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Abstract
This paper studies the continuous-domain inverse problem of recovering Radon
measures on the one-dimensional torus from low-frequency Fourier coeffi-
cients, where K. is the cutoff frequency. Our approach consists in minimizing
the total-variation norm among all Radon measures that are consistent with the
observations. We call this problem the basis pursuit in the continuum (BPC).
We characterize the solution set of (BPC) in terms of uniqueness and describe
its sparse solutions which are sums of few signed Dirac masses. The character-
ization is determined by the spectrum of a Toeplitz and Hermitian-symmetric
matrix that solely depends on the observations. More precisely, we prove that
(BPC) has a unique solution if and only if this matrix is neither positive defi-
nite nor negative definite. If it has both a positive and negative eigenvalue, then
the unique solution is the sum of at most 2K Dirac masses, with at least one
positive and one negative weight. If this matrix is positive (respectively nega-
tive) semi-definite and rank deficient, then the unique solution is composed of
a number of Dirac masses equal to the rank of the matrix, all of which have
nonnegative (respectively nonpositive) weights. Finally, in cases where (BPC)
has multiple solutions, we demonstrate that there are infinitely many solutions
composed of K. + 1 Dirac masses, with nonnegative (respectively nonpositive)
weights if the matrix is positive (respectively negative) definite.
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1. Introduction

In recent years, total-variation (TV)* regularization techniques have proved to be very fruit-
