

6.1 Introduction
In the traditional discrete formalism of linear inverse problems, the goal is to

recover a signal c0 2 RN based on some observation vector y 2 RM . These obser-
vations are typically acquired via a sensing matrix H 2 RM⇥N , so that Hc0 ⇡ y.
The recovery is often achieved by solving an optimization problem of the form

c
⇤ 2 arg min

c2RN

0

B@E(Hc,y)| {z }
Data fidelity

+ �R(Lc)| {z }
Regularization

1

CA , (6.1)

where E : RM ⇥RM ! R is a suitable convex data-fidelity loss functional, R is the
regularization functional, L specifies a suitable transform domain, and � > 0 is a
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tuning parameter that determines the strength of the regularization. Historically,
the first instance of regularization dates back to Tikhonov [4] with a quadratic regu-
larization functional R = k·k22. Tikhonov regularization constrains the energy of Lc
which, when L is a finite-difference matrix, leads to a smooth reconstructed signal
c
⇤. Tikhonov regularization has the practical advantage of being mathematically

tractable which leads to a closed-form solution.
More recently, the sparsity-promoting regularization functional R = k · k1 has

now surpassed the `2 norm as the regularization method of choice in most appli-
cations. However, the nondifferentiability of the `1 norm leads to more involved
iterative optimization procedures using proximal algorithms [17]. We refer to the
introduction of Part II for a more in-depth discussion on discrete `1 optimization.

6.1.1 Discrete Inverse Problems for Composite Signals
Despite their success, `1 and `2 regularization methods are too simple to model

many real-world signals. In this chapter, we investigate composite models of the
form s = s1 + s2 where the two components have different characteristics. More
precisely, s1 is assumed to be sparse in some given domain and is treated with `1
regularization, while s2 is assumed to be smooth and is treated with `2 regulariza-
tion. In discrete settings, a natural way of reconstructing such signals is to solve
the optimization problem

min
c1,c22RN

⇣
E(H(c1 + c2),y) + �1kL1c1k1 + �2kL2c2k22

⌘
, (6.2)

where c1, c2 are the two components of the signal c = c1 + c2, �1,�2 > 0 are
tuning parameters, L1 2 RN⇥N is a sparsifying transform for c1, and L2 2 RN⇥N

is a low-energy-promoting transform for c2. This modeling is considered amongst
others in [143, 144, 145, 146, 147, 148].

6.1.2 Continuous-Domain Formulation
As explained in the introduction of this thesis, most real-world signals are best

modeled as continuous functions. Therefore, when feasible, to formulate the inverse
problem in the continuous domain is a natural and desirable objective. In this
chapter, we thus adapt the discrete approach of (6.2) to 1D continuous-domain
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composite signals by solving an optimization problem of the form

min
s1,s2

⇣
E(⌫(s1 + s2),y) + �1kL1{s1}kM + �2kL2{s2}k2L2

⌘
, (6.3)

where s1, s2 are the two components of the signal s = s1 + s2 : R ! R, ⌫ =
(⌫1, . . . , ⌫M ) : s 7! ⌫(s) 2 RM is the linear forward model, and Li = DN0,i for i 2
{1, 2}, where D is the derivative operator and N0,i � 1 is the order of the derivative.
The regularization norm k·kM is the total-variation (TV) norm for measures defined
in (2.17), which is the continuous sparsity-promoting counterpart of the discrete `1
norm. We refer to this term as the generalized TV (gTV) regularizer. Finally,
k · kL2 is the usual norm over the Lebesgue space L2(R) of signals with finite
energy; we refer to the corresponding term as the generalized Tikhonov (gTikhonov)
regularizer, which promotes smoothness in combination with the operator L2.

6.1.3 Representer Theorems and Discretization

A classical way of discretizing a continuous-domain problem is to reformulate it
as a finite-dimensional one by relying on a representer theorem that gives a para-
metric form of the solution. Prominent examples include representer theorems for
problems formulated over reproducing-kernel Hilbert spaces (RKHS), which are
foundational to the field of machine learning [43, 42]. As demonstrated in [45,
Theorem 3], the minimization Problem (6.3) over the component s2 (with a fixed
s1)—i.e., gTikhonov regularization—falls into this category: the representer theo-
rem states that there is a unique solution of the form

s⇤2(x) = p2(x) +
MX

m=1

a2,mhm(x), (6.4)

where the additional component p2 lies in the null space of L2 (i.e., L2{p2} = 0),
hm is a (typically quite smooth) kernel function that is fully determined by the
choice of ⌫m and L2, and a2,m 2 R are expansion coefficients. Therefore, to solve
the continuous-domain problem, one need only optimize over the a2,m coefficients
and the null-space component p2 which lives in a finite-dimensional space. This
leads to a standard finite-dimensional problem with Tikhonov regularization.
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Concerning the minimization over the component s1 (gTV regularization), The-
orem 3.3 states that there is a L1-spline solution of the form

s⇤1(x) = p1(x) +
KX

k=1

a1,k⇢L1(x� xk), (6.5)

where a1,k, xk 2 R, ⇢L1 is the Green’s function of L1 (defined in (2.25)), K is
the number of atoms of s1 which is bounded by K  (M � N0,1), N0,1 being the
dimension of the null space of L1, and p1 lies in the null space of L1. These represen-
ter theorems have paved the way for various exact discretization methods. In the
gTikhonov case, one can optimize over the am,2 coefficients in (6.4) directly [45].
For the gTV case (6.5), grid-based techniques using a well-conditioned B-spline
basis (Chapter 4) as well as grid-free techniques [90] have been proposed.

6.1.4 Our Contribution

In this chapter, we show that the representer theorems presented in the pre-
vious section can be combined into a composite one when dealing with Prob-
lem (6.3). More specifically, we prove that there exists a solution to (6.3) of the
form s⇤1 = s⇤1 + s⇤2 such that s⇤1 is of the form (6.5) and s⇤2 is of the form (6.4):
a “sparse plus smooth” solution. Building on this representation, we propose an
exact discretization scheme. Both components si for i 2 {1, 2} are expressed in
a suitable Riesz basis as si =

P
k ci[k]'i,k, where ci[k] are the coefficients to be

optimized. This leads to an infinite-dimensional optimization problem reminiscent
of the infinite-dimensional compressed sensing framework of Adcock and Hansen [3]
and the wavelet-based model of Daubechies et al. [149]. However, these frameworks
differ from our original Problem (6.3) in that their native spaces admit a countable
basis which leads to a more straightforward discretization process.

To solve this infinite-dimensional problem numerically, we cast it as a finite-
dimensional problem under some mild assumptions. This requires a careful handling
of the boundaries of our interval of interest. In our implementation, we choose basis
functions '1,k = �L1(· � k) and '2,k = �L⇤

2L2(· � k), where �L is the B-spline for
the operator L. B-splines are popular choices of basis functions, in large part due
to their minimal-support property (see Section 3.1). We show that optimizing over
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the spline coefficients leads to a discrete problem similar to (6.2) of the form

min
(c1,c2)2RN1⇥RN2

⇣
E(H1c1 + H2c2,y) + �1kL1c1k1 + �2kL2c2k22

⌘
, (6.6)

where Hi 2 RM⇥Ni and Li 2 RPi⇥Ni for i 2 {1, 2}. This discretization is exact in
the sense that it is equivalent to the continuous Problem (6.3) when each component
si lies in the space generated by the basis functions {'i,k}k2Z. This is a consequence
of our informed choice of these basis functions 'i,k. Moreover, the short support of
the B-splines leads to well-conditioned Hi matrices and, thus, to a computationally
feasible problem.

6.1.5 Related Works

The use of multiple regularization penalties is quite common in the literature.
However, in most cases, each penalty is applied to the full signal instead of a
component-wise [150, 151, 152, 153, 154, 155]. A prominent example of such an
approach is the elastic net [156], which is widely used in statistics. The spirit
of these approaches is however quite different from ours: the reconstructed signal
is encouraged to satisfy different priors simultaneously. Conversely, in (6.2), each
component satisfies different priors independently of the others, which will give very
different results.

Closer to our framework is the popular low-rank plus sparse matrix decomposi-
tion model [139], which imposes some form of sparsity on both components.

The model of Meyer [157] and its generalization by Vese and Osher [158, 159]
follow the same idea as Problem (6.3), with the important difference that they use
calculus-of-variation techniques to solve it. There is a connection as well with the
Mumford-Shah functional [160], which is commonly used to segment an image in
piecewise-smooth regions. The main difference lies in the fact that the optimization
is not performed over the different components of the signal, but over the region
boundaries. Another difference is that these models assume that one has full access
to the noisy signal over a continuum, whereas (6.3) assumes that we only have
access to some discrete measurements specified by the forward model ⌫.
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6.1.6 Outline
In Section 6.2, we defined the search spaces of our optimization problem, which

are partly based on the native spaces introduced in Chapter 2. In Section 6.3, we
formulate the continuous-domain problem and formulate our representer theorem,
which is our main theoretical result. In Section 6.4, we detail our discretization
strategy, which relies on the selection of suitable Riesz bases. Finally, in Section 6.6,
we present experiments on simulated data.

6.2 Native Spaces
We now introduce the native spaces of our regularization operators Li for

i 2 {1, 2}, which are N0,ith-order derivative operators 1 of the form (2.19). In
particular, their causal Green’s function ⇢Li is given by (2.25), and their null space
NLi by (2.24); for more information, we refer to Section 3.1.2.

6.2.1 Sparse Component
The native space for s1 in (6.3), which is defined in (2.33), is given by

ML1(R) , {f 2 S 0(R) : L1{f} 2M(R)}, (6.7)

where M(R) is the space of Radon measures defined in (2.18). We refer to Chapter 2
for more details on the construction of ML1(R).

6.2.2 Smooth Component
The regularization norm k · kL2 for the smooth component s2 in (6.3) is defined

over the Lebesgue space L2(R) of functions with finite energy. The corresponding
native space of the smooth component s2 is

HL2(R) , {f 2 S 0(R) : L2{f} 2 L2(R)}, (6.8)

which has a Hilbert-space structure [45].

1. As in most chapters of the thesis, all the results and algorithms from this chapter can be
extended to more general operators Li, e.g., rational operators [102].
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6.3 Continuous-Domain Inverse Problem
When the intersection N0 = NL1\NL2 of the null spaces of our two native spaces

is nontrivial, we need to specify boundary conditions on one of the two spaces to
ensure the well-posedness of our optimization problem. This is done by introducing
a biorthogonal system (�0,p0) for N0 in the sense of Definition 2.6. An example
of a valid choice is given in (2.48). The search space with boundary conditions �0

is then given by

ML1,�0(R) , {f 2ML1(R) : �0(f) = 0}. (6.9)

We now present in Theorem 6.1 our problem formulation to reconstruct sparse-
plus-smooth composite signals. This representer theorem gives a parametric form
of a solution of our optimization problem.

Theorem 6.1 (Continuous-Domain Representer Theorem). Let E : RM⇥RM ! R
be a nonnegative, coercive, proper, convex, and lower-semicontinuous functional.
Let L1, L2 be derivative operators of the form (2.19), and let ⌫ = (⌫1, . . . , ⌫M ) be
a linear measurement operator composed of the M linear functionals ⌫m : f 7!
⌫m(f) 2 R that are weak⇤-continuous over ML1(R) and over HL2(R). We assume
that N⌫ \ (NL1 + NL2) = {0}, where N⌫ is the null space of ⌫ (well-posedness
assumption). Then, for any �1,�2 > 0, the optimization problem

V , arg min
s12ML1,�0 (R)
s22HL2 (R)

J (s1, s2) with

J (s1, s2) , E(⌫(s1 + s2),y) + �1kL1{s1}kM + �2kL2{s2}k2L2
(6.10)

has a solution (s⇤1, s
⇤

2) 2 V with the following components:
— the component s⇤1 is a nonuniform L1-spline of the form

s⇤1(x) = p1(x) +
K1X

k=1

a1,k⇢L1(x� xk) (6.11)

for some K1  (M �N0,1), where p1 2 NL1 , and a1,k, xk 2 R;
— the component s⇤2 is of the form

s⇤2(x) = p2(x) +
MX

m=1

a2,mhm(x), (6.12)
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where hm(x) ,
⇣
⌫m ⇤ F�1

n
1

|bL2|
2

o⌘
(x), p2 2 NL2 , a2,k 2 R, and where

PM
m=1 a2,mhq2, ⌫mi = 0 for any q2 2 NL2 .

Moreover, for any pair of solutions (s⇤1, s
⇤

2), (s̃
⇤

1, s̃
⇤

2) 2 V, s⇤2 and s̃⇤2 differ only up
to an element of the null space NL2 , so that (s⇤2 � s̃⇤2) 2 NL2 .

The proof of Theorem 6.1 is given in Appendix B.2.

Remark 6.1. As in Theorem 3.3, we restrict to derivative operators for L1 and
L2. However, Theorem 6.1 and our proof technique remain valid for any spline-
admissible operators in the sense of [14, Definition 1].

A pleasing outcome of Theorem 6.1 is that it combines Theorems 3 and 4 of [45]
into one. There is, however, an added technicality due to the boundary conditions
�0. The latter are necessary to ensure the well-posedness of Problem (6.10) 2. Note,
however, that these conditions do not restrict the search space, since ML1,�0(R) +
HL2(R) = ML1(R) + HL2(R).

6.4 Exact Discretization

In order to discretize Problem (6.10), we restrict the search spaces ML1,�0(R)
and HL2(R). The standard approach to achieve this is to choose a sequence of
appropriate basis functions {'i,k}k2Z that span the reconstruction spaces

Vi(R) ,
(
X

k2Z
ci[k]'i,k : ci 2 Vi(Z)

)
(6.13)

for i 2 {1, 2} that are subject to the constraints V1(R) ⇢ML1,�0(R) and V2(R) ⇢
HL2(R). These continuous spaces are linked to discrete spaces Vi(Z), the choices
of which will be made explicit in (6.16) and (6.27). More precisely, there is a
one-to-one mapping between them using the basis functions 'i,k.

2. Otherwise, for any (s⇤1, s
⇤
2) 2 V and p 2 N0, we would have that (s⇤1 + p, s⇤2 � p) 2 V which

would imply that V is unbounded.
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6.4.1 Riesz Bases and B-Splines
For numerical purposes, a desirable property is that our basis functions satisfy

the Riesz property. Riesz bases are highly important concepts in that they general-
ize orthonormal bases, while leaving more flexibility for other desirable properties
such as short support [161].

Definition 6.1 (Riesz basis). A sequence of functions {'k}k2Z with 'k 2 L2(R)
is said to be a Riesz basis if there exist constants 0 < A  B such that, for any
c 2 `2(Z), we have that

Akck`2 

�����
X

k2Z
c[k]'k

�����
L2

 Bkck`2 . (6.14)

Popular examples of Riesz bases are polynomial B-spline bases, which are intro-
duced in (3.16). The polynomial B-spline �L of a derivative operator L of the form
(2.19) is characterized by its B-spline filter dL defined in (3.11). This filter appears
in the expression of the innovation of the B-spline, which is given by

L{�L} =
X

k2Z
dL[k]�(·� k). (6.15)

Both �L and dL have finite support which is determined by the order of the op-
erator L. More precisely, the supports of �Li and dLi for i 2 {1, 2} are [0, Di]
and {0, . . . , Di}, respectively, where Di is the order of the operator Li. For more
background on polynomial B-splines, we refer to Section (3.1.4).

6.4.2 Choice of Basis Functions
We now present and discuss our choice for the basis functions '1,k and '2,k.

Sparse Component

For the sparse component, we choose the B-spline basis functions '1,k = �L1(·�
k) for all k 2 Z. With this choice,

V1(R) ,
(

f =
X

k2Z
c1[k]'1,k : c1 2 V1(Z)

)
⇢ML1,�0(R)
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with the digital-filter space

V1(Z) ,
(

(c1[k])k2Z : (dL1 ⇤ c1) 2 `1(Z) and
X

k2Z
c1[k]�0('1,k) = 0

)
, (6.16)

is the largest possible native reconstruction space, as demonstrated in the previous
chapter (5.24). The choice of the basis functions '1,k is guided by the following
considerations:

— they generate the space of uniform L1 splines. This conforms with Theo-
rem 6.1, which states that the component s⇤1 is an L1-spline;

— they enable exact computations in the continuous domain. In particular, by
(3.18), we have that kL1{

P
k2Z c1[k]'1,k}kM = kdL1 ⇤ c1k`1 ;

— the Riesz-basis property of B-splines leads to a well-conditioned system ma-
trix, which is paramount in numerical applications.

B-splines are the only functions that satisfy all these properties. Based on these
criteria, B-splines are thus optimal.

Smooth Component

At first glance, the most natural choice for '2,k is to select the basis functions
suggested by (6.12) in Theorem 6.1: hm for 1  m M and a basis of NL2 , which
yield a finite number M +N0,2 of basis functions. However, this approach runs into
the following hitches:

— the basis functions hm are typically increasing at infinity, which contradicts
the Riesz-basis requirement and leads to severely ill-conditioned optimization
tasks [45];

— depending on the measurements operator ⌫, hm may lack a closed-form
expression.

We therefore focus on these criteria, in a spirit similar to [162]. The '2,k are
chosen to be regular shifts of a generating function '2, with '2,k = '2(·� k) such
that {L2{'2,k}}k2Z forms a Riesz basis in the sense of Definition 6.1. Contrary to
'1,k, these requirements allow for many choices of '2,k. In order to perform exact
discretization, one then only needs to compute the following autocorrelation filter.

Proposition 6.1 (Autocorrelation Filter for the Smooth Component). Let '2 be
a generating function such that '2,k , '2(· � k) form a Riesz basis. Then, the
following two items hold:
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— the inner product hL2{'2,k}, L2{'2,k0}iL2 only depends on the difference (k�
k0). We can thus introduce the autocorrelation filter

⇢[k] , hL2{'2,k}, L2{'2,0}iL2 = hL2{'2,k+k0}, L2{'2,k0}iL2 (6.17)

for any k, k0 2 Z;
— the filter ⇢ is positive semidefinite, with

P
k,k02Z c[k]c[k0]⇢[k�k0] � 0 for any

finitely supported real digital filter c.

Proof. The first item is proved with a simple change of variable in the integral that
defines the inner product. The second item is derived by observing that, for any
c2, we have

�����L2

(
X

k2Z
c2[k]'2,k

)�����

2

L2

=
X

k,k02Z

⇣
c2[k]c2[k

0]hL2{'2,k}, L2{'2,k0}i
⌘

=
X

k,k02Z
c2[k]c2[k

0]⇢[k � k0] � 0. (6.18)

For our implementation, we make a specific choice of basis function '2 among
the many choices for which the autocorrelation filter (6.17) can be computed analyt-
ically. We choose the L⇤

2L2 B-spline basis '2 = �L⇤
2L2 and '2,k = '2(·� k), where

L⇤

2 denotes the adjoint operator of L2. This choice has the following additional
advantages:

— the generator '2 has a simple explicit expression that does not depend on
the measurement operator ⌫;

— as will be shown in Proposition 6.2, the autocorrelation filter ⇢ can be fac-
torized, which is convenient for implementation purposes;

— in the special case of the sampling operator ⌫m = �(· � xm), where the xm

are the sampling locations, this choice conforms with (6.12) in Theorem 6.1
since s⇤2 is then an L⇤

2L2-spline. Note, however, that we do not exploit the
knowledge that s⇤2 has knots at the sampling locations xm.

With this basis function '2 = �L⇤
2L2 , there is no straightforward choice of the

digital-filter space V2(Z). Our practical choice is given in (6.27); it depends on our
discretization method for reasons that are discussed in Remark 6.2.
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Our choice of basis function '2 = �L⇤
2L2 enables us to factorize the autocorrela-

tion filter ⇢ via its “square root” g, as demonstrated in Proposition 6.2.
Proposition 6.2 (Factorization of the Autocorrelation Filter). Let L2 be a deriva-
tive operator of the form (2.19), and let '2 = �L⇤

2L2 = �L2 ⇤ �_

L2
. Then, the basis

{'2,k}k2Z forms a Riesz basis as required in Section 6.4.2, and the autocorrelation
filter ⇢ defined in Proposition 6.1 is of the form

⇢ = dL2 ⇤ d_L2
⇤ b, (6.19)

where b[k] , �L⇤
2L2(k) is the B-spline kernel of the operator L⇤

2L2, which is a
positive-semidefinite filter supported in [�(D2 � 2) . . . D2 � 2], where D2 is the
order of the operators L2. The filter ⇢ can thus be factorized as ⇢ = g ⇤ g_ with

g , dL2 ⇤ b1/2, (6.20)

where the filter b1/2 satisfies b = b1/2 ⇤ (b1/2)_ and is of length B , (D2 � 1), and
g is thus of length G , 2B = 2(D2 � 1).
Proof. We have that

⇢[k] = hL2{'2,k}, L2{'2,0}iL2

= hL⇤

2L2{'2,k},'2,0iH0
L2

⇥HL2

=

*
X

k02Z
dL⇤

2L2 [k]�(·� (k + k0)),'2,0

+

H
0
L2

⇥HL2

=
X

k02Z
dL⇤

2L2 [k]b[k + k0]

= (dL⇤
2L2 ⇤ b_)[�k]

= (dL⇤
2L2 ⇤ b)[k],

where h·, ·iH0
L2

⇥HL2
denotes the duality product between HL2(R) and its dual

H0

L2
(R), and the last line results from the symmetry of ⇢ and b.
Next, we prove that b is positive-semidefinite. Indeed, for any finitely supported

filter c, we have that

X

k,k02Z
c[k]c[k0]b[k � k0] =

�����
X

k2Z
c[k]�L2(·� k)

�����

2

L2

� 0, (6.21)
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where we have used the property

b[k] = (�L2 ⇤ �_

L2
)(k) = h�L2 ,�L2(·� k)iL2 . (6.22)

Finally, to prove the existence of b1/2, we notice that b has the finite support
[�(B � 1) . . . B � 1] due to the finite support (�D2, D2) of �L⇤

2L2 , and we have
B = (D2 � 1). Since b is also symmetric, its z-transform satisfies B(z) = B(z�1);
therefore, for any zero zk of B(z), z�1

k is also a zero. Moreover, it is well known
that B(±1) 6= 0, so that zeros must come in pairs zk 6= z�1

k . Hence, B(z) can
be written as B(z) =

QB
k=1(1 � zkz)(1 � zkz�1). Hence, to take b1/2 to be the

inverse z-transform of B1/2(z) =
QB

k=1(1�zkz�1) is a valid choice (we clearly have
b = b1/2 ⇤ (b1/2)_), and (6.20) is readily obtained.

We summarize in Table 6.1 the different filters and their mutual relations. These
filters will be useful for the definition of the regularization matrix L2.

dL1 dL2 ⇢ = b ⇤ dL2 ⇤ d_L2
g = b1/2 ⇤ dL2 b =

�
�L⇤

2L2(k)
�
k2Z b1/2

Description
Finite-difference

filter for L1

Finite-difference
filter for L2

Autocorrelation
filter for L2

“Square root” of ⇢
(⇢ = g ⇤ g_)

Samples of basis
function (L⇤

2L2 B-spline)
“Square root” of b

(b = b1/2 ⇤ (b1/2)_)
Introduced in Equation (3.11) Equation (3.11) Proposition 6.1 Proposition 6.2 Proposition 6.2 Proposition 6.2

Support length D1 D2 2G� 1 = 4D2 � 5 G = 2D2 � 2 2B � 1 = 2D2 � 3 B = D2 � 1

Support [0 . . . D1 � 1] [0 . . . D2 � 1] [�(G� 1) . . . G� 1] [0 . . . G� 1] [�(B � 1) . . . B � 1] [0 . . . B � 1]

Example:
L2 = D

[1, -1] [-1, 2, -1] [1, -1] [1] [1]

Example:
L2 = D2

[1, -2, 1]
1/6 · [1, 0,�9, 16,

�9, 0, 1]

C[1,
p

3,�(3 + 2
p

3),

2 +
p

3]
1/6 · [1, 4, 1] C[1, 2 +

p
3]

Table 6.1: Relevant filters and their supports
✓

C ,
q

2�
p

3
6

◆
.

6.4.3 Formulation of the Discrete Problem

The autocorrelation filter introduced in Proposition 6.1 enables us to discretize
Problem (6.10) in an exact way in the Vi(R) spaces.
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Proposition 6.3 (Riesz-Basis Discretization). Let 'i,k be chosen as specified in
Section 6.4.2 for i 2 {1, 2}, k 2 Z, and

Vd , arg min
(c1,c2)2V1(Z)⇥V2(Z)

Jd(c1, c2). (6.23)

The cost function is given by

Jd(c1, c2) , E

 
X

k2Z

�
c1[k]⌫('1,k) + c2[k]⌫('2,k)

�
,y

!
+ �1kdL1 ⇤ c1k`1 + �2hc2, ⇢ ⇤ c2i`2 ,

(6.24)

where dL1 is the finite-difference filter given by (6.15), ⇢ is defined in Proposi-
tion 6.1, and h·, ·i`2 is the inner product over `2(Z). Then, Problem (6.23) is
equivalent to

Vres = arg min
(s1,s2)2V1(R)⇥V2(R)

J (s1, s2), (6.25)

i.e., Problem (6.10) where the search spaces ML1,�0(R) and HL2(R) are restricted to
the spaces V1(R) and V2(R) defined in (6.13), respectively. This equivalence is in the
sense that there exists a bijective linear mapping (c1, c2) 7!

�P
k2Z c1[k]'1,k,

P
k2Z c2[k]'2,k

�

from Vd to Vres.
Proof. By plugging the expansions si =

P
k2Z ci[k]'i,k into the cost function J ,

using the linearity of ⌫, we get the data-fidelity term of (6.24). Using (3.18), we
have that kL1{

P
k2Z c1[k]'1,k}kM = kdL1 ⇤ c1k`1 . As for the second regularization

term, we observe that

hc2, c2 ⇤ ⇢i`2 =
X

k,k02Z
c2[k]c2[k

0]⇢[k � k0] =

�����L2

(
X

k2Z
c2[k]'2,k

)�����

2

L2

, (6.26)

using (6.18) for the last step. This proves the equivalence between Problems (6.25)
and (6.23), up to the specified mapping which is indeed a bijective linear mapping
due to the Riesz-basis properties of {'1,k}k2Z and {'2,k}k2Z.

6.5 Practical Implementation
We now discuss how to solve our discretized Problem (6.23) in practice, which

involves recasting it as a finite-dimensional problem.
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6.5.1 Finite Domain Assumptions
To solve Problem (6.23) numerically in an exact way, similarly to Chapters 4

and 5, we must make an additional assumption that will enable us to restrict the
problem to a finite interval of interest.

Assumptions 6.1. The measurement functionals ⌫m are supported in an interval
IT = [0, T ], where T 2 N.

This assumption is natural and is often fulfilled in practice, for instance in
imaging with a finite field of view. The support length T then roughly corresponds
to the number of grid points in the interval of interest. Note that, for simplicity,
we only consider integer grids. However, following Chapters 4 and 5, the fineness
of the grid can be tuned at will by adjusting T and rescaling the problem over the
interval of interest.

6.5.2 Formulation of the Finite-Dimensional Problem
Our choice of basis functions together with the assumptions in Section 6.5.1

enable us to restrict Problem (6.23) to the interval of interest IT . More precisely,
we introduce the indices mi, Mi 2 Z for i 2 {1, 2}; the range [mi . . . Mi] corresponds
to the set of indices k for which Supp('i,k) \ IT 6= ;, so that the basis function
'i,k affects the measurements. Hence, the number of active basis functions (i.e.,
the number of spline coefficients to be optimized) is Ni = (Mi �mi � 1). It can
easily be verified that we have m1 = (�D1 + 2), M1 = (T � 1), m2 = (�D2 + 2),
and M2 = (T + D2 � 2). See Figure 6.1 for an illustrative example.

Finally, we introduce the native digital-filter space

V2(Z) =
n

(c2[k])k2Z : Supp(dL2 ⇤ c2) ⇢ [1 . . . M2]
o

, (6.27)

which is a valid choice because V2(R) ⇢ HL2(R). Indeed, we can verify that, for any
c2 2 V2(Z), the function s2 =

P
k2Z c2[k]'2,k satisfies kL2{s2}k2L2

= kg ⇤ c2k2`2 =

kb1/2 ⇤ (dL2 ⇤ c2)k2`2 < +1, which proves that s2 2 HL2(R). This is due to the finite
support of both (dL2 ⇤ c2) and b1/2, where the filter b1/2 and the decomposition
g = b1/2 ⇤ dL2 are introduced in Proposition 6.2.

Remark 6.2. Contrary to V1(Z) defined in (6.16), our choice of V2(Z) in (6.27)
is not the largest valid space: there exist larger vector spaces such that V2(R) ⇢
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0 T

1 1

m1

'1,m1

'1,k

k

D1 � 1

M1

'1,M1

(a) L1 = D3 (D1 = 4). The '1,k are causal quadratic B-splines.

1 1

0 Tm2

'2,m2

k

D2�1 D2�1

'2,k

M2

'2,M2

(b) L2 = D2 (D2 = 3). The '2,k are centered cubic B-splines.

Figure 6.1: Examples of boundary basis functions 'i,mi and 'i,Mi for i 2 {1, 2}.

HL2(R). However, the support restriction implies that for any s2 =
P

k2Z c2[k]�L⇤
2L2(·�

k) 2 V2(R), the function L2{s2} =
P

k2Z(dL2 ⇤ c2)[k]�_

L2
(· � k) has a finite sup-

port. This is a desirable property both for simplicity of implementation and because
it conforms with Theorem 6.1, since s⇤2 in (6.12) also satisfies this property. Our
specific choice of support for (dL2 ⇤ c2) is guided by boundary considerations and
will be justified in the proof of Proposition 6.4.

The restriction to a finite number of active spline coefficients leads to finite-
dimensional system and regularization matrices. The system matrices are of the
form

Hi ,
⇥
⌫('i,mi) · · · ⌫('i,Mi)

⇤
2 RM⇥Ni . (6.28)

The regularization matrix for the sparse component, denoted by L1 2 R(N1�D1+1)⇥N1 ,
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is of the form

L1 ,

0

BBBB@

dL1 [D1 � 1] · · · dL1 [0] 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 dL1 [D1 � 1] · · · dL1 [0]

1

CCCCA
. (6.29)

The second component requires a careful handling of the boundaries in order to
achieve exact discretization, which leads to a more complicated expression for the
associated regularization matrix. The regularization matrix L2 2 R(N2�1)⇥N2 for
the smooth component is given by

L2 ,

0

@
M

�
0

M

0 M
+

1

A , (6.30)

where the central matrix M 2 R(N2�G+1)⇥N2 is given by

M ,

0

BBBB@

g[G� 1] · · · g[0] 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 g[G� 1] · · · g[0]

1

CCCCA
, (6.31)

where g is defined in Proposition 6.2. The matrices M± 2 R(B�1)⇥(G�1) are defined
as [M�]i,j , g�(B2�i)[G�B + (i� 1)� (j� 1)] and [M+]i,j , g+i[G+ (i� 1)� j)]
for 1  i  (B2 � 1) and 1  j  (G� 1), where the filter g±k are given by g�k ,
b1/2|{0,...,B�1�k} ⇤dL2 (supported in [0 . . . G�1�k]) and g+k , b1/2|{k,...,B�1} ⇤dL2

(supported in {k, . . . G� 1}). Here, the notation a|J refers to the filter a restricted
to the set J of indices, with a|J [k] = a[k] if k 2 J , and a|J [k] = 0 otherwise.

As an illustration, for L2 = D, we have that B = 1 and, hence, simply that
L2 = M. For L2 = D2, we have B = 2 and

L2 =

0

@
C �2C C 0 · · · · · · 0

M

0 · · · · · · 0 C 0 �2C 0 C 0

1

A , (6.32)
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where C ,
q

2�
p

3
6 and C 0 , C(2 +

p
3).

Finally, we introduce the matrix A 2 RN0⇥N1 associated to the boundary con-
dition functionals �0. The constraint �0(

P
k2Z c1[k]'1,k) = 0 leads to N0 linear

constraints on the coefficients c1 = (c1[m1], . . . , c1[M1]), which can be written in
matrix form as Ac1 = 0. Our practical choice of boundary condition functionals �0

is presented in (2.48) in the previous chapter. With this choice, these constraints
simply lead to the N0 first coefficients of c1 to be set to zero, which thus reduces
the dimension of the optimization problem.

These matrices enable an exact discretization of Problem (6.23), as shown in
Proposition 6.4.

Proposition 6.4 (Recasting as a Finite Problem). Let '1,k , �L1(· � k), '2,k ,
�L⇤

2L2(· � k), and let the assumptions in Section 6.5.1 be satisfied. Then, Prob-
lem (6.23) is equivalent to the optimization problem

Vf , arg min
(c1,c2)2RN1⇥RN2

Ac1=0

Jf(c1, c2), (6.33)

where the cost function is given by

Jf(c1, c2) , E(H1c1 + H2c2,y) + �1kL1c1k1 + �2kL2c2k22. (6.34)

The matrices Hi and Li for i 2 {1, 2} are defined in (6.28), (6.29), and (6.30).
This equivalence holds in the sense that there exists a bijective linear mapping from
Vd to Vf

(c1, c2) 7!
⇣
(c1[m1], . . . , c1[M1]), (c2[m2], . . . , c2[M2])

⌘
(6.35)

between their solution sets.

Proof. Let si =
P

k2Z ci[k]'i,k with ci 2 Vi(Z) for i 2 {1, 2}. The filters ci are
assumed to have values determined by the vector ci = (ci[mi], . . . , ci[Mi]) at certain
points. By definition of mi and Mi, the values of ci outside these intervals do not
affect the measurements ⌫(si), and we clearly have that ⌫(si) = Hici. Therefore,
these coefficients solely affect the regularization terms. We now show that, for a
solution (c1, c2) 2 Vd to Problem (6.23), the coefficients are uniquely determined
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by the vectors ci, and that the regularization terms kdL1 ⇤ c1k`1 and hc2, ⇢ ⇤ c2i`2
can thus be expressed exclusively in terms of these vectors.

Concerning the first component, this is proved in Proposition 4.1, which shows
that kL1{s1}kM = kL1c1k1. The additional constraint Ac1 comes from �0(s1) = 0

imposed on the search space V1(Z) of Problem (6.23).
We now consider the regularization term for the component hc2, ⇢ ⇤ c2i`2 . By

Proposition 6.2, we have that ⇢ = g ⇤ g_, and, hence, that hc2, ⇢ ⇤ c2i`2 = hg ⇤ c2, g ⇤
c2i`2 = kg ⇤ c2k2`2 , where g = b1/2 ⇤ dL2 . We also have g ⇤ c2 = b1/2 ⇤ a, where
a = dL2 ⇤ c2 is supported in [1 . . . M2] by definition of the native space V2(Z) given
in (6.27). Since a[n] =

PD2�1
k=0 dL2 [k]c2[n � k], a[n] is entirely determined by the

vector c2 for 1  n M2, which justifies our choice of the space V2(Z). For values
of n outside this interval, there is a unique way of setting the coefficients c2[k] in
order to nullify a[n] and thus obtain that c2 2 V2(Z). For example, c2[M2 + 1] can
be set to nullify a[M2 + 1] based on the (D2 � 1) previous coefficients of c2, and,
similarly, all the c2[n] for n > M2 + 1 can be set recursively to nullify all the a[k]
for all k > M2 +1. The same argument can be made to show that there is a unique
choice c2[n] for n < m2 that nullifies a[k] for all k < 1.

We now compute the values of (g ⇤ c2)[n] in different regimes for n. We have
that (g ⇤ c2)[n] = (b1/2 ⇤ a)[n] =

PB2�1
k=0 b1/2[k]a[n � k] where a is supported in

[1 . . . M2]. For B2  n  M2, this sum is solely affected by the coefficients c2 =
(c2[m2], . . . , c2[M2]), so that the corresponding terms can be written in matrix form
as Mc (the central part of the L2 matrix defined in (6.30)). Outside this interval, for
example for n = M2 +1, we have that (g ⇤ c2)[n] =

P
k2Z b1/2|{1,...,B2�1}[k]a[n�k],

since the k = 0 term is anyway nullified by the fact that a[n] = 0. An analogous
reformulation allows us to have (g ⇤ c2)[n] only depend on the c2 coefficients. The
same reformulation for all the coefficients M2 + 1  n  (M2 + B2 � 1) leads to
the matrix M

+ in (6.30), while a similar argument for coefficients (g ⇤ c2)[n] with
1  n  (B2 � 1) leads to the matrix M

�.
We have thus proved that the solutions (c1, c2) 2 Vd to Problem (6.23) are

uniquely determined by their coefficients ci = (ci[mi], . . . , ci[Mi]) for i 2 {1, 2}, and
that the regularization terms can be written kdL1 ⇤c1k`1 = kL1c1k1 and kg⇤c2k2`2 =
kL2c2k2L2

. This, together with the fact that ⌫(
P

k2Z ci[k]'i,k) = Hici, proves that
Jd(c1, c2) = Jf(c1, c2). Conversely, for any (c1, c2) 2 RN1 ⇥RN2 , there is a unique
extension of these vectors to filters ci 2 Vi(R) such that ci = (ci[mi], . . . , ci[Mi])
and Jd(c1, c2) = Jf(c1, c2). These extensions are explicited in [114, Proposition
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2] for c1 and earlier in this proof for c2. This proves the existence of the bijective
linear mapping between the solution sets Vd and V specified in Proposition 6.4.

The combination of Propositions 6.3 and 6.4 allows us to solve the continuous-
domain infinite-dimensional Problem (6.25) by finding a solution (c⇤1, c

⇤

2) 2 Vf of the
finite-dimensional Problem (6.33). We obtain the corresponding solution of (6.25)
by extending these vectors to digital filters (c⇤1, c

⇤

2) 2 Vd (this extension is unique
as specified by Proposition 6.4), which yields the continuous-domain reconstruction
s⇤ = s⇤1 + s⇤2, where s⇤i ,Pk2Z c⇤d[k]'i,k.

6.5.3 Sparsification Step
Although Problem (6.33) can be solved using standard solvers such as the

alternating-direction method of multipliers (ADMM), there is no guarantee that
such solvers will yield a solution of the desired form specified by Theorem 6.1, i.e.,
s⇤1 is an L1-spline with fewer than (M � N0,1) knots, and s⇤2 is a sum of M ker-
nel functions and a null space element. This is a particularly relevant observation
for the first component since, at fixed second component s⇤2, only extreme-point
solutions s⇤1 of Problem (6.10) take the prescribed form [14]. This problem can
be alleviated by computing a solution (c⇤1, c

⇤

2) to Problem (6.33), and then finding
an extreme point of the solution set c

extr
1 2 arg minc12RN1 Jf(c1, c⇤2), which leads

to a solution (cextr
1 , c⇤2) of the prescribed form. This is achieved by recasting the

problem as a linear program and using the simplex algorithm [116] to reach an
extreme-point solution [45, Theorem 7].

6.6 Experimental Results
We now validate our reconstruction algorithm in a simulated setting.

6.6.1 Experimental Setting
Grid Size

Following Chapters 4 and 5, we rescale the problem by a factor T so that the
interval of interest IT is mapped into [0, 1]. We tune the fineness of the grid (and
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the dimension of the optimization task) by varying T , which amounts to varying
the grid size h = 1/T in the rescaled problem.

Ground Truth

We generate a ground-truth signal sGT = sGT
1 + sGT

2 . The sparse component
sGT
1 is chosen to be an L1-spline of the form (3.2) with few jumps, for which gTV is

an adequate choice of regularization, as demonstrated by (6.11) in our representer
theorem. For the smooth component sGT

2 , we generate a realization of a solution
s2 of the stochastic differential equation L2s2 = w, where w is a Gaussian white
noise with standard deviation �2 by following the method of [163]. The operator
L2 then acts as a whitening operator for the stochastic process s2. The reason
for this choice is the connection between the minimum mean-square estimation of
such stochastic processes and the solutions to variational problems with gTikhonov
regularization kL2{s2}k2L2

[43, 164, 46].

Forward Operator

Our forward model is the Fourier-domain cosine sampling operator of the form
⌫1(s) =

R 1
0 s(t)dt (DC term) and

⌫m(s) =

Z 1

0
cos(!mt + ✓m)s(t)dt (6.36)

for 2  m  M , where the sampling pulsations !m are chosen at random within
the interval (0,!max], and the phases ✓m are chosen at random within the interval
[0, 2⇡). Notice that ⌫m is a Fourier-domain measurement of the restriction of s to
the interval of interest [0, 1], in conformity with the finite-domain assumption in
Section 6.5.1. As discussed in Example 3.3, ⌫m is weak⇤-continuous and thus also
conforms with the assumptions of Theorem 6.1.

For the data-fidelity term, we use the standard quadratic error E(x,y) , 1
2kx�

yk22.
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6.6.2 Comparison with Noncomposite Models
We now validate our new sparse-plus-smooth model against more standard non-

composite models. More precisely, for i 2 {1, 2} we solve the regularized problems

arg min
f2Xi

�
E(⌫(f),y) + �Ri(f)

�
(6.37)

with regularizers R1(f) , kL1{f}kM (sparse model with native space X1 , ML1(R))
and R2(f) , kL2{f}kL2 (smooth model with native space X2 , HL2(R)). We
discretize these problems using the reconstruction spaces Vi(R) described in this
chapter (without restricting V1(R) with the boundary conditions �0). The sparse
model thus amounts to an `1-regularized discrete problem which we solve using
ADMM (see Appendix A), while the smooth model has a closed-form solution that
can be obtained by inverting a matrix.

For this comparison, we choose regularization operators L1 = D and L2 = D2

with M = 50 Fourier-domain measurements (cosine sampling with !max = 100).
We generate the ground-truth signal according to Section 6.6.1, with K1 = 5 jumps
whose i.i.d. Gaussian amplitudes have the variance �2

1 = 1 for sGT
1 . For the smooth

component sGT
2 , we generate a realization of a Gaussian white noise w with the

variance �2
2 = 100, such that L2{sGT

2 } = w. The measurements are corrupted by
some i.i.d. Gaussian white noise n 2 RM so that y = ⌫(sGT) + n. We set the
signal-to-noise ratio (SNR) between ⌫(sGT) and n to be 50 dB. The regularization
parameters are selected through a grid search with h = 1/29 to maximize the SNR
of the reconstructed signal s with respect to the ground truth (defined as SNR
, 10 log10

⇣ R T
0 (sGT(t))2dtR T

0 (s(t)�sGT(t))2dt

⌘
).

The results of this comparison in terms of SNR are shown in Table 6.2 for
varying grid sizes h. For all methods, the SNR values increase when the grid
size decreases, which is to be expected since the grids are embedded. The only
exception is the sparse-plus-smooth reconstruction for the finest grid size, which
is likely due to numerical issues arising from the increased dimension (N ⇡ 211)
of the optimization problem. The effect of the grid size on the quality of the
reconstruction varies between the models: it is almost nonexistent for the smooth-
only model, whereas it is most significant for our sparse-plus-smooth model. Over
all grid sizes, due to the fact that our sparse-plus-smooth signal model matches the
ground truth, our reconstructed signal yields a higher SNR (27.02 dB) than the
sparse-only (23.04 dB) and smooth-only (18.16 dB) models.
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h Sparse plus smooth Sparse only Smooth only
26 18.02 17.72 18.16
27 21.87 21.08 18.16
28 23.46 22.07 18.16
29 27.02 23.01 18.16
210 25.70 23.04 18.16

Table 6.2: SNR values (in dB) of the reconstructed signal with respect to
the ground truth with varying grid size h.

The reconstruction results for the grid size h = 1/29 are shown in Figure 6.2.
Our sparse-plus-smooth reconstruction is qualitatively much more satisfactory. As
can be observed in the zoomed-in section, the sparse-only model is subject to a stair-
casing phenomenon in the smooth regions of the ground-truth signal, a well-known
shortcoming of TV regularization for functions. Conversely, our reconstruction is
remarkably accurate in the smooth regions. Finally, the smooth-only model fails
both visually and in terms of SNR, due to its inability to represent sharp jumps.

6.7 Conclusion
We have introduced a continuous-domain framework for the reconstruction of

multicomponent signals. It assumes two additive components, the first one being
sparse and the other being smooth. The reconstruction is performed by solving a
regularized inverse problem, using a finite number of measurements of the signal.
The form of a solution to this problem is given by our representer theorem. This
form justifies the choice of the search space in which we discretize the problem. Our
discretization is exact, in the sense that it amounts to solving a continuous-domain
optimization problem restricted to our search space. The discretized problem is
then solved using our ADMM-based algorithm, which we validate on simulated
data.
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(a) Sparse-only model: SNR = 23.01 dB with � = 10�9.
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(b) Smooth-only model: SNR = 18.16 dB with � = 10�11.
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(c) Sparse-plus-smooth model: SNR = 27.02 dB with �1 = 8 · 10�7

and �2 = 5 · 10�10.

Figure 6.2: Comparison between our sparse-plus-smooth model and
single-component models with regularization operators L1 = D, L2 = D2,
and M = 50 Fourier-domain measurements.
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Introduction
In the discrete domain, it is well known that finite-dimensional `1 regulariza-

tion can lead to nonunique solutions [21, 165]. However, considering the abundant
literature focusing on `1-based optimization, there are surprisingly few works that
study these cases of nonuniqueness. Conversely, in the compressed sensing (CS)
literature, a host of works focus on the identification of conditions under which
uniqueness of `1-based problems does hold (see the introduction of Part II). How-
ever, the CS framework typically does not assume that the observations are generic,
but that they are generated via a ground-truth signal. Under certain conditions
based on the incoherence of the sensing matrix, this ground-truth signal can then
be recovered as the unique solution to an `1-based optimization problem [31, 32, 8].
Cases of nonuniqueness are thus excluded from such frameworks, which explains
the scarcity of works on this topic.

Our Approach: Generic Observations y 2 RM

However, in practical applications, the sensing matrix is often determined by
the acquisition system and thus cannot be chosen freely. Moreover, the assumption
that the observations are generated via a (nearly) sparse ground-truth signal may
not hold in practice. The same analysis holds true for our continuous-domain total-
variation (TV)-based problems of interest, since the TV norm for measures is the
continuous sparsity-promoting equivalent of the `1 norm. Hence, we take a different
perspective from the traditional CS one by assuming that we are agnostic to how
the observations y are generated: they can be any vector y 2 RM . Our objective
is then to study the solution set of our optimization problems, in particular by
answering the following questions:

— identification of cases of uniqueness based on the observations y;
— whenever uniqueness does not hold, identification of the sparsest solution(s).

Uniqueness Studies for TV-based Optimization
We start by reviewing the existing literature that focuses on the identification

of cases of uniqueness for TV-based regularization. These results are analogous
to discrete CS-type results: the underlying assumption is that the observations
y 2 RM are generated via a sparse measure w0 2 M(K), where M(K) is the
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space of Radon measures (defined in Section 2.2) with K = R or T. We thus have
⌫(w0) ⇡ y, where ⌫ : w 7! ⌫(w) 2 RM is the forward model. The question then
becomes whether w0 can be uniquely recovered, either exactly or in a stable way,
via a TV-based problem such as the basis pursuit in the continuum (BPC):

arg min
w2M(K): ⌫(w)=y

kwkM. (III.1)

In [47], de Castro and Gamboa introduced the concept of extrema Jordan type
measure (see [47, Definition 1]), which gives sufficient conditions on a given signed
(with positive and negative weights) sparse measure to be the unique solution of
a TV-based optimization problem. They also proved that when the ground-truth
measure is nonnegative, k-sparse, and the number of observations is greater or equal
than 2k + 1, then it is the unique solution of (III.1) if the measurement operator ⌫
is defined from a T-system. Note that it has recently been proved [166, 167, 168, 53]
that in the nonnegativity setting, a k-sparse nonnegative measure can be uniquely
recovered from at least 2k+1 measurements and a nonnegativity constraint without
the need for TV minimization.

Candès and Fernandez-Granda also studied the super-resolution problem of re-
covering a ground-truth sparse Radon measure w0 2M(T) from its low-frequency
measurements [49, 62]. They have shown that if the minimal distance between the
spikes of w0 is large enough, then (III.1) has a unique solution, which is w0 itself [13,
Theorem 1.2]. Duval and Peyré identified the so-called nondegenerate source con-
dition [65, Definition 5], under which the uniqueness of the reconstruction together
with the recovery of the support of the underlying ground-truth sparse measure are
shown. These results are based on the key notion of dual certificates, which also
play an important role in our works in this part. This notion has been introduced
for discrete CS problems in [169] and connected to TV-based optimization problems
in [47]. However, to the best of our knowledge, ours are the first works that apply
this type of approach to problems with generalized TV (gTV) regularization, i.e.,
problems similar to (III.1), but with an added regularization operator L.

Outline
In this part, we study the solution set of gTV-based problems by taking our

agnostic approach described above. Note that various existing representer theo-
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rems [87, 14, 61, 89, 95, 22] also take this agnostic approach, and have identified
that gTV-based problems usually lead to nonunique solution. However, due to the
generality of their frameworks, their description of the solution set is limited; in
particular, they do not focus on identifying cases of uniqueness. Here, we study
less general problems which enables a much more precise description of the solu-
tion set. More specifically, we fully characterize cases of uniqueness based on the
observations y, and, in cases of nonuniqueness, we identify the sparsest solution
and design efficient algorithms to reach it. We consider three different formulations
with specific forward models ⌫ and operators L:

— In Chapter 7, we consider the problem of interpolating data points with
second-order TV regularization, i.e., with a sampling forward model ⌫(f) =
(f(x1), . . . , f(xM )) where xm 2 R, and with the second-derivative regular-
ization operator L = D2. In this case, we show that uniqueness is not sys-
tematic, and we design a simple algorithm that reaches the sparsest solution
in all cases.

— In Chapter 8, we consider the same problem with an added Lipschitz con-
straint on the reconstructed signal to favor stable solutions. Once again, we
show that uniqueness is not systematic, and we design an algorithm that
reaches the sparsest solution.

— In Chapter 9, we consider the reconstruction of periodic signals (K = T)
where the forward model ⌫ consists of low-frequency Fourier series coeffi-
cients, and the regularization operator is a generic N0th-order derivative
operator L = DN0 . We prove that this problem always has a unique solu-
tion, and we design a B-spline-based algorithm based on Chapter 4 to solve
it computationally.
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Chapter 7

Interpolation of Data with
Second-Order TV
Regularization

This chapter is based on the following publication [170]:
T. Debarre, Q. Denoyelle, M. Unser, and J. Fageot, “Sparsest Piecewise-Linear

Regression of One-Dimensional Data”, Journal of Computational and Applied Math-
ematics, vol. 406, p. 114044, May 2022.

7.1 Introduction
Regression problems consist in learning a function f that best approximates

some data (xm, ym)Mm=1, where M is the number of data points, in the sense that
f(xm) ⇡ ym. This is typically achieved by parametrizing f with a vector of pa-
rameters ✓ as the parametric function f✓, and then by minimizing some objective
function with respect to ✓. The oldest and most basic form or regression is linear
regression: f is parametrized as a linear (or affine) function. Although this model
has the advantage of being simple, it is very limited due to the fact that many
data distributions are poorly approximated by linear functions, as illustrated by
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Figure 7.1: Examples of reconstructions.

the dotted line example in Figure 7.1. The choice of parametrization f✓ is therefore
crucial, as it must strike an appropriate balance between two conflicting desirable
properties. Firstly, in order to be suitable for a variety of problems, the parametric
model should be flexible enough to represent a large class of functions. In the field
of machine learning, where regression is known as supervised learning, this quest
for universality is for instance underlined by several universal approximation theo-
rems for artificial neural networks [171, 172, 173]. Secondly, the model should be
simple enough so that it generalizes well to input vectors x that are outside the
training set. Indeed, a known pitfall of machine learning algorithms is overfitting,
which happens when the model is unduly complex and fits the training data too
closely [174, Chapter 3]. This leads to poor generalization abilities for out-of-sample
data. This pitfall is often dealt with by adding some regularization to the objective
function, which tends to leads to “simpler” reconstructions. The overarching guid-
ing principle to avoid overfitting is Occam’s razor: the simplest model that explains
the data well will generalize better and should thus be selected.

7.1.1 Problem Formulation

In this chapter, we study the regression (or supervised learning) problem in
one dimension, i.e., f : R ! R and xm, ym 2 R. Instead of parametrizing the
reconstructed function, we formulate the learning problem as a regularized inverse
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problem in a continuous-domain framework. Inspired by their connection (that we
discuss later on) to popular ReLU (rectified linear unit) neural networks, we fo-
cus on reconstructing piecewise-linear splines. Our metric for model simplicity is
sparsity, i.e., the number of spline knots. For regularization purposes, we there-
fore use the total-variation (TV) norm for measures k · kM, which is defined over
the space of bounded Radon measures M(R) (see Section 2.2). As demonstrated
in Theorem 3.3, this norm is known to promote sparse solutions. We formulate
the following optimization problem, which we refer to as the generalized Beurling
LASSO (g-BLASSO)

arg min
f2MD2 (R)

 
MX

m=1

E(f(xm), ym) + �kD2fkM

!
, (g-BLASSO)

where MD2(R) is the native space defined in Section 2.4 and E is a cost func-
tion that penalizes the discrepancy between f(xm) and the data ym 2 R (e.g., a
quadratic loss E(z, y) = 1

2 (z � y)2). We assume that the sampling locations are
ordered, i.e., x1 < · · · < xM . The parameter � > 0 balances the contribution
of the data fidelity and the regularization, and D2 is the second-derivative oper-
ator. The “generalized Beurling LASSO” terminology comes from the Beurling
LASSO (BLASSO), which is used in the Dirac recovery literature [47]. Prob-
lem (g-BLASSO) is a generalization of the BLASSO due to the presence of a regu-
larization operator D2, which is not present in the latter problem. By Theorem 3.3,
the extreme-point solutions of the (g-BLASSO) are piecewise-linear splines of the
form

fopt(x) = b0 + b1x +
KX

k=1

ak(x� ⌧k)+, (7.1)

where x+ = max(0, x) is the ReLU, b0, b1, ak, ⌧k 2 R, and the number of spline
knots K is bounded by K  M � 2. This representer theorem has two important
components:

— the (g-BLASSO) has solutions of the prescribed form, i.e., piecewise-linear
splines. This stems from the choice of the regularization, i.e., the TV norm
of the second derivative;

— the sparsity is bounded by the number of training samples by K M � 2.
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In terms of model simplicity, the bound K  M � 2 is typically uninformative in
machine learning problems: in Figure 7.1, it yields K  M � 2 = 198, which is
clearly much higher than the desired sparsity. However, this bound is independent
of the regularization parameter �, which has a major effect on the sparsity of the
reconstructed signal. Indeed, �! 0 will roughly lead to a learned function f that
interpolates all the data points, with typically close to K = M � 2 knots. At
the other extreme, the limit � ! +1 leads to linear regression and thus sparsity
K = 0 due to the fact that linear functions are not penalized by the regularization.
Therefore, the interesting case is the intermediate regime (as illustrated by the solid
curve in Figure 7.1), in which the overall trend is that the sparsity K decreases as
� increases. Hence, � controls the universality versus simplicity trade-off.

7.1.2 Summary of Contributions and Outline
The above purely qualitative observation is far from telling the whole story. In

particular, it does not explain how � should be chosen in practice. We attempt
to overcome this impediment by giving a full description of the solution set of
the (g-BLASSO). The basis of our analysis is the classical observation that when
E is strictly convex, there exists a unique vector y� = (y�,1, . . . , y�,M ) 2 RM such
that the (g-BLASSO) is equivalent to the constrained problem

arg min
f2MD2 (R): f(xm)=y�,m,

m2{1,...,M}

kD2fkM (g-BPC)

(see for instance [45, Theorem 5]). We refer to this constrained problem as the
generalized basis pursuit in the continuum (g-BPC) 1. Our terminology is inspired
by the (discrete) basis pursuit (BP) [6], which is also a constrained problem; as
for the (g-BLASSO), the “generalization” is due to the presence of a regularization
operator D2, which is absent in the BP. We therefore carry out our theoretical
analysis on the simpler (g-BPC) problem, and we attest that these results apply
to the (g-BLASSO) as well, provided that y� is known. For this analysis, we use
mathematical tools based on duality theory, and we exploit the very specific form
of the so-called dual certificate for our regularization operator D2. We describe
systematically the form of the solution set and identify the set of sparsest solutions.

1. A similar terminology, the “continuous basis pursuit”, is used in a different context in [175,
67].
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The fact that optimization problems with sparsity-promoting regularization some-
times have multiple solutions is often sidestepped in the literature by identifying
specific cases of uniqueness [47, 49, 65, 62]. When it is not, existing works typically
provide the form of certain solutions [87, 14], but they do not characterize cases
of uniqueness nor do they give a complete description of the solution set as we do
here. Concerning our specific problem, it is known that the function that simply
connects the points (x1, y0,1), . . . , (xM , y0,M ) is always a solution to the (g-BPC)
(see [176, Theorem 1] and [177, Proposition 7]). We refer to it as the canonical so-
lution. Building on this result, our contributions on the theoretical and algorithmic
sides concerning the (g-BLASSO) are summarized below.

1. Theory
Our main theoretical contributions are the following.
— In Section 7.3, we fully describe the solution set of the (g-BPC) by spec-

ifying the intervals in which all solutions follow the canonical solution,
and those in which they do not (Theorem 7.1). This allows us to charac-
terize the cases where the (g-BPC) admits a unique solution. When they
differ, we give a geometrical description of the set in which the graph of
all solutions lies in Theorem 7.2.

— When there are multiple solutions, the canonical solution can be made
sparser in certain regions, which is the topic of Section 7.4. More pre-
cisely, in Theorem 7.3, we express the minimum achievable sparsity of
a solution to the (g-BPC) as a simple function of x , (x1, . . . , xM ) and
y0, which we denote by Kmin(x,y0). Concerning the solution set, we
fully describe the set of sparsest solutions of the (g-BPC). In particu-
lar, we characterize the cases of uniqueness, and provide a description
of the sparsest solutions together with the number of degrees of freedom
nfree(x,y0), that we characterize and show to be finite.

— In Section 7.5.1, we extend the results of the first two items to the (g-BLASSO).
This is a consequence of the aforementioned equivalence between the
(g-BLASSO) and the (g-BPC) problems, which is proved in Proposi-
tion 7.7. We also specify the limit value �max, for which any � � �max
amounts to linear regression in Proposition 7.10.

2. Algorithm
These theoretical findings warrant our simple and fast algorithm, presented
in Section 7.5.2, for reaching (one of) the sparsest solution(s) to the (g-BLASSO).
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The algorithm, which is agnostic to uniqueness, is divided in two parts:
first, we compute the y� vector for the (g-BPC) problem by solving a stan-
dard discrete `1-regularized problem. Next, we find a sparsest solution to
the (g-BLASSO) (with sparsity Kmin(x,y�)) by sparsifying its canonical
solution in some prescribed regions that are determined by our theoretical
results. This sparsification step is detailed in Algorithm 7.1 and has com-
plexity O(M).
This two-step algorithm provides a simple and fast way for the user to ju-
diciously choose � by evaluating the data fidelity loss

PM
m=1 E(f(xm), ym)

versus the optimal sparsity Kmin(x,y0)—which depends on �—as a proxy
for the universality versus simplicity trade-off. We illustrate this in our ex-
periments in Section 7.6. We may select � 2 (0,�max], where the limit �! 0
amounts to the (g-BPC) problem and �max is the upper bound mentioned
above. Note that existing algorithms that solve the (g-BLASSO) such as
that introduced in [177] are a lot more complex and computationally expen-
sive. Moreover, to the best of our knowledge, no existing algorithm has the
guarantee of reaching a sparsest solution of the (g-BPC) or the (g-BLASSO).

7.1.3 Related Works

Previous Studies of the (g-BLASSO)

In [178], Pinkus proved that the canonical solution—that simply connects the
data points—is the unique solution to the (g-BPC) in some special cases, a result
that we recover in our analysis. Later, Koenker et al. [176, Theorem 1] and
Mammen and van de Geer [177, Proposition 7] proved that the canonical solution
is indeed a solution to the (g-BPC). These works also propose algorithms to solve
the (g-BLASSO) for any value of �. However, contrary to this chapter, none of the
aforementioned works describe the full solution set of the (g-BPC), nor identifies
its sparsest solutions. Recently, there has been a promising new surge of works on
related problems, both on the theoretical and the algorithmic sides [179, 61, 180,
90, 89, 92, 95]. Several very general theories that incorporate the (g-BLASSO)
and the (g-BPC) and that deal with optimization in Banach spaces with various
differential regularization operators, have also been recently developed; we refer to
our literature review in Section 1.2.4.
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ReLU Networks, Piecewise-Linear Splines, and the (g-BLASSO)

A modern approach to supervised learning is neural networks, which in recent
years have become the gold standard for an impressive number of applications [181].
Many recent papers have highlighted the property that today’s state-of-the-art
convolutional neural networks (CNNs) with rectified linear unit (ReLU) activations
specify an input-output relation f : Rd ! R, where d is the number of dimensions,
that is continuous and piecewise-linear (CPWL) [182, 183]. This result stems from
the fact that the ReLU nonlinearity is itself a CPWL function, as well as, for
instance, the widespread max-pooling operation. In fact, there are indications that
using more general piecewise-linear splines as activation functions could be more
effective than restricting to the ReLU or leaky ReLU [184, 179, 185]. In the one-
dimensional case d = 1, it follows that the learned function of a ReLU network
is a piecewise-linear spline [186], just like the solutions to the (g-BLASSO) given
by (7.1). The trade-off between universality and Occam’s razor is then determined
by the network size and architecture. Many recent papers in the literature have
investigated this connection between ReLU networks and piecewise-linear splines
[187, 188], including universality properties [186, 189, 190]. We also mention [191],
which considers more general spline activation functions.

Moreover, several works have specifically underscored the relevance of the
(g-BLASSO)—or related problems [192]—in machine learning by showing that it is
equivalent to the training of a one-dimensional ReLU network with standard weight
decay [193, 194]. Therefore, although the current trend of overparametrizing neural
networks is somewhat antagonistic to our paradigm of sparsity, our full description
of the solution set of the (g-BLASSO) (including its nonsparse solutions) could be
relevant to the neural network community. Others recent works have designed mul-
tidimensional (d > 1) equivalents of the regularization term kD2fkM and derive
similar connections to neural networks [195, 196].

7.2 Mathematical Preliminaries

The task of recovering a continuous-domain function from finitely many samples
is obviously ill-posed; this issue is commonly addressed by adding a regularization
term. As a regularization norm, we consider k · kM, which is the continuous-
domain counterpart of the `1-norm in the sense that it promotes sparse solutions,
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as demonstrated in Theorem 3.3.

7.2.1 The Native Space MD2(R)
In this section, we recall the definition of the search space MD2(R) of the (g-BPC)

and the (g-BLASSO) problems, and some of its important properties. This recol-
lection is a summary of Section 2.4 in the special case of the second-derivative
operator L = D2. Following (2.33), the native space of D2 is defined as

MD2(R) , {f 2 S 0(R) : D2{f} 2M(R)}, (7.2)

with D2 : S 0(R) ! S 0(R) the second-derivative operator and M(R) the space of
Radon measures defined in (2.18). The space MD2(R) has been specifically studied
in [179, Section 2.2], and is sometimes denoted as BV(2)(R) in the literature. It is
the second-order generalization of the well-known space of functions with bounded
variation.

Next, we introduce the right-inverse operator of D2 : MD2(R)!M(R) defined
in Theorem 2.1, which we call D�2

0 . For the latter, we use the canonical biorthogonal
system for ND2 introduced in Proposition 2.4. The Schwartz kernel (2.36) of D�2

0 ,
which we call g0, is then given by

g0(x, y) , (x� y)+ � (�y)+ + x ((�y)+ � (1� y)+) . (7.3)

By (2.43), any f 2MD2(R) can be uniquely decomposed as

8x 2 R, f(x) = D�2
0 {w}(x) + �0 + �1x, (7.4)

where w 2M(R) and �0,�1 2 R satisfy

w = D2f, �0 = f(0), and �1 = f(1)� f(0). (7.5)

We call the measure w the innovation of f .
Finally, we recall the definition of L-splines, introduced in Section 3.1, for the

special case L = D2. Such splines f are called piecewise-linear splines, and are
given by

f(x) = b0 + b1x +
KX

k=1

ak(x� ⌧k)+, (7.6)
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where b0, b1 2 R, K � is the number of knots, x+ , max(x, 0), the ⌧k 2 R are the
knot locations, and the ak 2 R are the amplitudes. Note that this representation
is different from that of (7.4) (in general, (�0,�1) 6= (b0, b1)); however we favor the
representation (7.6) for splines due to its simplicity.

7.2.2 Problem Formulation and Representer Theorem for
MD2(R)

We now recall our inverse-problem formulations of interest—the (g-BPC) and
the (g-BLASSO)—and the representer theorem from Chapter 3.3 applied to the
special case when L = D2 and the measurement operator ⌫ is of the form ⌫(f) =
(f(x1), . . . , f(xM )).

Let x = (x1, . . . , xM ) 2 RM be a collection of distinct M � 2 ordered sampling
locations and y0 2 RM . The noiseless (g-BPC) problem is formulated as

V0 , arg min
f2MD2 (R)

f(xm)=y0,m, m=1,...,M

kD2fkM. (g-BPC)

Next, we fix � > 0 and y 2 RM , together with a cost function E : R⇥R! R+

such that E(·, y) is strictly convex, coercive, and differentiable for any y 2 R and
� > 0. The noisy (g-BLASSO) problem is then formulated as

V� , arg min
f2MD2 (R)

 
MX

m=1

E(f(xm), ym) + �kD2fkM

!
. (g-BLASSO)

Then, Theorem 3.3 states that for any � � 0 (including 0), V� is nonempty,
convex, and weak⇤ compact in MD2(R), and is the weak⇤ closure of the convex hull
of its extreme points. The latter are all piecewise-linear splines of the form

fextreme(x) = b0 + b1x +
KX

k=1

ak(x� ⌧k)+, (7.7)

where b0, b1 2 R, the weights ak are nonzero, the knots locations ⌧k 2 R are distinct,
and K M � 2.
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Remark 7.1. There is a slight difference in the problem formulations (g-BLASSO)
and (3.31). Indeed, (g-BLASSO) is a special case of (3.31) when the data-fidelity
cost function E : RM ⇥ RM ! R in (3.31) is separable and is applied component-
wise, i.e., E(z,y) =

PM
m=1

eE(zm, ym) where eE : R ⇥ R ! R. Then, if eE(·, y) is
strictly convex, coercive, and differentiable for any y 2 R, E satisfies the conditions
of Theorem 3.3. In this Chapter, we restrict to the separable case for the sake of
clarity, and the notation E (instead of eE) refers to the component-wise loss. How-
ever, all our results still apply under the more general conditions of Theorem 3.3.
Finally, as discussed in Example 3.1, the (g-BPC) is a special case of (3.31) when
E : RM ⇥ RM ! R+ [ {+1} is an indicator function.

Remark 7.2. The applications of Theorem 3.3 to Problems (g-BPC) and (g-BLASSO)
require that the point evaluation f 7! f(x0) be weak⇤ continuous on MD2(R) for
any x0 2 R, which is proved in Proposition 2.3.

7.2.3 Dual Certificates
This section presents the main tools from duality theory for the study of the (g-BPC)

problem, which are at the core of our contributions. Our strategy consists in study-
ing a particular class of continuous functions, called dual certificates, which can be
used individually to certify that an element f 2MD2(R) is a solution of the opti-
mization Problem (g-BPC). More interestingly, from the properties of a given dual
certificate, it is possible to precisely describe the whole structure of the set of solu-
tions (see Theorem 7.1) and, in particular, to determine whether the sparse solution
given by Theorem 3.3 is the unique solution of the problem (see Proposition 7.6).

Before giving the main results of this section (Propositions 7.1 and 7.2), we first
define dual pre-certificates.

Definition 7.1 (Dual Pre-Certificate). We say that a function ⌘ 2 C0(R) is a dual
pre-certificate (for the Problem (g-BPC)) if its norm satisfies k⌘k

1
 1 and if ⌘

is of the form

⌘ =
MX

m=1

cm(xm � ·)+ (7.8)

for some vector c = (c1, . . . , cM ) 2 RM such that hc, 1i = hc, xi = 0 (with 1 ,
(1, . . . , 1) 2 RM ).
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A dual pre-certificate is therefore a piecewise-linear spline. The conditions
hc, 1i = hc, xi = 0 ensure that ⌘ is compactly supported, and is thus an element
of C0(R) (indeed, we have ⌘(x) = �hc,1ix + hc,xi = 0 for any x  x1). We shall
present an explicit construction of such a pre-certificate in Proposition 7.4 with
the piecewise-linear spline ⌘cano. A dual certificate is a pre-certificate that satisfies
an additional condition that ensures that the vector c 2 RM in Definition 7.1 is a
solution of the dual problem of (g-BPC) (see Proposition 7.1).

From (7.4), we know we can parametrize any f 2MD2(R) with a unique element
(w,�0,�1) 2M(R)⇥ R2 via the relation

8x 2 R, f(x) = D�2
0 {w}(x) + �0 + �1x. (7.9)

Dual certificates determine the localization of the support of w when f is a solution
of (g-BPC). To formulate this property mathematically, we require the following
definition which introduces the signed support of a measure (see [65, Section 1.4])
and signed saturation set of a pre-certificate (see [65, Definition 3]).

Definition 7.2 (Signed Support and Signed Saturation Set). Let w 2M(R) and
⌘ 2 C0(R) be a dual pre-certificate in the sense of Definition 7.1. The signed
support of w is defined as

supp
±

(w) , supp(w+)⇥ {1} [ supp(w�)⇥ {�1}, (7.10)

where w+ and w� are positive measures coming from the Jordan decomposition of
w = w+�w�. Moreover from the positive and negative saturation sets of ⌘, defined
as

sat+(⌘) , {x 2 R : ⌘(x) = 1} and sat�(⌘) , {x 2 R : ⌘(x) = �1}, (7.11)

respectively, we define the signed saturation set of ⌘ by

sat±(⌘) , sat+(⌘)⇥ {1} [ sat�(⌘)⇥ {�1}. (7.12)

Note that the sets supp
±

(w), sat+(⌘), sat�(⌘), sat±(⌘) are all closed. A dual
pre-certificate ⌘ is a piecewise-linear spline in C0(R) with norm k⌘kL1  1. Hence,
its signed saturation set is necessarily a union of closed intervals (that can be
singletons).

We can now state the first main result of this section. It characterizes the
solutions of (g-BPC) via the signed support of their innovation using the signed
saturation set of some dual pre-certificate.
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Proposition 7.1 (Dual Certificate). Let x 2 RM be the ordered sampling locations,
and y0 2 RM . An element fopt 2MD2(R) is a solution of (g-BPC) if and only if
fopt satisfies the interpolation conditions fopt(xm) = y0,m for all m 2 {1, . . . , M}
and one can find a dual pre-certificate ⌘ (Definition 7.1) such that

kwk
M

= hw, ⌘i , (7.13)

where w , D2{fopt} is the innovation of fopt. Moreover, the condition (7.13) is
equivalent to the inclusion

supp
±

(w) ⇢ sat±(⌘). (7.14)

The dual pre-certificate ⌘ is then called a dual certificate (for Problem (g-BPC)).

The proof of Proposition 7.1 is given in Appendix 7.A.

Remark 7.3. When fopt 2MD2(R) is a piecewise-linear spline of the form fopt(x) =PK
k=1 ak(x� ⌧k)+ + b0 + b1x for all x 2 R, the condition (7.14) is equivalent to the

following interpolation requirements on the dual pre-certificate ⌘

8k 2 {1, . . . , K}, ⌘(⌧k) = sign(ak). (7.15)

From Proposition 7.1, a dual certificate ⌘ is thus a dual pre-certificate that
certifies that a given fopt 2 MD2(R) is a solution of (g-BPC), i.e., fopt satisfies
fopt(xm) = y0,m for all m 2 {1, . . . , M} and supp

±
(D2fopt) ⇢ sat±(⌘) (or equiva-

lently
��D2fopt

��
M

=
⌦
D2fopt, ⌘

↵
). Once we know that some ⌘ is a dual certificate,

it can be used to check whether any f 2MD2(R) is a solution of (g-BPC). In other
words, contrary to what is seemingly implied in Proposition 7.1, there is no need
to find a new dual pre-certificate for each candidate solution f . This is formulated
in the following proposition.

Proposition 7.2. Let x 2 RM be the ordered sampling locations, y0 2 RM , and
let ⌘ 2 C0(R) be a dual certificate as defined in Proposition 7.1 for the (g-BPC)
problem. Then, an element fopt 2MD2(R) is a solution of (g-BPC) if and only if
fopt satisfies the interpolation conditions fopt(xm) = y0,m for all m 2 {1, . . . , M}
and

supp
±

(w) ⇢ sat±(⌘), (7.16)

or equivalently kwk
M

= hw, ⌘i, where w , D2fopt is the innovation of fopt.
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Proof. The proof of Proposition 7.2 is very similar to the proof of Proposition 7.1,
and is derived from the optimality conditions given in Lemma 7.5.

Let ⌘ be a dual certificate in the sense of Proposition 7.2. By definition of
⌘ (it is in particular a dual pre-certificate in the sense of Definition 7.1) and by
Lemma 7.7, there exists c 2 RM such that ⌘ = ⌫⇤

M
(c) and hc, 1i = hc, xi = 0.

Since ⌘ is a dual certificate, Proposition 7.1 implies that there exists a f̃ 2MD2(R)

satisfying the interpolation conditions and such that
���D2f̃

���
M

=
D
D2f̃ , ⌘

E
. This

implies that c and (w̃, (�̃0, �̃1)) 2 M(R) ⇥ R2, where f̃ = D�2
0 {w̃} + �̃0 + �̃1(·),

satisfy (7.63) and (7.64) i.e., in particular c is a solution of the dual Problem (7.62)
by Lemma 7.5. Using this fixed vector c 2 RM and the decomposition of any
f 2MD2(R) as f = D�2

0 {w}+�0 +�1(·) (see (7.4)), the equivalence in Lemma 7.5
directly yields that fopt is a solution of (g-BPC) if and only if fopt satisfies the
interpolation conditions fopt(xm) = y0,m and

��D2fopt

��
M

=
⌦
D2fopt, ⌘

↵
, which

concludes the proof.

To end this section, we illustrate how the concept of dual certificates can be used
to describe the solution set of (g-BPC). Suppose that we know that some ⌘ is a dual
certificate (we prove in Proposition 7.5 that this is the case of the dual pre-certificate
⌘cano introduced in Proposition 7.4), then the condition supp

±
(w) ⇢ sat±(⌘) of

Proposition 7.2 enforces strong constraints on any candidate solution of (g-BPC).
This is all the more true when sat±(⌘) is a discrete set, which we consider in the
next definition and proposition.

Definition 7.3 (Nondegeneracy). Let x 2 RM be the ordered sampling locations,
y0 2 RM and let ⌘ 2 C0(R) be any dual certificate as defined in Proposition 7.1.
We say that ⌘ is nondegenerate if its signed saturation set sat±(⌘) defined in Def-
inition 7.2 is a discrete set. Otherwise, we say that it is degenerate.

Proposition 7.3 (General Uniqueness Result for (g-BPC)). Let x 2 RM be the
ordered sampling locations and y0 2 RM . If there exists a nondegenerate dual
certificate in the sense of Definition 7.1, then the optimization Problem (g-BPC)
has a unique solution, which is a piecewise-linear spline of the form (7.6) with
K M � 2 knots ⌧k that form a subset of the sampling points {x2, . . . , xM�1}.

Proof. Let fopt 2 MD2(R) be a solution of Problem (g-BPC) of the form (7.7)
(which exists by Theorem 3.3). By (7.4), there exist w 2M(R) and (�0,�1) 2 R2
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such that fopt = D�2
0 {w}+�0 +�1(·). By the assumption of Proposition 7.3, there

exists a nondegenerate dual certificate ⌘, so that by applying Proposition 7.2, we
obtain supp

±
(w) ⇢ sat±(⌘). Moreover, we have that sat±(⌘) ⇢ {x2, . . . , xM�1}

due to the two following facts
— ⌘ =

PM
m=1 cm(xm � ·)+ (as a dual pre-certificate, see Lemma 7.7),

— sat±(⌘) is a discrete set (as ⌘ is nondegenerate).
This implies that ⌘ must be equal to ±1 at the points {x2, . . . , xM�1}, which yields

w =
M�1X

k=2

ak�(·� xk), (7.17)

where the ak 2 R are (possibly zero) weights. In particular, this implies that
fopt is a piecewise-linear spline with at most (M � 2) knots that are a subset of
{x2, . . . , xM�1}. It remains to prove that the coefficients a2, . . . , aM�1,�0,�1 are
uniquely determined to conclude that fopt is the unique solution of (g-BPC).

Since fopt is a solution of (g-BPC), we have that ⌫(fopt) = y0. This implies
that

M�1X

k=2

akgk + �01 + �1x = y0 with gk , ⌫M (�(·� xk)) = (g0(xm, xk))1mM 2 RM .

(7.18)

We now prove that this equation uniquely determines the coefficients a2, . . . , aM�1,�0,�1

by showing that the family (1,x,g2, . . . ,gM�1) is a basis of RM . Indeed, by defi-
nition of g (see (7.3)), we have that

gk = ((xm � xk)+)1mM � (�xk)+1 +
�
(�xk)+ � (1� xk)+

�
x (7.19)

for all k 2 {2, . . . , M�1}. Hence, by writing the matrix of the family (1,x,g2, . . . ,gM�1)
in the canonical basis of RM , subtracting thanks to (7.19) appropriate linear com-
binations of the first two columns (given by the vectors 1 and x) to all of the other
columns and finally subtracting x1 times the first column to the second one, we end
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up with the following matrix
0

BBBBB@

1 0 0 0 . . . 0
1 (x2 � x1) 0 0 . . . 0
1 (x3 � x1) (x3 � x2) 0 . . . 0
...

...
...

...
. . .

...
1 (xM � x1) (xM � x2) (xM � x3) . . . (xM � xM�1)

1

CCCCCA
. (7.20)

The latter is a lower triangular matrix with nonzero coefficients on the diagonal (as
the sampling points xm are pairwise distinct), and is thus invertible, which proves
the desired result.

7.3 The Solutions of the (g-BPC)
In this section, we consider the optimization Problem (g-BPC) where the xm for

m 2 {1, . . . , M} are distinct and ordered sampling locations and y0 2 RM is a fixed
measurement vector. This setting is especially relevant when the measurements
y0,m are exactly the values of the input signal at locations xm (noiseless case). The
solution set is

V0 , arg min
f2MD2 (R)

f(xm)=y0,m, m2{1,...,M}

kD2fkM, (g-BPC)

and is known to admit at least one piecewise-linear solution of the form (7.7) due
to Theorem 3.3.

7.3.1 Canonical Solution and Canonical Dual Certificate
Thereafter, we identify the complete set of solutions (g-BPC). This allows us to

fully determine in which cases this optimization problem admits a unique solution.
Our analysis is based on the construction of a pair (fcano, ⌘cano) 2MD2(R)⇥C0(R)
that satisfies Proposition 7.1, which we call the canonical solution and canonical
dual certificate respectively. The former is simply the function that connects the
points P0,m =

⇥
xm y0,m

⇤T .

Definition 7.4 (Canonical Interpolant). Let x 2 RM be the ordered sampling
locations and y0 2 RM with M � 2. We define fcano as the unique piecewise-linear
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spline that interpolates the data points with the minimum number of knots, i.e.,
such that

— fcano(xm) = y0,m for any m 2 {1, . . . , M}, and
— fcano has at most M�2 knots which form a subset of {xm : 2  m M�1}.

We refer to fcano as the canonical interpolant.

The existence and uniqueness of fcano in Definition 7.4 simply follows from the
number of degrees of freedom of a piecewise-linear spline whose knots are known.
The canonical interpolant is of the form

fcano(x) = a1x + aM +
M�1X

m=2

am(x� xm)+ (7.21)

with a = (a1, . . . , aM ) 2 RM . By definition, fcano is linear on the interval (xm, xm+1)
for m 2 {2, . . . , M�1}. The interpolatory conditions fcano(xm) = ym and fcano(xm+1) =
ym+1 then imply that its slope is sm = y0,m+1�y0,m

xm+1�xm
. Yet from (7.21) we get that

sm = a1 + · · · + am. This implies that a1 = s1 and that am = sm � sm�1 for
m 2 {2, . . . , M �1}. Finally, the equation fcano(x1) = y0,1 yields aM = y0,1�a1x1.
Consequently, the vector a 2 RM in (7.21) is given by

8
><

>:

a1 = y0,2�y0,1

x2�x1

am = y0,m+1�y0,m

xm+1�xm
� y0,m�y0,m�1

xm�xm�1
8m 2 {2, . . . , M � 1}

aM = y0,1 � y0,2�y0,1

x2�x1
x1

. (7.22)

In order to prove that fcano is always a solution of (g-BPC), we construct a
particular dual pre-certificate ⌘cano.

Proposition 7.4 (Canonical Pre-Certificate). Let x 2 RM be the ordered sampling
locations, y0 2 RM , and a 2 RM be the vector defined by (7.22). Then, there exists
a unique piecewise-linear spline ⌘cano given by

⌘cano ,
MX

m=1

cm(xm � ·)+ with c = (c1, . . . , cM ) 2 RM , (7.23)

s.t. hc, 1i = hc, xi = 0, ⌘cano(xm) = sign(am) 8m 2 {2, . . . , M � 1}. (7.24)

with the convention sign(0) = 0. Moreover, since ⌘cano(x) = 0 for x  x1 and
x � xM , we have ⌘cano 2 C0(R) and k⌘canok1 = 1. Hence, ⌘cano is a dual pre-
certificate in the sense of Definition 7.1.
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(a) Canonical solution fcano
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(b) Canonical dual certificate ⌘cano

Figure 7.2: Example of a canonical solution and canonical dual certificate
for M = 6 with xm = m� 1. We have a2 < 0, a3 = 0, a4 < 0, and a5 > 0,
where the am are defined in (7.22).

Proof. The existence and uniqueness of such a spline follows the same argument
as for fcano, applied to the data points (x1 � 1, 0), (x1, 0), (xm, sign(am)) for m 2
{2, . . . , M � 1}, (xM , 0) and (xM + 1, 0). Note that the points (x1 � 1, 0) and
(xM +1, 0) at the boundaries add two additional interpolation constraints to (7.24).
Moreover, they imply that ⌘cano does not have a linear term and is thus of the
form (7.23).

Next, we notice that for x  x1, we have ⌘cano(x) = �hc,xix + hc,1i = 0, due
to hc,xi = hc,1i = 0. For x � xM , (xm�x)+ = 0 for every m 2 {1, . . . , M}, hence
⌘cano(x) = 0. Then, as a piecewise-linear spline with compact support, we must
have ⌘cano 2 C0(R), and ⌘cano clearly reaches its maximum and minimum values at
its knots. Hence, we have that k⌘canok1 = maxm2{1,...,M}|⌘cano(xm)| = 1.

We now prove that the pair (fcano, ⌘cano) 2MD2(R)⇥C0(R) satisfies Proposition
7.1. Although the fact that fcano is a solution to (g-BPC) is known [176, 177] and
is significant in its own right, the key element of this result is the construction of
the dual certificate ⌘cano. The latter will be essential to fully describe the solution
set V0.

Proposition 7.5. Let x 2 RM be the ordered sampling locations and y0 2 RM .
The canonical interpolant fcano defined in Definition 7.4 is a solution of (g-BPC)
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and ⌘cano, defined in Proposition 7.4, is a dual certificate in the sense of Proposition
7.1.

Proof. By construction, the interpolation conditions fcano(xm) = y0,m for all m 2
{1, . . . , M} are satisfied. Moreover, by Proposition 7.4, ⌘cano is a dual pre-certificate.
By Proposition 7.1, it remains to prove that

supp
±

(D2fcano) ⇢ sat±(⌘cano), (7.25)

from which we deduce both that fcano is a solution of (g-BPC) and that ⌘cano is
a dual certificate. Since by construction, we have ⌘cano(xm) = sign(am) for all
m 2 {1, . . . , M} and D2fcano =

PM�1
m=2 am�(·� xm), this proves (7.25).

Due to Proposition 7.5, we call fcano the canonical solution and ⌘cano the canon-
ical dual certificate of the optimization Problem (g-BPC). We show an example
of such functions for given data points (xm, y0,m)m2{1,...,6} in Figure 7.2. Notice
that the points P0,2, P0,3, and P0,4 are aligned, which implies that a3 = 0 (defined
in (7.22)).

7.3.2 Characterization of the Solution Set
Although identifying a solution fcano to (g-BPC) is an important first step,

this solution is not unique in general. We characterize the case of uniqueness in
Proposition 7.6, and then provide a complete description of the solution set when
the solution is not unique in Theorem 3.3. We shall see that the canonical dual
certificate ⌘cano plays an essential role regarding these issues.

Proposition 7.6 (Uniqueness Result for (g-BPC)). Let x 2 RM be the ordered
sampling locations and y0 2 RM . Then, the following conditions are equivalent.

1. (g-BPC) has a unique solution.
2. The canonical dual certificate ⌘cano (defined in Proposition 7.4) is nondegen-

erate (see Definition 7.3).
3. For all m 2 {2, . . . , M � 2}, amam+1  0, where a 2 RM is given by (7.22).

Proof. The equivalence 2. , 3. comes from the fact that ⌘cano is nondegenerate if
and only if it never saturates at 1 or �1 between two consecutive knots. This is
equivalent to Item 3 because for all m 2 {2, . . . , M � 1}, ⌘cano(xm) = sign(am).
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The implication 2.) 1. is given by Proposition 7.3. We now prove the contra-
position of the reverse implication 1.) 2. We thus assume that ⌘cano is degenerate,
and wish to prove that (g-BPC) has multiple solutions. Using Item 3, there exists
an index m 2 {2, . . . , M � 2} such that amam+1 > 0. We now invoke the follow-
ing lemma (illustrated in Figure 7.3) that plays an important role throughout this
chapter.

Lemma 7.1. Let x 2 RM be the ordered sampling locations, and y0 2 RM with
M � 4. Let m 2 {2, . . . , M � 2} be an index such that amam+1 > 0, where a 2 RM

is defined as in (7.22). Then, the lines (P0,m�1, P0,m) and (P0,m+1, P0,m+2) are
intersecting at a point eP =

⇥
⌧̃ ỹ

⇤T such that xm < ⌧̃ < xm+1. Moreover, the
piecewise-linear spline fopt defined by

fopt(x) ,

8
><

>:

y0,m�y0,m�1

xm�xm�1
(x� xm�1) + y0,m�1 xm < x  ⌧̃

y0,m+2�y0,m+1

xm+2�xm+1
(x� xm+1) + y0,m+1 ⌧̃ < x < xm+1

fcano(x) x 62 (xm, xm+1)

, (7.26)

which has no knot at xm or xm+1, is a solution of (g-BPC).

Proof. Let I0 = {2, . . . , M � 1} \ {m, m + 1}. We then define

fopt(x) , a1x + aM +
X

m02I0

am0(x� xm0)+ + ã(x� ⌧̃)+, (7.27)

where ã , am + am+1 and ⌧̃ , amxm+am+1xm+1

ã . By definition, ⌧̃ is a barycenter
of xm and xm+1 with weights am

ã and am+1

ã . Yet am and am+1 have the same
(nonzero) signs, which implies that these weights are in the interval (0, 1) and
thus that ⌧̃ 2 (xm, xm+1). Yet fopt has no knot at xm and xm+1, so it must
follow the line (P0,m�1, P0,m) in the interval [xm, ⌧̃ ], and the line (P0,m+1, P0,m+2)
in the interval [⌧̃ , xm+1], which conforms with the first two first lines in (7.26).
Due to the continuity of fopt, these lines are therefore intersecting at the point
eP =

⇥
⌧̃ ỹ

⇤T
=
⇥
⌧̃ fopt(⌧̃)

⇤T .
Next, for x  xm, we have am(x� xm)+ + am+1(x� xm+1)+ = ã(x� ⌧̃)+ = 0.

Similarly, for x � xm+1, we have am(x � xm)+ + am+1(x � xm+1)+ = ã(x �
⌧̃)+ = ã(x � ⌧̃) since x � ⌧̃ . Therefore, for any x 62 (xm, xm+1), we have
fcano(x) = fopt(x), which conforms with the third line in (7.26). This also im-
plies that fopt(xm) = fcano(xm) = y0,m for all m 2 {1, . . . , M}. Moreover, we have
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kD2fcanokM =
PM�1

m=2 am =
P

m2I0
am + ã = kD2foptkM. Therefore, fopt has the

same measurements and regularization cost as fcano, which implies that it is also a
solution of (g-BPC).

Since fopt defined in Lemma 7.1 is a solution to the (g-BPC) such that fopt 6=
fcano, the (g-BPC) has multiple solutions, which concludes the proof.

To the best of our knowledge, Proposition 7.6 is a new result. A similar unique-
ness result is presented in [178, Theorem 4.2], but with more restrictive conditions
than Item 3. It follows from Proposition 7.6 that when M = 3, the solution of
the (g-BPC) is always unique because the certificate is always nondegenerate, and
is given by fcano. We go much further in Theorem 7.1 by providing the full charac-
terization of the solution set when M � 4.

Theorem 7.1 (Characterization of the Solution Set of the (g-BPC)). Let x 2 RM

be the ordered sampling locations and y0 2 RM with M � 4, and let fcano and
⌘cano be the functions defined in Definition 7.4 and Proposition 7.4 respectively. A
function fopt 2MD2(R) is a solution of the (g-BPC) if and only if fopt(xm) = y0,m

for m 2 {1, . . . , M}, and the following conditions are satisfied for m 2 {2, . . . , M �
2}

1. fopt = fcano in [xm, xm+1] if |⌘cano| < 1 in (xm, xm+1);
2. fopt is convex in [xm�1, xm+2] if ⌘cano = 1 in [xm, xm+1];
3. fopt is concave in [xm�1, xm+2] if ⌘cano = �1 in [xm, xm+1];
4. fopt = fcano in (�1, x2) and (xM�1, +1).

Proof. Let fopt be a solution of the (g-BPC). According to Proposition 7.5, ⌘cano is a
dual certificate. According to Proposition 7.2, we therefore have that supp

±
(D2fopt) ⇢

sat±(⌘cano), meaning that D2fopt = 0 on the complement sat±(⌘cano)c of sat±(⌘cano).
In particular, we have that (�1, x2] ⇢ sat±(⌘cano)c, hence fopt is linear on this in-
terval. The interpolation constraints fopt(x1) = fcano(x1) and fopt(x2) = fcano(x2)
then imply that fopt = fcano on (�1, x2]. The same argument holds for the interval
[xM�1, +1) and any interval (xm, xm+1) on which ⌘cano does not saturate.

Assume now that [xm, xm+1] ⇢ sat+(⌘cano); that is, ⌘cano = 1 on [xm, xm+1].
We use the Jordan decomposition of D2fopt = w = w+ � w� where w+ and
w� are positive measures. By (7.14), we know that w� = 0 on [xm, xm+1] be-
cause its support is included in sat�(⌘cano). Hence, on this interval, D2fopt =
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w = w+ is a positive measure, implying that Dfopt is increasing and therefore
that fopt is convex over [xm, xm+1]. Now, if (xm�1, xm) ⇢ sat+(⌘)c \ sat�(⌘)c

then, as above, D2fopt|(xm�1,xm) = 0. Otherwise, by continuity of ⌘cano, we have
(xm�1, xm) ⇢ sat+(⌘cano) hence D2fopt|(xm�1,xm) � 0. As a result fopt is convex
over (xm�1, xm+1]. The same argument proves that fopt is convex over [xm, xm+2),
and therefore on the whole interval (xm�1, xm+2).

Conversely, suppose that fopt satisfies all the conditions of Theorem 7.1. We
now prove that it is a solution of the (g-BPC). By Proposition 7.2, it only remains
to prove that fopt satisfies supp

±
(D2fopt) ⇢ sat±(⌘cano) since, by construction, we

have fopt(xm) = y0,m. By definition of ⌘cano, we have D2fopt = 0 on sat+(⌘cano)c \
sat�(⌘cano)c (because D2fopt is equal to fcano which is linear on that set). Moreover,
we have D2fopt � 0 on sat+(⌘cano) (because by assumption, fopt is convex over
intervals where ⌘cano = 1) and D2fopt  0 on sat�(⌘cano) (because fopt is concave
on intervals where ⌘cano = �1). This implies that supp w+ ⇢ sat+(⌘cano) and
supp w� ⇢ sat+(⌘cano) where D2fopt = w+�w� is again the Jordan decomposition
of D2fopt. Finally, as expected, we have that

supp
±

(D2fopt) = supp w+ ⇥ {1} [ supp w� ⇥ {�1}
⇢ sat+(⌘cano)⇥ {1} [ sat�(⌘cano)⇥ {�1}
= sat±(⌘cano), (7.28)

hence fopt is a solution of the (g-BPC).

To illustrate Theorem 7.1, a simple example with M = 4 data points for which
the solution is not unique is given in Figure 7.1. Indeed, the canonical dual certifi-
cate saturates at -1 in the interval [1, 2]. Therefore, by Theorem 7.1, any function
that coincides with fcano in R\ [1, 2] and that is concave in the interval [0, 3] is a so-
lution. This includes the sparsest solution (with a single knot), as well as nonsparse
solutions, e.g., with a quadratic regime in [1, 2] as in Figure 7.3.

Even when the (g-BPC) has infinitely many solutions, we are able to delimit the
geometric domain that contains the graphs of all solutions by exploiting the local
convex/concavity. We recall that P0,m = [xm y0,m]T for m 2 {1, . . . , M}, and that
for A, B 2 R2, we denote by (A, B) the line joining A and B. Then, for M � 4, we
consider the set of indices

X , X (x,y0) ,
�
m 2 {2, . . . , M � 2}; amam+1 > 0

 
, (7.29)
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Figure 7.3: Example with M = 4 of a nonunique solution (⌘cano saturates
at -1). An example of a nonsparse solution with a quadratic regime in [1, 2]
is given.

where we recall that am = y0,m+1�y0,m

xm+1�xm
� y0,m�y0,m�1

xm�xm�1
(see (7.22)). The slope con-

dition amam+1 > 0 in (7.29) is equivalent to the fact that the lines (P0,m�1, P0,m)
and (P0,m+1, P0,m+2) are not parallel (otherwise we would have that am = �am+1,
hence amam+1  0) and that their intersection point, that we denote by ePm =
[⌧̃m ỹm]T , is such that xm  ⌧̃m  xm+1 according to Lemma 7.1. We can thus
introduce the triangles �m, whose vertices are the points P0,m, ePm, and P0,m+1.
Theorem 7.2 makes the link between the graph of any solution fopt 2MD2(R) of
the (g-BPC), the graph of fcano and the triangles �m.

Theorem 7.2 (Geometric Domain of the Graph of Solutions of the (g-BPC)). Let
x 2 RM be the ordered sampling locations and y0 2 RM with M � 4. Then, we
have

[fopt2V0 G(fopt) = G(fcano) [ ([m2X�m) , (7.30)

where fcano is defined in Definition 7.4, X is defined in (7.29), and the �m triangles
are defined in the above paragraph.

Proof. Let fopt 2 V0. We fix m 2 {2, M � 2}. First, as we have seen in the proof
of Theorem 7.1, if amam+1  0, then fopt = fcano on [xm, xm+1], and the graph of
fopt in this interval is equal to the one of fcano. Assume now that amam+1 > 0.
We now show that {(x, fopt(x)) : x 2 [xm, xm+1]} ⇢ �m. The slope condition
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amam+1 > 0 implies that ⌘cano is degenerate and that ⌘cano = ±1 is constant over
[xm, xm+1]. Assume for instance that the value is 1, in which case fopt is convex
over [xm�1, xm+2] according to Theorem 7.1.

We shall use the following well-known fact on convex functions. Fix a < b < c
and assume that f is convex over [a, c]. Then, f is below its arc between a and b

on (a, b), that is, f(x)  f(b)�f(a)
b�a (x � a) + f(a) for any x 2 (a, b). Moreover, f

is above the same arc over (b, c), that is, f(x) � f(b)�f(a)
b�a (x � a) + f(a) for any

x 2 (b, c).
Let x⇤ 2 [xm, xm+1]. By convexity, fopt is below its arc between xm and xm+1.

Hence, we have that

fopt(x
⇤)  y0,m+1 � y0,m

xm+1 � xm
(x⇤ � xm) + y0,m. (7.31)

Moreover, the convexity over [xm�1, x⇤] implies that fopt(x⇤) is above the arc of
fopt between xm�1 and xm. This implies that

fopt(x
⇤) � y0,m � y0,m�1

xm � xm�1
(x⇤ � xm�1) + y0,m�1. (7.32)

A similar argument over [x⇤, xm+2] implies that

fopt(x
⇤) � y0,m+2 � y0,m+1

xm+2 � xm+1
(x⇤ � xm+1) + y0,m+1. (7.33)

The conditions (7.31), (7.32), and (7.33) are precisely equivalent to (x⇤, fopt(x⇤)) 2
�m, since the three linear equations delineate this domain in this case. The same
proof applies when ⌘cano = �1 over [xm, xm+1] by using concavity instead of con-
vexity. This proves that G(fopt) ⇢ G(fcano) [ ([m2X�m) for every fopt 2 V0, and
hence the direct inclusion in (7.30).

For the reverse inclusion, we already know that fcano 2 V0, therefore it suffices to
show that, for any m 2 X and any (x⇤, y⇤) 2 �m, there exists a solution fopt 2 V0

such that fopt(x⇤) = y⇤. As before, since m 2 X , we know that ⌘cano = ±1 on
[xm, xm+1] and we can assume without loss of generality that the value is 1. Then,
any solution is convex and satisfies the relations (7.31), (7.32), and (7.33). By
convexity of V0, it suffices to show the result for (x⇤, y⇤) in the boundary of �m,
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which is delimited by the relations
y0,m+1 � y0,m

xm+1 � xm
(x⇤ � xm) + y0,m = y⇤, or (7.34)

y0,m � y0,m�1

xm � xm�1
(x⇤ � xm�1) + y0,m�1 = y⇤, or (7.35)

y0,m+2 � y0,m+1

xm+2 � xm+1
(x⇤ � xm+1) + y0,m+1 = y⇤. (7.36)

The solution fcano is such that fcano(x⇤) = y0,m+1�y0,m

xm+1�xm
(x⇤�xm)+y0,m = y⇤, hence

any (x⇤, y⇤) satisfying (7.34) is attained by a solution (the canonical one) in V0.
Assume that (x⇤, y⇤) satisfies (7.35) (the case of (7.36) follows the same argument).
We construct fopt as follows. First, fopt(x) = fcano(x) for any x /2 (xm, xm+1).
Then, we set

fopt(x) =
y0,m � y0,m�1

xm � xm�1
(x� xm�1) + y0,m�1 (7.37)

for x 2 (xm, x⇤]. In particular, f(x⇤) = y⇤, and fopt is linear on [xm, x⇤]. Finally,
we impose that fopt is linear on [x⇤, xm+1], which is equivalent to the relation

fopt(x) =
y0,m+1 � y⇤

xm+1 � x⇤
(x� x⇤) + y⇤ (7.38)

for any x 2 [x⇤, xm+1]. We then claim that fopt 2 V0, the argument being very
similar to the one of Lemma 7.1. Indeed, to show this, it suffices to remark that
fopt, which is piecewise-constant and coincides with fcano outside of (xm, xm+1), is
convex over [xm�1, xm+2] (this is guaranteed by the slope condition amam+1 > 0
and the construction of fopt). According to Theorem 7.1, this implies that fopt 2 V0,
with fopt(x⇤) = y⇤. This finally shows that (x⇤, y⇤) 2 [fopt2V0G(fopt), which
proves (7.30).

The relation (7.30) reveals the smallest possible geometric domain containing
all the graphs of the solutions of the (g-BPC). To obtain a solution of the (g-BPC),
one just needs to follow the graph of fcano outside the triangles �m and take a
convex or concave function inside them. An example of this domain is given in
Figure 7.4 with M = 5 and #X = 2 triangles (this same example is treated further
later in Figure 7.6). Next, Section 7.4 is dedicated to the study of the sparsest
piecewise-linear solutions of the (g-BPC).
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Figure 7.4: Example with M = 5 of the geometric domain [fopt2V0G(fopt)
containing all the solutions to the (g-BPC). We have X = {2, 3} and thus
two triangles �m; all solutions follow fcano everywhere else.

7.4 The Sparsest Solution(s) of the (g-BPC)

7.4.1 Characterization of the Sparsest Solution(s)
We have already identified the situations where the (g-BPC) admits a unique so-

lution, in which case it is the canonical solution introduced in Definition 7.4. When
the solution is not unique, Theorem 3.3 ensures that the extreme-point solutions
are piecewise-linear functions with at most K � 2 knots, and Theorem 7.1 gives a
complete description of the solution set. In this section, we go further by providing
a complete answer to the following questions:

— what is the minimal number of knots of a solution of the (g-BPC)?
— what are the sparsest solutions, i.e., the ones reaching this minimum number

of knots?
These questions are addressed in Theorem 7.3. Let ⌘cano be defined as in Proposi-
tion 7.4 for fixed values of x,y0 2 RM , and let

Isat ,
n

m 2 {2, . . . , M � 1} : ⌘cano(xm) = ±1 and ⌘cano(xm) 6= ⌘cano(xm�1)
o

= {s1, . . . , sNs} with s1 < · · · < sNs . (7.39)
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In other words, Ns = #Isat corresponds to the number of times ⌘cano reaches ±1.
Next, let ↵n 2 N for n 2 {1, . . . , Ns} be the number of consecutive intervals starting
from xsn in which ⌘cano saturates at ±1, i.e.,

↵n , min
�
k 2 N : ⌘cano(xsn+k+1) 6= ⌘cano(xsn)

 
. (7.40)

In what follows, dxe is the smallest integer larger or equal to x 2 R.

Theorem 7.3 (Sparsest Solutions of the (g-BPC)). Let x 2 RM be the ordered
sampling locations, y0 2 RM with M � 4. Concerning the minimum sparsity of a
solution of the (g-BPC), the following hold.

1. The lowest possible sparsity ( i.e., number of knots) of a piecewise-linear
solution of the (g-BPC) is

Kmin(x,y0) =
NsX

n=1

⇠
↵n + 1

2

⇡
, (7.41)

where the ↵n are defined in (7.40), and Ns = #Isat where Isat is defined
in (7.39).

2. There is a unique sparsest solution of the (g-BPC) if and only if none of the
↵n are nonzero even numbers.

3. If one or more ↵n > 0 are even, then there are uncountably many sparsest
solutions to the (g-BPC). The number of degrees of freedom nfree(x,y0) of
the set of sparsest solutions is equal to the number of even ↵n coefficients,
that is,

nfree(x,y0) =
NsX

n=1

2N�1
(↵n). (7.42)

More precisely, for each saturation region of ⌘cano, fixing a single knot within
a certain admissible segment uniquely determines the other knots within the
saturation region.

Proof. Using Theorem 7.1, for any fopt 2 V0, we have fopt(x) = fcano(x) for any x
such that ⌘cano(x) 6= ±1. We now focus on regions where ⌘cano(x) = ±1. For all
n 2 {1, . . . , Ns}, fcano has ↵n + 1 knots in the interval [xsn , xsn+↵n ]. In order to
construct one of the sparsest solutions, we must therefore replace these ↵n+1 knots
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with as little knots as possible in each saturation region, since all solutions must
coincide with fcano outside these regions. In order to lighten the notations, in what
follows, we focus on a single saturation region determined by a fixed n 2 {1, . . . , Ns}
and we write ↵ , ↵n and s , sn.

Similarly to the proof of Proposition 7.6, a piecewise-linear spline f that coin-
cides with fcano outside the interval [xs, xs+↵] must be of the form

f(x) = fcano(x)�
↵X

n0=0

as+n0(x� xs+n0)+ +
PX

p=1

ãp(x� ⌧̃p)+, (7.43)

where ãp 2 R, ⌧̃p 2 [xs, xs+↵] such that ⌧̃1 < · · · < ⌧̃P and P is the number of knots
of f in this interval. We then prove the following lemma.

Lemma 7.2. If f in (7.43) satisfies the constraints f(xm) = y0,m for all m 2
{1, . . . , M}, then the number of knots P in [xs, xs+↵] satisfies P � d↵+1

2 e.

Proof. Lemma 7.2 is trivially true for ↵ = 0, since we must have f = fcano and thus
P = 1. Assume now that ↵ > 0. Firstly, we show that we must have ⌧̃1 2 [xs, xs+1).
Assume by contradiction that ⌧̃1 � xs+1: then, f has no knot in the interval
(xs�1, xs+1). Yet f must satisfy the interpolation constraints f(xm) = y0,m for
all m 2 {1, . . . , M}, which implies that the points P0,s�1, P0,s, and P0,s+1 are
aligned. Therefore, fcano has a weight as = 0 (defined in (7.22)) which implies
that ⌘cano(xs) = 0, which contradicts the assumption ⌘cano(xs) = ±1. We can then
prove in a similar fashion that ⌧̃P 2 (xs+↵�1, xs+↵] when ↵ > 1.

Next, we show that for ↵ � 2, we have

8n0 2 {1, . . . ,↵� 1}, 9p 2 {1, . . . , P} such that ⌧̃p 2 (xs+n0�1, xs+n0+1), (7.44)

i.e., there must be a knot in all blocks of two consecutive saturation intervals. We
assume by contradiction that this is not the case. Similarly to above, this implies
that P0,s+n0�1, P0,s+n0 , and P0,s+n0+1 are aligned and thus that ⌘cano(xs+n0) = 0,
which yields a contradiction.

Lemma 7.2 immediately follows from the constraints ⌧̃1 2 [xs, xs+1) and ⌧̃P 2
[xs+↵�1, xs+↵] for ↵  2. For ↵ > 2, by the two aforementioned constraints, f
must have at least two knots in the first and last saturation intervals [xs, xs+1)
and (xs+↵�1xs+↵] respectively. Next, consider the interval [xs+1, xs+↵�1], which
consists of the central ↵�2 consecutive saturations. Using (7.44), this interval must
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contain at least b↵�2
2 c knots, which yields the lower bound P � 2+b↵�2

2 c = d↵+1
2 e

(the last equality can easily be verified for every ↵ 2 N).

The following lemma then states that the bound in Lemma 7.2 is tight.

Lemma 7.3. The lower bound in Lemma 7.2 is always reached, i.e., there exists
a piecewise-linear spline fopt 2 V0 of the form (7.43) with P = d↵+1

2 e knots in
[xs, xs+↵]. If ↵ is odd or ↵ = 0, then fopt is unique. If ↵ > 0 is even, then there
are uncountably many such functions fopt.

Proof. Lemma 7.3 is trivially true for ↵ = 0, i.e., when no saturation occurs.
Indeed, the saturation interval is then reduced to the point {xs}, and the only
solution fopt 2 V0 of the form (7.43) is fopt = fcano for which P = 1.

Assume now that ↵ = 2k + 1 is odd. The bound in Lemma 7.2 then reads
P � k + 1. Similarly to the proof of Proposition 7.6, we construct a function fopt

of the form (7.43) with P = k + 1 and
8
>>>><

>>>>:

ã1 , as + as+1 and ⌧̃1 , asxs+as+1xs+1

ã1
;

ã2 , as+2 + as+3 and ⌧̃2 , as+2xs+2+as+3xs+3

ã2
;

...
ãk+1 , as+2k + as+2k+1 and ⌧̃k , as+2kxs+2k+as+2k+1xs+2k+1

ãk+1
.

(7.45)

Since the as, . . . , as+↵ all have the same (nonzero) sign, the ⌧̃i, i = 1, . . . , k + 1,
are all barycenters with positive weights, which implies that ⌧̃i 2 (xs+2i, xs+2i+1).
Then, as in the proof of Proposition 7.6, replacing the knots at xs+2i and xs+2i+1

in fcano by a single knot at ⌧̃i does not change the expression of fopt outside the
interval (xs+2i, xs+2i+1), which implies that all the constraints fopt(xm) = y0,m for
all m 2 {1, . . . , M} are satisfied.

Next, let Is = {1, . . . M} \ {s, . . . , s + ↵} be the set of indices outside our
interval of interest. Since as, . . . , as+↵ and thus ã1, . . . , ãk+1 all have the same sign,
we have kD2foptkM =

P
m2Is

|am| + |
Pk+1

i=1 ãi| =
P

m2Is
|am| + |

P↵
n=0 as+n| =

kD2fcanokM, which together with the interpolation constraints implies that fopt 2
V0.

To show the uniqueness, consider once again a function fopt of the form (7.43)
with P = k + 1 and ⌧̃1 < · · · < ⌧̃k+1. We then invoke Lemma 7.2, which stipulates
that there must be knots in the first and last saturation intervals as well as every



7.4 The Sparsest Solution(s) of the (g-BPC) 173

two consecutive saturation intervals. The only way to achieve this is to have ⌧̃i 2
(xs+2i, xs+2i+1), i = 0, . . . , k. The intervals (xs+2i�1, xs+2i) for all i 2 {1, . . . , k}
thus have no knot, which implies that in these intervals, fopt must follow the line
(P0,s+2i�1, P0,s+2i). The knots are then necessarily the intersection of these lines,
which yields the solution given in (7.45). The latter is therefore the unique function
in V0 with P = k+1 knots in the interval [xs, xs+↵]. An example of such a sparsest
solution is shown in Figure 7.5 with M = 6 and ↵ = 3 consective saturation
intervals.

Assume now that ↵ = 2k is even, with k > 0. The bound in Lemma 7.2 then
reads P � k + 1. By Lemma 7.1, the intersection eP =

⇥
⌧̃ ỹ

⇤T between the lines
(P0,s�1, P0,s) and (P0,s+1, P0,s+2) exists and satisfies ⌧̃ 2 (xs, xs+1). Then, let eP1 =⇥
⌧̃1 ỹ1

⇤T be any point on the line segment [P0,s, eP], i.e., with ⌧̃1 2 [xs, ⌧̃ ]. Then,
we define eP2 as the intersection between the lines (eP1, P0,s+1) and (P0,s+2, P0,s+3).
Similarly, if ↵ � 4, for every i 2 {3, . . . , k + 1}, we define ePi =

⇥
⌧̃i ỹi

⇤T as the
intersection between the lines (P0,s+2i�4, P0,s+2i�3) and (P0,s+2i�2, P0,s+2i�1). Due
to a similar barycenter argument as in (7.45), these intersections are well defined
and satisfy ⌧̃i 2 (xs+2i�3, xs+2i�2). Let fopt be the piecewise-linear spline that
coincides with fcano outside the interval (xs, xs+↵), and that connects the points
P0,s�1, eP1, . . ., ePk+1, and P0,s+↵ in that interval. By construction, fopt satisfies the
constraints fopt(xm) = y0,m, m 2 {1, . . . , M}. Moreover, once again in a similar
manner to (7.45), we have that kfoptkM = kfcanokM, which implies that fopt 2 V0.
Finally, fopt is of the form (7.43) with the lowest possible sparsity P = k + 1 in
the interval [xs, xs+↵] (by Lemma 7.2). Yet there are uncountably many possible
choices of eP1 (it can be any point on a non-singleton line segment). All of these
choices lead to a different solution fopt 2 V0 that is uniquely defined, since the
choice of eP1 specifies eP2, . . . , ePk+1. This proves that there are uncountably many
solutions of the (g-BPC) with sparsity k +1 in [xs, xs+↵], and that there is a single
degree of freedom for the choice of these k+1 knots. An example of such a sparsest
solution is shown in Figure 7.6 with M = 5 and ↵ = 2 consecutive saturation
intervals. In our algorithm, we simply choose eP1 = P0,s, which yields a function
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fopt of the form (7.43) with
8
>>>><

>>>>:

ã1 , as and ⌧̃1 , xs;

ã2 , as+1 + as+2 and ⌧̃2 , as+1xs+1+as+2xs+2

ã2
;

...
ãk+1 , as+2k�1 + as+2k and ⌧̃k , as+2k�1xs+2k�1+as+2kxs+2k

ãk+1
.

(7.46)

Theorem 7.3 then directly derives from Lemma 7.3 applied independently to
each saturation interval [xsn , xsn+↵n ] for n 2 {1, . . . , Ns}. Note that Lemma 7.3
also applies when no saturation occurs, i.e., ↵n = 0. A sparsest solution of
the (g-BPC) thus coincides with a function of the form (7.43) constructed in
Lemma 7.3 in each of these intervals, and with fcano outside these intervals. Fi-
nally, since the behavior of a solution in each saturation interval does not affect
its behavior outside of it, the number of degrees of freedom in the set of sparsest
solutions of the (g-BPC) is simply the sum of the number of degrees of freedom
in each saturation interval. Yet by Lemma 7.3, there are no degrees of freedom in
intervals such that ↵n is odd (a sparsest solution is uniquely determined on that
interval), and there is one when ↵n is even. Therefore, the total number of degrees
of freedom of the set of sparsest solutions of the (g-BPC) is equal to the number of
even values of ↵n for n 2 {1, . . . , Ns}.

Illustrations of its Items 2. and 3. with a single saturation region (i.e., Ns = 1)
are given in Figures 7.5 and 7.6 respectively. In Figure 7.5, the unique sparsest
solution is shown. In Figure 7.6, any point eP1 in the segment that connects the
points P0,2 and eP yields one of the sparsest solutions, with a uniquely determined
second knot eP2. In the latter example, there is thus a single degree of freedom
nfree(x,y0) in the set of sparsest solutions to the (g-BPC).

7.4.2 Algorithm for Reaching a Sparsest Solution
The results of Theorem 7.3 suggest a simple yet elegant algorithm for construct-

ing a sparsest solution of the (g-BPC) for given sampling locations x = (x1, . . . , xM )
and data y0 = (y0,1, . . . , y0,M ). The pseudocode is given in Algorithm 7.1, which
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(a) Sparsest solution
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Figure 7.5: Example with M = 6 and ↵ = 3 consecutive saturation
intervals of ⌘cano at -1. The unique sparsest solution has P = 2 knots.

applies the sparsifying procedure described in Lemma 7.3 in every saturation inter-
val. The proof of Theorem 7.3 guarantees that the output f⇤ of Algorithm 7.1 is
indeed a sparsest solution to the (g-BPC), with sparsity Kmin(x,y0) as defined in
Theorem 7.3. The following observations can be made concerning Algorithm 7.1.

— In the cases where the sparsest solution is not unique, the choice of solution
specified by (7.46) (which is not the one shown in Figure 7.6) is guided by
simplicity. However, it is an arbitrary choice that can be adapted depending
on the application.

— Notice that the xm such that ⌘cano(xm) = 0 need not be included in the
vector of knots x

0 built in the algorithm, since we have am = 0. Therefore,
there is in fact no knot at xm in the canonical solution, which implies that
the sparsity of fcano is strictly less than M � 2. This corresponds to align-
ment cases of the data points, i.e., the points P0,m�1, P0,m, and P0,m+1 are
aligned, as illustrated in Figure 7.2.

— Algorithm 7.1 can be translated into an online algorithm, i.e., an updated
solution can be computed efficiently if a new input data point is added. More
precisely, when a new data point P0,M+1 is added, the reconstructed signal
is at worst only modified in the saturation interval I = [xsn�1, xsn+↵n ] if
xM+1 2 I. Since in practice, we usually have ↵n ⌧ M , the computational
complexity of updating the solution is typically much smaller than rerunning
the complete offline algorithm.
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(a) Example of a sparsest solution
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Figure 7.6: Example with M = 5 and ↵ = 2 consecutive saturation
intervals of ⌘cano at -1. The sparsest solutions have P = 2 knots.

7.4.3 Computational Complexity

Algorithm 7.1 is very fast and memory-efficient; it requires at most two passes
through the data points, and thus has linear time and space complexity O(M) with
respect to the number of data points. More precisely, computing the canonical
interpolant (i.e., , the am coefficients using (7.22)) requires about 3M subtractions
and M divisions, and storing two arrays of size M . Next, in the worst-case scenario
where sign(a2) = . . . = sign(aM�1), computing the sparsest interpolant (i.e., the
ãk and x̃k coefficients using (7.45) or (7.46)) requires approximately M multipli-
cations, M additions, M

2 divisions and storing two arrays of size M
2 . Hence, the

complete worst-case time complexity for Algorithm 7.1 requires 4M additions, M
multiplications and 3M

2 divisions, and its space complexity is 3M .

7.5 The Solutions of the (g-BLASSO)

We now focus on the (g-BLASSO) problem, in which the interpolation of the
data is no longer required to be exact as in Section 7.3, but is formulated as a
penalized problem with a regularization parameter � > 0. In practice, such prob-
lems are typically formulated when we have access to noise-corrupted measurements
y = y0 + n where n 2 RM is a noise term. In this case, we solve the following
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Input: x,y0

compute a1, . . . aM defined in (7.22);
[⌘cano(x1), . . . , ⌘cano(xM )] = [0, sign(a2), . . . , sign(aM�1), 0];

compute Ns, s1, . . ., sNs and ↵1, . . ., ↵Ns defined in (7.39) and (7.40);
⌧̂ = [ ]; â = [ ];
for n 1 to Ns do

P  d↵n+1
2 e ;

compute ⌧̃1, . . ., ⌧̃P and ã1, . . ., ãP using (7.45) or (7.46);
⌧̂  [⌧̂ , ⌧̃1, . . . , ⌧̃P ];
â [â, ã1, . . . , ãP ];

end
return fopt  

PK
k=1 âk(·� ⌧̂k)+

Algorithm 7.1: Pseudocode of our algorithm to find a sparsest solution of
the (g-BPC).

optimization problem

V� , arg min
f2MD2 (R)

 
MX

m=1

E(f(xm), ym) + �kD2fkM

!
, (g-BLASSO)

where E(·, y) is a strictly convex, coercive, and differentiable cost function (typi-
cally quadratic, i.e., E(z, y) = 1

2 (z � y)2) for any y 2 R, and � > 0 is a regular-
ization parameter. The latter controls the weight between the data fidelity termPM

m=1 E(f(xm), ym) and the regularization term kD2fkM, and should therefore be
adapted to the noise level.

7.5.1 From the (g-BPC) to the (g-BLASSO): Reduction to
the Noiseless Case

We now show, using the strict convexity of E(·, y), that the (g-BLASSO) can be
reduced to an optimization problem of the form (g-BPC). The proof is a straight-
forward generalization of a well-known result in finite-dimensional optimization (see
Lemma 4.2 or [21, Lemma 1]); we include it for the sake of completeness.
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Proposition 7.7 (Reformulation of the (g-BLASSO) as a (g-BPC) Problem). Let
x 2 RM be the ordered sampling locations, and y 2 RM with M � 2. Let E :
R ⇥ R ! R+ be a cost function such that E(·, y) is strictly convex, coercive, and
differentiable for every y 2 R. Then, there exists a unique y� 2 RM such that,
for any fopt 2 V�, fopt(xm) = y�,m for all m 2 {1, . . . , M}. Moreover, we have
that the (g-BLASSO) is equivalent to the (g-BPC) with the measurement vector
y0 = y�, i.e.,

V� = arg min
f2MD2 (R)

f(xm)=y�,m, m=1,...,M

kD2fkM. (7.47)

Proof. Assume by contradiction that there exist f1, f2 2 V� and m0 2 {1, . . . M}
such that f1(xm0) 6= f2(xm0), and let f� = �f1 + (1 � �)f2, where 0 < � < 1. We
then have

MX

m=1

E(f�(xm), ym) + �kD2f�kM

< �
MX

m=1

E(f1(xm), ym) + (1� �)
MX

m=1

E(f2(xm), ym) + �
⇣
�kD2f1kM + (1� �)kD2f2kM

⌘

= �J 0
� + (1� �)J 0

� = J 0
� , (7.48)

where J 0
� is the optimal cost of the (g-BLASSO). The inequality is due to the

convexity of the k · kM norm and of E(·, y) for any y 2 R. The fact that it
is strict is due to the strict convexity of E(·, ym0) and the fact that f1(xm0) 6=
f2(xm0). Yet since V� is a convex set, we have f� 2 V�: this implies that J 0

� =PM
m=1 E(f�(xm), ym) + �kD2f�kM < J 0

� , which yields a contradiction.
Therefore, there exists a unique vector y� 2 RM such that for any fopt 2 V�,

fopt(xm) = y�,m for all m 2 {1, . . . , M}. This implies that V� ⇢ {f 2MD2(R) :
f(xm) = y�,m, 1  m  M}. Moreover, we have that for any fopt 2 V�,
E(fopt(xm), ym) = E(y�,m, ym), and thus that the data fidelity is constant in the
constrained space {f 2MD2(R) : f(xm) = y�,m, 1  m  M}. This proves the
equality between the solution sets of the (g-BLASSO) and (7.47).

The implications of Proposition 7.7 for our problem are huge: it implies that all
the results of Section 7.3—in particular, uniqueness, form the solutions, and sparsest
solutions—can be applied to the penalized Problem (g-BLASSO). The only—but
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crucial—catch is that the samples y� 2 RM are unknown. Fortunately, the fol-
lowing proposition enables us to compute them through a standard `1-regularized
discrete optimization.

Proposition 7.8. Assume that the hypotheses of Proposition 7.7 are met. Then,
the vector y� 2 RM defined in Proposition 7.7 is the unique solution of the discrete
minimization problem

y� = arg min
z2RM

 
MX

m=1

E(zm, ym) + �kLzk1

!
, (7.49)

where L 2 R(M�2)⇥M is given by

L ,

0

BBBB@

v1 �(v1 + v2) v2 0 · · · 0

0 v2 �(v2 + v3) v3
. . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 vM�2 �(vM�2 + vM�1) vM�1

1

CCCCA
, (7.50)

and v , (v1, . . . , vM�1) 2 RM�1 is defined as vm , 1
xm+1�xm

for m 2 {1, . . . , M �
1}.

Proof. In this proof, we denote by fz the canonical solution (defined in Defini-
tion 7.4) of the (g-BPC) with sampling locations x and data point y0 = z. We
first prove that if zopt 2 RM is a solution of Problem (7.49), then fzopt 2MD2(R)
is a solution of the (g-BLASSO). We then deduce that for all m 2 {1, . . . , M},
zm = fzopt(xm) = y�,m (where the last equality is true thanks to Proposition 7.7),
which proves the desired result, i.e., y� = zopt is the unique solution of Prob-
lem (7.49).

Let z 2 RM . Using Equations (7.21) and (7.22), we have that kD2fzkM =PM�1
m=2 |am|, where am = zm+1�zm

xm+1�xm
� zm�zm�1

xm�xm�1
. Therefore, we have kD2fzkM =

kLzk1, where L is given by Equation (7.50). This yields
PM

m=1 E(fz(xm), ym) +

�kfzkM =
PM

m=1 E(zm, ym) + �kLzk1. Applied to the particular case z = y�, we
obtain the equality

PM
m=1 E(y�,m, ym) + �kLy�k1 = J 0

� , where J 0
� is the optimal

cost of the (g-BLASSO), since by Proposition 7.5, fy� 2 V�. This proves that the
optimal value of Problem (7.49) is lower or equal than J 0

� .
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Next, let zopt be a solution of Problem (7.49) (which exists due to the coercivity
of E(·, y) for any y 2 R). We thus have from before that

J 0
� 

MX

m=1

E(fzopt(xm), ym) + �kD2fzoptkM =
MX

m=1

E(zm, ym) + �kLzoptk1  J 0
� ,

(7.51)

which yields the desired result fzopt 2 V�.

7.5.2 Algorithm for Reaching a Sparsest Solution of the (g-
BLASSO)

By combining results from the previous sections, we now formulate the following
simple algorithmic pipeline to reach a sparsest solution of the (g-BLASSO).

Proposition 7.9. Let x 2 RM be the ordered sampling locations and y 2 RM with
M � 2, and let E : R ⇥ R ! R+ be a cost function such that E(·, y) is strictly
convex, coercive, and differentiable for any y 2 R. Let the function fopt be obtained
through the following two-step procedure:

1. Compute y� 2 RM (defined in Proposition 7.7) by solving Problem (7.49);
2. Apply Algorithm 7.1 with the measurement vector y0 = y� to compute a

sparsest solution fopt of the (g-BPC) given by Equation (7.47).
Then, fopt is one of the sparsest solutions to the (g-BLASSO), with sparsity Kmin(x,y�)
as defined in Theorem 7.3.

Proof. Proposition 7.7 guarantees that the (g-BLASSO) is equivalent to the (g-BPC)
with the measurement vector y0 = y�. Proposition 7.8 then specifies that y� can
be computed by solving Problem (7.49). Finally, as demonstrated in the proof of
Theorem 7.3, the output fopt of Algorithm 7.4.2 reaches a sparsest solution of the
corresponding (g-BPC) problem, which thus has sparsity Kmin(x,y�).

Proposition 7.9 proposes a simple but very powerful algorithm. It reaches a
sparsest solution of the (g-BLASSO) - a challenging task a priori - in two simple
steps. The first consists in solving a standard `1-regularized discrete problem, for
which many off-the-shelf solvers such as ADMM [19] are available (see Appendix A).
The second is our proposed sparsifying procedure, which converges in finite time.
The following remarks can be made concerning Proposition 7.9.



7.5 The Solutions of the (g-BLASSO) 181

Remark 7.4. Algorithm 7.1 still converges to a solution of the (g-BLASSO) when
E is only a convex function, and not strictly convex as assumed in Propositions 7.7
and 7.8. The difference is that Proposition 7.7 no longer holds true in that there
is no unique vector of measurements y�. The solution set of the constrained Prob-
lem (7.47) is thus in general a strict subset of V�. Hence, the obtained solution
is not necessarily the sparsest solution of the full solution set V�, but only of this
subset.

As for the assumption that E is differentiable, it is not a requirement for Propo-
sition 7.9. However, as it is needed later on in Proposition 7.10, we include it in
order to have consistent assumptions concerning E throughout this chapter.

7.5.3 Range of the Regularization Parameter �

In practice, the choice of the regularization parameter � is the critical element
that determines the performance of our algorithm. Although this choice is highly
data-dependant, in this section, we show that the search can be restricted to a
bounded interval. The lower bound is � ! 0, which corresponds at the limit to
exact interpolation, that is the (g-BPC). The upper bound � ! +1 corresponds
to the linear regression regime, which is described in the following proposition.

Proposition 7.10 (Linear Regression Regime of the (g-BLASSO)). Let x 2 RM

be the ordered sampling locations and y 2 RM with M � 2. Let E : R⇥R! R+ be
a cost function such that E(·, y) is strictly convex, coercive, and differentiable for
any y 2 R. Then, the following properties hold.

1. There is a unique solution (�opt0,�opt1) 2 R2 to the linear regression problem

(�opt0,�opt1) , arg min
(�0,�1)2R2

 
MX

m=1

E(�0 + �1xm, ym)

!
. (7.52)

We can thus define the value

�max ,

�������
L
T †

0

B@
@1E(�opt0 + �opt1xm, y1)

...
@1E(�opt0 + �opt1xM , yM )

1

CA

�������
1

, (7.53)

where @1E denotes the partial derivative with respect to the first variable of E, the
matrix L

T † denotes the pseudoinverse of LT , and L is defined as in (7.50).
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2. For any � � �max, the solution to the discrete Problem (7.49) is given by
y� = �opt01 + �opt1x, where 1 , (1, . . . , 1) 2 RM .

3. For any � � �max, the solution to the (g-BLASSO) is unique and is the
linear function fmax given by fmax(x) , �opt0 + �opt1x.

Proof. Item 1: Let J (�0,�1) =
PM

m=1 E(�0 +�1xm, ym) be the objective function
of Problem (7.52). We show that Problem (7.52) indeed has a unique solution by
proving that J is strictly convex and coercive when M � 2 and the xm are pairwise
distinct.

Concerning the coercivity, let k(�0,�1)k2 ! +1. Assume by contradiction that
�0 + �1xm is bounded for every m 2 {1, . . . , M}. Then, since M � 2, �0 + �1x1 �
(�0 +�1x2) = �1(x1�x2) must also be bounded, which implies that �1 is bounded
since the xm are pairwise distinct. Therefore, we must have |�0| ! +1, which
implies that |�0 + �1x1| ! +1 which yields a contradiction. Therefore, there
exists a m0 2 {1, . . . , M} such that |�0 + �1xm0 |! +1. The coercivity of J then
directly follows from that of E(·, ym0).

Next, to prove the strict convexity of J , let (�0,�1), (�0

0,�
0

1) 2 R2 with (�0,�1) 6=
(�0

0,�
0

1), and 0 < s < 1. For any m, we have s�0 +(1�s)�0

0 +(s�1 +(1�s)�0

1)xm =
s(�0 + �1xm) + (1 � s)(�0

0 + �0

1xm). Since (�0,�1) 6= (�0

0,�
0

1) and the xm are dis-
tinct, the equation �0 +�1xm = �0

0 +�0

1xm can only be satisfied for at most a single
m 2 {1, . . . , M}. Yet M � 2, which implies that 9m0, �0 + �1xm0 6= �0

0 + �0

1xm0 .
Therefore, due to the strict convexity of E(·, ym0), we have

E
⇣�

s�0 + (1� s)�0

0

�
+
�
s�1 + (1� s)�0

1)xm0

�
, ym0

⌘
(7.54)

< sE
�
�0 + �1xm0 , ym0

�
+ (1� s)E

�
�0

0 + �0

1xm0 , ym0

�
. (7.55)

It then follows from the convexity of E(·, ym) for all m that J (s(�0,�1) + (1� s)(�0

0,�
0

1)) <
sJ (�0,�1)+(1�s)J (�0

0,�
0

1), which proves the strict convexity of J . Together with
the fact that J is coercive, this proves that (7.52) has a unique solution.

Item 2: Assume that � � �max. By Fermat’s rule, a vector zopt is a solution
of Problem (7.49) if and only if the zero vector belongs to the subdifferential of the
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objective function evaluated at zopt. We thus have zopt = y� if and only if

0 2

0

B@
@1E(zopt,1, y1)

...
@1E(zopt,M , yM )

1

CA

| {z }
,v(zopt)

+�@kL · k1(zopt), (7.56)

where @1 denotes the partial derivative with respect to the first variable, and @
the subdifferential. The chain rule for subdifferentials [197, Theorem 23.9] yields
@kL · k1(z) = {LT

g : g 2 @k · k1(Lz) ⇢ RM�2}, where @k · k1(a) = {g 2 RM�2 :
kgk1  1, a

T
g = kak1}. The vector Lzopt lists the weights am associated to the

knots of the canonical solution fzopt (see the proof of Proposition 7.8). Therefore,
the linear regression case (in which fzopt has no knot) corresponds to Lzopt = 0. In
this case, since @k·k1(0) = {g 2 RM�2 : kgk1  1}, the optimality condition (7.56)
now reads

9g 2 RM�2, kgk1  1, s.t. v(zopt) + �LT
g = 0. (7.57)

We now prove that zopt = �opt01+�opt1x satisfies the optimality conditions (7.56),
and thus that y� = �opt01+�opt1x. To achieve this, we prove that g = � 1

�L
T †

v(zopt)
satisfies v(zopt) + �LT

g = 0. Firstly, since � � �max, we have that kgk1  1 by
definition of �max. Next, let V be the orthogonal complement of kerL ⇢ RM . A
known property of the pseudoinverse operator [198, Corollary 7] is that LT

L
T † is the

orthogonal projection operator onto V . By decomposing v(zopt) = v1 + v2, where
v1 2 V and v2 2 kerL, we thus get v(zopt) + �LT

g = v2. Yet kerL = span{1,x},
since the canonical solutions f1 and fx (that satisfy f1(xm) = 1 and fx(xm) = xm

for every m 2 {1, . . . , M} respectively) are linear functions that are thus not pe-
nalized by the regularization. The optimality conditions of Problem (7.52) (i.e.,
setting the gradient to zero) then yield v(zopt) ? kerL, which implies that v2 = 0

and thus that v(zopt) + �LT
g = 0. This proves that zopt satisfies the optimality

condition of Problem (7.49), and thus that zopt = y� = �opt01 + �opt1x.
Item 3: Due to Item 2, we have y� = �opt01 + �opt1x which implies that the

points
⇥
xm y�,m

⇤T are aligned. Hence, the canonical dual certificate of the con-
strained Problem (7.47) is ⌘cano = 0, which is nondegenerate. By Proposition 7.6,
this implies that the unique solution to Problem (7.47) is the canonical solution
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fzopt = fmax = �opt0 + �opt1(·). Due to the equivalence between problems (7.47)
and the (g-BLASSO) proved in Proposition 7.7, this concludes the proof.

Proposition 7.10 guarantees that the range of � can be restricted to the interval
(0,�max]: indeed, all values � � �max lead to linear regression. Moreover, the value
of �max given in (7.53) only depends on the data x,y 2 RM and is easy to compute
numerically - the most costly step being the computation of the pseudoinverse
L
T †. Note that Item 2 in Proposition 7.10, which stems from duality theory, is

a generalization of a well-known result for the LASSO Problem [199, Proposition
1.3], which plays a crucial role in the homotopy method [200]. The difference here
is the presence of a noninvertible regularization matrix L in Problem (7.49), which
requires additional arguments in the proof.

7.6 Experimental Results

In this section, we describe the implementation of our two-step algorithm pre-
sented in Section 7.5.2 and show our experimental results. The first step of our
algorithm - which consists in solving problem (7.49) with ADMM (see Appendix A)
- is implemented using GlobalBioIm, a Matlab inverse-problem library developed
by the Biomedical Imaging Group at EPFL [118]. In all our experiments, we choose
the standard quadratic data fidelity loss E(z, y) = 1

2 (z � y)2. This choice leads to
@1E(z, y) = z � y, which enables the simple computation of �max using (7.53).

We present an illustrative example with M = 30 simulated data points in Figure
7.7. A small number is chosen for visualization purposes; an application of our
algorithm with a larger number of M = 200 data points was shown in Figure 7.1.
The sampling locations xm are generated following a uniform distribution in the
[m�1

M , m
M ] intervals for m = 1, . . . , M . Next, the ground-truth signal, a piecewise-

linear spline f0 with 2 knots, is generated, with random knot locations ⌧m within
the interval [0, 1], and i.i.d. Gaussian amplitudes am (�2

a = 1). We then have
ym = f0(xm) + nm for m = 1, . . . , M , where n 2 RM is i.i.d. Gaussian noise
(�2

n = 4⇥ 10�4).
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7.6.1 Extreme Values of �

The reconstructions using our algorithm for extreme values of � - i.e., � ! 0
which leads to exact interpolation of the data, and � = �max which leads to linear
regression - are shown in Figure 7.7a. Clearly, none of these solutions are satisfac-
tory: on one hand, linear regression is too simple to model the data adequately. On
the other hand, the exact interpolator suffers from overfitting. Although thanks
to the sparsification procedure in Algorithm 7.1, its sparsity Kmin(x,y�) = 20 is
smaller than the theoretical bound M � 2 = 28 given by Theorem 3.3, it is still
clearly much larger than the desired outcome.

7.6.2 Sparsity versus Data Fidelity Loss Trade-Off

Next, we show the sparsity Kmin(x,y�) versus error ky�y�k trade-off curve in
Figure 7.7b. The latter was obtained by applying our algorithm with 20 values of
� (equispaced on a logarithmic scale) within the range [�min,�max], with �max =
0.1713 (as defined in (7.53)) and �min , 10�5⇥�max. We thus observe the evolution
from exact interpolation to linear regression as � increases.

Ideally, one would like to choose to value of � that minimizes ky0�y�k, i.e., the
error with respect to the noiseless data y0. However, in practice, the noiseless data
is unknown, and one must use the noisy data y. Depending on the noise level, solely
minimizing ky�y�k might not be a desirable objective, since it leads to overfitting.
Hence, we consider the trade-off between data fidelity loss and sparsity as a proxy
for the standard universality versus simplicity trade-off in machine learning. Note
that we choose the data fidelity loss ky � y�k instead of � as the x-axis metric,
since it is an increasing function of the latter, and the former is easier to interpret.

This trade-off curve does not specify a single optimal value of the regularization
parameter �. Instead, it helps the user choose an appropriate balance by giving
quantitative, interpretable data about the possible trade-offs. A key observation is
that this curve is not necessarily monotonous: the sparsity can increase as ky�y�k
increases, as shown in Figure 7.7b. This lack of monotonicity is rather counter-
intuitive, since the overall trend as � increases is to go from sparsity Kmin(x,y) = 20
to Kmin(x,y�max) = 0. Note that a similar behavior has been known to occur in
the context of the homotopy method [199], although it is far from being systematic.
However, the interesting feature is that, in the sparsity versus error trade-off, some
values of � are sometimes strictly better than others for both metrics, such as the
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star point over the square point in Figure 7.7b. Having access to the full trade-off
curve such as Figure 7.7b is very helpful to judiciously select a suitable value of �.
This holds true as well when the curve is monotonic: indeed, the user should select
the value of � such that the data fidelity is lowest for the desired level of sparsity,
i.e., the leftmost point of every plateau.

7.6.3 Example Reconstructions
To illustrate the nonmonotonicity of the sparsity versus error curve, examples

of reconstructions for two specific values of � are shown in Figures 7.7c and 7.7d.
Indeed, the former reconstruction has a lower value of �, and thus lower data-fidelity
loss. Nevertheless, the reconstruction in Figure 7.7c is sparser, with Kmin(x,y�) = 3
versus 6 in Figure 7.7d. Note that this gap is not a numerical artefact, since the
magnitude of the weights ãk associated to the knots in Figure 7.7d is much greater
than numerical precision. This indicates that the value of � for Figure 7.7c should
be preferred to that of 7.7d.

7.7 Conclusion
In this chapter, we fully described the solution set of the (g-BPC), which consists

in interpolating data points by minimizing the TV norm of the second derivative.
More precisely, we specified the cases in which it has a unique solution, the form of
all the solutions, and the subset of sparsest solutions. We also proposed a simple and
fast algorithm to reach (one of) the sparsest solution(s). We then extended these
results to the (g-BLASSO), by showing that it can be reformulated as a (g-BPC)
problem. Next, we introduced a two-step algorithm to solve the (g-BLASSO),
the first step of which consists in solving a discrete `1-regularized problem, and
the second in applying our algorithm to solve a (g-BPC) problem. Finally, we
applied our algorithm to some simulated data, and suggested plotting the sparsity
versus data fidelity error plot in order to judiciously select a suitable value of the
regularization parameter. This chapter paves the way for the study of supervised
learning problems through the formulation of variational inverse problems with
TV-based regularization, by completely describing the one-dimensional scenario.
A future exciting—albeit much more challenging—prospect would be to achieve
similar results in higher dimensions, i.e., to reconstruct functions f : Rd ! R with
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d > 1. This would be a major milestone to better understand ReLU networks and
deep learning in general, whose practical outstanding performances are yet to be
fully explained.

Appendix 7.A Proof of Proposition 7.1
The forward operator considered in this paper is a sampling operator (the func-

tions f 2MD2(R) are sampled at the locations xm 2 R for m 2 {1, . . . , M}). For
the convenience of the proof and following the notation of the whole thesis, we
denote it as the linear operator ⌫ : MD2(R)! RM such that

8f 2MD2(R), ⌫(f) , (f(xm))1mM . (7.58)

The proof of Proposition 7.1 is divided in several steps. First, we reformulate
the (g-BPC) into an equivalent optimization problem thanks to the decomposition
of any f 2MD2(R) given by (7.4). This is stated in the following lemma.

Lemma 7.4. The Problem (g-BPC) is equivalent to

min
(w,�0,�1)2M(R)⇥R2

⇣
◆{y0}

�
⌫M(w) + �01 + �1x

�
+ kwk

M

⌘
, (7.59)

where ◆{y0}
is the indicator of the convex set {y0}, which is zero at y0 and +1

elsewhere, and

⌫M , ⌫ �D�2
0 : M(R)! RM (7.60)

is the modified forward operator. More precisely, there exists a bijection given by
the unique decomposition of any f 2 MD2(R) as f = D�2

0 {w} + �0 + �1(·) with
(w,�0,�1) 2M(R) ⇥ R2 (see(7.4)) between the solution sets of both optimization
problems.

Proof. The result immediately follows by plugging in the decomposition f = D�2
0 {w}+

�0 + �1(·) with (w,�0,�1) 2 M(R) ⇥ R2 into the objective function of Prob-
lem (g-BPC), and by reformulating the interpolation constraints f(xm) = y0,m

using the indicator function ◆{y0}
.
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From now on, we consider the equivalent Problem (7.59) and analyze it using
tools from duality theory. The search space M(R)⇥R2 of this optimization problem
is endowed with the weak⇤ topology, which is defined in terms of its predual space
C0(R) ⇥ R2. By definition of D�2

0 via its Schwartz kernel g0 (see Theorem 2.1),
the modified operator ⌫M can be expressed as ⌫M(w) = (hw, g0(xm, ·)i)1mM ,
where g0(xm, ·) 2 C0(R) for all m 2 {1, . . . , M}. Since M(R) is the dual of C0(R),
this implies that the linear functional ⌫M : M(R)! RM is weak⇤ continuous [113,
Theorem IV.20]. The adjoint operator ⌫⇤

M
: RM ! C0(R) of ⌫M is thus uniquely

defined and is given by

8c 2 RM , ⌫⇤

M
(c) =

MX

m=1

cmg0(xm, ·), (7.61)

since hw, ⌫⇤

M
(c)i = h⌫M(w), ci =

D�
hw, g0(xm, ·)i

�
1mM

, c
E

=
D
w,
PM

m=1 cmg0(xm, ·)
E
,

for all w 2M(R) and c 2 RM .
The second part of the proof of Proposition 7.1 consists in determining the

dual problem of (7.59), proving that strong duality between the primal and dual
problem holds (i.e., that the optimal values of both problems are equal and finite),
and then deriving the optimality conditions which characterize the solutions of
Problem (7.59). This is done in the next lemma.

Lemma 7.5. The dual problem of (7.59) is given by

sup
c2C

hy0, ci , with C ,
�
c 2 RM : hc, 1i = hc, xi = 0, k⌫⇤

M
(c)k

1
 1
 
.

(7.62)

Moreover, it has at least one solution and strong duality holds between Prob-
lems (7.59) and (7.62). Finally, for any (w,�0,�1) 2M(R)⇥R2 and c 2 RM , the
following statements are equivalent:

1. (w,�0,�1) is a solution of (7.59) and c is a solution of (7.62).
2. (w,�0,�1) and c satisfy the following conditions:

⌫M(w) + �01 + �1x = y0, (7.63)
hc, 1i = hc, xi = 0, kwk

M
= hw, ⌫⇤

M
(c)i , and k⌫⇤

M
(c)k

1
 1.

(7.64)
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Proof. Let us first derive the dual Problem (7.62). The proof follows the technique
of perturbed problems detailed in [26, Chapter 3].

Dual problem Let us write the (primal) Problem (7.59) as

min
(w,�0,�1)2M(R)⇥R2

⇣
F (w,�0,�1) + G

�
⇤(w,�0,�1)

�⌘
, (7.65)

where F (w,�0,�1) , kwk
M

, G(c) , ◆{y0}
(c) for all c 2 RM , and ⇤(w,�0,�1) ,

⌫M(w) + �01 + �1x.
The functions F and G are convex, lower semi-continuous and not identically

equal to ±1. By [26, Equation (4.18)], the dual problem of (7.65) is thus given by
supc2RM (�F ⇤(⇤⇤(c)) � G⇤(�c)), where F ⇤ and G⇤ are the Fenchel conjugates of
F and G respectively, and ⇤⇤ : RM ! C0(R)⇥R2 is the adjoint operator of ⇤. One
can verify that for all c 2 RM , G⇤(c) = hc, y0i, for all ⌘ 2 C0(R) and �0,�1 2 R,
F ⇤(⌘,�0,�1) = ◆k·k11(⌘) + ◆{(0,0)}(�0,�1) (with ◆k·k11 the indicator function
of the closed unit ball in C0(R) for the supremum norm), and for all c 2 RM ,
⇤⇤(c) = (⌫⇤

M
(c), hc, 1i , hc, xi). Therefore, the dual problem can be rewritten as

� inf
c2RM

�
◆C(c) + h�c, y0i

�
, (7.66)

where C ⇢ RM is the convex set defined in (7.62). Problem (7.66) is clearly the
same as Problem (7.62), which proves the first statement of the Lemma 7.5.

Strong duality To prove strong duality between Problems (7.59) and (7.62)
(i.e., that they have the same optimal value), we start by showing strong duality
between

inf
c2RM

�
◆C(c) + h�c, y0i

�
, (7.67)

and its dual problem. We then conclude by observing that the optimal value of the
dual problem of (7.67) is equal to the optimal value of Problem (7.59) up to a sign.
Indeed, this last statement proves that both Problems (7.59) and (7.62) have the
same optimal value since Problem (7.67) is, up to a sign, the dual Problem (7.62)
(which rewrites as in (7.66)).

We first start by proving that strong duality holds between Problem (7.67) and
its dual problem. The aim is to apply [26, Proposition 2.3, Chapter 3]. With the
notations of [26], let us denote the map � : RM ⇥ C0(R)! R [ {+1} as

�(c, ⌘) , h�c, y0i+ ◆{(0,0)}
�
hc, 1i , hc, xi

�
+ ◆k·k11

�
⌫⇤

M
(c)� ⌘

�
(7.68)
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for all (c, ⌘) 2 RM ⇥ C0(R). This map � defines a perturbed version of Prob-
lem (7.67), since by definition, for all c 2 RM ,

�(c, 0) = ◆C(c) + h�c, y0i (7.69)

is the objective function of Problem (7.67). We now verify that the assumptions
of [26, Proposition 2.3] are satisfied for � and Problem (7.67):

— � is convex,
— the optimal value of Problem (7.67) is finite due to the weak duality (primal-

dual inequality given below) between Problems (7.65) and (7.66), which
yields

�1 < � inf
c2RM

�
◆C(c) + h�c, y0i

�

 inf
(w,�0,�1)2M(R)⇥R2

⇣
kwk

M
+ ◆{y0}

�
⌫M(w) + �01 + �1x

�⌘

< +1, (7.70)

— the map ⌘ 2 C0(R) 7! �(0, ⌘) = ◆k·k11(�⌘) is finite and continuous at
⌘ = 0 2 C0(R).

Therefore, we deduce that strong duality holds between Problem (7.67) and its dual
problem given by

sup
w2M(R)

�
� �⇤(0, w)

�
, (7.71)

and that this last optimization problem has at least one solution. By writing
the map � as �(c, ⌘) = F̃ (c) + G̃(⇤̃(c) � ⌘) with F̃ (c) , h�c, y0i + ◆V ?(c),
V , span(1,x) ⇢ RM , G̃ , ◆k·k11(·), and ⇤̃ = ⌫⇤

M
,we get that �⇤(c, w) =

F̃ ⇤(⇤̃⇤(w)+c)+G̃⇤(�w) for any (c, w) 2 RM⇥M(R), and thus that Problem (7.71)
becomes

� min
w2M(R)

�
◆V (⌫M(w) + y0) + kwk

M

�
. (7.72)

We now verify that the optimal value of

min
w2M(R)

�
◆V (⌫M(w) + y0) + kwk

M

�
, (7.73)
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i.e., minus the optimal value of the dual problem of (7.67), is equal to the optimal
value of Problem (7.59)

min
(w,�0,�1)2M(R)⇥R2

⇣
◆{y0}

�
⌫M(w) + �01 + �1x

�
+ kwk

M

⌘
. (7.74)

Let w 2 M(R) be a solution of Problem (7.73), which we know to exist by [26,
Proposition 2.3]. Since the objective function of Problem (7.73) is finite at w,
we obtain that ⌫M(w) + y0 2 V , i.e., there exists (�0,�1) 2 R2 such that y0 =
⌫M(�w) + �01 + �1x. Assume by contradiction that there exist (w̃, �̃0, �̃1) 2
M(R)⇥ R2 that achieve a lower cost than (w,�0,�1) in (7.59), i.e.,

◆{y0}

�
⌫M(�w) + �01 + �1x

�
+ k�wk

M
> ◆{y0}

�
⌫M(w̃) + �̃01 + �̃1x

�
+ kw̃k

M
.

(7.75)

Since the left term of this inequality is finite, we must have y0 = ⌫M(w̃)+�̃01+�̃1x

and

kwk
M

> k�w̃k
M

. (7.76)

Since ⌫M(�w̃) + y0 = �̃01 + �̃1x 2 V , we deduce using (7.76) that �w̃ achieves
a lower cost than w for Problem (7.73), which contradicts the assumption on w.
Hence, for all w 2M(R), (�0,�1) 2 R2, we have

◆{y0}

�
⌫M(�w) + �01 + �1x

�
+ k�wk

M
 ◆{y0}

�
⌫M(w) + �01 + �1x

�
+ kwk

M
,

(7.77)

i.e., (�w,�0,�1) 2M(R) ⇥ R2 is a solution of Problem (7.59). Therefore, we get
that the optimal values of Problems (7.73) and (7.59) are equal since

◆V (⌫M(w) + y0) + kwk
M

= ◆{y0}

�
⌫M(�w) + �01 + �1x

�
+ k�wk

M
. (7.78)

Optimality conditions To derive the optimality conditions given in (7.63)
and (7.64), we apply [26, Proposition 2.4, Chapter 3]. To this end, we must first
prove that the assumptions of this proposition hold true, which requires three in-
termediate results. Firstly, we have already proved that strong duality holds, and
that the primal Problem (7.59) has at least one solution. Secondly, we require the
following lemma.
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Lemma 7.6. The set D ,
�
c 2 RM : k⌫⇤

M
(c)k

1
 1
 

is a compact set.

Proof. Consider the map F : RM ! F given by

8c 2 RM , F (c) ,
MX

m=1

cmg0(xm, ·) = ⌫⇤

M
(c) (7.79)

(using (7.61) for the last equality), where F , span
⇣
{g0(xm, ·) : 1  m  M}

⌘
.

The family (g0(xm, ·))1mM is linearly independent due to the fact that each
g0(xm, ·) is a piecewise-linear splines with finitely many knots, and so there exists
a nonempty interval I in which all the g0(xm, ·) are linear functions. The function
F is therefore a bijective linear map between finite-dimensional spaces. Hence,
F�1 is continuous when F ⇢ C0(R) is endowed with the supremum norm k·k

1
due

the continuity of g0(xm, ·) for that norm. Moreover, we have that E , {f 2 F :
kfk

1
 1} is bounded and closed, and is thus compact (since F = Im(⌫⇤

M
) is finite

dimensional). This proves that D = F�1(E) is compact.

Thirdly, the two following statements hold true:
— the objective function of Problem (7.62) is a continuous linear form over the

convex set C,
— the convex set C = V ?\D ⇢ RM is compact as the intersection of the closed

set V ? and the compact set D ,
�
c 2 RM : k⌫⇤

M
(c)k

1
 1
 
.

Hence, the convexity and the compactness of C imply that there is at least one
extreme point of C that is a solution of the dual Problem (7.62).

Hence, we have proved that the assumptions of [26, Proposition 2.4, Chapter 3]
are satisfied, which implies that any solution (w,�0,�1) 2 M(R) ⇥ R2 of (the
primal) Problem (7.59) and c 2 RM of (the dual) Problem (7.62) are linked by the
optimality conditions

⌫M(w) + �01 + �1x = y0, (7.80)
hc, 1i = hc, xi = 0, kwk

M
= hw, ⌫⇤

M
(c)i and k⌫⇤

M
(c)k

1
 1. (7.81)

Conversely, if any (w,�0,�1) 2 M(R) ⇥ R2 and c 2 RM satisfy the optimality
conditions given above, then by [26, Proposition 2.4, Chapter 3] we obtain that
(w,�0,�1) 2M(R)⇥R2 and c 2 RM are solutions of the primal and dual problems,
respectively. This proves the last statement of the Lemma 7.5.
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The last intermediate result needed for the proof of Proposition 7.1 is given in
the next lemma, where we prove that any continuous function ⌫⇤

M
(c) 2 C0(R) with

c 2 RM satisfying the orthogonality conditions given in (7.64) is a piecewise-linear
spline whose knots are located at the sampling points x = (xm)1mM .

Lemma 7.7. Let c 2 RM such that hc, 1i = hc, xi = 0. Then, we have ⌫⇤

M
(c) =PM

m=1 cm(xm � ·)+.

Proof. We know by (7.61) and (7.3) that

⌫⇤

M
(c) =

D
c, (g0(xm, ·))1mM

E
,

=

*
c,

✓
(xm � ·)+ � (�·)+ + xm

�
(�·)+ � (1� ·)+

�◆

1mM

+
,

=
D
c, ((xm � ·)+)1mM

E
� (�·)+ hc, 1i| {z }

=0

+
�
(�·)+ � (1� ·)+

�
hc, xi| {z }

=0

,

(7.82)

which proves that ⌫⇤

M
(c) =

PM
m=1 cm(xm � ·)+.

We now have all the necessary elements to prove Proposition 7.1.

Proof of Proposition 7.1. Suppose that fopt 2 MD2(R) is a solution of (g-BPC).
Then, fopt satisfies the interpolation conditions fopt(xm) = y0,m for all m 2
{1, . . . , M}, and (w,�0,�1) 2 M(R) ⇥ R2 is a solution of Problem (7.59), where
fopt = D�2

0 {w} + �0 + �1(·). By Lemma 7.5, there exists a solution c 2 RM of
Problem (7.62) which satisfies hc, 1i = hc, xi = 0 with k⌫⇤

M
(c)k

1
 1. Let us

denote ⌘ , ⌫⇤

M
(c) 2 C0(R). By Lemma 7.7, we have ⌘ =

PM
m=1 cm(xm� ·)+ i.e., ⌘

is a dual pre-certificate (Definition 7.1). Moreover, again by Lemma 7.5, we know
that kwk

M
= hw, ⌘i which gives the direct implication in Proposition 7.1.

For the reverse implication, the dual pre-certificate ⌘ given by the statement
satisfies ⌘ = ⌫⇤

M
(c) by Lemma 7.7, and since fopt satisfies the interpolation condi-

tions, we deduce that ⌫M(w)+�01+�1x = y0 where �0 and �1 are defined via the
relation fopt = D�2

0 {w}+�0+�1(·). Hence, by Lemma 7.5, (w,�0,�1) 2M(R)⇥R2

is a solution of Problem (7.59) (and c is a solution of Problem (7.62)), i.e., fopt is
a solution of (g-BPC).
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Let us now prove that the relation kwk
M

= hw, ⌘i is equivalent to supp
±

(w) ⇢
sat±(⌘) when ⌘ is a dual pre-certificate (see Definition 7.2 for the definition of
the signed support and signed saturation set). First, we have that kwk

M
=��w| sat+(⌘)

��
M

+
��w| sat�(⌘)

��
M

+
��w|Sc

��
M

(see [99, Theorem 6.2]), where S ,
sat+(⌘) [ sat�(⌘), hence

���w| sat+(⌘)

��
M
�
⌦
w| sat+(⌘), ⌘

↵�
+
���w| sat�(⌘)

��
M
�
⌦
w| sat�(⌘), ⌘

↵�
(7.83)

+
���w|Sc

��
M
�
⌦
w|Sc , ⌘

↵�
= 0. (7.84)

Each of the three terms in the sum is nonnegative by definition of k·k
M

and the
fact that k⌘k

1
 1, so that the equality kwk

M
= hw, ⌘i is equivalent to

��w| sat+(⌘)

��
M

=
⌦
w| sat+(⌘), ⌘

↵
, (7.85)

��w| sat�(⌘)

��
M

=
⌦
w| sat�(⌘), ⌘

↵
, (7.86)

��w|Sc

��
M

=
⌦
w|Sc , ⌘

↵
. (7.87)

Consider the Jordan decomposition w = w+ � w� of w. Then,
��w| sat+(⌘)

��
M

=

w+ (sat+(⌘)) + w� (sat+(⌘)) and
⌦
w| sat+(⌘), ⌘

↵
=
R
sat+(⌘) dw = w+ (sat+(⌘)) �

w� (sat+(⌘)), so that (7.85) is equivalent to w� (sat+(⌘)) = 0 i.e.,

supp(w�) \ sat+(⌘) = ?. (7.88)

Similarly, we can prove that (7.86) is equivalent to

supp(w+) \ sat�(⌘) = ?, (7.89)

since
⌦
w| sat�(⌘), ⌘

↵
= �

R
sat�(⌘) dw. As a result, to obtain the desired equivalence,

it remains to prove that (7.87) is the same as w|Sc = 0. The arguments can be found
for example in [47] (see the proof of Lemma A.1), but we reproduce the reasoning
here for the sake of completeness. Consider the closed sets for all k > 0

⌦k , R \
✓

S +

✓
�1

k
,
1

k

◆◆
⇢ Sc. (7.90)

Suppose by contradiction that there exists k > 0 such that
��w|⌦k

��
M

> 0. Since
|⌘| < 1 on the closed set ⌦k (because it is true on the bigger open set Sc), we
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deduce that
⌦
w|⌦k

, ⌘
↵

<
��w|⌦k

��
M

and then

kwk
M

=
⌦
w|⌦k

, ⌘
↵

+
D
w|⌦c

k
, ⌘
E

<
��w|⌦k

��
M

+
���w|⌦c

k

���
M

= kwk
M

, (7.91)

which is a contradiction. Hence, we have
��w|⌦k

��
M

= 0 for all k > 0, which yields��w|Sc

��
M

= 0 since Sc = [k>0⌦k, i.e., w|Sc = 0.
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Figure 7.7: Example of reconstruction for varying regularization 0  � 
�max = 0.1713 with M = 30 simulated data points.



Chapter 8

Interpolation of Data Under
Lipschitz Constraint

This chapter is based on the following publication [201]:
S. Aziznejad ∗, T. Debarre ∗, and M. Unser, “Sparsest Univariate Learning Mod-

els Under Lipschitz Constraint”, IEEE Open Journal of Signal Processing, vol. 3,
pp. 140–154, Mar. 2022.

8.1 Introduction

The goal of a regression model is to learn a mapping f : X ! Y from a collection
of data points (xm, ym) 2 X ⇥ Y with m = 1, . . . , M such that ym ⇡ f(xm), while
avoiding the problem of overfitting [43, 202, 203]. Here, X denotes the input domain
and Y is the set of possible outcomes. A common way of carrying out this task is
to solve a minimization problem of the form

min
f2F

 
MX

m=1

E (f(xm), ym) + R(f)

!
, (8.1)

∗. Equal contribution.
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where F is the underlying search space, the convex loss function E : Y ⇥ Y ! R+

enforces the consistency of the learned mapping with the given data points, and
the regularization functional R : F ! R�0 injects prior knowledge on the form of
the mapping f , which is designed to alleviate the problem of overfitting.

8.1.1 Nonparametric Regression
In some cases, the optimization can be performed over an infinite-dimensional

function space—see for example [204, 205, 206] for applications in signal and image
processing. A prominent example is the family of reproducing-kernel Hilbert spaces
(RKHS) F = H(Rd), X = Rd, Y = R [207, 208], in which the regression problem
is formulated as

min
f2H(Rd)

 
MX

m=1

E (f(xm), ym) + �kfk2
H

!
. (8.2)

The fundamental result in RKHS theory is the kernel representer theorem [209, 42],
which states that the unique solution of (8.2) admits the kernel expansion

f(·) =
MX

m=1

amk(·,xm), (8.3)

where k : Rd ⇥ Rd ! R is the unique reproducing kernel of H(Rd) and am 2 R
with m = 1, . . . , M are learnable parameters. The expansion (8.3) allows one to
recast the infinite-dimensional problem (8.2) as a finite-dimensional one and to use
standard computational tools of convex optimization to solve it. Many classical
kernel-based schemes follow this approach, including support-vector machines and
radial basis functions [210, 211, 212].

8.1.2 Parametric Regression
In cases when Problem (8.1) cannot be recast as a finite-dimensional optimiza-

tion problem, another common approach is to restrict F to a subspace that admits a
parametric representation. This approach is used in deep neural networks (DNNs),
which have become a prominent tool in machine learning and data science in re-
cent years [213, 181]. They outperform classical kernel-based methods for various
image-processing tasks. In particular, they have become state-of-the-art for image
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classification [214], inverse problems [215], and image segmentation [216]. However,
most published works are empirical, and the outstanding performance of DNNs is
yet to be fully understood. To this end, many recent works are directed towards
studying DNNs from a theoretical perspective. Unsurprisingly, stability and inter-
pretability, which are key principles in machine learning, play a central role in these
works. For example, the stability of state-of-the-art deep-learning-based methods
has been dramatically challenged in image classification [217, 218] and image recon-
struction [219]. Attempts have also been made to understand and interpret DNNs
from different perspectives, such as rate-distortion theory [220, 221]. However, the
community is still far from reaching a global understanding and these questions
remain active areas of research.

8.1.3 Our Contributions
In this chapter, we introduce two variational formulations for regressing one-

dimensional data that favor stable and simple regression models. Similarly to
RKHS theory, the latter are nonparametric continuous-domain problems in the
sense that F in (8.1) is an infinite-dimensional function space. Inspired by the sta-
bility principle, we focus on the development of regression schemes with controlled
Lipschitz regularity. This is motivated by the observation that many analyses in
deep learning require assumptions on the Lipschitz constant of the learned mapping
[222, 223, 224]. Likewise, in the context of so-called “plug-and-play” methods—i.e.,
when a trainable module is inserted into an iterative-reconstruction framework—,
the rate of convergence of the overall scheme often depends on the Lipschitz con-
stant of this module [225, 226, 227, 228, 229, 230].

In our first formulation, we use the Lipschitz constant of the learned mapping
as a regularization term. Specifically, we consider the minimization problem

min
f2Lip(R)

 
MX

m=1

E (f(xm), ym) + �L(f)

!
, (8.4)

where Lip(R) is the space of Lipschitz-continuous real functions and L(f) denotes
the Lipschitz constant of f 2 Lip(R). In this formulation, one can implicitly con-
trol the Lipschitz regularity of the learned function by varying the regularization
parameter �. Our first contribution is the proof of a representer theorem that char-
acterizes the solution set of (8.4). In particular, we prove that the global minimum
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is achieved by a continuous and piecewise-linear (CPWL) mapping. Next, moti-
vated by our quest for simplicity, we find the mapping with the minimal number of
linear regions. Note that many previous works study problems similar to (8.4) in
more general settings, typically using the Lipschitz constant of the nth derivative
R(f) = L(f (n)) with n � 0 as the regularization term [231, 232, 233, 234, 88, 178].
More recently, [235] studied the classification problem over metric spaces and de-
rived a parametric form of a solution of this problem. Our work complements this
interesting line of research by providing an in-depth analysis of the n = 0 case
which is related to second-order total-variation (TV) minimization, and by focus-
ing more on computational aspects of (8.4). More precisely, we propose a two-step
algorithm to reach the sparsest CPWL solution of (8.4). The first step consists in
solving a discrete problem with `1 regularization, and the second is a sparsification
step using Algorithm 7.1 that reaches the sparsest solution.

In the second scenario, we explicitly control the Lipschitz constant of the learned
mapping by imposing a hard constraint. Inspired by the theoretical insights of the
first problem, we add a second-order TV regularization term that is known to
promote sparse CPWL functions, as demonstrated in the previous chapter and in
[103]. This leads to the minimization problem

min
f2MD2 (R)

 
MX

m=1

E (f(xm), ym) + �kD2fkM

!
s.t. L(f)  L, (8.5)

where k · kM is the TV norm for measures, MD2(R) is the space of functions with
bounded second-order TV (see Chapter 2), and L is the user-defined upper bound
for the desired Lipschitz regularity of the learned mapping. An interesting feature
of (8.5) is that the simplicity and stability of the learned mapping can be adjusted
by tuning the parameters � > 0 and L > 0, respectively. In this case as well, we
prove a representer theorem that guarantees the existence of CPWL solutions. We
also propose a two-step algorithm, similar to that of the first scenario, to find the
sparsest CPWL solution. The main difference is the first step, where the discrete
problem has a `1 regularization term and a `1 constraint.

8.1.4 Connection to Neural Networks
Another major motivation for this work is to further elucidate the tight con-

nection between CPWL functions and neural networks. It is well known that the
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input-output mapping of any feed-forward DNN with linear spline activations is a
CPWL function [182]. Prominent example are rectified linear unit (ReLU) activa-
tion functions, which are used in many state-of-the-art DNN architectures. This
CPWL property is due to the fact that these mappings are compositions of affine
transformations and pointwise activations. Hence, since the activation functions
are CPWL and the CPWL property of functions is preserved by composition, the
full input-output mapping is CPWL. Conversely, any CPWL function can be rep-
resented exactly by a DNN with linear-spline activations [236]. This establishes a
direct link with spline theory, as first highlighted by Poggio et al. [187] and then
further explored in various works [103, 183, 194, 195, 237].

When it comes to shallow networks, the connection with our framework becomes
even more explicit. It is well known in the literature that the standard training (i.e.,
with weight decay) of a two-layer univariate ReLU network is equivalent to solving
a TV-based variational problem such as (8.5) without the Lipschitz constraint [193,
194]. Specifically, the weight-decay penalty can be shown to be equal to the second-
order TV of the input-output mapping of the full network at the optimum [194,
Proposition 18]. As we demonstrate, these results can be readily extended to prove
the equivalence between the training of a Lipschitz-constrained two-layer univariate
ReLU network and our formulation (8.5). Our description of the solution set of
Problem (8.5) thus provides insights into the training of Lipschitz-aware neural
networks.

8.1.5 Outline

The chapter is organized as follows: we review the required mathematical back-
ground in Section 8.2. In Section 8.3, we introduce our supervised-learning formu-
lations and we state their corresponding representer theorems. We then propose
algorithms for finding the corresponding sparsest CPWL solution in Section 8.4.
Finally, we provide numerical illustrations and discussions in Section 8.5.
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8.2 Mathematical Preliminaries

8.2.1 Banach Spaces
A Banach space is a normed topological vector space that is complete in its norm

topology. The prototypical examples of Banach spaces are the Lebesgue spaces
Lp(R) for p 2 [1, +1], which are the spaces of Lebesgue-measurable functions with
finite Lp norm. For p 6= +1, this reads as

Lp(R) ,
�
f : R! R measurable: kfkLp < +1

 
, (8.6)

where kfkLp ,
�R

R |f(x)|pdx
� 1

p . Alternatively, one can define Lp(R) = (S(R), k · kLp)
as the completion of the Schwartz space S(R) (defined in (2.5)) with respect to the
Lp norm for p 2 [1, +1). The case p = +1 is special: indeed, the L1 norm is
defined as kfkL1 = ess supx2R |f(x)|, where the essential supremum extracts an up-
per bound that is valid almost everywhere. Moreover, contrary to the other Lp(R)
spaces (with 1  p < +1), the space S(R) is not dense in L1(R). In fact, the
completion of S(R) with respect to the L1 norm is the space C0(R) of continuous
functions that vanish at infinity [15].

Finally, following Section 2.4, we introduce the Banach space MD2(R) (see
Theorem 2.2) of functions with finite second-order TV norm (see (2.17)):

kD2{f}kM , sup
'2S(R): k'kL1=1

hD2f,'i. (8.7)

8.2.2 Lipschitz Constant
We denote by Lip(R) the space of Lipschitz-continuous functions f : R ! R

with a finite Lipschitz constant

L(f) , sup
x1 6=x2

|f(x1)� f(x2)|
|x1 � x2|

< +1. (8.8)

Following Rademacher’s theorem, any Lipschitz-continuous function f 2 Lip(R) is
differentiable almost everywhere with a measurable and essentially bounded deriva-
tive. The Lipschitz constant of the function then corresponds to the essential supre-
mum of its derivative, so that

L(f) = kD{f}kL1 = ess sup
x2R

|f 0(x)|. (8.9)
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Conversely, any distribution f 2 S 0(R) whose weak derivative lies in L1(R) is a
Lipschitz-continuous function [238, Theorem 1.36]. In other words, we have that

Lip(R) , {f 2 S 0(R) : D{f} 2 L1(R)}, (8.10)

which allows us to view Lip(R) as the native Banach space associated to the pair
(L1(R), D) in the sense of [91].

8.3 Lipschitz-Aware Formulations for Supervised Learn-
ing

A way of indirectly controlling the Lipschitz constant of a function is to use a
second-order TV-type regularizer within a variational formulation. Indeed, the two
seminorms are connected, as demonstrated in Theorem 8.1.

Theorem 8.1. Any function with second-order bounded variation is Lipschitz con-
tinuous. Moreover, for any f 2MD2(R), we have the upper bound

L(f)  kD2fkM + `(f) (8.11)

for the Lipschitz constant of f , where

`(f) , inf
x1 6=x2

|f(x1)� f(x2)|
|x1 � x2|

� 0. (8.12)

Finally, (8.11) holds with equality if and only if f is monotone and convex/concave.

Proof. For any h > 0 and p = (p1, p2) 2 R2 with p1 < p2, we first define the test
function 'h(·;p) 2 C0(R) as

'h(x;p) , h�1
�
(x� (p1 � h))+ � (x� p1)+ + (x� (p2 + h))+ � (x� p2)+

�
.

This function will be used on several occasions throughout the proof. In partic-
ular, we use the explicit form of its second-order derivative, given by

D2'h(·;p) = h�1
�
� (·� (p1 � h))� �(·� p1) + � (·� (p2 + h))� �(·� p2)

�
.

(8.13)
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Upper Bound: Similarly to (8.9), we have that `(f) = ess infx2R |f 0(x)|. For
a fixed ✏ > 0, by definition of essential extrema, there exist x̄, x 2 R at which f
is differentiable with |f 0(x̄)| � (L(f)� ✏) and |f 0(x)|  (`(f) + ✏). Without loss of
generality, we assume that x̄ < x. Following the limit definition of the derivative,
we then consider a small radius h > 0 such that

����
f(x̄ + h)� f(x̄)

h

���� � |f 0(x̄)|� ✏ � L(f)� 2✏,

����
f(x + h)� f(x)

h

����  |f 0(x)| + ✏  `(f) + 2✏.

Next, we consider the test function ' = 'h (·; (x̄ + h, x)), which satisfies k'k1 =
1. Following the definition of the TV norm (8.7), we deduce that kD2fkM �
|hD2f,'i| = |hf, D2'i|, where the last equality follows from the self-adjointness of
the second-order derivative. Using (8.13), we thus have that

kD2fkM � h�1
��f(x̄)� f(x̄ + h) + f(x + h)� f(x)

��

� |f(x̄ + h)� f(x̄)|
h

� |f(x + h)� f(x)|
h

� L(f)� 2✏� `(f)� 2✏ = L(f)� `(f)� 4✏.

Finally, by letting ✏! 0, we deduce the desired upper bound.
Equality—Sufficient Conditions: Assume that f 2MD2(R) is convex and

increasing; we denote its second-order derivative by w = D2f . Note that, in
this case, the functions (�f(·)), f(�·), and (�f(�·)) are concave/decreasing, con-
vex/decreasing, and concave/increasing, respectively. Hence, it only remains to
prove the equality for f and the other cases immediately follow.

Let ✏ > 0, and let D(R) be the space of infinitely smooth functions with compact
support. Due to the denseness of D(R) in S(R) with respect to the supremum
norm [15], by (8.7), there exists a test function  2 S(R) with compact support
K , supp( ) such that k kL1 = 1 and hw, i �

�
kD2fkM � ✏

�
. For any T > 0,

we consider the test function  T = '1 (·; (�T, T )). From (8.13), we obtain that

hw, T i = hf, D2 T i
= (f(T + 1)� f(T ))� (f(�T )� f(�T � 1))

 L(f)� `(f),
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where we have used the increasing assumption to deduce that f(T +1) � f(T ) and
f(�T ) � f(�T � 1). By choosing T large enough so that K ✓ [�T, T ], we ensure
that ( T �  ) is a nonnegative function, since for all x 2 K, we will have that
 T (x) = 1 = k kL1 �  (x). Next, the convexity of f implies that w = D2f is a
positive measure. Hence,

0  hw, T �  i  L(f)� `(f)� kD2fkM + ✏. (8.14)

By letting ✏ ! 0, we deduce that kD2fkM  (L(f)� `(f)), which implies that
(8.11) holds with equality.

Equality—Necessary Conditions: Let f 2MD2(R) be a function for which
(8.11) holds with equality. We now prove that f must be monotone and con-
vex/concave.

Monotonicity: Assume by contradiction that f is not monotone. Hence, there
exists xn 2 R such that f 0(xn) < 0. Indeed, if f 0 were a positive distribution, then
for any a, b 2 R with a < b, we would have that (f(b)� f(a)) = hf 0, [a,b]i � 0,
which contradicts the assumption of nonmonotonicity. Similarly, there exists xp 2 R
such that f 0(xp) > 0.

Next, consider a point xL 2 R, distinct from xn and xp, such that |f 0(xL)| >

(L(f)� ✏) > 0, where 0 < ✏ < min(�f 0(xn),f 0(xp))
3 is a small constant. We as-

sume without loss of generality that f 0(xL) > 0. There exists a small radius
h 2 (0, |xL�xn|

2 ) such that

f(xn + h)� f(xn)

h
 f 0(xn) + ✏ < 0,

f(xL + h)� f(xL)

h
� f 0(xL)� ✏ > 0.

By considering the test function

' ,
(
'h(·; (xn + h, xL)) if xn < xL

'h(·; (xL, xn + h)) if xn > xL
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and using (8.7) once again, we deduce that

kD2fkM � h�1 |f(xn)� f(xn + h) + f(xL + h)� f(xL)|

=
f(xL + h)� f(xL)

h
� f(xn + h)� f(xn)

h
� f 0(xL)� ✏� f 0(xn)� ✏ � L(f)� f 0(xn)� 3✏

> L(f),

which contradicts the original assumption that (8.11) holds with equality. For the
case f 0(xL) < 0, the same arguments can be applied to xp instead of xn. This
proves that f is monotone. In the following, we consider the case where f is an
increasing function; the decreasing case can be deduced by symmetry.

Convexity/Concavity: We first consider the canonical decomposition f =
D�2

0 w + p, where w , D2f , D�2
0 is a right inverse of the second-order derivative

whose Schwartz kernel is given in (7.3), and p(x) = ax + b is an affine term (see
Theorem 2.1). We then use the Jordan decomposition of w = D2f as w = (w+ �
w�), where w+, w� 2M(R) are positive measures such that kwkM = kw+kM +
kw�kM. This allows us to form the decomposition f = (f+ � f�), where fs =
D�2

0 ws + ps, s 2 {+,�}, p+(x) = (A + a)x + b, and p�(x) = Ax with A > 0 being
a sufficiently large constant so that the functions f+ and f� are both convex and
strictly increasing. Hence, they both satisfy the sufficient conditions for equality,
which implies that kD2fskM = (L(fs)� `(fs)) for s 2 {+,�}.

Assume by contradiction that ws 6= 0 for s 2 {+,�} and let ✏ < min(kD2f+kM,kD2f�kM)
2

be a small positive constant. Let x̄, x 2 R such that f 0(x̄) � (L(f)� ✏) and
f 0(x)  (`(f) + ✏). Using these inequalities, we deduce that

kD2fkM = L(f)� `(f)

 f 0(x̄)� f 0(x) + 2✏

=
�
f 0

+(x̄)� f 0

�
(x̄)
�
�
�
f 0

+(x)� f 0

�
(x)
�

+ 2✏

= A+ �A� + 2✏, (8.15)

where As = (f 0

s(x̄)� f 0

s(x)) for s 2 {+,�}. We consider the two following exhaus-
tive cases.

Case I: x̄ > x. The convexity of f� implies that A� � 0. Moreover, we have
that A+ =

�
f 0

+(x̄)� f 0

+(x)
�
 (L(f+)� `(f+)) = kD2f+kM. Using (8.15), this
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yields that kD2fkM  kD2f+kM + 2✏, which can be rewritten as 2✏ � kD2f�kM.
However, our original choice of ✏ implies that ✏ < kD2f�kM/2, which leads to a
contradiction.

Case II: x̄  x. Similarly to the first case, we deduce that A+  0 and
�A�  kD2f�kM. Hence, we get that 2✏ � kD2f+kM, which contradicts the
assumption ✏ < kD2f+kM/2. Since both cases lead to a contradiction, we have
w� = 0 or w+ = 0. This implies that f is either convex or concave.

A weaker version of Theorem 8.1 is proven in [185], where `(f) is replaced with
the clear upper bound |f(1)�f(0)|. The importance of the updated bound is due to
its sharpness, in the sense that it is an equality for monotone and convex/concave
functions.

A weaker version of (8.11) motivated the authors of [185] to provide a global
bound for the Lipschitz constant of DNNs and to regularize it during training.
Although this is an interesting approach to control the Lipschitz constant of the
learned mapping, the obtained guarantee is too conservative. This is due to the
fact that, as soon as f has some oscillations, the difference between the two sides
of (8.11) dramatically increases and the bound becomes loose. Here, by contrast,
we ensure the global stability of the learned mapping by directly controlling the
Lipschitz constant itself.

8.3.1 Lipschitz Regularization
We first consider the Lipschitz constant as a regularizer and study the mini-

mization problem

VLip , arg min
f2Lip(R)

 
MX

m=1

E(f(xm), ym) + �L(f)

!
, (8.16)

where E : R ⇥ R ! R is a strictly convex and coercive function and � > 0 is the
regularization parameter. We also assume, without loss of generality, that the data
points xm are sorted in the increasing order x1 < x2 < · · · < xM . In Theorem 8.2,
we state our main theoretical contributions regarding Problem (8.16).

Theorem 8.2. Regarding the minimization Problem (8.16), the following state-
ments hold true.
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1. The solution set VLip is a nonempty, convex and weak⇤-compact subset of
Lip(R).

2. There exists a unique vector z = (zm) 2 RM such that

VLip = arg min
f2Lip(R)

L(f) s.t. f(xm) = zm 1  m M. (8.17)

3. The optimal Lipschitz constant has the closed-form expression

Lmin , max
2mM

����
zm � zm�1

xm � xm�1

���� . (8.18)

Consequently, any Lmin-Lipschitz function f that satisfies f(xm) = zm for
m = 1, . . . , M is a solution of (8.16).

4. Let E ✓ R2 be the union of the graphs of all solutions of (8.16), defined as

E ,
�
(x, y) 2 R2 : 9f 2 VLip, y = f(x)

 
. (8.19)

We also define the right and left planar cones R,L ✓ R2 as

R , {↵1(1, Lmin) + ↵2(1,�Lmin) : ↵1,↵2 � 0} , (8.20)

and L , �R. With the convention that R0 , LM+1 , R2, we have that

E =
M+1[

m=1

(Rm�1 \ Lm) , (8.21)

where the Rm and Lm are shifted versions of R and L, with

Rm , (xm, zm) + R Lm , (xm, zm) + L 81  m M. (8.22)

5. Any solution of the constrained minimization problem

min
f2MD2 (R)

kD2fkM s.t. f(xm) = zm 1  m M (8.23)

is included in VLip. In particular, the solution set of (8.16) always includes
a CPWL function.
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Figure 8.1: The union of the graphs of all solutions in a simple example
with four data points. Note that all solutions must directly connect (x2, z2)
to (x3, z3), since the slope of this segment is Lmin whose formula is given
in (8.18).

The proof of Theorem 8.2 is given in Appendix B.3. Items 1 and 2 are classical
results that hold for a general class of variational problems (see [112] for a generic
result). Their practical implication is Item 3, which provides a way of identifying
solutions of (8.16). The properties of the solution set VLip are further explored in
Item 4, where a geometrical insight is given (see Figure 8.1).

Finally, the result that has the greatest practical relevance is stated in Item 5,
which creates an interesting link with second-order TV minimization problems and
hence guarantees the existence of CPWL solutions.
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8.3.2 Lipschitz Constraint

While the first formulation is interesting on its own right and results in learning
CPWL mappings with tunable Lipschitz constants, it does not necessarily yield a
sparse (and, hence, interpretable) solution. In fact, the learned mapping can have
undesirable oscillations as illustrated in Figure 8.4. This observation motivates us
to propose a second formulation that combines second-order TV regularization with
a constraint over the Lipschitz constant, as expressed by

Vhyb , arg min
f2MD2 (R)

 
MX

m=1

E(f(xm), ym) + �kD2fkM

!
s.t. L(f)  L̄. (8.24)

The quantity L̄ is the upper bound for the Lipschitz constant of the learned
mapping. In this way, the stability is directly controlled by the user, while the
regularization term removes undesired oscillations. The strength of the regulariza-
tion can be adapted with the tunable parameter � > 0. The solution set Vhyb is
characterized in Theorem 8.3, from which we also deduce the existence of CPWL
solutions.

Theorem 8.3. The solution set Vhyb of Problem (8.24) is a nonempty, convex,
and weak⇤-compact subset of MD2(R) whose extreme points are linear splines with
at most (M � 1) linear regions. Moreover, there exists a unique vector z = (zm)
such that

Vhyb = arg min
f2MD2 (R)

kD2fkM s.t. f(xm) = zm 1  m M. (8.25)

Finally, the optimal second-order TV cost has the closed-form expression

J 0
hyb ,

M�1X

m=2

����
zm � zm�1

xm � xm�1
� zm � zm+1

xm � xm+1

���� . (8.26)

The proof of Theorem 8.3, which is given in Appendix B.4, involves the weak⇤-
closedness of the constraint box L(f)  L, which is essential to prove existence.
Once the existence of a minimizer is guaranteed, we can apply the results of the
previous chapter for second-order TV minimization to deduce the remaining parts.



8.3 Lipschitz-Aware Formulations for Supervised Learning 211

We also remark that the Lipschitz constraint only affects the vector z in (8.25),
which imposes that its entries satisfy the inequalities

����
zm � zm�1

xm � xm�1

����  L m = 2, . . . , M. (8.27)

8.3.3 Connection to Neural Networks
In this part, we show that our second formulation (8.24) is equivalent to training

a two-layer neural network with weight decay and a Lipschitz constraint. We recall
that a univariate ReLU network with two layers and skip connections is a mapping
f✓ : R! R of the form

f✓(x) = c0 + c1x +
KX

k=1

vk(wkx� bk)+, (8.28)

where c1 2 R is the weight of the skip connection, K 2 N is the width of the
network, vk, wk 2 R, k = 1, . . . , K are the linear weights, and bk 2 R, k = 1, . . . , K
and c0 2 R are the bias terms of the first and second layers, respectively. These
parameters are concatenated into a single vector ✓ , (K,v,w,b, c), and we denote
by ⇥ the set of all possible parameter vectors ✓. Thus, the training problem with
Lipschitz constraint and weight decay is formulated as

VNN , arg min
✓2⇥

 
MX

m=1

E(f✓(xm), ym) + �RNN(✓)

!
s.t. L(f✓)  L̄, (8.29)

where RNN(✓) , PK
k=1

⇣
|vk|

2+|wk|
2

2

⌘
is the regularization term corresponding to

weight decay. In Proposition 8.1, we show the equivalence between this training
problem and our Lipschitz-constrained formulation (8.24).

Proposition 8.1. For any solution ✓⇤ of (8.29), f✓⇤ is a CPWL solution of (8.24).
Moreover, any CPWL solution of (8.24) can be expressed as a two-layer ReLU
network f✓⇤ with skip connections whose parameter vector is optimal in the sense
of (8.29), i.e., ✓⇤ 2 VNN.

Proof. We start by proving a useful lemma.
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Lemma 8.1. For any ✓⇤ = (K⇤,v⇤,w⇤,b⇤, c⇤) 2 VNN, we have that |v⇤k| = |w⇤

k|
for any k = 1, . . . , K.

Proof. Let ✓⇤ = (K⇤,v⇤,w⇤,b⇤, c⇤) 2 VNN and 1  k  K. For any ✏ 2 (�1, 1),
we define a perturbed parameter vector ✓✏ = (K⇤,v✏,w✏,b✏, c⇤), where for any
k0 = 1, . . . , K we have that

v✏,k0 ,
(

v⇤k0 k0 6= k

(1 + ✏)
1
2 v⇤k k0 = k

, (8.30)

w✏,k0 ,
(

w⇤

k0 k0 6= k

(1 + ✏)�
1
2 w⇤

k k0 = k
, (8.31)

b✏,k0 ,
(

b⇤k0 k0 6= k

(1 + ✏)�
1
2 b⇤k k0 = k

. (8.32)

Due to the positive homogeneity of the ReLU, one readily deduces from (8.28) that
f✓⇤ = f✓✏ for any ✏ 2 (�1, 1). Together with the optimality of ✓⇤ in Problem (8.29),
this implies that

v⇤k
2 + w⇤

k
2  (1 + ✏)v⇤k

2 + (1 + ✏)�1w⇤

k
2 8✏ 2 (�1, 1).

Multiplying both sides of the above inequality by (1 + ✏) > 0 yields

✏w⇤

k
2  ✏(1 + ✏)v⇤k

2 8✏ 2 (�1, 1).

Letting ✏ ! 0+ yields w⇤

k
2  v⇤k

2 and ✏ ! 0� yields w⇤

k
2 � v⇤k

2, which proves that
|w⇤

k| = |v⇤k|.

Using Lemma 8.1, we observe that for any ✓⇤ 2 VNN, we have that

RNN(✓⇤) =
1

2

KX

k=1

(v⇤k
2 + w⇤

k
2) =

KX

k=1

|v⇤k||w⇤

k| = kD2f✓⇤kM,

where the last inequality comes from the simple observation that kD2{v(w(·) �
b)+} = |v||w| for any v, w, b 2 R. Hence, one can rewrite the solution set VNN as

VNN = arg min
✓2⇥red

 
MX

m=1

E(f✓(xm), ym) + �kD2f✓kM

!
s.t. L(f✓)  L̄,
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where ⇥red = {✓ 2 ⇥ : RNN(✓) = kD2f✓kM} is the reduced parameter space. To
prove the announced equivalence, it remains to prove that the mapping ⇥red !
MD2(R) : ✓ 7! f✓ is a bijection onto the CPWL members of MD2(R) with finitely
many linear regions.

For any ✓ 2 ⇥red, the function f✓ is a CPWL member of MD2(R) with finitely
many linear regions. To prove the converse, let f 2MD2(R) be a CPWL function
with finitely many linear regions. Using the canonical representation of f , there
exist c0, c1 2 R, K 2 N and ak, ⌧k 2 R with ak 6= 0 for k = 1, . . . , K such that

f(x) = c0 + c1x +
KX

k=1

ak(x� ⌧k)+.

Next, by defining vk , akp
|ak|

, wk ,
p
|ak| and bk ,

p
|ak|⌧k for k = 1, . . . , K, the

homogeneity of the ReLU function (·)+ yields f = f✓ with ✓ = (K, c,v,w,b) 2
⇥red, where the latter inclusion is due to the equalities |vk| = |wk| for k = 1, . . . , K.

Proposition 8.1 is an extension of the results of [193, 194], where this equivalence
is proved in the absence of a Lipschitz constraint. These works rely on a result that
describes the energy propagation in the training of feed-forward neural networks
with weight decay (e.g., [193, Corollary C.2]), which can easily be extended to
the Lipschitz-constrained case (Lemma 8.1). Proposition 8.1 provides a functional
framework to study the training of Lipschitz-aware neural networks, which is a
nontrivial task. To this end, Proposition 8.1 allows us to deploy our sparsification
Algorithm 7.1, as demonstrated in the following section.

8.4 Finding the Sparsest CPWL Solution
Using the theoretical results of Section 8.3, we propose an algorithm to find the

sparsest CPWL solution of Problems (8.16) and (8.24). To that end, we first com-
pute the vector z of the value of the optimal function at the data points x1, . . . , xm.
Using this vector, we then deploy our sparsification Algorithm 7.1, whose use in
the present method is motivated by the following theorem.

Theorem 8.4. Let (xm, zm) 2 R2 with m = 1, . . . , M be a collection of ordered
data points with x1 < · · · < xM . Then, the output fsparse of the sparsification
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Algorithm 7.1 is the sparsest linear-spline interpolator of the data points. In other
words, fsparse is the CPWL interpolator with the fewest number of linear regions.

Proof. Let f⇤ be the output of Algorithm 7.1. It is thus a CPWL solution of
Problem (8.17) with the minimum number of linear regions. We prove that any
CPWL interpolant f of the data points Pm = (xm, zm) with m = 1, . . . , M—not
necessarily a minimizer of kD2{·}kM—has at least as many linear regions as f⇤. Our
proof is based on induction over the number M of data points. The initialization
M = 2 trivially holds, since f⇤ then has a single linear region—it is simply the line
connecting the two data points. Next, let M > 2, and assume that Theorem 8.4
holds for (M � 1) or less data points (the induction hypothesis). The canonical
interpolant fcano introduced in Definition B.1 can be expressed as

fcano(x) = ↵1x + ↵2 +
M�1X

m=2

am(x� xm)+ (8.33)

for some coefficients ↵1,↵2, am 2 R. There are three possible scenarios:
1. all ams are positive (or negative);
2. at least one of them is zero;
3. there are two consecutive coefficients with opposite signs, so that amam+1 <

0 for some m.
We analyze each case separately and use the induction hypothesis to deduce the
desired result. In this proof, we refer to singularities of CPWL functions (i.e., the
boundary points between linear regions) as knots.

Case 1: In this case, Theorem 7.3 states that f⇤ has K =
�
dM2 e � 1

�
knots.

Assume by contradiction that there exists a CPWL interpolant f with fewer knots
and consider the K disjoint intervals (x2k�1, x2k+1) for 1  k 

�
dM2 e � 1

�
= K.

We deduce that there exists an interval (x2k�1, x2k+1) in which f has no knot.
This in turn implies that the data points P2k�1, P2k, and P2k+1 are aligned so that
a2k = 0, which yields a contradiction.

Case 2: Let m 2 {2, M � 1} be such that am = 0, and consider the collection
of m < M data points (Pm0)1m0m. By the induction hypothesis, f⇤ interpo-
lates these points with the minimal number K1 of knots. The same applies to the
collection of (M �m + 1) < M points (Pm0)mm0M with K2 knots. Let f be a
CPWL interpolant of all the M data points with the minimal number of knots. By
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definition of the Ki, f must have at least K1 knots in the interval (x1, xm) and K2

knots in the interval (xm, xM ). Since these intervals are disjoint, f must have at
least (K1 + K2) knots in total. Yet, f⇤ has exactly (K1 + K2) knots: indeed, f⇤

follows fcano in the interval [xm�1, xm+1], which has no knot at xm since am = 0
(the points Pm�1, Pm, and Pm+1 are aligned). This concludes that f⇤ has the
minimum number of knots.

Case 3: Let m 2 {2, M �2} be such that amam+1 < 0. Consider the collection
of (m + 1) < M data points (Pm0)1m0m+1; by the induction hypothesis, f⇤

interpolates them with the minimal number K1 of knots. Similarly, f⇤ interpolates
the (M �m+1) < M points (Pm0)mm0M with the minimal number K2 of knots.
We now state a useful lemma whose proof is given below.

Lemma 8.2. Let m 2 {2, . . . , M�2} be such that amam+1 < 0. Then, any CPWL
interpolant f of the data points (Pm0)1m0M can be modified to become another
CPWL interpolant f̃ with as many (or fewer) knots such that f̃ has no knot in the
interval (xm, xm+1).

Proof. Let f be a CPWL interpolant of the data points (Pm0)1m0M with P knots.
In what follows, we consider a CPWL function f̃ that follows f outside this interval
and (xm�1, xm+2), and we modify it inside this interval in order to remove all knots
in (xm, xm+1) without increasing the total number of knots.

We consider the case am > 0 and am+1 < 0 without loss of generality. Let
s� , f 0(x�

m�1) and s+ , f 0(x+
m+2) be the slopes of f before and after the interval

of interest (xm�1, xm+2), respectively, and let s�cano , f 0

cano(x
�

m�1) and s+
cano ,

f 0

cano(x
+
m+2) be those of fcano. We also introduce the linear functions f�(x) ,

zm�1 + s�(x � xm�1) and f+(x) , zm+2 + s+(x � xm+2). They prolong f in a
straight line after Pm�1 and before Pm+2, respectively. We now distinguish cases
based on s� and s+.

Case I: s�  s�cano and s+  s+
cano. Graphically, this corresponds to f lying in

none of the gray regions in Figure 8.2. In this case, the line (PmPm+1) intersects
the linear function f� at some point P� , (x�, z�) where x� 2 (xm�1, xm), and
with f+ at some point P+ , (x+, z+) with x+ 2 (xm+1, xm+2). This is obvious
graphically (see Figure 8.2 as an illustration for P�), and is due to the fact that
am > 0 and am+1 < 0. Hence, by taking an f̃ that connects the points Pm�1,
P�, P+, and Pm+2, then f̃ has two knots in [xm�1, xm+2] and its knots satisfy



216 Interpolation of Data Under Lipschitz Constraint

x�, x+ 62 (xm, xm+1). Since f clearly cannot have fewer than two knots in this
interval, this proves the desired result.

Case II: s+ > s+
cano and s� > s�cano. In this case, f lies in both gray regions

in Figure 8.2. To pass through Pm, f must have at least one knot in [xm�1, xm);
let P� , (x�, z�) be the first of those knots (with x� < xm). Similarly, to pass
through Pm+1, f must have a knot in (xm+1, xm+2]; let P+ , (x+, z+) be the
last of those knots (with x+ > xm+1). Then, f must pass through the points P�,
Pm, Pm+1, P+. Yet, the lines (P�Pm) and (Pm+1P+) clearly cannot intersect in
the interval [xm, xm+1], which implies that at least two knots are needed in the
interval (x�, x+). We conclude that f must have at least four knots in the interval
[xm�1, xm+2]. Hence, we take an f̃ that simply connects the points Pm�1, Pm,
Pm+1, and Pm+2 and follows f elsewhere; the latter has four knots in [xm�1, xm+2],
which is no more than f and thus fulfills the requirements of the proof.

Case III: s+ > s+
cano and s�  s�cano. This case is illustrated in Figure 8.2: f

is outside the gray region on the left, and inside the one on the right. With a similar
argument as in Case II, f must have a least three knots in the interval [xm�1, xm+2].
The fact that am > 0 implies that the line (PmPm+1) intersects the linear function
f� at some point P� , (x�, z�) where x� 2 (xm�1, xm). We then take an f̃ that
connects the points Pm�1, P�, Pm+1, and Pm+2 and follows f elsewhere. The
interpolant f̃ has three knots at x�, xm+1, and xm+2 in [xm�1, xm+2] and thus
satisfies the requirements of the proof.

Case IV: s+  s+
cano and s� > s�cano. This is similar to Case III, and can be

readily deduced by symmetry, thus completing the proof of Lemma 8.2.

Let f be a CPWL interpolant of all the M data points with the minimal number
of knots. By Lemma 8.2, it can be modified to become another interpolant f̃ with
the same total number of knots and none in the interval (xm, xm+1). By definition
of the Ki, f̃ must have at least K1 knots in the interval (x1, xm+1) and K2 knots
in the interval (xm, xM ). Yet, f̃ has no knot in the interval (xm, xm+1), so it must
have at least K1 knots in (x1, xm] and K2 knots in [xm+1, xM ). Since these intervals
are disjoint, f̃ must have at least (K1 + K2) knots in total. Yet, f⇤ follows fcano

in the interval [xm�1, xm+2] and thus also has no knot in the interval (x1, xm+1).
Therefore, by the induction hypothesis, f⇤ has K1 knots in (x1, xm] and K2 knots
in [xm+1, xM ), for a total of (K1 + K2) knots. Since this is no more than f̃ , f⇤ has
the minimal number of knots, which proves the induction.
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Figure 8.2: Illustration of Lemma 8.2 in the case am > 0 and am+1 < 0.
The interpolant f (solid line) satisfies s+ > s+

cano and s�  s�cano. The
modified interpolant f̃ (dashed line) also has three knots P�, Pm+1, and
Pm+2, but none in (xm, xm+1).

Theorem 8.4 is a strong enhancement of Theorem 7.3, where it is merely es-
tablished that fsparse is the sparsest CPWL solution of (8.23). In Theorem 8.4,
we prove that fsparse is in fact the sparsest of all CPWL interpolants of the data
points (xm, zm), without restricting the search to the solutions of (8.23). This is a
remarkable result in its own right, as it gives a nontrivial answer to the seemingly
simple question: how to interpolate data points with the minimum number of lines?
Here, we apply Theorem 8.4 to deduce that, with the vector z defined in Item 2 of
Theorem 8.2, fsparse is the sparsest CPWL solution of (8.17). Similarly, with the
vector z defined in Theorem 8.3, fsparse is the sparsest CPWL solution of (8.24).

In the remaining part of this section, we detail our computation of the vectors z
defined in Theorems 8.2 and 8.3. We define the empirical loss function F : RM !
R�0 as

F (z) ,
MX

m=1

E(zm, ym). (8.34)

For simplicity, we assume that F is differentiable; the prototypical example is the
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quadratic loss F (z) = 1
2

PM
m=1(zm�ym)2. Following this notation and using (8.18),

the vector z in Problem (8.17) is the solution to the minimization problem

min
z2RM

�
F (z) + �kLinfzk1

�
, (8.35)

where the matrix Linf 2 R(M�1)⇥M is given by

[Linf ]m,n ,

8
><

>:

�vm+1 n = m

vm+1 n = m + 1

0 otherwise
, (8.36)

where vm , 1
xm�xm�1

for m = 2, . . . , M . To solve (8.35), we use the well-known
ADMM algorithm [19] (see Appendix A).

Similarly and using (8.26), we formulate the search for the vector z associated
to the Problem (8.24) as

min
z2RM

⇣
F (z) + �kL1zk1 + i

kLinfzk1L

⌘
, (8.37)

where iE denotes the indicator function of the set E and L1 2 R(M�2)⇥M with

[L1]m,n ,

8
>>><

>>>:

�vm+1 n = m

(vm+1 + vm+2) n = m + 1

�vm+2 n = m + 2

0 otherwise

, (8.38)

for all m = 1, . . . , M � 2 and n = 1, . . . , M .

8.5 Experimental Results

8.5.1 Experimental Setup
In all our experiments, we consider the standard quadratic loss E(y, z) = 1

2 (y�
z)2. We draw the data-point locations xm randomly in the interval [0, 1]. The
values ym are then generated as ym = f0(xm) + nm, where f0 is some known
CPWL function (gold standard) and nm is drawn i.i.d. from a zero-mean normal
distribution with variance �2.
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8.5.2 Example of Lipschitz Regularization
In this first experiment, we illustrate our first formulation (8.16). We take

M = 50 data points, a CPWL ground-truth f0 with 6 linear regions, and a noise
level � = 0.02.

The results are shown in Figure 8.3. In Figure 8.3a, we show the reconstructions
for extreme values of �. On one hand, �! 0 corresponds to the exact interpolation
Problem (8.17). On the other hand, � = +1 corresponds to constant regression.
Obviously, neither is very satisfactory: interpolation leads to overfitting (the recon-
struction has 37 linear regions), and the constant regression to underfitting. We
show an example of a more satisfactory reconstruction for � = 0.029 (10 linear
regions), which is visually acceptable. In Figure 8.3b, we show the evolution of the
quadratic loss 1

2

PM
m=1(f

⇤(xm)�ym)2 and the Lipschitz constant L(f⇤), for various
values of �. With the aid of such curves, the user can choose what is considered
acceptable for either of these costs and select a suitable value of �.

8.5.3 Limitations of Lipschitz-Only Regularization
Despite its interesting theoretical properties, Problem (8.16) does not always

yield satisfactory reconstructions. This is because it does not enforce a sparse
reconstruction, despite the fact that our algorithm reconstructs (one of) the sparsest
elements of Vlip. This leads to learned mappings with too many linear regions and,
consequently, poor interpretability.

One such example is shown in Figure 8.4, where we consider the shifted ReLU
function f0(·) = (· � 1

2 )+ as the ground-truth mapping. We also fix the standard
deviation of the noise to � = 0.02. Figure 8.4a shows a reconstruction that solves
Problem (8.16) with the regularization parameter � = 0.02. Although the recon-
struction is satisfactory in the active section (x > 1/2), it has many linear regions
in the flat section (x < 1/2) that are not present in f0. This is due to the fact that
the active section forces the Lipschitz constant of the reconstruction to be around
1, while oscillations with a slope smaller than 1 in the flat section are not penalized
by the regularization. This problem clearly cannot be fixed by a simple increase in
the regularization parameter: with � = 0.2 (Figure 8.4b), not only there are still
too many linear regions in the flat section (the reconstruction has 9 linear regions
in total), but also the active section is poorly reconstructed because the Lipschitz
constant is penalized too heavily by the regularization.
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-0.05

0

0.05

0.1
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(a) Reconstructions for different values of �. Number of linear
regions: 10 for � = 0.029 versus 37 for � = +1.

10-5 10-4 10-3 10-2 10-1 100
10-4

10-3
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10-1

100
Quadratic loss
Lipschitz constant

(b) Evolution of the training error and the Lipschitz regularity with
respect to �. The diamond corresponds to � = 0.029 (shown in

Figure 8.3a).

Figure 8.3: Example of our first formulation (8.16) for M = 50 data points.
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(a) Lipschitz regularization (13 linear regions).
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(b) Lipschitz regularization (9 linear regions).
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(c) Second-order TV regularization (2 linear
regions).

Figure 8.4: Reconstructions with a ReLU ground truth and M = 30 data
points.
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Hence, to reconstruct such a ground truth accurately, it is necessary to enforce
the sparsity of the reconstruction, which is exactly the purpose of TV regularization.
The reconstruction result of the second-order TV-regularized problem (i.e., Prob-
lem (8.24) with a relatively large Lipschitz bound) with � = 0.01 is also shown in
Figure 8.4c; it is clearly much more satisfactory than any of the Lipschitz-penalized
reconstructions since it is very close to the ground truth and has the same sparsity
(two linear regions).

8.5.4 Robustness to Outliers of the Lipschitz-Constrained
Formulation

In this final experiment, we demonstrate the pertinence of our second formu-
lation (Problem (8.24)). More precisely, we examine the increased robustness to
outliers of our second formulation (8.24) with respect to second-order TV regular-
ization. To that end, we generate the CPWL ground truth f0 with 6 linear regions
and M = 50 data points. We then consider an additive Gaussian-noise model
with low standard deviation � = 10�3 for 90% of the data, and a much stronger
�0 = 3.5 ⇤ 10�2 for the remaining 10%, which can be considered outliers.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.15

-0.1

-0.05

0

Figure 8.5: Reconstruction of M = 50 data points for � = 10�4. Our
second formulation with L̄ = 0.66 produces 9 linear regions. We compare it
to that of second-order TV regularization, which produces 12 linear regions.

We show in Figure 8.5 the reconstruction results using our second formulation
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with � = 10�4 and L̄ = 0.66. The latter is quite satisfactory despite the presence
of a strong outlier around xm = 0.22. This is due to the fact that the Lipschitz
constant is constrained. When using second-order TV regularization alone with the
same regularization parameter, the reconstruction is very similar in most regions
but is much more sensitive to this outlier, which leads to an unwanted sharp peak
and to a high Lipschitz constant L(f⇤) = 2.21. Moreover, our reconstruction is
more satisfactory in terms of sparsity (9 linear regions compared to 12, which is
closer to the 6 linear regions of the target function f0).

8.6 Conclusion
We have proposed two schemes for the learning of one-dimensional CPWL map-

pings with tunable Lipschitz constant. In the first scheme, we directly use the Lip-
schitz constant as a regularization term. We establish a representer theorem that
allows us to deduce the existence of a CPWL solution for this continuous-domain
optimization problem. In the second scheme, we use the second-order TV semi-
norm as the regularization term to which we add a Lipschitz constraint. Again, we
proved the existence of a CPWL solution for this problem. Finally, we proposed
an efficient algorithm to find the sparsest CPWL solution of each problem. We
illustrated the outcome of each scheme via numerical examples. A potential ap-
plication of the proposed algorithm is to design stable CPWL activation functions
with a minimum number of linear regions in DNNs. This can, for example, be use-
ful to train a denoising module in the context of plug-and-play methods for image
reconstruction, whose convergence rates typically depend on the Lipschitz constant
of the trainable denoising module [239].
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Chapter 9

Reconstruction of Periodic
Signals from Fourier-Domain
Measurements

This chapter is based on the following work [240]:
T. Debarre, Q. Denoyelle, and J. Fageot, “TV-Based Spline Reconstruction

with Fourier Measurements: Uniqueness and Convergence of Grid-Based Methods”,
arXiv preprint arXiv:2202.05059, Feb. 2022.

We also recall a result of our companion work [241]:
T. Debarre, Q. Denoyelle, and J. Fageot, “On the Uniqueness of Solutions for

the Basis Pursuit in the Continuum”, arXiv preprint arXiv:2009.11855, Feb. 2022.

9.1 Introduction
In this chapter, we study the reconstruction of an unknown periodic real function

f0 : T! R from the knowledge of its possibly noise-corrupted low-frequency Fourier
series coefficients, where T , [0, 2⇡] is the one-dimensional torus. Let Kc � 0 be
the cutoff frequency; we therefore have access to

y = (y0, y1, . . . , yKc) 2 R⇥ CKc , (9.1)

225
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such that yk ⇡ bf0[k], where bf0[k] is the kth Fourier-series coefficient of f0. Note
that, since f0 is a real function, y0 2 R is approximately the mean bf0[0] = hf0, 1i
of f0, while yk 2 C for k 6= 0. Moreover, the Fourier series of f0 is Hermitian
symmetric, meaning that bf0[�k] = bf0[k] 2 C for every k 2 Z. The observation
vector y in (9.1) has (2Kc + 1) (real) degrees of freedom: one for the real mean y0

and two for each other complex Fourier series coefficients in C.

9.1.1 Reconstruction via TV-Based Optimization
We choose to formulate the reconstruction task as an optimization problem with

generalized total-variation (gTV) of the form (3.31). More precisely, the reconstruc-
tion f⇤ is the solution of

f⇤ 2 arg min
f2ML(T)

⇣
E(⌫(f),y) + �kLfkM

⌘
, (9.2)

where ML(T) is the native space defined in (2.33), y 2 R⇥CKc is the observation
vector, ⌫(f) 2 R⇥ CKc is the measurement vector

⌫(f) =
⇣
bf [0], bf [1], . . . , bf [Kc]

⌘
2 R⇥ CKc , (9.3)

E(·,y) : R ⇥ CKc ! R+ [ {1} is a data-fidelity cost functional (see Example 3.1
for classical examples), k·kM is the TV norm for periodic Radon measures defined
in (2.17), and L is a regularization operator acting on periodic functions. As in
the rest of this thesis, we focus on Ndth-order derivative operators L = DNd with
Nd � 1.

Remark 9.1. Contrary to the hypotheses of Theorem 3.4 where we have ⌫ :
ML(T) ! RM , the measurement operator ⌫ defined in (9.3) has complex output
values. This allows us to use the Fourier series, which leads to more convenient
calculations. However, this does not prevent us from applying Theorem 3.4 to Prob-
lem (9.2) by separating the real and imaginary parts into two separate real outputs
as in Example 3.5, so that there is a total of M = 2Kc + 1 real outputs.

9.1.2 Contributions
Problems of the form (9.2) have previously been studied in [22] in a more general

setting; the representer theorem from that paper (Theorem 3.4) guarantees the
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existence of a solution without adjudicating on its uniqueness. Moreover, it gives
the form of the extreme-point solution(s) as periodic L-splines, i.e., functions f
such that

Lf =
KX

k=1

akX(·� xk) (9.4)

is a finite sum of shifted Dirac combs, the distinct Dirac locations xk being the
knots of the spline. Moreover, known proof techniques [14, 22, 87] allow us to show
that the number of knots K is bounded by K  2Kc + 1. Our contributions can
be detailed as follows.

(i) Uniqueness of the Solution. Our main result is Theorem 9.1, in which we
prove that the solution to Problem (9.2) is always unique. Moreover, we slightly
improve the upper bound on the number of knots to K  2Kc in (9.4). To the
best of our knowledge, Theorem 9.1 is the first systematic uniqueness result for the
analysis of TV-based variational problems such as (9.2). This result has both theo-
retical and algorithmic implications, which we leverage in our other contributions.

(ii) Uniform Convergence of Grid-Based Methods. We study the grid-based
discretization of Problem (9.2). More precisely, we restrict its search space to the
finite-dimensional space of uniform L-splines, i.e., L-splines whose knots lie on a
uniform grid. We show that as the grid gets finer, any sequence of solutions of
the discretized problems converges in uniform norm towards the unique solution
of Problem (9.2). This form of convergence is remarkably strong: in particular, it
implies convergence for any Lp norm with 1  p  1.

(iii) Grid-Based Algorithm. We propose a periodic adaptation of the B-spline-
based algorithm developed in Chapter 4 to solve Problem (9.2). Thanks to our
aforementioned uniform convergence result, the reconstructed signal is guaranteed
to be uniformly close to the gridless solution when the grid is sufficiently fine. We
provide some experimental results of our algorithm on some simulated data that
demonstrate its numerical feasibility.

In our setting, contrary to most gTV-based optimization problems, the solution
to Problem (9.2) is always unique, as we show in Theorem 9.1. In the literature, the
closest work in this direction is that presented in Chapter 7, where we provide a full
description of the solution set of nonperiodic TV-based optimization problems with
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a regularization operator L = D2 (which leads to piecewise-linear reconstructions),
and spatial sampling measurements ⌫. That study includes the characterization
of the cases of uniqueness (Proposition 7.6 and Theorem 7.1), which, contrary to
Problem (9.2), is not systematic.

9.1.3 Related Works
The convergence of discretized optimization schemes to the solutions of continuous-

domain TV-regularized problems has been studied in multiple works, such as [12,
65, 51, 85, 78]. Grid-based methods have specifically been considered in [65, 66, 67].
In these works, the authors prove convergence results in the weak⇤ sense, which is
adapted to the space of Radon measures, in a setting where no systematic unique-
ness results are known. To the best of our knowledge, our work is the first to
prove the convergence of solutions of discretized gTV-based problems towards the
solution of the original problem, let alone in a strong sense such as the uniform
norm. To achieve this, we leverage our uniqueness result of Theorem 9.1. On the
algorithmic side, grid-based methods to solve optimization problems with TV-based
regularization have been proposed in [45] and the works of Part II of this thesis.

9.1.4 Outline
The chapter is organized as follows. Section 9.2 introduces the necessary mathe-

matical background. In Section 9.3, we present our optimization problem of interest
(9.2) and prove that it always has a unique solution. In Section 9.4, we present the
grid-based discretization of Problem (9.2), and prove that its solutions converge
uniformly to that of the original problem when the grid size goes to zero. We
present our proposed method for solving this discretized problem using a B-spline
basis in Section 9.5. Finally, we exemplify our results on simulations in Section 9.6.

9.2 Mathematical Preliminaries

9.2.1 Periodic Functions and Periodic Splines
We first introduce some notations and recall some basic facts concerning the

periodic setting introduced in Chapters 2 and 3, namely periodic functions, the
generalized Fourier series (Section 2.1.6), and periodic splines (Section 3.1).
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The Schwartz space of infinitely smooth periodic function (2.6) is denoted by
S(T), and its dual is the space of periodic generalized functions S 0(T). Their
complex-valued counterparts are denoted by S(T,C) (defined in (2.7)) and S 0(T,C)
(defined in (2.8)), respectively. For k 2 Z, let ek : T! C be the complex exponen-
tial function ek , ejk· 2 S(T,C). The Fourier series coefficients of any f 2 S 0(T)

are given by bf [k] = hf, eki 2 C. Following (2.16), we have the Fourier series
expansion f =

P
k2Z

bf [k]ek for any f 2 S 0(T). For example, the Dirac comb
X ,Pn2Z �(·� 2⇡n) has Fourier series coefficients cX[k] = 1 for any k 2 Z.

The weak-derivative operator (Section 2.3) is denoted by D : S 0(T) ! S 0(T).
More generally, we consider the Ndth-order derivative operator 1 L = DNd for a
fixed integer Nd � 1, whose null space is given by NL , span{x 7! 1} (defined
in (2.31)), and whose Fourier multiplier is bL[k] = (jk)Nd . We then have that
Lf =

P
k2Z(jk)Nd bf [k]ek for any f 2 S 0(T).

Following (2.32), the periodic Green’s function gL of L = DNd is given by

gL ,
X

k 6=0

ek
(jk)Nd

. (9.5)

A L-spline is a periodic function f 2 S 0(T) that satisfies

Lf = w =
KX

k=1

akX(·� xk) (9.6)

where K � 0, ak 2 R \ {0}, and the knots xk 2 T are pairwise distinct. By
Proposition 3.2, a L-spline f that satisfies (9.6) can be represented as

f = a0 +
KX

k=1

akgL(·� xk) (9.7)

for some a0 2 R. In this case, we necessarily have that
PK

k=1 ak = 0.

9.2.2 Periodic Radon Measures and Native Spaces
We now briefly recall the necessary elements from the periodic setting concerning

periodic Radon measures (Section 2.2) and native spaces (Section 2.4). Let M(T)

1. As in most chapters of the thesis, all the results and algorithms from this chapter can be
extended to more general operators L, e.g., rational operators [102].
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be the space of periodic Radon measures defined in (2.18). The space M(T) is a
Banach space endowed with the TV norm k · kM (defined in (2.17)).

We denote by M0(T) the set of Radon measures with zero mean, i.e., M0(T) ,
{w 2M(T) : bw[0] = 0}. It is the dual of the space C0(T) , {f 2 C(T) : bf [0] = 0}
of continuous functions with zero mean endowed with the supremum norm k · kL1 .

Let L = DNd for some Nd � 1. The native space of L (defined in (2.33)) is given
by

ML(T) , {f 2 S 0(T) : Lf 2M(T)}. (9.8)

We introduce the pseudo-inverse operator L† defined in Proposition 2.6 as

L†f ,
X

k 6=0

bf [k]

(jk)Nd
ek (9.9)

for any f 2 S 0(T). By Theorem 2.4, the native space ML(T) then admits the
direct-sum decomposition

ML(T) = L†M0(T)� span{1}, (9.10)

and any f 2ML(T) has a unique decomposition

f = L†w + a (9.11)

where w 2M0(T) and a 2 R are given by w = Lf and a = bf [0].

9.2.3 Dual Certificates for the Basis Pursuit in the Contin-
uum

In this section, we introduce the material from [170], which concerns the basis
pursuit in the continuum 2 (BPC) problem

min
w2M(T), ⌫(w)=y

kwkM. (BPC)

Note that the results of [170] are more general than the ones presented here; how-
ever, since our focus in this thesis is on the generalized BPC (gBPC)—the BPC

2. A similar terminology, the “continuous basis pursuit”, is used in a different context in [175,
67].
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with a regularization operator L—we restrict here to the minimum required results
from [170] from which the results of [241] (that concern the gBPC) can be deduced.

The analysis of (BPC) benefits from the theory of duality for infinite-dimensional
convex optimization, as exposed for instance by Ekeland and Temam in [26]. This
line of research has proven to be fruitful to study optimization on measure spaces [47,
49, 65, 62, 66]. We mostly rely on the concepts and results exposed in [65], but
very similar tools can be found elsewhere [47, 49]. Considering the dual problem
to (BPC) and writing the optimality conditions that link the solutions of both
problems 3 leads to the notion of dual certificates, which are continuous functions
on T satisfying some conditions (see Proposition 9.1 below). In particular, dual
certificates enable to certify that some w 2 M(T) is a solution of (BPC) and to
localize its support. In the next definition, we introduce some notations that allow
us to formulate these statements mathematically. We recall that a Radon measure
w 2M(T) can be uniquely decomposed as w = w+�w�, where w+ and w� are non-
negative measures (Jordan decomposition). In the following definition, we define
signed supports and saturation sets; it is the periodic equivalent of Definition 7.2
from Chapter 7.

Definition 9.1. Let w 2M(T). We define the signed support of w as

supp
±

(w) , supp(w+)⇥ {1} [ supp(w�)⇥ {�1}, (9.12)

where supp(w̃) is the support of w̃ 2M(T).
Let ⌘ 2 C(T). The positive and negative saturation sets of ⌘ are given by

sat+(⌘) , ⌘�1({1}) and sat�(⌘) , ⌘�1({�1}), (9.13)

respectively. Finally, we define the signed saturation set of ⌘ as

sat±(⌘) , sat+(⌘)⇥ {1} [ sat�(⌘)⇥ {�1}. (9.14)

The following proposition introduces formally the notion of dual certificates for
the (BPC) problem.

Proposition 9.1. There exists a function ⌘ 2 C(T), which is a real trigonometric
polynomial of degree at most Kc, that satisfies k⌘kL1  1, and is such that for any
solution w0 2M(T) of (BPC), we have one of the following equivalent conditions:

3. Note that dual certificates always exist for the (BPC) with Fourier measurements [13].
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— hw0, ⌘i = kw0kM;
— supp

±
(w0) ⇢ sat±(⌘).

Such a function ⌘ is called a dual certificate.

Proposition 9.1 is stated in an equivalent form in [65, Proposition 3], where dual
certificates of Problem (BPC) are studied 4. Moreover, the proof of Proposition 9.1
is a seamless adaptation of that of Proposition 7.1 to the periodic setting in the
absence of a regularization operator and with a specific forward model ⌫ of the
form (9.3). Hence, we do not provide the proof.

Concerning the study the uniqueness of (BPC), the following proposition is an
important consequence of Proposition 9.1. Proposition 9.2 can also be deduced
from [65] (see also [47]).

Proposition 9.2. If there exists a nonconstant 5 dual certificate for the Prob-
lem (BPC), then it has a unique solution of the form w⇤ =

PK
k=1 ak�(· � xk)

with K  2Kc and ak 2 R, xk 2 T.

Proof. Let ⌘ be a nonconstant dual certificate for (BPC) and w⇤ 2M(T) a solu-
tion. Firstly, ⌘ is a trigonometric polynomial of degree at most Kc and so is its
derivative ⌘0. Since ⌘ is nonconstant, ⌘0 has at most 2Kc roots [242, p. 150]. By
Proposition 9.1, we have supp

±
(w⇤) ⇢ sat±(⌘), hence any point in the support of

w⇤ is a root of ⌘0. Consequently, w⇤ is composed of at most 2Kc Dirac masses. Let
⌧ = (⌧1, . . . , ⌧P ) 2 TP be the pairwise distinct roots of ⌘0, with P  2Kc. Then, we
have w⇤ =

PP
p=1 ap�(· � ⌧p), with a = (a1, . . . , aP ) 2 RP (note that some weights

may be equal to 0). Moreover, any other solution of (BPC) must be of the form
w⇤

ã,⌧ =
PP

p=1 ãp�(· � ⌧p), with ã = (ã1, . . . , ãP ) 2 RP (once again some weights
may be equal to 0), where

⌫(w⇤) = y = ⌫(w⇤

ã,⌧ ). (9.15)

4. Duval and Peyré consider more general measurement operators whose image can lie in a
Hilbert space and exemplify their results for low-frequency measurements.

5. In the more general case studied in [65], this corresponds to the nondegeneracy condition of
the dual certificate.



9.3 Uniqueness of TV-Based Penalized Problems 233

Consider the matrix

M⌧ ,

2

66666666664

ejKc⌧1 . . . ejKc⌧P

...
. . .

ej⌧1 . . . ej⌧P

1 . . . 1
e�j⌧1 . . . e�j⌧P

...
. . .

e�jKc⌧1 . . . e�jKc⌧P

3

77777777775

=
⇥
ejk⌧p

⇤1pP

�KckKc
2 C(2Kc+1)⇥P . (9.16)

By definition of ⌫ and by Equation (9.15), we get that ⌫(a� ã) = M⌧ (a� ã) = 0.
The matrix M⌧ is a Vandermonde-type matrix, which is therefore of full rank P ,
since P  2Kc and ⌧1, . . . , ⌧P are pairwise distinct. Hence the null space of M⌧ is
trivial and a = ã, which prove the uniqueness of the solution w⇤ = w⇤

ã,⌧ .

From Proposition 9.2, we can deduce the following corollary. The latter is a
special case of [240, Corollary 1]; the specialization leads to a much simpler proof.

Corollary 9.1. If y0 = 0, then Problem (BPC) has a unique solution of the form
w⇤ =

PK
k=1 ak�(·� xk) with K  2Kc and ak 2 R, xk 2 T.

Proof. The result trivially holds true for y = 0, since the unique solution of (BPC)
is then w⇤ = 0. Assume that y 6= 0, and let ⌘ be a dual certificate for Prob-
lem (BPC). Assume by contradiction that ⌘ is constant, i.e., ⌘ = ±1. Then, by
Proposition 9.1, we have hw0, ⌘i = ±kw⇤kM. Yet we have that hw⇤, ⌘i = ±cw⇤[0] =
±⌫1(w⇤) = ±y0 = 0 and hence that w⇤ = 0, which contradicts the assumption
y = 0 since ⌫(w⇤) = y.

Hence, ⌘ must be nonconstant; the desired result then directly follows from
Proposition 9.2.

9.3 Uniqueness of TV-Based Penalized Problems
It is well known that gTV-based optimization problems lead to splines solutions

(see the representer theorems from Section 3.3). In addition to being existence
results, these representer theorems provide the form of the (extreme-point) solutions
of the optimization task. Here, we focus on problems of the form (9.2), whose
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specificity compared to the generic formulation in Problem 3.31 is the periodic
setting (K = T) and the Fourier-domain measurement operator ⌫.

We now state our main result, which guarantees the uniqueness of the solu-
tion to Problem (9.2). The proof relies on Corollary 9.1 by reformulating Prob-
lem (9.2) over the space of Radon measures; interestingly, the regularization opera-
tor L = DNd leads to systematic uniqueness, which is not true of generic problems
formulated over Radon measures.

Theorem 9.1. Let L = DNd with Nd � 1, Kc � 0 be the cutoff frequency of the
low-pass filter ⌫ : ML(T) ! R ⇥ CKc defined in (9.3), y 2 R ⇥ CKc , E(·,y) :
R ⇥ CKc ! R+ be a functional that is a proper, convex, strictly convex over its
effective domain 6, lower semi-continuous, and coercive, and � > 0. Then, the
optimization problem

V , arg min
f2ML(T)

⇣
E(⌫(f),y) + �kLfkM

⌘
, (9.17)

admits a unique solution that is a L-spline whose number of knots is bounded by
2Kc.

Proof. Using a classical argument based on the strict convexity of E(·,y) (see
Proposition 7.7), we deduce that all solutions f⇤ of Problem (9.17) share an iden-
tical observation vector y� 2 RNd , that is, 8f⇤ 2 V, we have ⌫(f⇤) = y�. Hence,
Problem (9.17) is equivalent to

V = arg min
f2ML(T), ⌫(f)=y�

kLfkM. (9.18)

By (9.11), any f 2ML(T) admits a unique decomposition f = L†w + a 2ML(T)
with (w, a) 2M0(T)⇥R. By plugging in this expansion into the cost functional of
Problem (9.18), we get that the latter is equivalent to

arg min
(w,a)2M0(T)⇥R, ⌫(L†w+a)=y�

kwkM () arg min
w2M0(T), ⌫(w)=z

kwkM, (9.19)

where z 2 R ⇥ CKc is defined as z0 = 0 and zk = bL[k](y�)k for k 6= 0. The
equivalence in (9.19) comes from the fact that ⌫(L†w + a) =

⇣
a, bw[1]

bL[1]
, . . . , bw[Kc]

bL[Kc]

⌘
.

6. The effective domain of a convex function g : X ! R+ [ {1} is the set {x 2 X, g(x) <
1} [197].
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Any f⇤ 2 V can thus be decomposed as f⇤ = L†w⇤ + (y�)0 where w⇤ is a solution
of Problem (9.19).

Note that z0 in Problem (9.19) satisfies the assumptions of Corollary 9.1. Hence,
Problem (9.19) has a unique solution w⇤ that is a sum of at most 2Kc Dirac im-
pulses. This in turn implies the uniqueness of the solution f⇤ = L†w⇤ + (y�)0 as
well as the fact that it is a L-spline with at most 2Kc knots.

Remark 9.2. Theorem 9.1 remains valid for more general operators L, namely
any spline-admissible operator in the sense of [22, Definition 2] whose null space
includes constant functions, i.e., L{1} = 0.

Theorem 9.1 has three components: i) it guarantees the uniqueness of the so-
lution, ii) it provides the form of the solution, and iii) it gives an upper bound on
the number of knots of the solution. The first item, arguably the most striking
one, is completely new; existing results typically provide the form of extreme-point
solutions of the problem. We are not aware of any other systematic uniqueness
result concerning inverse problems with TV-based regularization. The second item
is already known (Theorem 3.4). Finally, concerning the third item, known proof
techniques (Theorem 3.4 and [14, 87]) allow us to reach the bound 2Kc + 1, which
we improve to 2Kc.

One can actually be slightly more precise and show that the mean of the so-
lution is known under very mild conditions on the cost functional E. Under this
assumption, we also provide a reformulation of Problem (9.17) over the space of
Radon measures.

Proposition 9.3. We assume that we are under the conditions of Theorem 9.1 and
that the data-fidelity cost functional E is such that for any fixed (z1, . . . , zKc) 2 CKc ,
we have

y0 = arg min
z02R

E(z,y) (9.20)

where y = (y0, y1, . . . , yKc) 2 R⇥ CKc and z = (z0, z1, . . . , zKc) 2 R⇥ CKc . Then,
the unique solution f⇤ to (9.17) admits the decomposition f⇤ = y0 + L†w⇤ where

w⇤ , arg min
w2M0(T)

�
E(⌫(L†w + y0),y) + �kwkM

�
. (9.21)

In particular, this implies that cf⇤[0] = y0.
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Proof. Similarly to our manipulation in (9.19), Problem (9.17) is equivalent to

(w⇤, a⇤) = arg min
(w,a)2M0(T)⇥R

�
E(⌫(L†w + a),y) + �kwkM

�
, (9.22)

with f⇤ = L†w⇤ + a⇤. Problem (9.22) has a unique solution due to that of Prob-
lem (9.17) (proved in Theorem 9.1), and to the uniqueness of the decomposition of
f⇤ (Equation (9.11)). Then, we have that ⌫(a⇤+L†w⇤) = (a⇤, [L†w⇤[1], · · · , [L†w⇤[Kc]),
which by (9.20) implies that E(⌫(a⇤+L†w⇤),y) � E(⌫(y0+L†w⇤),y), with equality
if and only if a⇤ = y0. Hence, since the constant a does not impact the regular-
ization in (9.21), we must have that a⇤ = cf⇤[0] = y0. Problem (9.22) can thus be
rewritten as (9.21).

Remark 9.3. The relation (9.20) holds for virtually all classical cost functionals,
including any `p norm-based cost such as the quadratic data fidelity E(z,y) =
1
2kz � yk22, or any separable cost whose minimum over each component is reached
when ym = zm, such as indicator functions. Proposition 9.3 ensures that the mean
of the solution of Problem (9.17) is given by cf⇤[0] = y0.

9.4 Uniform Convergence of Grid-Based Methods
A common way to solve infinite-dimensional continuous-domain problems such

as (9.23) algorithmically is to discretize them using a uniform finite grid [66, 67].
In this section, we propose such a discretization method of the problem

f⇤ = arg min
f2ML(T)

✓
1

2
k⌫(f)� yk22 + � kLfk

M

◆
, (9.23)

that is, Problem (9.17) with a quadratic data-fidelity cost E(z,y) = 1
2kz � yk22.

Note that we no longer denote the solution of Problem (9.23) as a set but as a
function f⇤, since Theorem 9.1 guarantees that this solution is unique. We restrict
to the case of the quadratic data fidelity for the sake of simplicity, although our
results hereafter hold for more general choices of E. Our choice clearly satisfies the
assumption of Proposition 9.3, hence the solution f⇤ of (9.23) satisfies bf⇤[0] = y0.

Our discretization method, which was introduced for similar problems in Chap-
ter 4, consists in restricting the search space of Problem (9.23) to the space of



9.4 Uniform Convergence of Grid-Based Methods 237

uniform L-splines ML,h(T), i.e., L-splines that satisfy (9.6) with knots xk on a
uniform grid. The space ML,h(T) is defined as follows for a grid size h , 2⇡

P , where
P � 1 is the number of grid points:

ML,h(T) ,
(

f 2 S 0(T), Lf =
P�1X

p=0

a[p]X (·� hp)

)
with h , 2⇡

P
. (9.24)

Our choice of restricting the search space of Problem (9.23) to ML,h(T) is guided
by Theorem 9.1, which states that the unique solution to this problem is a L-spline.
Hence, this choice of space is compatible with the sparsity-promoting regularization
kL · kM. Although in general, the solution of our problem does not have knots on a
uniform grid, it can be approximated arbitrary closely with an element of ML,h(T)
when P is large. The other main feature of our method is that the computations
are exact in the continuous domain, both those of the forward model and of the
regularization term. Our restricted optimization problem then becomes

Vres(h) , arg min
f2ML,h(T)

✓
1

2
k⌫(f)� yk22 + � kLfk

M

◆
with h , 2⇡

P
. (9.25)

Note that contrary to the original Problem (9.23), the solution set V�,P (y) of the
discretized Problem (9.25) is not necessarily unique.

As we shall demonstrate in Section 9.5, Problem (9.23) can be solved algorithmi-
cally with standard finite-dimensional solvers. However, the important question of
how well it approximates the original Problem (9.23) still remains. We answer this
question in Theorem 9.2 by proving that any sequence of elements of Vres(h) con-
verge in a strong sense—namely, uniform convergence—towards f⇤ when P !1.

Theorem 9.2. Let L = DNd with Nd � 2, y 2 R+ ⇥ CKc , and � > 0. We denote
by f⇤ the unique solution to (9.23). For any P � 1, we set f⇤

P 2 Vres(
2⇡
P ). Then,

we have that
kf⇤ � f⇤

P kL1 �!
P!1

0. (9.26)

Remark 9.4. Despite the fact that the solutions to (9.34) may not be unique,
Theorem 9.2 ensures that the convergence (9.26) holds for any choice of the f⇤

P .

Remark 9.5. Uniform convergence implies convergence with respect to any Lp

norm for 1  p  1, since we have kfkp  (2⇡)1/pkfkL1 for any f 2ML(T).
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Remark 9.6. Theorem 9.2 holds for more general settings than Problem (9.23).
More specifically, our proof seamlessly extends to the more general setting of The-
orem 9.1 for any cost functional E that is continuous with respect to its second ar-
gument, such as `p losses of the form E(z,y) = kz� ykpp. Compared to the setting
of Theorem 9.1, this notably excludes indicator functions, i.e., the constrained op-
timization Problem (9.18). Concerning the regularization operator L, Theorem 9.2
readily extends to any operator L such that L{1} = {0} and whose periodic Green’s
function is Lipschitz. This notably excludes the case L = D, i.e., Nd = 1.

Proof. We first introduce M0,h(T) = {w 2 M0(T), w =
PP�1

p=0 a[p]X(· � hp)},
where h = 2⇡

P , the uniform discretization of M0(T) using Dirac impulses. Then,
using Proposition 9.3 (with a restriction of the search space that does not affect
the proof), we have that f⇤

P = y0 + L†w⇤

P , where

w⇤

P 2 arg min
w2M0,h(T)

✓
1

2
k⌫(L†w + y0)� yk22 + �kwkM

◆
. (9.27)

We now prove that the Radon measures w⇤

P converge towards the unique solution
of

w⇤ , arg min
w2M0(T)

✓
1

2
k⌫(L†w + y0)� yk22 + �kwkM

◆
(9.28)

for the weak* topology when P ! 1, where the uniqueness of w⇤ follows from
(9.21) in Proposition 9.3. This convergence is proved by following [66, Proposition
4]; the fact that the search space in (9.28) is M0(T) rather than M(T) does not
impact the proof. Then, the operator L† is linear and continuous between M0(T)
and ML(T) for their respective weak* topologies. This implies that f⇤

P converges to
f⇤ for the weak* topology over ML(T). According to [22, Proposition 9], L = DNd

is sampling-admissible for Nd � 2, which implies in particular that X is in the
predual of ML(T). Equivalently, this implies that f 7! f(x) is weak*-continuous
over ML(T), which then implies that f⇤

P (x) ! f⇤(x) for any x 2 T (pointwise
convergence).

We now prove that the family (f⇤

P )P2N is equicontinuous. By [243, Theorem
15, Chapter 7], pointwise and uniform convergences are equivalent, which will then
conclude the proof. Since f⇤

P is a L-spline, using the expansion (9.7), we have

f⇤

P = y0 + L†w⇤

P = y0 +
P�1X

p=0

aP [p]gL(·� hp) (9.29)
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for some coefficients aP [p], 0  p  P � 1, where gL is the Green’s function of L
defined in (9.5). Moreover, gL is a periodic Lipschitz function for L = DNd and
Nd � 2, hence kgLkLip , supx,y2R, x 6=y

|gL(x)�gL(y)|
|x�y| < 1. For any x, y 2 R, we

have that

|f⇤

P (x)� f⇤

P (y)| 
P�1X

p=0

|aP [p]||gL(x� hp)� gL(y � hp)|


 

P�1X

p=0

|aP [p]|
!
kgLkLip|x� y|

= kw⇤

P kM kgLkLip|x� y|. (9.30)

We have seen that w⇤

P ! w⇤ when P ! 1 for the weak⇤ topology. It is there-
fore bounded for the TV norm, thanks to the uniform boundedness principle. We
therefore deduce from (9.30) that the f⇤

P are uniformly Lipschitz, and therefore
equicontinuous, which proves the desired result.

The first part of the proof of Theorem 9.2, dealing with the pointwise conver-
gence, mostly relies on the generalization of the weak* convergence studied in [66,
Proposition 4]. Duval and Peyré use tools from �-convergence (see [244] for an
introduction) and are themselves inspired by [245].

Theorem 9.2 shows that our grid-based discretization yields spline solutions that
are arbitrarily close to the unique solution f⇤ of (9.23) in the uniform sense when
the discretization step h = 2⇡

P vanishes. It leverages the uniqueness of the spline
reconstruction from Fourier measurements ensured by Theorem 9.1.

9.5 B-spline-Based Algorithm
We now introduce our proposed algorithm to solve the discretized Problem (9.25)

in an exact way, i.e., without any discretization error. The algorithm is based on
Algorithm 4.1 and uses the B-spline basis to represent the space of uniform splines
ML,h(T). The main difference here with Chapter 4 is the periodic setting, which
actually simplifies the treatment of the boundary conditions. Moreover, for the
sake of conciseness, we focus here on discretizing for a fixed grid; we do not present
the multiresolution aspect of Algorithm 4.1, although it can seamlessly be adapted
to our setting.
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9.5.1 Preliminaries on Uniform Periodic Polynomial Splines
We first recall some background information on B-splines and their periodized

versions; we refer to Section 3.1 for more information.
For any integer P � 1, the periodized B-spline matched to L with grid size

h , 2⇡
P is then defined as

�per
L,h(x) ,

X

k2Z
�L,h(x� 2⇡k), 8x 2 T, (9.31)

where �L,h is the (nonperiodic) scaled B-spline of the operator L = DNd defined in
(3.13).

As demonstrated in Proposition 3.4, a convenient feature of the space on periodic
uniform L-splines ML,h(T) defined in (9.24) is that it is generated by periodic B-
splines:

ML,h(T) =

(
f =

P�1X

p=0

c[p]�per
L,h (·� hp) , c = (c[0], . . . , c[P � 1]) 2 RP

)
. (9.32)

By (3.27), the innovation of a uniform spline f =
PP�1

p=0 c[p]�per
L,h (·� hp) 2

ML,h(T) is given by

L{f} =
1

hNd�1

P�1X

p=0

(dL ⇤ c)[p]X (·� ph) , (9.33)

with c = (c[0], . . . , c[P � 1]) and dL = (dL[0], . . . , dL[P � 1]), and where the P =
2⇡
h -periodic sequence dL is characterized by its discrete Fourier transform (DFT)
DL[k] = (1� e�jkh)Nd .

9.5.2 Discrete Problem Formulation
In practice, we use the B-spline representation (9.32) of ML,h(T) to solve Prob-

lem (9.25). The choice of the B-spline representation is guided by numerical con-
siderations: B-splines have the shortest support among any uniform L-spline, and
thus lead to well-conditioned optimization tasks. The problem thus consists in op-
timizing over the c[0], . . . , c[P � 1] coefficients, which leads to a computationally
feasible finite-dimensional problem, as demonstrated in the following proposition.
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Proposition 9.4. Problem (9.25) is exactly equivalent to solving the finite-dimensional
problem

Vf(h) ,
✓

arg min
c2RP

1

2
kHc� yk22 +

�

hNd�1
kdL ⇤ ck1

◆
with h =

2⇡

P
, (9.34)

where the matrix H 2 C(Kc+1)⇥P is given by Hn,m , ⌫k
⇣
�per

L,h(·�mh)
⌘

= e�jmhb�per
L,h[n],

dL = (dL[0], . . . , dL[P � 1]), and c = (c[0], . . . , c[P � 1]). The continuous-domain
reconstructed signal is then f⇤ ,PP�1

p=0 c⇤p�
per
L,h(·� hp), where c

⇤ 2 Vf(h).

Proof. This equivalence is obtained by plugging in f =
PP

p=1 cp�
per
L,h(· � hp) 2

ML,h(T) into the cost function of Problem (9.23). The expression of the system
matrix H immediately follows. The expression of the regularization term follows
from (9.33) and the fact that k

PP�1
p=0 apX(·� xp)kM = kak1 for pairwise-distinct

knot locations xp.

Problem (9.34) is a standard discrete problem with `1 regularization, and a
solution to the latter can be reached using proximal solvers such as ADMM [19]
(see Appendix A).

9.6 Experimental Results
We now present some results of our discretization method introduced in the

previous section in various experimental settings.

9.6.1 Effects of Gridding
Qualitative Effect

We first present a toy experiment to illustrate the effect of gridding in our
discretization method, i.e., restricting the search space to ML,h(T). We therefore
design an experiment in which the solution of the problem is known, in order to
observe whether our algorithm is able to reconstruct it. To this end, we take
L = D2, and generate a ground-truth signal f0 that is a periodic D2-spline with 2
knots (the locations and amplitudes of the knots are picked at random). We then
compute the noiseless data vector y = ⌫(f0) for Kc = 3, and solve the corresponding
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Figure 9.1: Noiseless reconstruction of a piecewise-linear spline with N =
2 knots, Kc = 3, and � = 10�7.

problem (9.23) with a small regularization parameter � = 10�7 in order to enforce
the constraints ⌫(f) ⇡ y with very low error. Since the form of f0 is compatible
with that of the solution given by Theorem 9.1, the hope is that f0 will be very
close to the solution f⇤ to problem (9.23), which is confirmed by our experiments.

In Figure 9.1a, we show the reconstruction results of our algorithm, using a
voluntarily coarse grid with P = 16 points for visualization purposes. We observe
that since the knot of f0 are quite far from the grid, it is difficult to approximate f0

with an element of ML,h(T). The reconstruction therefore requires several knots on
the grid to mimic a single knot of f0, and thus has a much higher sparsity (K = 7
knots versus K = 2 for f0).

However, as we increase the number of grid points, the effect of gridding is
greatly reduced, as illustrated in Figure 9.1b: with P = 512, the reconstruction
using our algorithm is visually indistinguishable from f0 (which is why we do not
show it). However, the knot locations of f0 still do not exactly lie on the grid,
and thus our reconstruction still requires multiple knots to mimic a single knot of
f0, which leads to a sparsity of K = 4. Specifically, our reconstruction has two
knots at consecutive grid points 1.3990 and 1.4113 mimicking the knot at 1.4103 of
f0, and two knots at 4.8106 and 4.8228 mimicking the knot at 4.8122 of f0. This
effect of knot multiplication due to gridding has already been observed and studied
extensively in [66] in the absence of a regularization operator L.
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The conclusion is thus that gridding leads to visually near-perfect reconstruction
when the number of grid points is very large, which is in line with Theorem 9.2;
however, the sparsity of the reconstruction is a poor indicator of the sparsity of the
true solution of Problem (9.23), since gridding induces clusters of knots.

Quantitative Effect

In Theorem 9.2, we have proved that any sequence of continuous-domain so-
lutions f⇤

P to the grid-restricted problem converges uniformly towards the unique
solution f⇤ of problem (9.23) when P goes to infinity. In order to quantify the speed
of this convergence, using the same experimental setting as in Figure 9.1, we com-
pute the error kf⇤

P�f0kL1 where f⇤

P is the reconstructed signal using our grid-based
algorithm, and the ground truth f0 is a proxy for the solution f⇤ to problem (9.23).
As explained earlier, this is a reasonable proxy due to the very small regularization
parameter � = 10�7. In order to limit the effect of randomness in the choice of the
knots of the ground truth, we apply a Monte Carlo-type method by generating 100
different ground-truth signals (following the methodology described in the previous
section) and averaging the error over these 100 runs. These average errors for dif-
ferent grid sizes are shown in Figure 9.2. The trend appears to be linear in log-log
scale, which indicates an empirical speed of convergence of kf⇤

P � f0kL1 ⇡ ( C
P s )

for some constant C > 0 and where �s < 0 is the slope of the linear function. We
observe here that s ⇡ 1 with s < 1. This is consistent with classical approximation
theory results, since the approximation power of linear splines with grid size h is
in O(h) for the supremum norm, which corresponds to s = 1. There is therefore
no hope of having s > 1; our observation s < 1 can likely be attributed to the fact
that we use f0 as a proxy for f⇤ and to increased numerical issues when the grid
size decreases.

9.6.2 Noisy Recovery of Sparse Splines
We now attempt to recover a ground-truth signal f0 based on noisy data y with

a regularization operator L = D. Once again, the ground-truth signal fits the signal
model of problem (9.23), i.e., f0 is a periodic D-spline (piecewise-constant signal)
with K = 7 knots. Each knot xk is chosen at random within consecutive intervals
of length 2⇡

7 , and the vector of amplitudes a = (a1, . . . , aK) is an i.i.d. Gaussian
random vector projected on the space of zero-mean vectors. The measurements
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Figure 9.2: Average error kf⇤

P � f0kL1 over 100 runs for different grid
sizes P (in log-log scale).

are corrupted by some additive i.i.d. Gaussian noise 7
n 2 R⇥ CKc with standard

deviation � = 10�3, i.e., y = ⌫(f0) + n.
The signal reconstructed using our algorithm is shown in Figure 9.3. Despite the

presence of noise, the reconstruction of the ground truth f0 is almost perfect. As
observed in the previous experiment, the sparsity of the reconstruction (K = 20)
is higher than that of the ground truth (K = 7) due to clusters of knots. We
compare our reconstruction to the truncated Fourier series of f0 up to Kc, i.e.,
fKc =

PKc

k=�Kc

bf0[k]ek, which solely depends on the noiseless data vector ⌫(f0).
Without any prior knowledge, this is the simplest reconstruction one can think of
based on the available data ⌫(f0) = ( bf0[0], . . . , bf0[Kc]). As it turns out, fKc is also
the unique solution to the following constrained L2-regularized problem

fKc , arg min
f : ⌫(f)=⌫(f0)

kfkL2 , (9.35)

as demonstrated in [45, Theorem 3]. In fact, adding any LSI regularization oper-
ator L in (9.35) still yields the same solution, since the basis functions 'm in [45,

7. For complex entries, both the real and imaginary parts are i.i.d. Gaussian variables with
the same �.
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Figure 9.3: Recovery of piecewise-constant spline with 7 knots with Kc =
20. For our reconstruction (gTV), we use � = 10�2 and P = 256 grid
points; the sparsity of the reconstruction is K = 20 knots. The data y

is noisy in the gTV case, whereas the noiseless data ⌫(f0) is used for the
low-pass reconstruction (partial Fourier series of the ground-truth signal
up to the cutoff frequency Kc).

Theorem 3] span the same space. This is due to the fact that the measurement
functionals ⌫m, i.e., complex exponentials, are eigenfunctions of LSI operators.

As expected from the fact that fKc is a trigonometric polynomial whereas f0 has
sharps jumps, the reconstruction is quite poor and exhibits Gibbs-like oscillations,
despite the absence of noise. This clearly demonstrates the superiority of gTV over
L2 regularization for sparse periodic splines reconstruction. Note however that the
gap in performance decreases as the order of L = DNd increases, since Gibbs-like
phenomena are less significant for smoother functions.

9.7 Conclusion
This chapter deals with continuous-domain inverse problems where the goal

is to recover a periodic function from its low-pass Fourier series measurements.
The reconstruction task is formalized as an optimization problem with a TV-based
regularization involving a high-order derivative operator. The existence of spline
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solutions was a known result (representer theorem); our main result further proved
that the solution is in fact always unique. We then studied the grid-based discretiza-
tion of our optimization problem. We leveraged our uniqueness result to show that
any sequence of solutions of the discretized problems converges in uniform norm—
a remarkably strong form of convergence—to the solution of the original problem
when the grid size vanishes. Finally, we proposed a B-spline-based algorithm to
solve the discretized problem, and we illustrated the relevance of our approach on
simulations.
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In this part, we apply our continuous-domain inverse problem frameworks with
sparsity-promoting regularization to real-word applications. More precisely, we
adapt our B-spline-based exact discretization techniques from Part II. However,
contrary to Parts II and III which focused on one-dimensional signals, the works in
this part deal with two-dimensional signals, which poses increased computational
and theoretical challenges. The applications we consider are the following:

— In Chapter 10, we propose a method for sparse curve fitting based on con-
tour points. We formulate this task as a continuous-domain inverse problem
with a novel sparsity-promoting regularization term which we call rotation-
invariant total variation (RI-TV). We prove a representer theorem for this
problem, and we adapt our B-spline-based discretization method from Chap-
ter 4 to solve it computationally. Finally, following Chapter 5, we extend
our method to hybrid curve models with varying smoothness properties, for
which we also prove a representer theorem. We apply our algorithms to the
task of obtaining sparse, stylized representations of fonts.

— In Chapter 11, we propose an image-reconstruction method for scanning
transmission X-ray microscopy (STXM). The latter is a two-dimensional
imaging modality where the forward model is a nonuniform sampling opera-
tor, which justifies our continuous-domain formulation. We use the sparsity-
promoting Hessian-Schatten norm as a regularization functional, and we
deploy B-spline-based techniques inspired from Part II to solve the under-
lying problem. We apply our method to both simulated and real STXM
data.
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Chapter 10

Coupled Splines for Sparse
Curve Fitting

This chapter is based on the following work [246]:
I. Lloréns Jover, T. Debarre, S. Aziznejad, and M. Unser, “Coupled Splines for

Sparse Curve Fitting”, arXiv preprint arXiv:2202.01641, Feb. 2022.

10.1 Introduction
Contour tracing is a common yet rich subject in the image-processing and

computer-graphics community. It has numerous applications, such as component
labeling [247, 248] or topological structure analysis [249]. The objective is to pro-
duce a contour that accurately separates two regions of a given image. This task
is, however, not without difficulties. Firstly, the edges suffer from discretization ef-
fects and intrinsic image noise. Secondly, the smoothness of the contour may need
to be nonuniform, since contours are often made of smooth parts joined by sharp
discontinuities.

Our goal is to extract a continuous stylized sparse parametric curve that explains
a given set of ordered edge points given by possibly inaccurate two-dimensional
coordinates, which is particularly relevant for raster-to-vector conversion, i.e., vec-
torization [250]. Vectorization consists in converting raster data (e.g. pixel images)
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into a set of continuous functions representing the contours. This is the principle
on which fonts or vector formats like pdf or svg, which allow for zooming into the
objects without losing resolution, rely on. It is therefore a problem of great im-
portance for the computer graphics community. Our search for sparsity intimately
follows Occam’s razor principle of simplicity. Indeed, it heightens our probability
of approaching the true curve, as many real-world signals are sparse. This is the
principle on which compressed sensing hinges [8, 10].

Two main approaches come to mind when thinking of contour tracing. The first
one consists in joint edge detection and curve fitting. Parametric active contours
are popular examples of this approach as these methods provide efficient tools for
the extraction of a contour from an image, for example for point-cloud segmentation
[251]. The contour consists in continuous curves that evolve through the optimiza-
tion of an energy functional and iteratively approximate an image edge [252, 253].
A plethora of parametric snake models can be found in the literature, mostly with
model-based energy functionals [254, 255, 256, 257, 258], or more recently with
learning-based approaches [259, 260]. Of particular relevance to this chapter is a
snake model implementation that uses basis functions and that allows for tangent
control, a useful property when the smoothness of the contours is nonuniform [261].

The second approach to contour tracing is discrete contour extraction and sub-
sequent curve fitting. In the first approach, the entire image was used to iteratively
update the contour, whereas the second approach interpolates a continuous para-
metric curve from a list of coordinates. This can be achieved using spline curves,
which is the method of choice in computer graphics [262, 263, 264, 265]. Another
popular way to tackle this is through a regularized minimization problem, the reg-
ularization enforcing prior knowledge about the curve [266, 267]. The method pre-
sented in this work follows the latter paradigm by enforcing a sparsity prior. Other
more classical spline-based methods enforce sparsity by simply removing knots from
an initially nonsparse curve [268, 269, 270, 271, 272, 273]. We also mention other
contour-tracing algorithms based on very different techniques [274, 275], as well as
recent deep-learning based ones that are applicable to 3D contour tracing [276, 277];
see [278] for a survey.

To attain our goal, we solve a bipartite optimization problem. On one hand,
we want that the candidate curve fits the existing contour points exactly. This is
achieved through a data-fidelity term. On the other hand, as an infinity of curves
could satisfy this fit, we have to enforce prior knowledge into our model. This
prior knowledge is introduced as a regularization cost coupled with a regularization
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operator, the result aiming at the enforcement of desired properties. First, it is
likely that the true curve has few variations, which implies that the curve has a
sparse representation. Second, it is frequent that variations happen over both the
horizontal and the vertical axes simultaneously. Moreover, the recovered curve
should be possibly denoised. Finally, the optimization cost should not depend
on a rotation of the system of coordinates. We show in this chapter that these
specifications lead us to a regularization cost that consists of a mixed (TV-`2)
norm.

In order to sparsify given data, modern regularizers used include structured spar-
sity [279], namely [280], low rank regularization [281], or deep prior [282]. However,
these regularizers assume a discrete setting and thus do not yield a continuous
curve as a solution. In addition, the deep prior regularizer does not provide an
interpretable model. In this chapter, we explore the continuous setting, as we aim
at the recovery of a continuous 2D curve. Similarly to our works in Part II, we
explore generalized total-variation (TV) regularization for continuous-domain sig-
nal reconstruction using B-splines as basis functions for an exact discretization.
Finally, we choose to represent the curve with hybrid splines, which give us the
tools to represent curves with nonuniform smoothness. While Chapter 5 addressed
signal reconstruction using hybrid splines, this chapter extends the setting for the
handling of curves in 2D, which calls for a new regularizer.

Our main contribution is threefold:
— Firstly, we introduce a continuous rotation-invariant TV (RI-TV) norm as

a regularization for the recovery of curves. It effectively reconstructs sparse
parametric curves from given contour points while being robust to noise.

— Secondly, we prove a representer theorem according to which there exists a
curve with spline components that is a global minimizer of our optimization
problem. Building upon this, we propose a curve construction using B-
splines, which allows us to discretize the continuous-domain problem exactly
with numerical efficiency.

— Finally, we present the combination of such RI-TV norm with a hybrid frame-
work to generate stylized curves with nonuniform smoothness properties.

The remainder of this chapter is organized as follows: in Section 10.2, we present
the continuous-domain framework of the optimization problem and introduce our
representer theorem. We then show the precise implementation and resolution of
this task through the introduction of B-splines in Section 10.3. In Section 10.4, we
extend the framework to hybrid splines. Finally, we experimentally verify properties
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of our contributions and show applications in Section 10.5.

10.2 Continuous-Domain Formulation
Our goal is to recover a 2D parametric curve r(t) = (x(t), y(t)) that best fits a

given ordered list of points p[m] = (px[m], py[m]), m = 0, . . . , M � 1. Contours be-
ing closed curves, we consider the coordinate functions x(t) and y(t) to be periodic
in t. Since we have M data locations, it is convenient to deal with M -periodic func-
tions. We consequently set t 2 TM , [0, M ]. This differs from the periodic setting
presented in Chapters 2 and 3 which deals with 2⇡-periodic functions; however, all
the concepts and results can be readily extended to M -periodic functions.

Concurrently, we want to control the sparsity of the fitted curve. This can
be achieved by limiting the number of the singularities in the derivatives of its
components. This effectively means that r(t) admits a sparse representation. To
that end, we introduce two new elements: a differential operator L and the RI-TV
regularization functional.

Like most of this thesis, the mathematical foundations of this chapter rely on
Schwartz’ theory of distributions [98]. Henceforth, let us denote the Schwartz’
space of M -periodic smooth functions by S(TM ). Its topological dual, S 0(TM ) is
the space of tempered distributions over the torus. We refer to Section 2.1 for more
background on distribution theory.

10.2.1 Derivative Operators and Splines
The first element we introduce in our problem formulation is L = DNd , the

derivative operator whose order Nd, with Nd � 1, determines the smoothness of
the components of the constructed curve 1.

Next, we recall the definition of periodic L-splines from Section 3.1 (Definition
3.3). A periodic L-spline is a function s : TM ! R that verifies that

L{s}(t) =
K�1X

k=0

a[k]XM (t� tk), (10.1)

1. As in most chapters of the thesis, all the results and algorithms from this chapter can be
extended to more general operators L, e.g., rational operators [102].
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where XM (t) , P
k2Z �(t �Mk) 2 S 0(TM ) is the M -periodic Dirac comb, K 2

N \ {0} is the number of knots, a[k] 2 R is the amplitude of the kth jump, and
tk 2 R are pairwise-distinct knot locations.

10.2.2 RI-TV Regularization
The second element is R, a sparsity-promoting regularization functional with

key characteristics. Firstly, for 2D curves, the minimization of R(L{r}), where
L{r} , (L{x}, L{y}), should enforce sparsity jointly for the two components of r.
Indeed, we want r to have few variations, and they often should occur along both
components simultaneously. Secondly, if the points p[m] are rotated by an angle
✓, the fitted curve r(t) should be rotated by the same angle ✓. To achieve this,
our regularizer R should be invariant to a rotation of the system of coordinates,
meaning that R(R✓L{r}) = R(L{r}), where R✓ is a rotation matrix. Similarly,
R should be equivariant to isotropic scaling, meaning that there exists a function
A such that R(L{ar}) = A(a)R(L{r}) for any a 6= 0. We now introduce the RI-
TV norm, which consists in a mixed continuous (TV-`2) norm and satisfies our
specifications.

Definition 10.1. Let p 2 [1, +1]. The (TV-`p) norm of any vector-valued tem-
pered distribution w =

⇥
w1 w2

⇤
2 S 0(TM )2 is defined as

kwkTV�`p , sup
'=('1,'2)2S(TM )2

k'kq,L1=1

(hw1,'1i+ hw2,'2i) , (10.2)

where q 2 [1, L1] is the Hölder conjugate of p with 1
p + 1

q = 1 and k · kq,L1 is the
(`q � L1) mixed norm, defined for any ' 2 S(TM )2 as

k'kq,L1 , sup
t2TM

k'(t)kq. (10.3)

The RI-TV norm (or (TV-`2)) is a well-known quantity; it was previously in-
troduced as the ground total-variation norm in [62] in the context of the recovery
of Dirac distributions. In fact, in classical measure theory, it is simply known as
the total variation of a vector-valued measure [283, Definition 1.4.]; there, it is de-
fined using measure theory instead of by duality as in (10.2). In Theorem 10.1, we
compute the (TV-`p) norm for two general classes of functions or distributions.
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Theorem 10.1. 1. For any curve f = (f1, f2) with absolutely integrable com-
ponents fi 2 L1(TM ), i = 1, 2, we have that

��⇥f1 f2

⇤��
TV�`p

=

Z M

0
kf(t)kpdt. (10.4)

2. Let w = (w1, w2) be a vector-valued distribution of the form w =
PK�1

k=0 a[k]XM (·�
tk) with a[k] 2 R2, k = 0, . . . , K � 1. Then, we have that

��⇥w1 w2

⇤��
TV�`p

=
K�1X

k=0

ka[k]kp. (10.5)

Proof. Item 1: Let ' = ('1,'2) 2 S(TM )2 be an arbitrary smooth curve with
k'kq,L1 = 1. On the one hand, the Hölder inequality for vectors implies that, for
any t 2 TM ,

|f1(t)'1(t) + f2(t)'2(t)|  kf(t)kpk'(t)kq  kf(t)kp, (10.6)

where the last inequality is due to k'kq,L1 = 1. On the other hand, the inclusion
fi 2 L1(TM ) allows us to express the duality product hfi,'ii as a simple integral
of the form

hfi,'ii =

Z M

0
fi(t)'i(t)dt, i = 1, 2. (10.7)

Combining (10.7) with (10.6), we obtain that

hf1,'1i+ hf2,'2i =

Z M

0
(f1(t)'1(t) + f2(t)'2(t)) dt 

Z M

0
kf(t)kpdt. (10.8)

Taking the supremum over all' 2 S(TM )2 with k'kq,L1 = 1 then yields
��⇥f1 f2

⇤��
TV�`p


RM
0 kf(t)kpdt. To prove the equality, we first define the functions

gi : TM ! R : t 7! f 6=0
sgn(fi(t))|fi(t)|(p�1)

kf(t)k(p�1)
p

, (10.9)

where A denotes the indicator function of the set A. We note that gi are Borel-
measurable with kgikL1  1 for i = 1, 2. Further, one readily verifies that

Z M

0
(f1(t)g1(t) + f2(t)g2(t)) dt =

Z M

0
kf(t)kpdt. (10.10)
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By applying a variant of Lusin’s theorem (see [284, Theorem 7.10]) on the space
C(TM ) of M -periodic continuous functions, we then consider the ✏-approximations
gi,✏ 2 C(TM ) of gi such that kgi,✏kL1  kgikL1  1, and

R
E |fi(t)|dt  ✏/8, i = 1, 2,

where E = {t 2 TM : gi,✏(t) 6= gi(t)}. This in effect implies that

Z M

0
|fi(t)| · |gi,✏(t)� gi(t)| dt =

Z

E
|fi(t)| · |gi,✏(t)� gi(t)| dt

 k EfikL1kgi,✏ � gikL1 
✏

4
. (10.11)

Then, by the denseness of S(TM ) in C(TM ), there exist 'i,✏ 2 S(TM ) with kgi,✏ �
'i,✏kL1  ✏

4kfikL1
. This gives us the upper bound

Z M

0
|fi(t)| · |'i,✏(t)� gi,✏(t)| dt  kfikL1k'i,✏ � gi,✏kL1 

✏

4
. (10.12)

Next, we use the triangle inequality to obtain the lower bound

hfi,'i,✏i �
Z M

0
fi(t)gi(t)dt�

Z M

0
|fi(t)| · |gi(t)� gi,✏(t)|dt

�
Z M

0
|fi(t)| · |gi,✏(t)� 'i,✏(t)|dt

�
Z M

0
fi(t)gi(t)dt� ✏

2
, i = 1, 2, (10.13)

where the last inequality follows from the combination of (10.11) and (10.12). Fi-
nally, we use (10.10) to conclude that

��⇥f1 f2

⇤��
TV�`p

� hf1,'1,✏i+ hf2,'2,✏i
k('1,✏,'2,✏)kq,L1

�
RM
0 kf(t)kpdt� ✏

1 + O(✏)
. (10.14)

We conclude the proof by letting ✏! 0.
Item 2: Similarly to the previous part, for any smooth curve ' = ('1,'2) 2
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S(TM )2 with k'kq,L1 = 1, we have that

hw1,'1i+ hw2,'2i =
K�1X

k=0

(a1[k]'1(tk) + a2[k]'2(tk))


K�1X

k=0

ka[k]kpk'(tk)kq 
K�1X

k=0

ka[k]kp. (10.15)

Taking the supremum over ' = ('1,'2) with k'kq,L1 = 1 then yields that
kwkTV�`p 

PK�1
k=0 ka[k]kp. To prove the equality, we first define a set of vec-

tors 'k 2 R2 such that k'kk1 = 1 and a[k]T'k = ka[k]kp for k = 0, . . . , K � 1.
We then consider a smooth curve '⇤ 2 S(TM )2 with k'⇤kq,L1 = 1 such that
'⇤(tk) = 'k. We conclude the proof by verifying that

kwkTV�`p � hw1,'
⇤

1i+ hw2,'
⇤

2i =
X

k2Z
ka[k]kp.

As demonstrated in Theorem 3.3, the outer TV norm is the continuous sparsity-
promoting counterpart of the `1 norm. The inner `p norm in Item 1 induces a
coupling of the f1 and f2 components. Indeed, it first aggregates the f1 and f2

curve components, which the outer TV norm then jointly sparsifies. This is true of
any `p norm for p 6= 1. For p = 1, the components are no longer coupled due to the
separability of the `1 norm. For p = 2 and for any curve f = (f1, f2), we set

R(f) ,
��⇥f1 f2

⇤��
TV�`2

. (10.16)

Proposition 10.1. The (TV-`2) norm, denoted by R, is invariant to rotation, in
the sense that R(R✓f) = R(f), where R✓ is a rotation matrix. Furthermore, the
(TV-`2) norm is the only (TV-`p) norm that is rotation invariant for p 2 [1, +1].
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Proof. By substitution of r✓f in (10.2), we have that

R(r✓f) = sup
'2S(TM )2

k'k2,L1=1

(hcos(✓)f1 � sin(✓)f2,'1i+ hsin(✓)f1 + cos(✓)f2,'2i)

= sup
'2S(TM )2

k'k2,L1=1

(hf1, cos(✓)'1 + sin(✓)'2i+ hf2,� sin(✓)'1 + cos(✓)'2i) .

(10.17)

We perform the change of variable  = r�✓'. We readily conclude that, since r�✓

is bijective over S(TM )2, for any ' 2 S(TM )2, we have that  = r�✓' 2 S(TM )2.
Additionally, and in accordance with (10.3), we have that

k k2,L1 = sup
t2TM

k (t)k2 = sup
t2TM

kr�✓'(t)k2 = sup
t2TM

k'(t)k2, (10.18)

as r�✓ is an isometry. Hence, it does not change the `2 norm of a vector. Conse-
quently, we have that

R(r✓f) = sup
 2S(TM )2k k2,L1=1

(hf1, 1i+ hf2, 2i) = R(f). (10.19)

Moreover, according to Item 1 of Theorem 10.1, for any curve f = (f1, f2) with
absolutely integrable components fi 2 L1(TM ), i = 1, 2, the TV � `p norm for
p 2 [1, +1] is

kfkTV�`p
=

Z M

0
(|f1(t)|p + |f2(t)|p)

1
p dt. (10.20)

We take f1(t) = 1, f2(t) = 0, and ✓ = ⇡
4 . This gives us

kfkTV�`p
=

Z M

0
(|1|p + |0|p)

1
p dt = M. (10.21)
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When applying the planar rotation r✓ to the curve f , we have that

kr✓fkTV�`p
=

Z M

0
(|f1(t) cos (✓)� f2(t) sin (✓)|p + |f1(t) sin (✓) + f2(t) cos (✓)|p)

1
p dt

=

Z M

0
(| cos (✓)|p + | sin (✓)|p)

1
p dt

=

Z M

0

 
2

�����

p
2

2

�����

p! 1
p

dt = 2
1
p�

1
2 M. (10.22)

We conclude that kfkTV�`p
= kr✓fkTV�`p

if and only if p = 2, which proves that
the TV � `p norm is not rotation invariant for p 6= 2.

Finally, R being a norm, it is scale equivariant (homogeneity property).

10.2.3 Continuous-Domain Optimization Problem
The setting we described in this section is typical of a minimization problem with

two terms. The first term—the data-fidelity term—ensures that the candidate curve
r(t) is close to the points p[m]. The second term, called regularization, introduces
our a priori desiderata for the reconstructed curve. The importance of these two
terms is weighted by a parameter � > 0. The solution set of the minimization
problem is

V , arg min
r2XL(TM )

 
M�1X

m=0

kr(t)|t=m � p[m]k22 + �R(L{r})
!

, (10.23)

where the search space XL is defined as

XL(TM ) , {r 2 S 0(TM )2 : R(L{r}) < +1}, (10.24)

and corresponds to the space of BV2 curves in [285, Section 2.1] when L = D2. The
data-fidelity term in (10.23) penalizes the Euclidean distance between the sample
r(t)|t=m of the curve and the point p[m] for every m = 0, . . . , M �1. The fact that
r is sampled uniformly along the parameter axis encourages the reconstructed curve
to be parametrized by its curvilinear abcissa, promoting the arc length of r(t) to be
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a linear function of the parameter t. The underlying assumption behind this state-
ment is that the points p[m] are spread approximately uniformly along the curve.
This is an important assumption, since the regularization term in (10.23) involves
the derivatives of r(t) and thus heavily depends on the choice of parametrization.
In that respect, the curvilinear abcissa is a desirable choice. In practice, it often
results in rough curves being penalized heavily by our regularization, which other
parametrizations may fail to achieve [255].

Our representer theorem (Theorem 10.2) specifies the form of the solution of
(10.23).

Theorem 10.2. Let L = DNd with Nd � 2. Then, the global minimizer of (10.23)
can be achieved by a periodic L-spline curve r

⇤ with at most K  2M + 2 knots.
More precisely, we have that

L{r⇤} =
K�1X

k=0

akXM (·� tk) (10.25)

for some pariwise-distinct knot locations tk 2 TM and amplitude vectors ak 2 R2.

The proof of Theorem 10.2 is given in Appendix B.5.

Remark 10.1. Theorem 9.1 remains valid for more general operators L, namely
any spline-admissible operator in the sense of [22, Definition 2] whose null space in-
cludes constant functions, i.e., L{1} = 0, and whose Green’s function gL (Definition
(2.32)) is continuous.

Theorem 10.2 states that the solution set V contains periodic L-splines. Even
though our work uses a mixed (TV-`2) norm as regularization, this result is remi-
niscent of Theorems 3.3 and 3.4, which prove that inverse problems with TV regu-
larization have spline solutions.

10.3 Exact Discretization

10.3.1 Polynomial B-Splines
Following the works of Part II, Theorem 10.2 motivates our discretization of the

continuous-domain Problem (10.23) over the space of periodic cardinal L-splines,



262 Coupled Splines for Sparse Curve Fitting

i.e. with integer knot spacing (tk+1� tk) = 1 in (10.1). When L = DNd , as exposed
in Section 3.1, L-splines are piecewise polynomials of degree Nd� 1. For simplicity,
we consider symmetric Ndth-order—or (Nd � 1)th-degree—B-splines

�(Nd�1) , �L

✓
·� Nd

2

◆
, (10.26)

where �L is the causal B-spline of L = DNd defined in (3.9) (see Section 3.1.4).
B-splines are the functions with the smallest support within the space of cardi-
nal periodic L-splines, with a support included in [�Nd

2 , Nd
2 ]. This finite-support

property is particularly advantageous for numerical efficiency.
For centered B-splines, we use grid points tk = k � Nd

2 for k 2 Z. For an
even Nd, we then have an integer grid, while an odd Nd gives a half-integer grid.
Additionally, the jump amplitudes a[k] in (10.1) for s = �(Nd�1) are denoted by
dL[k] (defined in Table 3.1), which is the finite-difference digital filter of order Nd.
The support of dL[k] is {0, . . . , Nd}, and using (3.23), we have

L{�(Nd�1)} =
NdX

k=0

dL[k]X
✓
·�
✓

k � Nd

2

◆◆
. (10.27)

10.3.2 Discrete Formulation
As suggested by Theorem 10.2, we take the stance of recasting the continuous-

domain problem in (10.23) as a finite-dimensional optimization problem by re-
stricting the search space to periodic L-splines with knots on a uniform grid. This
allows us to effectively reduce the complexity of our algorithmic resolution. To
do so, we describe our closed curves r(t) as linear combinations of N shifts of a
M -periodic basis function 'M . Following Section 10.3.1, we choose 'M to be the
M -periodization and h-dilation of the B-spline generator ' , �(Nd�1), so that
'M (t) ,Pk2Z '( t�Mk

h ), where h , M
N is the grid step size. These basis functions

are weighted by two vectors of coefficients cx = (cx[n])N�1
n=0 and cy = (cy[n])N�1

n=0 .
Finally, the weighted functions are shifted by multiples of the grid size h, so that
our curves are parametrized as

r(t) =


x(t)
y(t)

�
=

"PN�1
n=0 cx[n]'M (t� nh)PN�1
n=0 cy[n]'M (t� nh)

#
. (10.28)
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10.3.3 Discrete Implementation

Our choice (10.28) of curve parametrization allows us to optimize solely over
the coefficients cx, cy 2 RN of the two curve components. We implement a system
matrix that samples the components x(t) and y(t) of the curve in (10.28) at integer
values of t when applied to the spline coefficients cx and cy. This yields the matrix
H 2 RM⇥N with

[H]m,n , 'M (m� nh) . (10.29)

The regularization operator L becomes a circulant regularization matrix L 2 RN⇥N

composed of shifted versions of the sequence dL (see Table 3.1). The regularization
matrix L is therefore constructed as

[L]m,n , 1

h↵
dL[(m� n) mod N ]. (10.30)

Our mixed-norm regularization involves, in the discrete setting, an `1 � `2 norm
given by

��⇥f1 f2

⇤��
`1�`2

,
N�1X

n=0

p
(f1[n])2 + (f2[n])2, (10.31)

for f1, f2 2 RN . Indeed, we have that (see Theorem 10.1):
��⇥L{x} L{y}

⇤��
TV�`2

=
��L
⇥
cx cy

⇤��
`1�`2

. (10.32)

Our discrete optimization problem therefore aims at finding cx and cy such that

arg min
cx,cy2RN

 ����


H 0

0 H

� 
cx

cy

�
�

px

py

�����
2

2

+ �
��L
⇥
cx cy

⇤��
`1�`2

!
. (10.33)

10.3.4 Algorithmic Resolution

To solve Problem (10.33), we use the ADMM solver [19] (see Appendix A) as
implemented in the GlobalBioIm Matlab library [118] dedicated to solving inverse
problems.
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10.4 Extension to Hybrid B-Spline Contours

10.4.1 Motivation and Continuous Model

In Section 10.2, we have presented a model and its implementation that recon-
structs of a sparse curve using splines as basis functions. However, not all curves
can be faithfully represented with a single type of spline. We propose to cater to this
by modeling our closed function as a sum of two components r(t) = r1(t) + r2(t).
Similarly to the single-spline setting, we have M points p[m] = (px[m], py[m]),
m = 0, . . . , M � 1. Hence, we again have that r is M -periodic with t 2 TM . Fol-
lowing the formulation for one-dimensional signals in Chapter 5 and extending it
to two dimensions, we consider continuous problems of the form

Vhyb , arg min
ri2XLi (TM )

r1(0)=0

✓M�1X

m=0

kr1(t)|t=m + r2(t)|t=m � p[m]k22

+ �1 kL1{r1}kTV�`2
+ �2 kL2{r2}kTV�`2

◆
, (10.34)

where �1,�2 > 0 are the two regularization parameters weighting the two regular-
ization terms, and L1 = DNd,1 and L2 = DNd,2 are derivative operators of different
orders Nd,1 6= Nd,2.

Remark 10.2. The constraint r1(0) = 0 is necessary to handle the ill-posedness of
the problem. Indeed, without this constraint, for any solution (r1(t), r2(t)) of Prob-
lem (10.34), the pair (r1 +v, r2�v), where v is an arbitrary constant vector, would
clearly also be a solution. This implies that the solution set would be unbounded,
which can be problematic for numerical implementations. The constraint r1(0) = 0

resolves this issue without any restriction on the constructed curve, since any con-
stant offset can be included in the r2 component. We refer to Chapter 5, where
a similar strategy is used, for more details. Note that technically, L1 = DNd,1 is
sampling-admissible—making the constraint r1(0) = 0 licit—only when Nd,1 � 2.
For Nd,1 = 1, using the technique outlined in Remark 5.2, the constraint can be
implemented as r1(0+) = 0. We skip these technicalities here for the sake of sim-
plicity.
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We now prove a representer theorem that gives a parametric form of the solution
of Problem (10.34). It is a multicomponent extension of Theorem 10.2, and is
reminiscent of Theorem 5.1.

Theorem 10.3. There exists a global minimizer r
⇤ of (10.34) that can be de-

composed as r
⇤ = r

⇤

1 + r
⇤

2, where r
⇤

i are periodic Li-splines (see (10.1)) with Ki

knots, with i = 1, 2. Moreover, the total number of knots of r
⇤ is bounded by

K1 + K2  2M + 2.

The proof of Theorem 10.3 is given in Appendix B.6.

10.4.2 Discretization and Implementation

As in Section 10.3, we derive a discrete setting by using two sets of B-spline
basis functions matched to their corresponding regularization operators. Given a
grid of step size h, we consider closed M -periodic curves r(t) = r1(t) + r2(t) such
that, for i = 1, 2, we have

ri(t) =


xi(t)
yi(t)

�
=

"PN�1
n=0 cix[n]'i

M (t� nh)PN�1
n=0 ciy[n]'i

M (t� nh)

#
. (10.35)

The two regularization operators are set to Li = DNd,i , with DNd,i the derivative
operator of order Nd,i for i = 1, 2. As in Section 10.3, these operators lead to
spline solutions (see Chapter 5). We hence set 'i

M , �(Nd,i�1) for i = 1, 2 and with
Nd,1 < Nd,2.

This choice of curve allows us to optimize over the coefficients c1
x = (c1

x[n])N�1
n=0 ,

c
1
y = (c1

y[n])N�1
n=0 , c2

x = (c2
x[n])N�1

n=0 , and c
2
y = (c2

y[n])N�1
n=0 . As in Section 10.2, we can

define Hi, the system matrices that samples the continuous curves ri, as well as the
corresponding regularization matrices Li. We construct Hi and Li as in (10.29)
and (10.30), respectively. Finally, we cater to the constraint r1(0) = 0 by enforcing
that (c1

x ⇤ b'1)[0] = 0 and (c1
y ⇤ b'1)[0] = 0, where b'1 [k] , '1

M (kh) and ⇤ denotes
the cyclic discrete convolution.
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Our discrete hybrid optimization problem takes the form

arg min
c1
x,c

1
y,

c2
x,c

2
y2RN

0

BB@

��������
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2
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��L2

⇥
c
2
x c

2
y

⇤��
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CCA ,

s.t. (c1
x ⇤ b'1)[0] = 0, (c1

y ⇤ b'1)[0] = 0, (10.36)

where Hhyb ,

H1 0 H2 0

0 H1 0 H2.

�
As in Section 10.3, we use the ADMM solver

to find a solution to Problem (10.36) and GlobalBioIm [118] to implement our
algorithms.

10.5 Experimental Results
We evaluate the distance between the constructed curves and the contour points

through the quadratic fitting error (QFE) defines as

QFE =
1

M

M�1X

m=0

kr(t)|t=m � p[m]k22 . (10.37)

It is noteworthy that the QFE can be used at the same time in the single-spline
setting and in the hybrid setting. Indeed, by replacing the hybrid curve r = r1 + r2

in (10.37), we obtain a QFE that is consistent with the data-fidelity term in (10.34).
For computational reasons, we chose the lowest resolution, i.e. the largest grid

size h, that allowed us to solve the problem in a satisfactory way, thus effectively
making h a hyperparameter. In this work, the number of knots N was chosen
so that it matched the order of magnitude of the number of data points. It is
important to note that increasing N , thus splitting the grid, can only improve the
solution in terms of cost.

10.5.1 Rotation Invariance
To verify that our regularization norm is truly rotation-invariant, we apply a

planar rotation of angle ✓ to our data before we reconstruct the curve with the reg-
ularization operator L = D2. We have added to the data a Gaussian perturbation
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with a signal-to-noise ratio (SNR) of 47.28 dB. We compare the curves reconstructed
with our regularization to the curves resulting from the (TV-`1) regularization of
Definition 10.1. Indeed, `1 regularization is widely used in the signal-processing
community as a sparsifying prior. To do so, we choose � in the nonrotated (TV-`1)
regularized curve (Figure 10.1c) so that the QFE matches the QFE from the non-
rotated RI-TV regularized curve (Figure 10.1a). When rotating the measurements,
we adjust � again so that the QFE of the (TV-`1)-regularized curve on the rotated
points matches the one of the curve constructed with RI-TV regularization with
rotated points. We see in Figure 10.1 that the RI-TV-regularized problem provides
the same solution regardless of ✓. Indeed, the knot locations do not differ between
Figures 10.1a and 10.1b, nor does the number K of knots. This is not the case for
the purely (TV-`1)-regularized problem. Not only are the knot locations different
when a rotation is applied to the measurements, but the number K of knots varies
with ✓ as well as the QFE of the curve. Additionally, one needs to adapt � to
obtain the same QFE between the constructed curves on rotated and nonrotated
measurements.

10.5.2 Resilience to Contour Imprecisions

A beneficial feature derived from the enforcement of joint sparsity in the two
curve components is resilience of our reconstructions to imprecisions in the contour
points. Indeed, when we expect our data to be imprecise, we can choose to increase
the regularization parameter � at the cost of data fidelity, as the curve cannot rely
as much on the data. Particularly, when the regularizer is TV-based, an increase in
� tends to smoothen sharp variations. This is visible in Figure 10.2, where several
curves have been reconstructed using linear B-splines �1. Figures 10.2a, 10.2b, and
10.2c are reconstructions of increasingly inaccurate measurements using RI-TV.
Figures 10.2d, 10.2e, and 10.2f depict reconstructions resulting from a sparsifying
regularization without coupling (TV-`1), using a � tuned so that the QFE matches
the QFE of the curves regularized by RI-TV. When TV regularization is used,
and as the contour becomes more inaccurate, the number K of knots drastically
increases and the angles are deformed. On the contrary, for the reconstructions
in Figures 10.2a, 10.2b, even as the noise and � increase, the number K of knots
remains unchanged and the angles are fairly well preserved.
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10.5.3 Hybrid Setting Applications

The single-component framework described in Sections 10.2 and 10.3 only allows
for the use of one kind of B-spline per curve. However, when the contour under
consideration is composed of smooth sections and kinks, no single type of B-spline
can provide a faithful and sparse reconstruction. An example of curve fitting that
depicts this problem is given in Figure 10.3. We reconstructed the contour using first
�1 and �3 as basis functions, giving piecewise-linear and piecewise-cubic curves in
Figures 10.3a and 10.3b, respectively. Figure 10.3c contains a reconstruction under
the hybrid setting L1 = D2 and L2 = D4, thus producing a curve that has both a
linear and a cubic component. While all three reconstructions yield the same QFE
with respect to the data, the hybrid curve has by far the smallest number of knots.
Moreover, upon visual inspection, the hybrid curve in Figure 10.3c portrays the
most faithful reconstruction, as it does round neither the angles nor the straight
lines, nor does it straighten the smooth sections.

We can observe the effect of the parameters �1 and �2 on the constructed
curve when the hybrid reconstruction setting is applied to real contour points for a
constant ratio of knots K1

K2
= 0.86. In Figure 10.4, as �1 and �2 increase, the total

number K of knots decreases and the curve becomes more stylized. In addition,
for all values of �1 and �2, our algorithm preserves the kinks of the contour while
mimicking its smooth segments.

10.6 Conclusion

We have introduced a framework to reconstruct sparse continuous curves from a
list of possibly inaccurate contour points using an RI-TV regularization norm. We
have proved that an optimal solution to our minimization problem is a curve that
uses splines as basis functions, and we have leveraged this result to provide an exact
discretization of the continuous-domain framework using B-splines. Furthermore,
we have extended our formulation to reconstruct curves with components of distinct
smoothness properties using hybrid splines. We have experimental confirmation
of the rotation invariance of our regularizer. In addition, our experimental results
demonstrate that our formulation yields sparse reconstructions that are close to the
data points even when their noise increases, unlike other regularization methods.
Finally, our hybrid-curve experiments demonstrate that we are able to faithfully
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reconstruct contours with varying smoothness properties with a low number of
knots.
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(a) RI-TV regularization, ✓ = 0�, K = 20,
� = 700, QFE = 12.09.

(b) RI-TV regularization, ✓ = 40�, K = 20, � = 700,
QFE = 12.09.

(c) (TV-`1) regularization, ✓ = 0�,
K = 37, � = 482.13, QFE = 12.09.

(d) (TV-`1) regularization, ✓ = 40�, K = 29,
� = 500.93, QFE = 12.09.

Figure 10.1: Solutions as a function of the rotation angle ✓ for RI-TV
regularization and (TV-`1) regularization for a same contour. M = 488,
grid ste psize h = 1.9062, ' = �1.
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Measures
Reconstructed curve
Linear knot (x or y)

(a) RI-TV regularization, no noise, � = 8,
K = 20, QFE = 5.86.

Measures
Reconstructed curve
Linear knot (x or y)

(b) RI-TV regularization, SNR = 47.05 dB,
� = 700, K = 20, QFE = 12.14.

Measures
Reconstructed curve
Linear knot (x or y)

(c) RI-TV regularization, SNR = 41.20 dB,
� = 800, K = 20, QFE = 18.95.

Measures
Reconstructed signal
Knot (x or y)

(d) (TV-`1) regularization, no noise, � = 10,
K = 20, QFE = 5.86.

Measures
Reconstructed signal
Knot (x or y)

(e) (TV-`1) regularization, SNR = 47.05 dB,
� = 459.45, K = 36, QFE = 12.14.

Measures
Reconstructed signal
Knot (x or y)

(f) (TV-`1) regularization, SNR = 41.20 dB,
� = 531.35, K = 35, QFE = 18.95.

Figure 10.2: Resilience to noise for RI-TV regularization and (TV-`1)
regularization.
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Measures
Reconstructed signal
Linear knot (x or y)

(a) Spline degree: 1, � = 31.87, K = 89.

Measures
Reconstructed curve
Cubic knot (x or y)

(b) Spline degree: 3, � = 24.72, K = 44.

Measures

Reconstructed curve

Linear knot (x or y)

Cubic knot (x or y)

Lin and cub knot (x or y)

(c) Spline degrees: 1 and 3, �1 = 80, �2 = 90, K = 37

Figure 10.3: Noiseless curve reconstruction with a single spline, a hy-
brid setting, and RI-TV regularization. All three reconstructions have a
constant QFE = 8.88.
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(a) Data. (b) �1 = 5, �2 = 95, K = 312, QFE = 0.80.

(c) �1 = 20, �2 = 980, K = 229, QFE = 1.11. (d) �1 = 100, �2 = 9900, K = 139,
QFE = 2.82.

Figure 10.4: Effect of �1 and �2 on the reconstructed hybrid curve for
M = 2714 under RI-TV regularization. The reconstructed curve is rep-
resented by the solid line. The round markers and the triangular mark-
ers indicate the location of the linear and cubic knots, respectively. The
diamond-shaped markers indicate the superimposition of a linear knot and
a cubic knot. The data are extracted from the official Daft Punk logo
(source: https://en.wikipedia.org/wiki/Daft_Punk).

https://en.wikipedia.org/wiki/Daft_Punk
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Chapter 11

Hessian Splines for
Scanning-Transmission X-Ray
Microscopy

This chapter is based on the following publication [286]:
T. Debarre, B. Watts, B. Rösner, and M. Unser, “Hessian Splines for Scanning

Transmission X-Ray Microscopy”, in Proceedings of the Seventeenth IEEE Inter-
national Symposium on Biomedical Imaging (ISBI’20), Iowa City IA, USA, Apr.
2020, pp. 199–202.

11.1 Introduction
Scanning transmission X-ray microscopy (STXM) is a non-invasive microscopy

technique that uses X-ray spectroscopy to generate contrast based on near-edge
X-ray absorption fine structure (NEXAFS) spectroscopy or associated dichroism to
quantitatively map material properties such as chemical oxidation state, molecular
structure and orientation, and magnetization at the nanoscale [287]. A Fresnel zone
plate is used to focus the X-ray beam onto a small region of the sample (a pixel),
and the transmitted beam intensity is measured while the sample is raster-scanned

275



276 Hessian Splines for STXM

in a rectangular array in order to produce a 2D image. With recent advances in
the design of the zone plate, X-ray spot sizes well below 10 nm can be achieved
[288]. However, demonstrating STXM images with a resolution below 10 nm also
requires similarly high precision in positioning the X-ray beam on the sample, which
is challenging due to vibrations in the instrument. This imprecision leads to an off-
the-grid scanning pattern: in fact, when measuring images close to the resolution
limit, the displacement error can easily be larger than the spacing between the
array points. This error can be measured using a heterodyne laser interferometer,
with spatial resolution of 0.3 nm. The current state-of-the-art resolution of 7 nm
for STXM is thus achieved by regridding the measured intensity values using linear
interpolation [289].

In this work, we propose a more elaborate interpolation method using a continuous-
domain inverse problem formulation. For discretization purposes, we reconstruct
the image as a parametric continuous 2D function using a spline-based generalized
interpolation model [290]. We then formulate the image-reconstruction task as an
optimization problem over the spline coefficients so as to minimize the discrepancy
between the measured data and the reconstructed images.

In order to improve the robustness of the reconstruction, we add a regulariza-
tion term to the cost functional. In effect, this enables us to reduce the effect of the
noise in the measurements, as well as the uncertainty in the interferometer measure-
ments. Our algorithm involves a second-order Hessian nuclear-norm regularization,
which has been successfully applied to many imaging problems [27, 291, 292]. The
key feature of this regularization is that it enjoys many advantages of the popu-
lar total-variation (TV) semi-norm [28] such as convexity, or translation and scale
invariance, without suffering from the staircasing effect which typically plagues TV-
based methods. As opposed to the purely discrete framework of [27], we compute
the Hessian in the continuous domain, which yields a new brand of splines that
we coin Hessian splines. The resulting optimization problem is solved using the
standard ADMM algorithm [19]. We illustrate the effectiveness of our approach on
a simulated ground-truth image, by showing that it outperforms linear interpola-
tion used in state-of-the-art STXM reconstructions. We also apply our algorithm
to real high-resolution STXM data. Note that our approach is pertinent for any
imaging modality with nonuniform measurements in which the displacement error
is nonnegligible.
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11.2 Imaging Model
In this work, we view 2D images as continuous-domain functions f : ⌦ ! R,

where ⌦ ⇢ R2 is the (bounded) image domain. Without loss of generality, we
assume that the pixels are located on the integer grid, i.e., ⌦ \ Z2.

11.2.1 Reconstruction Basis
Following the generalized interpolation approach of [290], we parametrize the

reconstructed signal f : ⌦! R in a spline basis as

f(x) =
X

k2⌦'

c[k]'(x� k), (11.1)

where x = (x1, x2) 2 R2, (c[k])k2⌦' are the spline coefficients and ' is a suitable
spline generating function. The domain ⌦' , {k 2 Z2 : Supp('(· � k)) \ ⌦ 6= ;}
simply selects the integer grid points k such that the support of the corresponding
basis function '(·� k) intersects the image domain ⌦. In this work, we choose the
tensor-product cubic B-spline '(x) , �3(x1)�3(x2), where the univariate centered
cubic B-spline is defined as

�3(x) ,

8
><

>:

2
3 � |x|2 + |x|3

2 , 0  |x| < 1
(2�|x|)3

6 , 1  |x| < 2

0, otherwise.
(11.2)

Our choice of cubic B-splines is motivated by their simplicity and their popularity
in applications [105, 24, 25, 293], in part due to their short support. For additional
background on B-splines, we refer to Section 3.1.4. Moreover, they are twice differ-
entiable, which is required to compute the Hessian of f . Since the basis function '
is supported in a square of size 4⇥ 4, there is a finite number of spline coefficients
c[k] such that k 2 ⌦'. We denote these coefficients by c 2 RN , where N , #⌦'

(the cardinality of the set).

11.2.2 Forward Model
In STXM imaging, the task is to reconstruct a continuous-domain function

f0 : ⌦! R (the ground-truth image) based on the measured data y 2 RM , where



278 Hessian Splines for STXM

M is the number of measurements, i.e., pixels. The data are acquired via the
forward model ⌫ : f 7! (f(t1), . . . , f(tM )) 2 RM , where t

m = (tm1 , tm2 ) 2 R2 are
the sampling locations measured by the interferometer. The data is corrupted by
some additive noise n 2 RM , so that y = ⌫(f0) + n.

Using the parametrization (11.1) and due to the linearity of ⌫, we specify the
discrete forward model as the matrix H 2 RM⇥N such that Hc , ⌫(f), where the
vector c 2 RN collects the spline coefficients of f . Note that if the pixel grid used
for the reconstruction is the same as the one intended by the hardware (which is
a natural choice), N is slightly larger than M . This is due to the fact that the
length of the support of �3 is larger than 2, which leads to ⌦' containing points
outside of the image domain near the boundaries, i.e., ⌦' 6⇢ ⌦. Since there are
more unknowns than data points, the problem is thus ill-posed.

11.2.3 Regularization

In order to increase the robustness of the reconstruction and to handle its afore-
mentioned ill-posedness, we add a Hessian nuclear-norm regularization term to the
cost function. This regularization was first introduced in [27], which proposes a
discrete version of the functional R(f) ,

R
⌦ kLf (x)k⇤dx, where Lf (x) is the Hes-

sian matrix of f at the location x, and k · k⇤ is the nuclear norm (also known as
the trace or 1-Schatten norm). The latter is defined as kMk⇤ ,Pi |�(M)i|, where
the �(M)i are the singular values of the matrix M. The choice of a second-order
differential operator—the Hessian—, as opposed to first-order for TV regulariza-
tion, is designed to promote piecewise-linear reconstructions. Indeed, planes (i.e.,
first-order polynomials) induce no regularization cost as their Hessian is zero.

Here, we adapt the purely discrete setting of [27] to our continuous-domain
representation (11.1). More precisely, instead of discretizing the Hessian with fi-
nite differences, we compute the continuous Hessian operator in terms of the spline
coefficients c of f . However, due to the nonlinearity of the singular value de-
composition, computing the analytical expression of R(f) as a function of the
coefficients c proves challenging. However, computing the Hessian of f on the
integer grid can be done efficiently with digital filtering using the B-spline kernels
b[k] ,

�
�3(k)

�
k2Z, b(1)[k] ,

⇣
d�3

dx (k)
⌘

k2Z
and b(2)[k] ,

⇣
d2�3

dx2 (k)
⌘

k2Z
, characterized

by their z-transforms B(z) = z+4+z�1

6 , B(1)(z) = z+z�1

2 , and B(2)(z) = z� 2+ z�1
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[106]. This yields the Hessian matrix

Lc[k] ,
 

@f(k)
@2x1

@f(k)
@x1x2

@f(k)
@x2x1

@f(k)
@2x2

!
=

✓
(c ⇤ h11)[k] (c ⇤ h12)[k]
(c ⇤ h12)[k] (c ⇤ h22)[k]

◆
, (11.3)

where k 2 Z2, and the hi,j [k] are the tensor-product digital filters h1,1[k] ,
b(2)[k1]b[k2], h1,2[k] , b(1)[k1]b(1)[k2], and h2,2[k] , b[k1]b(2)[k2]. Here, ⇤ denotes
the 2D discrete convolution. We then approximate the integral with a sum over the
pixel values, which yields our discretized regularization functional

Rd(c) ,
X

k2⌦\Z2

2X

i=1

|�(Lc[k])i| (11.4)

Note that we only consider the pixels inside the image domain ⌦ instead of ⌦',
which contains additional grid points near the boundaries. This avoids unwanted
boundary effects, due to the fact that the reconstructed signal (11.1) goes to zero
near the boundaries. In particular, planes (i.e., first-order polynomials) are not
penalized using (11.4), which is a key desired feature of Hessian nuclear-norm reg-
ularization.

11.2.4 Positivity
Since STXM image represent photon counts which are positive by nature, the re-

constructed image should satisfy f(x) � 0 for any x 2 ⌦. This positivity constraint
does not readily translate into a constraint on the coefficients c of f—for instance,
we do not necessarily have cn � 0 for all n. A simple and easily-computable surro-
gate is to impose the positivity on the pixel locations ⌦\Z2. As before, this can be
achieved with digital filtering with f(k) = (c⇤(b⌦b))[k], where (b⌦b)[k] , b[k1]b[k2]
is the tensor-product B-spline filter. We thus impose the positivity constraint on the
coefficients k 2 ⌦ \ Z2, which can be written in terms of the matrix Lpos 2 RP⇥N

as

Lposc , (f [k])k2⌦\Z2 =
�
c ⇤ (b⌦ b)[k]

�
k2⌦\Z2 , (11.5)

where P , #(⌦\Z2) is the number of pixels. Note that we typically have P = M ,
but this is not a requirement of our method.
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11.3 Inverse Problem Formulation and Algorithm
We now formulate the image reconsctruction task as an optimization problem

over the spline coefficients c. By piecing together the elements of Section 11.2, we
get the following problem

c
⇤ 2 arg min

c2RN

✓
1

2
kHc� yk22 + �Rd(c) + ◆�0(Lposc)

◆
, (11.6)

where � > 0, and ◆�0 is the indicator function defined by

◆�0(x) ,
(

0 if 8n, xn � 0

+1 otherwise.
(11.7)

The first term in (11.6) is known as the data-fidelity term, and ensures that
the reconstructed signal conforms with the measured data y. The second term is
the Hessian nuclear-norm regularization, which tends to promote piecewise-linear
reconstructed images. The balance between these two terms is controlled by the
regularization parameter � > 0, which should be tuned according to the noise
level n and the error in the forward model, i.e., on the sampling locations t

m.
Finally, the last term in (11.6) guarantees that the reconstructed image f⇤(x) ,P

k2⌦'
c⇤[k]'(x� k) has positive values at the pixel locations x 2 ⌦ \ Z2.

Despite its somewhat daunting appearance, Problem (11.6) is a convex prob-
lem that can be solved with standard proximal algorithms. This is due to the
availability of proximal operators for the sum of nuclear norms [27] and for the
indicator function ◆�0. We solve it by applying the alternating direction method
of multipliers (ADMM) [19] (see Appendix A), which we implemented in Matlab
using GlobalBioIm [118], an inverse-problem library developed at the Biomedical
Imaging Group at EPFL. The linear step of ADMM is solved using an inner-loop
conjugate gradient (CG) algorithm [294] (see Remark A.1). Thanks to the modular-
ity of GlobalBioIm, the only block that required implementation was the continuous
Hessian operator (Lc[k])k2⌦' and its adjoint operator.

Although the theoretical convergence speed of ADMM is rather slow—O(1/k),
where k is the number of iteration (see Appendix A.3), in practice, few iterations
are necessary to obtain a decent accuracy in few iterations. This is all the more
true in STXM due to the availability of a good warm-start initialization for ADMM.
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The latter can be obtained by computing the spline coefficients of the uncorrected
image (i.e., assuming that the measurements are taken on the desired pixel grid)
using inverse filtering [106].

11.4 Experimental Results

11.4.1 Simulated Data

In order to assess the pertinence of our Hessian-spline framework, we apply our
algorithm to a simulated continuous-domain ground-truth image f0 : R2 ! [0, 1],
and we evaluate its reconstruction performance in terms of signal-to-noise ratio
(SNR). For the ground truth, we use the star-like sample shown in Figure 11.1 (a),
taken from GlobalBioIm. This sample has high-frequency content at the center of
the star and lower frequencies towards the end of the branches, and is thus a good
benchmarking example. In order to better conform with real STXM images, we
add a constant background of 0.1, and we rescale the image so that it ranges from
0.1 to 1.

For the forward model ⌫, the sampling pattern t
m, m = 1, . . . M is taken from

the real STXM data described in Section 11.4.2. Note that this pattern is quite far
from being uniform: the average displacement with respect to the desired pixel grid
is 2.7 nm, which is larger than the pixel size (1 nm). The image size is 200⇥ 200,
which yields M = 40000 measurements. The latter are corrupted by a Poisson
noise term n 2 RM , which is applied to the rescaled ground truth image such the
maximum pixel value corresponds to the maximum number of photon counts in the
real STXM data. We thus have measurements y = ⌫(f0) + n.

We then apply our Hessian-spline algorithm to solve Problem (11.6). The prob-
lem dimension is N = 42436, which leads to reasonable computations times (in
the order of 30 seconds on commodity hardware). For ADMM, we use 5 inner CG
iterations . We optimize the regularization parameter � using grid search in order
to maximize the SNR of the reconstructed image with respect to the ground truth
f0. The reconstructed image is shown in Figure 11.1 (b), and achieves an SNR of
16.21 dB with a regularization parameter � = 0.004.

Next, we compare the performance of Hessian splines with linear interpolation,
which is used for achieving the state-of-the-art 7 nm resolution in STXM [289], using
the Matlab function “scatteredInterpolant”. This method also uses the knowledge
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of the sampling locations t
m, but it does not apply regularization and is therefore

more sensitive to noise. The reconstruction image is shown in Figure 11.1 (c), and
achieves an SNR of 14.89 dB.

Finally, we show the effect of the sampling location error by running our algo-
rithm with an uncorrected forward model ⌫pix, which does not take into account
the sampling locations t

m measured by the interferometer. As before, we optimize
the regularization parameter using grid search, which yields the reconstructed im-
age shown in Figure 11.1 (d) and achieves an SNR of 6.33 dB with a regularization
parameter � = 0.04. We see that the reconstruction fails dramatically, which indi-
cates that using the corrected forward model ⌫ is critical in order to achieve good
reconstruction results.

11.4.2 Real Data
We now apply our Hessian spline algorithm to real high-resolution STXM data

provided by the Paul Scherrer Institute. The sample being imaged is a grating
structure that is part of a Fresnel zone plate. The image size is 200 ⇥ 200 pixels,
and the pixel size is 1 nm.

In Figure 11.2 (a), we show the uncorrected image, assuming that the measure-
ments are taken on the desired pixel grid. Although the effect of the displacement
errors is not as glaring as in the simulation in Figure 11.1 (d), they lead to noticeable
jitter artifacts.

In Figure 11.2 (b), we show our reconstruction results using the corrected sam-
pling locations tm and the Hessian spline framework with a regularization parameter
� = 2.5. Although the reconstruction performance cannot be evaluated quantita-
tively due to the absence of a ground-truth image, we notice that the jitter artifacts
as well as the noise are attenuated, due to the use of the corrected forward model
⌫ and the regularization respectively.

11.5 Conclusion
We introduced a new framework, coined as Hessian splines, for reconstructing

STXM images. This framework takes into account the sampling location errors (i.e.,
the fact that the measurements are not acquired on a uniform pixel grid), which
are measured using an interferometer. We formulated the reconstruction task as a



11.5 Conclusion 283

continuous-domain inverse problem with Hessian nuclear-norm regularization. We
then discretized the problem in a cubic spline basis, and solved it using ADMM. On
the experimental side, we evaluated our method on simulated data, and showed that
it outperforms linear interpolation that is used in state-of-the-art high-resolution
STXM. We also applied our algorithm to real STXM data.
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(a) Ground-truth image. (b) Hessian splines
(SNR = 16.21 dB, � = 0.004).

(c) Linear interpolation
(SNR = 14.89 dB).

(d) Hessian splines with
uncorrected measurements
(SNR = 6.33 dB, � = 0.04).

Figure 11.1: Simulations on a star-like sample.
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(b) Hessian splines reconstruction with � = 2.5.

Figure 11.2: Real STXM data of a grating structure.
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Chapter 12

Conclusion

In this thesis, we studied various continuous-domain inverse problems with
sparsity-promoting regularization, and we designed efficient discretization meth-
ods and algorithms to solve them computationally. Our particular focus was on
devising methods that are exact in the continuous domain (in the sense that there
is no discretization error), and that reach a desired sparse solution—in some cases,
the sparsest solution.

Our continuous-domain frameworks have the advantage of being extremely ver-
satile, as they can seamlessly adapt to a wide range of linear forward models. This
is a major asset compared to purely discrete methods, where it may not be obvious
how to discretize the forward model a priori, for example in the case of nonuniform
sampling (either in the spatial or Fourier domains). Moreover, a discretized forward
model often incurs discretization errors that are absent from continuous methods,
which can lead to spurious reconstructions. Finally, our continuous methods have
the benefit of mathematical elegance, where the discretization is a posteriori and
based on theoretical tools such as representer theorems.

In Part I, we laid the mathematical foundations of this thesis by providing some
background on generalized total-variation (gTV)-based inverse problems. We then
defined the native spaces of higher-order derivative operators L (Chapter 2), whose
construction relied on distribution theory [98]. These native spaces then served as
search spaces for our gTV-based inverse problems. Existing representer theorems
[14, 22] have proved that these problems admit spline solutions, both in nonperiodic
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and periodic settings. We thus presented some background on polynomial splines
and stated these representer theorems in Chapter 3.

12.1 Contributions
Our contributions started in Part II, in which we studied various generic gTV-

based inverse problems. We proposed exact discretization methods for each of these
settings using spline bases, and devised efficient multiresolution algorithms using
B-splines and the simplex algorithm [116] that were guaranteed to reach a desired
sparse solution. Our choices of bases were informed by representer theorems which
guaranteed that our problems of interest admit spline solutions. Although exact
discretization in spline bases was not a new idea [45], the use of B-splines was a
major improvement which made the computational task feasible. Our first work
was focused on single-component signal models (Chapter 4), which lead to problems
as presented in Section 3.2 and for which a representer theorem was already known
[14]. We then considered multicomponent signal models s = s1 + s2, where each
component si was assumed to have different characteristics. We formulated inverse
problems and proved representer theorems showing that these problems had spline
solutions that conformed with the signal model. Firstly, we proposed a hybrid
spline framework (Chapter 5), where both components were assumed to be sparse
in different dictionary bases. Finally, we proposed a framework for multicomponent
signals where s1 and s2 are assumed to be sparse and smooth, respectively.

In Part III, we studied various specific gTV-based problems and we precisely
described their solution sets using tools from duality theory [26]. Specifically, we
identified cases of uniqueness, and when uniqueness did not hold, we identified the
sparsest solution. We then designed efficient algorithms informed by our theoretical
study that are guaranteed to reach these sparsest solutions. The first problem we
considered consisted in interpolating data points with second-order TV regulariza-
tion (Chapter 7). We showed that depending on the observation vector y 2 RM ,
such problems may or may not have a unique solution. In the exact interpolation
scenario—which we call the (g-BPC)—, we identified the sparsest solution and de-
signed a simple algorithm that reaches it in linear time O(M). We then showed that
the noisy interpolation scenario—called the (g-BLASSO)—could be recast as a (g-
BPC) problem at the expense of solving a standard finite-dimensional `1-regularized
problem. Hence, the sparsest solution of the (g-BLASSO) could also be reached
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efficiently by combining the two steps. Next, we studied the same (g-BLASSO)
problem but with an added Lipschitz constraint to favor stable solutions (Chap-
ter 8). We showed that the same conclusions applied to this problem, in the sense
that uniqueness depends on the observation vector y, and that it could be recast
as a (g-BPC) by solving an `1-regularized problem. Hence, the sparsest solution
of this Lipschitz-constrained problem could also be reached via a simple two-step
algorithm. Finally, we studied the problem of reconstructing periodic functions
based on low-pass Fourier series coefficients with generalized TV regularization.
We showed that such problems always admit a unique solution, and we designed a
B-spline-based algorithm similar to that of Chapter 4. We proved that the latter
converges in uniform norm towards this unique solution as the grid size goes to
zero.

Finally, in Part IV, we applied our continuous-domain sparsity-based frame-
works to real-world applications. The first was the problem of fitting a two-
dimensional sparse curve to contour points (Chapter 10). We formulated this task as
a continuous-domain inverse problem with a novel regularization functional which
we called rotation-invariant TV. We proved a representer theorem that stated that
our problem had sparse spline solutions, and we adapted our B-spline-based algo-
rithm from Chapter 4 to reach a desired sparse-curve solution. Inspired by our
hybrid spline framework from Chapter 5, we then extended our method to hy-
brid curve models with varying smoothness properties. Finally, we proposed an
image-reconstruction method for scanning transmission X-ray microscopy (STXM)
with nonuniform sampling patterns. We formulated the reconstruction task as a
continuous-domain inverse problem with sparsity-promoting Hessian-Schatten reg-
ularization [27]. Using our B-spline-based exact discretization techniques from
Part II, we then proposed an efficient algorithm to solve these problems computa-
tionally and demonstrated the feasibility of our approach on both simulated and
real data.

12.2 Outlook
As demonstrated in our literature review in Section 1.2, the study of continuous-

domain inverse problems with sparsity-promoting regularization is still a very active
field of research, both on theoretical and algorithmic aspects. However, the field
is sufficiently established to have some hindsight. This is true of low-dimensional
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settings, and particularly one-dimensional ones—as in the majority of this thesis.
These low-dimensional settings are particularly interesting to the signal-processing
community, for example in the context of (spatio-temporal) image reconstruction.
Concerning one-dimensional problems, although specific settings can be studied ad
infinitum and give rise to new ideas such as in Part III of this thesis, existing
theories (such as dual certificates [47], geometrical properties of convex sets [61],
or duality mappings [112]) provide a wide range of tools to tackle these questions.
Low-dimensional settings with dimension higher than one are still being actively
studied, and will most likely continue to be in the years to come. Indeed, recent
theoretical advances have been achieved even for very classical models such as Rudin
et al. ’s [28] total-variation regularization for functions, e.g., [61, 295].

On the algorithmic side, the sparse spikes deconvolution problem has reached a
certain state of maturity with some well-established grid-free methods such as the
sliding Frank-Wolfe algorithm [51]. However, new ideas, improvements, and fields
of applications are constantly being proposed [296, 52, 297]. Algorithms to recover
smoother functions with gTV-type regularization are more recent and are still under
active development, as shown by our literature review in Section 1.2.4 and by this
thesis. These methods are interesting not only for their mathematical elegance,
but for their applicability to a vast number of signal-processing applications (see
for example Part IV and [51, 95, 96]). The techniques developed in this thesis,
particularly the grid-based methods from Part II, can hopefully be useful in that
respect, as exemplified by our works in Part IV.

Another major future direction for gTV-based optimization—which deviates
from the more traditional signal-processing applications mentioned above—will also
likely be the study of high-dimensional problems. This is partly due to the recent
connections that have been uncovered between variational formulations and the
training of neural networks (see for example Proposition 8.1 and [195, 298]), which
deal with very high-dimensional problems. Hence, a deeper understanding of these
variational approaches could provide useful insights into the training of neural net-
works, which is currently a major topic of interest in data science. A lot is yet to
be done in these variational high-dimensional settings, both on theoretical and al-
gorithmic aspects. However, this line of research can rely on the solid foundations
from the low-dimensional settings described above, and perhaps take inspiration
from them. The curse of dimensionality prohibits the use of grid-based approaches
such as those from Part II in high dimensions; however, the grid-free approaches
mentioned above could be an interesting starting point. Finally, as demonstrated
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by our works in Part III, theoretical insights can lead to algorithmic advances,
which could help tackle the issue of scalability to high dimensions.
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Appendix A

ADMM for Discrete `1-based
Problems

In this appendix, we describe how we apply the alternating direction method
of multipliers (ADMM) described in [19] to discrete optimization problems of the
form

min
x2RN

 
F (x) +

RX

r=1

Gr(Lrx)

!
(A.1)

where F : RN ! R is a differentiable functional, the Lr 2 RNr⇥N are matrices
with no particular structure, and Gr : RNr ! R are proximable functionals.

A.1 Proximity Operators
Being proximable relates to proximity operators, which is defined for a functional

G : RN ! R as

proxG(v) , arg min
x2RN

1

2
kx� vk22 + G(x). (A.2)

We say that a functional G is proximable if for any � > 0, the proximity operator
prox�G is simple, i.e., it either has a closed-form expression, or it can be computed
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efficiently. For an intuitive interpretation of the proximity operator, we refer to [17,
Chapter 3]. Proximity operators have become ubiquitous in convex optimization
methods, due to the fact that many popular cost functionals such as the `1 norm
are nondifferentiable, but are proximable. Being proximable can be seen as the
next best thing to being differentiable; gradient-based algorithms are then replaced
by proximal algorithms, of which ADMM is an example among many others [38,
18, 39, 40, 41].

Example A.1. Examples of common proximity operators that are used in this
thesis are:

— The `1 norm k·k1; its proximity operator is the componentwise soft-thresholding
function

h
prox�k·k1

(v)
i

n
=

8
><

>:

vn � 1 vn > �

0 |vn|  �
vn + 1 vn < �

, 1  n  N. (A.3)

— The `1 norm k · k1; its proximity operator has computationally cheap im-
plementations [17, Section 6.5.2].

— The nuclear norm or 1-Schatten norm for matrices k ·k⇤, defined as kMk⇤ ,PP
p=1 �p(M), where �p(M) is the pth singular value of the matrix M 2

RP⇥P . Its proximity operator has computationally cheap implementations
[27].

— Indicator functions ◆V (defined as ◆V (x) = 0 if x 2 V and ◆V (x) = +1 oth-
erwise), where V ⇢ RN is a convex set. The latter provide a way of rewriting
constrained optimization problems as unconstrained ones. By definition, the
proximity operator of ◆V is then the least-squares projector onto the set V .
Many such projectors have simple expressions, such as:
— The nonnegativity constraint ◆�0 ( i.e., V = R+); its proximity operator

is the componentwise ReLU
h
prox◆�0

(v)
i

n
= max(0, vn).

— The `1 box constraint ( i.e., V = {x 2 RN : kxk1  C} for some
C � 0); its proximity operator is the componentwise thresholding operator

h
proxik·k1C

(v)
i

n
=

8
><

>:

C vn > C

vn |vn|  C

�C vn < �C

.
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A.2 ADMM Iterates

The idea behind ADMM it to rewrite Problem (A.1) in primal-dual form via
the augmented Lagrangian with penalty parameters ⇢ 2 (0, +1)R, which is given
by

L⇢(x, z1, . . . , zR,y1, . . . ,yR) , F (x) +
RX

r=1

⇣
Gr(zr) + y

T
r (Lrx� zr) +

⇢r
2
kLrx� zrk22

⌘

= F (x) +
RX

r=1

 
Gr(zr) +

⇢r
2

����Lrx� zr +
yr

⇢r

����
2

2

!
+ C,

(A.4)

where the zr 2 RNr are intermediate primal variables, the yr 2 RNr are the dual
variables, and C 2 R is a constant. Clearly, for any ⇢ 2 (0, +1)R, Problem (A.1)
is equivalent to the min-max formulation

min
x2RN ,zr2RNr

1rR

0

B@ sup
yr2RNr

1rR

L⇢(x, z1, . . . , zR,y1, . . . ,yR)

1

CA , (A.5)

and we must have zr = Lrxr for all 1  r  R at the optimum. ADMM then
solves Problem (A.5) by iteratively minimizing L⇢ over the primal variables x and
zr, 1  r  R, and performing a gradient-ascent step over the dual variables yr,
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1  r  R. More precisely, the kth iteration of ADMM is given by

x
(k+1) = arg min

x2RN

L⇢
⇣
x, z(k)

1 , . . . , z(k)
R ,y(k)

1 , . . . ,y(k)
R

⌘

= arg min
x2RN

0

@F (x) +
RX

r=1

⇢r
2

�����Lrx� z
(k)
r +

y
(k)
r

⇢r

�����

2

2

1

A (A.6)

z
(k+1)
r = arg min

zr2RNr

L⇢
⇣
x

(k+1), z(k)
1 , . . . , zr, . . . , z

(k)
R ,y(k)

1 , . . . ,y(k)
R

⌘

= prox 1
⇢r

Gr

 
Lrx

(k+1) +
y

(k)
r

⇢r

!
1  r  R (A.7)

y
(k+1)
r = y

(k)
r + ⇢rryrL⇢

⇣
x

(k+1), z(k+1)
1 , . . . , z(k+1)

R ,y(k)
1 , . . . ,y(k)

R

⌘

= y
(k)
r + ⇢r

⇣
Lrx

(k+1)
r � z

(k+1)
r

⌘
1  r  R. (A.8)

The algorithm then terminates when a suitable stopping criterion is reached (see
[118] for examples). Hence, in ADMM, the difficult Problem (A.5) is decomposed
into smaller, computationally cheaper subproblems, which are solved alternatingly.
Indeed, as shown in (A.7), the zr-update step amounts to an application of the
proximal operator of 1

⇢r
Gr which is simple when Gr is proximable. The gradient-

ascent updates of yr are also computationally inexpensive. The most challenging
and computationally demanding subproblem is typically the x-update step (A.6).
However, contrary to the original nondifferentiable Problem (A.1), Problem (A.6)
has a differentiable cost functional for which gradient-based methods can be ap-
plied. Moreover, in many particular but common cases of F , Problem (A.6) is
computationally cheap to solve, as exemplified in the following remark.

Remark A.1. In the case of the classical quadratic data-fidelity loss

F (x) =
1

2
kHx� yk22 (A.9)

with H 2 RM⇥N and y 2 RM , Problem (A.6), amounts to solving the linear system

(HT
H +

RX

r=1

⇢LT
r Lr)x = H

T
y +

RX

r=1

⇢rL
T
⇣
⇢rz

(k+1)
r � y

(k+1)
r

⌘
(A.10)
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over x 2 RN . This can be achieved directly when the matrix eH ,
⇣
H

T
H +

PR
r=1 ⇢L

T
r Lr

⌘

is small enough to be inverted numerically, which is mostly the case in the one-
dimensional settings of this thesis. However, for larger problems, eH and its inverse
can be too large to store in memory, which calls for matrix-free methods. In some
cases ( e.g., in Chapter 7), the matrix eH is banded and can thus be inverted effi-
ciently without needing to store N ⇥N matrices in memory. When eH is large and
has no useful structure, one typically uses matrix-free inner-loop iterative solvers
such as the conjugate gradient method [294], as we do in Chapter 11.

A.3 Convergence and Computational Complexity
It is well known that ADMM has a O(1/k) convergence rate in general, where k

is the number of iterations [299]. The cost per iteration of ADMM depends on how
the x-minimization step is performed, which may depend on the choice of F . In
the standard quadratic case (A.9), as discussed in Remark A.1, the computational
bottleneck is to solve the linear system (A.10). When the inverse matrix eH�1

has no structure but is small enough to be computed and stored in memory, the
computational complexity per iteration of ADMM is O(N2) both in time and in
space.
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Appendix B

Proofs of Representer
Theorems

In this appendix, we compile the proofs of all the representer theorems that are
stated in this thesis.

B.1 Proof of Theorem 5.1

The proof is divided into two parts. We first prove the existence of a solution,
and then that some solutions are of the form (5.20).

B.1.1 Existence of a Solution

Consider a sequence (fk)k2N 2 ML1,�0(R) + ML2(R) that monotonically de-
creases to the infimum value J 0 of the cost functional. For every k, consider
the decomposition fk = f1,k + f2,k given by (5.7), such that Rhyb(fk) = (1 �
↵)kL1{f1,k}kM + ↵kL2{f2,k}kM.
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Expanding f1,k and f2,k using (5.8) yields

f1,k = L�1
e�1
{w1,k} + c

T
1,kp1, (B.1)

f2,k = L�1
e�2
{w2,k} + c

T
0,kp0 + c

T
2,kp2. (B.2)

The proof will now consist in extracting a converging subsequence of (fk)k2N. To
achieve this, the first step is to prove that the sequences (wi,k)k2N (i 2 {1, 2}) and
(ci,k)k2N (i 2 {0, 1, 2}) are bounded.

Due to the assumption of monotonic decrease, we have that

kw1,kkM, kw2,kkM  C1 8k 2 N, (B.3)

where C1 , J (f1)
�min(↵,1�↵) . Next, we bound the (ci,k)k2N sequences. Using the

triangle inequality, we get that

k⌫(fk)k2 �

�����⌫
 

2X

i=0

c
T
i,kpi

!�����
2

�
���⌫
⇣
L�1

e�1
{w1,k} + L�1

e�2
{w2,k}

⌘���
2
. (B.4)

Using Proposition 8 in [14], the well-posedness assumption in Theorem 5.1 is equiv-
alent to the existence of a constant B > 0 such that

�����⌫
 

2X

i=0

c
T
i,kpi

!�����
2

� B
2X

i=0

kci,kk2. (B.5)

Next, to handle the second term in (B.4), we prove Lemma B.1.

Lemma B.1. The operators ⌫
⇣
L�1

e�i
{·}
⌘

: M(R)! RM with i 2 {1, 2} are weak⇤-
continuous.

Proof. Let (wn)n2N 2 M(R) be a sequence that converges to w 2 M(R) for
the weak⇤-topology. Since ⌫ is weak⇤-continuous, it is sufficient to prove that
L�1

e�i
{wn�w}! 0 for the weak⇤-topology in MLi(R). By Theorem 2.3, we have that

(CLi(R))0 = MLi(R), where CLi(R) = L⇤

i {C0(R)}� span{�n}N0
n=1. Let f 2 CLi(R);

there exists functions (f1, f2) 2 C0(R) ⇥ span{�n}N0
n=1 such that f = L⇤

i {f1} + f2.
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By the boundary conditions in Theorem 2.1, we have that e�i

⇣
L�1

e�i
{wn � w}

⌘
= 0

which implies that hL�1
e�i
{wn � w}, f2i = 0. We thus have that

D
L�1

e�i
{wn � w}, f

E
=
D
L�1

e�i
{wn � w}, L⇤

i {f1}
E

= hwn � w, f1i ! 0 (B.6)

since wn ! w for the weak⇤-topology. This proves that L�1
e�i
{wn � w} ! 0 for the

weak⇤-topology and, thus, the desired result.

Next, Lemma B.1 implies that the operators ⌫
⇣
L�1

e�i
{·}
⌘

are continuous for the
strong topology k · kM (see Section 2.1.3). This implies the existence of a constant
A > 0 such that

���⌫
⇣
L�1

e�1
{w1,k} + L�1

e�2
{w2,k}

⌘���
2
 A(kw1,kkM + kw2,kkM). (B.7)

Combining (B.3), (B.5), and (B.7) yields that

k⌫(fk)k2 � B

 
2X

i=0

kci,kk2

!
�A(kw1,kkM + kw2,kkM) � B

 
2X

i=0

kci,kk2

!
� 2AC1.

(B.8)

Using the assumption of monotonic decrease and the triangular inequality, we get
that

8k 2 N :
p

2J (f0) + kyk2 � k⌫(fk)k2. (B.9)

This shows that the norms of c0,k, c1,k, and c2,k are bounded by a constant, which
was our initial goal. Together with (B.3), this implies the existence of a subsequence
(fkn)n2N such that

— the sequences wi,kn are converging to a limit wi,lim 2M(R) for the weak⇤-
topology for i 2 {1, 2} (Banach-Alaoglu theorem);

— for i 2 {0, 1, 2}, the sequences ci,kn converge to a limit ci,lim.
Using Lemma B.1, we thus have that limn!+1 ⌫(fkn) = ⌫(flim) where

flim = L�1
e�1
{w1,lim} + L�1

e�2
{w2,lim} +

2X

i=0

c
T
i,limpi. (B.10)
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This yields that

J 0 = lim
n!+1

J (fkn)

=
1

2
k⌫(flim)� yk22 + �((1� ↵)kw1,limkM + ↵kw2,limkM) (B.11)

= J (flim), (B.12)

using the weak⇤-continuity of the k · kM norm in (B.11). This proves the desired
result flim 2 V.

B.1.2 Form of the Solutions
We first prove the following lemma.

Lemma B.2. All solutions of Problem (5.19) yield the same measurement vector
z� 2 RM .

Proof. Let f, g be two solutions of Problem (5.19) and define h = f+g
2 . Since Rhyb

(Proposition 5.1) and k · k22 are convex functionals, we have that

Rhyb(h)  Rhyb(f) + Rhyb(g)

2
and (B.13)

k⌫(h)� yk22 
k⌫(f)� yk22 + k⌫(g)� yk22

2
. (B.14)

Summing these inequalities yields J (h)  J 0. Yet J (h) = J 0, which implies that
the cases of equality are met. Since k · k22 is strictly convex, we necessarily have
that ⌫(f) = ⌫(g) = z�.

Using Lemma B.2, Problem (5.19) can be reformulated as

V = arg min
f2ML1,�0 (R)+ML2 (R)

Rhyb(f) s.t. ⌫(f) = z�. (B.15)

Now, consider the problem

min
w1,w22M(R)
q2NL1+NL2

F (w1,w2,q)=z�

((1� ↵)kw1kM + ↵kw2kM) , where (B.16)
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F (w1, w2, q) = ⌫
⇣
L�1

e�1
{w1} + L�1

e�2
{w2} + q

⌘
(B.17)

is a continuous linear functional. Due to the well-posedness assumption,

8q 2 NL1 + NL2 : F (0, 0, q) � BkqkNL1+NL2
. (B.18)

Using the vector-valued Fisher-Jerome theorem [94, Theorem C.1], Problem (B.16)
has a solution (w1, w2, q) such that

wi =
KiX

k=1

ai,k�(·� xi,k), i 2 {1, 2}, (B.19)

where ai,n, xi,k 2 R and K1 + K2 M . Next, let

s = L�1
e�1
{w1} + L�1

e�2
{w2} + q. (B.20)

Clearly, ⌫(s) = z� and s = s1 + s2 where the components si are of the form (5.20).
Now, assume by contradiction that s is not a solution of Problem (5.19). According
to Lemma B.2, this implies the existence of a function g 2ML1,�0(R) + ML2(R)
such that ⌫(g) = z� and Rhyb(g) < Rhyb(s). As stated in (5.8), g can rewritten as

g = L�1
e�1
{u1} + L�1

e�2
{u2} + r, (B.21)

where u1, u2 2M(R) and r 2 NL1 + NL2 . Thus, F (u1, u2, r) = z0 and

(1� ↵)ku1kM + ↵ku2kM = Rhyb(g) < Rhyb(s) = (1� ↵)kw1kM + ↵kw2kM,
(B.22)

which is in contradiction with (w1, w2, q) being a solution of (B.16). This proves
that s is indeed the solution of (5.19), and thus the desired result.

B.2 Proof of Theorem 6.1
The main technical part of our proof is to show the existence of a minimizer;

once this is ensured, the optimization problem can be decoupled into two separate
problems. Then, we can apply representer theorems proven in [45] for these prob-
lems to obtain a parametric form of the solution of the original problem. Finally,
the uniqueness of the smooth component follows from the strict convexity of the
associated regularization penalty. We now recall some relevant notions that will be
used throughout the proof.
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B.2.1 Preliminaries

We extend the biorthogonal system (�0,p0) for N0 to the biorthogonal systems
( e�1, ep1) and ( e�2, ep2) for NL1 and NL2 , respectively, where e�i =

⇥
�0 �i

⇤
and

epi =
⇥
p0 pi

⇤
for i 2 {1, 2}. By (2.43), any function s1 2ML1(R) has the unique

decomposition
s1 = L�1

1,e�1
{w} + ecT0 p0 + c

T
1 p1, (B.23)

where w 2 M(R), ec0 = �0(s1) 2 RN0 , c1 = �1(s1) 2 RN0,1�N0 , and L�1

1,f�1
is

the pseudoinverse operator of L1 for the biorthogonal system ( e�1, ep1) defined in
Theorem 2.1. Using this decomposition, by (2.44), we can equip the space ML1(R)
with the norm

ks1kML1, e�1
, kwkM +

��� e�1(s1)
���

2
. (B.24)

Finally, an element s1 2ML1(R) is in the restricted search space ML1,�0(R) if and
only if ec0 = 0.

Similarly, for any s2 2 HL2(R), there is a unique decomposition

s2 = L�1

2,f�2
{h} + c

T
0 p0 + c

T
2 p2, (B.25)

where c0 = �0(s2) 2 RN0 , c2 = �2(s2) 2 RN0,2�N0 , and h 2 L2(R). Consequently,
the associated norm for the space HL2(R) is defined as

ks2kHL2, e�
, khkL2 +

��� e�2(s2)
���

2
. (B.26)

B.2.2 Existence of a Solution

The first step is to prove that (6.10) has a minimizer. We do so by reformulating
the problem as the minimization of a weak⇤-lower semicontinuous functional over a
weak⇤-compact domain. We then prove the existence by relying on the generalized
Weierstrass theorem.

We denote the cost at the trivial point (0, 0) as J0 = J (0, 0) = E(0,y). Adding
the constraint J (s1, s2)  J0 does not change the solution set of the original
problem, as it must hold for any minimizer of (6.10). Hence, from now on, we
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assume that the cost functional is upper-bounded by J0. This readily implies that

E(⌫(s1 + s2),y)  J0, (B.27)

kL1{s1}kM 
J0

�1
, and (B.28)

kL2{s2}kL2 
r

J0

�2
. (B.29)

The coercivity of E(·,y) implies the existence of a constant C1 > 0 such that
E(z,y)  J0 ) kzk2  C1. Together with (B.27), this yields

k⌫(s1 + s2)k2  C1. (B.30)

Moreover, as discussed in Section 2.1.3, since ⌫ is weak⇤-continuous over ML1(R),
it is also continuous for the strong topology. Moreover, by assumption, ⌫ is contin-
uous over HL2(R). Hence, there exists a second constant C2 > 0 such that

kf1kML1, e�1
+ kf2kHL2, e�

 J0

�1
+

r
J0

�2
) k⌫(f1 + f2)k2  C2. (B.31)

Now, by taking

f1 , s1 � �1(s1)
T
p1,

f2 , s2 � �0(s2)
T
p0 � �2(s2)

T
p2, (B.32)

and, together with (B.28) and (B.29), we deduce that
��⌫
�
s1 � �1(s1)

T
p1 + s2 � �0(s2)

T
p0 � �2(s2)

T
p2

���
2
 C2. (B.33)

By using the triangle inequality and the two bounds (B.30) and (B.33), we have
��⌫
�
�1(s1)

T
p1 + �0(s2)

T
p0 + �2(s2)

T
p2

���
2
 C1 + C2. (B.34)

Finally, the well-posedness assumption in Theorem 6.1 ensures the existence of a
constant B > 0 such that

8q 2 NL1 + NL2 : Bk�i(q)k2  k⌫(q)k2, i 2 {0, 1, 2}. (B.35)
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Hence, by taking

q = �1(s1)
T
p1 + �0(s2)

T
p0 + �2(s2)

T
p2 (B.36)

and by applying the inequality (B.35), we have that

k�1(s1)k2, k�0(s2)k2, k�2(s2)k2 
C1 + C2

B
. (B.37)

Therefore, the original Problem (6.10) is equivalent to the constrained minimization
problem

min
s12ML1,�0 (R)
s22HL2 (R)

J (s1, s2) s.t. ks1kML1, e�1
 A1, ks2kHL2, e�

 A2, (B.38)

where A1 , J0
�1

+ 2C1+C2
B and A2 ,

q
J0
�2

+ 2C1+C2
B . The cost functional of Prob-

lem (B.38), which is the same as in (6.10), is weak⇤ lower-semicontinuous. Moreover,
the constraint cube is weak⇤-compact in the product topology due to the Banach-
Alaoglu theorem [15, Theorem 3.15]. Hence, (B.38) reaches its infimum, and so
does (6.10).

B.2.3 Form of the Solution
Let (s̃1, s̃2) be a solution of (6.10) and consider the minimization problem

min
s12ML1,�0 (R)

kL1{s1}kM s.t. ⌫(s1) = ⌫(s̃1). (B.39)

By Theorem 3.3, (B.39) has a minimizer s⇤1 of the form (6.11). One can also
readily verify that (s⇤1, s̃2) is a minimizer of the original problem. Similarly, one
can consider the minimization problem

min
s22HL2 (R)

kL2{s2}kL2 s.t. ⌫(s2) = ⌫(s̃2). (B.40)

It is known from [45, Theorem 3] that (B.40) has a minimizer s⇤2 of the form (6.12).
Again, (s⇤1, s

⇤

2) is a solution of the original problem, which matches the form specified
by Theorem 6.1.
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B.2.4 Uniqueness of the Second Component
To prove the final statement of Theorem 6.1, we consider two arbitrary pairs of

solutions (f̄1, f̄2) and (f̃1, f̃2) of Problem (6.10) and we denote by J 0 their minimal
cost value. The convexity of the cost functional yields that, for any ↵ 2 (0, 1) and
(f↵,1, f↵,2) = ↵(f̄1, f̄2) + (1� ↵)(f̃1, f̃2), we have

J (f↵,1, f↵,2)  ↵J (f̄1, f̄2) + (1� ↵)J (f̃1, f̃2) = J 0. (B.41)

The optimality of (f̄1, f̄2) and (f̃1, f̃2) implies that (B.41) must be an equality. In
particular, we must have that

kL2{f↵,2}k2L2
= ↵kL2{f̄2}k2L2

+ (1� ↵)kL2{f̃2}k2L2
. (B.42)

Now, due to the strict convexity of kL2{·}k2L2
, we deduce that L2{f̄2� f̃2} = 0, and

hence that (f̄2 � f̃2) 2 NL2 . This implies that all solutions have the same second
component up to a term in the null space of L2.

B.3 Proof of Theorem 8.2

B.3.1 Items 1 and 2
The first step is to show that the sampling functional �(· � x0) : f 7! f(x0) is

weak⇤-continuous in Lip(R). To that end, we identify the predual Banach space X
such that Lip(R) = X 0 and then show that shifted Dirac impulses are included in
X , which is equivalent to �(· � x0) being weak⇤-continuous [113, Theorem IV.20].
We recall that following (8.10), we can view Lip(R) as the native Banach space
associated to the pair (L1(R), D). This allows us to deploy the machinery of [91]
to identify its predual space. In short, it follows from [91] that the predual space
has the direct-sum structure X = D (L1(R)) � span

⇣
e�(·)2

⌘
. In other words, any

function f 2 X can be decomposed as f = D{g} + ce�(·)2 , where g 2 L1(R) and
c 2 R. One can formally verify that � = D{sgn � erf} + 2

p
⇡
e�(·)2 , where sgn

is the sign function and erf is the Gauss error function. Due to the rapid decay
of the erf function at t = �1 and the symmetry of (sgn � erf), we deduce that
sgn � erf 2 L1(R) and, hence, that � 2 X . Finally, due to the shift-invariant
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structure of X , we deduce the weak⇤-continuity of the sampling functional �(·�x0)
for any x0 2 R.

Next, we apply the general representer theorem for Banach semi-norms [300,
Theorem 3] to deduce that the solution set VLip of (8.16) is a nonempty, convex,
weak⇤-compact set whose elements all pass through a fixed set of points. Put
differently, the vector z = (zm) with zm = f(xm) is invariant to the choice of
f 2 VLip. This means that adding the constraints zm = f(xm) for m = 1, . . . , M
does not change the solution set, i.e.,

VLip = arg min
f2Lip(R)

 
MX

m=1

E(f(xm), ym) + �L(f)

!
s.t. f(xm) = zm, 1  m M

(B.43)
= arg min

f2Lip(R)
L(f) s.t. f(xm) = zm, (B.44)

where the last equality is obtained by observing that
PM

m=1 E(f(xm), ym) is con-
stant within the solution set VLip. Consequently, we can represent VLip as a solution
set of a constrained problem of the form (8.17).

B.3.2 Item 3

We first recall the definition of the canonical CPWL interpolant of a collection
of 1D data points introduced in Chapter 7.

Definition B.1 (Definition 7.4). For a series of data points (xm, zm) with m =
1, . . . , M , the canonical interpolant fcano : R ! R is the unique CPWL function
that passes through these points and is differentiable over R \ {x2, . . . , xM�1}.

We first prove that fcano is a solution of (8.17). Clearly, the Lipschitz constant
of fcano is equal to L(fcano) = Lmin, where Lmin is given in (8.18). Moreover, any
function f that passes through the data points (xm, zm) necessarily has a Lipschitz
constant greater than or equal to Lmin. This implies that fcano is a solution of
(8.17) and Lmin is the minimal value of the Lipschitz constant. Consequently,
any function that satisfies the interpolation constraints and is Lmin-Lipschitz is a
solution of (8.17).
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B.3.3 Item 4
Consider a generic point (x, y) 2 E , and let m be such that x 2 (xm�1, xm). By

definition of E , there exists a function f 2 VLip such that y = f(x). From Item 3,
we deduce that L(f) = Lmin. Hence, we have the inequalities

����
y � zm�1

x� xm�1

���� ,
����
y � zm
x� xm

����  Lmin. (B.45)

These inequalities can readily be translated into the inclusion (x, y) 2 Rm�1 \Lm,
which implies that E ✓

SM
m=1 (Rm�1 \ Lm). To show the reverse inclusion, consider

a point in (x, y) 2 Rm�1\Lm for some m 2 {1, . . . , M +1} and denote by f̃cano the
canonical interpolant of {(xm, zm)}Mm=1 [ {(x, y)}. Following Item 3, the Lipschitz
constant of f̃cano is given by

L(f̃cano) = max

✓
Lmin,

����
y � zm�1

x� xm�1

���� ,
����
y � zm
x� xm

����

◆
= Lmin, (B.46)

where we establish the last equality by translating the inclusion (x, y) 2 Rm�1\Lm

into the inequalities in (B.45). This implies that f̃cano is a solution of (8.17) and
so, by definition, we have that (x, y) 2 E .

B.3.4 Item 5
By Proposition 7.5, fcano is also a solution of (8.23). We therefore need to

prove that any solution fopt of (8.23) has the same Lipschitz constant L(fopt) =
L(fcano) = Lmin. Due to the interpolation constraints, we necessarily have that
L(fopt) � L(fcano); we must now prove the reverse inequality L(fopt)  L(fcano).
By Theorem 7.1, fopt must follow fcano in R\[x2, xM�1]. Moreover, in each in-
terval [xm, xm+1] for m 2 {2, . . . , M � 2}, fopt either follows fcano or is concave
or convex over the interval [xm�1, xm+2]. Hence, it suffices to prove that, for any
m 2 {2, . . . , M � 2}, we have that Lm(fopt)  L(fcano), where Lm(f) denotes the
Lipschitz constant of f restricted to the interval [xm, xm+1].

Let m be an index for which fopt need not follow fopt in [xm, xm+1]. (If no
such index exists, then the result is trivially true.) Assume that fopt is convex in
the interval [xm�1, xm+2]; the concave scenario is derived in a similar fashion. This
implies that, in this interval, the function (x̃1, x̃2) 7! fopt(x̃2)�fopt(x̃1)

x̃2�x̃1
is increasing

in both its variables.
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Hence, for any x̃1, x̃2 2 [xm, xm+1] with x̃1 6= x̃2, we have that zm�zm�1

xm�xm�1


fopt(x̃2)�fopt(x̃1)
x̃2�x̃1

 zm+2�zm+1

xm+2�xm+1
. This directly implies the desired result Lm(fopt) 

L(fcano).

B.4 Proof of Theorem 8.3

B.4.1 Existence
We rewrite the problem in (8.24) as an unconstrained minimization problem

Vhyb = arg min
f2MD2 (R)

 
MX

m=1

E(f(xm), ym) + �kD2fkM + iL(f)L̄

!
, (B.47)

where iE denotes the characteristic function of the set E and is defined as

iE(f) ,
(

0 f 2 E

+1 otherwise
. (B.48)

To prove the existence of a minimizer, we use a standard technique in convex
analysis which involves the generalized Weierstrass theorem [301] to show that
the cost functional of (B.47) is coercive and lower semicontinuous (in the weak⇤-
topology), which is a sufficient condition for the existence of a solution.

The cost functional in (8.24) consists of three terms: (i) an empirical loss term
H(f) , PM

m=1 E(f(xm), ym); (ii) a second-order TV regularization term R(f) ,
�kD2fkM; and (iii) a Lipschitz constraint iE , where E , {L(f)  L̄}. It is known
(see [45] for a more general statement) that the functional H(f) + R(f) is coercive
and weak⇤-lower semicontinuous. This, together with the non-negativity of iE ,
yields the coercivity of the total cost. The only missing item is the weak⇤-lower
semicontinuity of iE , for which it is sufficient to prove that E is a closed set for the
weak⇤-topology.

Let fn 2MD2(R) be a sequence of functions with L(fn)  L̄ converging in the
weak⇤-topology to flim 2 MD2(R). To prove the weak⇤-closedness of E, we need
to show that L(flim)  L̄, which is equivalent to |flim(a) � flim(b)|  L̄|a � b| for
any a, b 2 R.
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For any n 2 N, we have that

|flim(a)� flim(b)|  |flim(a)� fn(a)| + |fn(a)� fn(b)| + |fn(b)� flim(b)|. (B.49)

Using the weak⇤-continuity of the sampling functionals �(· � a) and �(· � b) in
MD2(R) (see Example 3.2), we deduce that fn(a) ! flim(a) and fn(b) ! flim(b).
Moreover, we have the upper bound |fn(a) � fn(b)|  L̄|a � b| for any n 2 N. We
get the desired bound by letting n! +1 in (B.49).

B.4.2 Form of the Solution Set
Now that we have proved the existence of a solution f⇤

0 2 Vhyb, we can apply a
standard argument based on the strict convexity of E(·, ·) (see Proposition 7.7) to
deduce that for any f⇤ 2 Vhyb, we have that f⇤(xm) = f⇤

0 (xm) for m = 1, . . . , M .
Hence, the original Problem (8.24) is equivalent to

Vhyb = arg min
f2MD2 (R)

kD2fkM s.t.

(
L(f)  L̄

f(xm) = f⇤

0 (xm) m = 1, . . . , M
. (B.50)

Since f⇤

0 2 Vhyb, we deduce that

L0 , max
2mM

����
f⇤

0 (xm)� f⇤

0 (xm�1)

xm � xm�1

����  L(f⇤

0 )  L̄.

Yet, Item 5 in Theorem 8.2 implies that any solution f⇤ of the problem

arg min
f2MD2 (R)

kD2fkM s.t. f(xm) = f⇤

0 (xm) m = 1, . . . , M (B.51)

is a solution of (8.17) with zm = f⇤

0 (xm). Hence, by Item 3 of Theorem 8.2, we have
that L(f⇤) = L0  L̄. This means that adding the Lipschitz constraint L(f)  L̄
does not change the solution set of Problem (B.51). Hence, we have that

Vhyb = arg min
f2MD2 (R)

kD2fkM s.t. f(xm) = f⇤

0 (xm), 1  m M. (B.52)

The solution set of (B.52) has been fully described in Theorem 7.1 in the previous
chapter, which yields the announced characterization.
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B.5 Proof of Theorem 10.2
We start by providing the necessary tools before going into the proof of The-

orem 10.2; for more details on these tools, we refer to Chapter 2. Specifically, we
first describe the topological structure of the search space XL(TM ). We then iden-
tify the set of extreme points of the RI-TV unit ball. Finally, we provide a full
characterization of the solution set V, which concludes the proof of Theorem 10.2.

B.5.1 Search Space
We first recall some concepts and results from Chapter 2. The only difference

is that T = [0, 2⇡] is replaced with TM = [0, M ] in our current setting, which does
not affect the validity of the elements presented here.

The space of periodic finite Radon measures is denoted by M(TM ). It is a
Banach space equipped with the TV norm k · kM defined in (2.18).

The native space of L is defined as ML(TM ) , {f 2 S 0(TM ) : kL{f}kM <
+1}. By Theorem 2.4, ML(TM ) is isometrically isomorphic to M0(TM ) ⇥ R,
where M0(TM ) , {w 2M(TM ) : hw, 1i = 0} is the space of Radon measures with
zero mean, via the inverse mappings

ML(TM )!M0(TM )⇥ R : f 7! (L{f}, hf, 1i) ,

M0(TM )⇥ R!ML(TM ) : (w, a) 7! L†{w} + a, (B.53)

where L† is the pseudoinverse of L defined in 2.6. Finally, we recall that the Green’s
function of L = DNd , defined as gL , L†{X}, is a continuous periodic function for
all integers Nd � 2 (Proposition 2.7)

We are now ready to characterize the topological structure of the search space
XL(TM ) defined in (10.24).

Proposition B.1. The search space XL(TM ) can be expressed as

XL(TM ) = ML(TM )⇥ML(TM ). (B.54)

Moreover, the mapping

T : XL(TM )!M0(TM )2 ⇥ R2

T (r) = (L{r1}, L{r2}, hr1, 1i, hr2, 1i) (B.55)
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is an isomorphism between XL(TM ) and M0(TM )2 ⇥ R2 whose inverse is

T�1 : M0(TM )2 ⇥ R2 !ML(TM )

T�1 (w,a) =
�
L†{w1} + a1, L

†{w2} + a2

�
. (B.56)

Proof. Let r = (r1, r2) 2 XL(TM ). We have that

R (L{r}) = sup
'2S(TM )2

k'k2,L1=1

(hL{r1},'1i+ hL{r2},'2i)

� sup
'12S(TM )

k('1,0)k2,L1=1

hL{r1},'1i = sup
'12S(TM )
k'1k1=1

hL{r1},'1i = kL{r1}kM, (B.57)

from which we deduce that r1 2 ML(TM ). Similarly, we get that r2 2 ML(TM )
and, hence, we have that XL(TM ) ✓ (ML(TM ))2. For the reverse inclusion, let
r1, r2 2ML(TM ). Using the inequalities k'k2,L1 � k'ik1 for i = 1, 2, we deduce
that

|hL{ri},'ii|  kL{ri}kMk'ikL1  kL{ri}kMk'k2,L1 . (B.58)
Hence, we have that

hL{r1},'1i+ hL{r2},'2i  (kL{r1}kM + kL{r2}kM) k'k2,L1 , (B.59)

which implies that

R (L{r})  kL{r1}kM + kL{r2}kM < +1. (B.60)

Hence, we have the inclusion r 2 XL(TM ).
Following (B.60) and (B.57), we deduce that the norm topology of XL(TM )

is equivalent to the product topology induced from ML(TM ) ⇥ML(TM ). This,
together with the fact that ML(TM ) is isometrically isomorphic to M0(TM )⇥ R,
implies that T is an isomorphism. Its inverse is readily deduced from (B.53).

B.5.2 Extreme Points of the RI-TV Unit Ball
Our strategy to characterize the solution set V defined in (10.23) consists in

applying the main result of Boyer et al. [61], which requires the knowledge of the
form of extreme points of the unit ball of the regularization functional. To that
end, we prove that the extreme points of the RI-TV unit ball are vector-valued
Dirac combs.
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Proposition B.2. An element w
⇤ 2M(TM )2 is an extreme point of the RI-TV

unit ball B = {w 2M(TM )2 : R(w) = 1} if and only if it is a vector-valued Dirac
comb of the form w

⇤ = aXM (·� t0) for some t0 2 TM and a 2 R2 with kak2 = 1.

Proof. Assume by contradiction that there exists an extreme point w
⇤ of B that

is not a Dirac comb. This implies that there exists an interval I ✓ TM such that
w1 = w

⇤
I and w2 = w

⇤
Ic are both nonzero Radon measures that satisfy w

⇤ =
w1+w2. Due to their disjoint support, we have that R(w⇤) = R(w1)+R(w2). We
now define the measures w+ = (1+✏)w1+(1��)w2 and w� = (1�✏)w1+(1+�)w2,
where ✏, � > 0 are small constants such that ✏R(w1) = �R(w2). By observing that
R(w+) = R(w�) = 1 and w

⇤ = w++w�
2 , we conclude that w

⇤ is not an extreme
point of B, which yields a contradiction. Hence, the extreme points of B can only
be vector-valued Dirac combs.

To prove the reverse inclusion, let w
⇤ = aXM (· � t0) with kak2 = 1. We now

prove that w
⇤ is an extreme point of B. Assume that there exist w1,w2 2 B

such that w
⇤ = 1

2 (w1 + w2). We define the measure w0 = w1 t 6=t0 2 M(TM )2

so that w1 = w0 + a1XM (· � t0) for some a1 2 R2. We then must have w2 =
(�w0) + a2XM (·� t0) with a = 1

2 (a1 + a2). The construction implies that

1 = R(wi) = R(w0) + kaik2 � kaik2, i = 1, 2. (B.61)

This, together with the triangle inequality, yields

2 = k2ak2  ka1k2 + ka2k2  1 + 1 = 2. (B.62)

Hence, all inequalities must be saturated. In particular, we must have that w0 = 0

and kak2 = 1
2 (ka1k2 + ka2k2). Finally, using the strict convexity of the `2 norm,

we conclude that a = a1 = a2 and, thus, that w1 = w2, which in turn implies that
w

⇤ is an extreme point of B.

B.5.3 Representer Theorem
We now provide a complete characterization of the solution set V in (10.23)

from which we readily deduce Theorem 10.2 as a corollary.

Theorem B.1. The solution set (10.23) is nonempty, convex, and weak⇤-compact.
Moreover, any extreme point r⇤ of V is a periodic L-spline that satisfies (10.25).
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Proof. We define the cost functional E : M(TM )2 ⇥ R2 ! R [ {+1} as

E(w,a) ,
M�1X

m=0

k⌫m(w) + a� p[m]k22 +
2X

i=1

◆M0(TM )(wi), (B.63)

where ◆A denotes the characteristic function of the set A, and ⌫m = (⌫m,1, ⌫m,2)
with

⌫m,i(w) ,
�
L†{wi}(t)

���
t=m

= hL†{wi},X(·�m)i = hwi, L
†⇤{X(·�m)}i = hwi, gL(m� ·)i (B.64)

for i = 1, 2. Due to the inclusion gL 2 C(TM ) (Proposition 2.7), we have that ⌫m
is weak⇤-continuous over ML(TM ) (see Remark 3.4).

Then, we formulate the optimization problem

eV , arg min
w2M(TM )2

a2R2

0

B@E(w,a) + �R(w)| {z }
J (w,a)

1

CA , (B.65)

whose solution set eV we characterize using standard convex-optimization techniques
(see for example the proof of [300, Theorem 3]). One readily verifies that the cost
functional J is weak⇤-lower semicontinuous (due to the fact that gL 2 C(TM )),
coercive, and convex. This implies that eV is nonempty. Next, we use the strict
convexity of k · �p[m]k22 for m = 0, . . . , M � 1 to deduce the existence of p0[m] 2
R2, m = 0, . . . , M � 1, and a0 2 R2 such that

eV = arg min
w2M(TM )2

a2R2

R(w) s.t.

8
><

>:

a = a0

⌫m(w) = p0[m] 8m
hwi, 1i = 0 i = 1, 2

(B.66)

(see for example Proposition 7.7). We can go one step further by denoting the
minimal regularization cost by R0 > 0 and rewriting eV as eV = W ⇥ {a0}, where

W ,
n
w 2M(TM )2 : R(w)  R0, ⌫m(w) = p0[m] 8m, hwi, 1i = 0 8i 2 {1, 2}

o
.

(B.67)
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The set W is the intersection of an RI-TV ball (which is weak⇤-compact due to the
Banach-Alaoglu theorem [15, Theorem 3.15]) with an affine subspace of codimension
(2M + 2). Hence, W is weak⇤-compact, and since eV = W ⇥ {a0}, so is eV. Finally,
we use the main result of [61] together with Proposition B.2 to deduce that any
extreme point of eV can be written as (w⇤,a0), where w

⇤ =
PK

k=1 akX(·� tk) with
K  2M +2 (the total number of linear constraints in the definition of W) for some
ak 2 R2 and tk 2 TM .

The final step is to observe that the isomorphism T defined in Proposition B.1
allows us to write

E(T (r)) =
M�1X

m=0

kr(t)|t=m � p[m]k22 (B.68)

for any r 2 XL(TM ), from which we conclude that eV = T (V). Hence, the solution
set V = T�1(eV) is nonempty, convex, and weak⇤-compact, and any extreme point
r
⇤ of V induces an extreme point (w⇤,a⇤) = T (r⇤) of eV . In particular, we have

that

L{r⇤} = w
⇤ =

K�1X

k=0

akX(·� tk) (B.69)

where ak 2 R2, tk 2 TM , and K  2M + 2, which concludes the proof.

B.6 Proof of Theorem 10.3
Using the isomorphism between XLi(TM ) and M0(TM )2⇥R2 for i = 1, 2, which

we denote by TLi , from Proposition B.1, we deduce the existence a bijection between
Vhyb and the solution set

eVhyb , arg min
w1,w22M0(T)2

a1,a22R2

⇣
E (w1,a1,w2,a2) + �1R(w1) + �2R(w2)

⌘
, (B.70)

where the data fidelity cost E :
�
M(T)2 ⇥ R2

�2 ! R�0 satisfies

E(TL1(r1), TL1(r2)) =
M�1X

m=0

kr1(t)|t=m + r2(t)|t=m � p[m]k22 . (B.71)
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This implies that there is a bijection between Vhyb and eVhyb. The last step is to
note that for any extreme point (w⇤

1,w
⇤

2) of the unit ball {(w1,w2) 2 M(T)4 :
�1R(w1) + �2R(w2)  1}, we have that w

⇤

1 = 0 or w
⇤

2 = 0. This together with
[300, Theorem 3] concludes the proof.
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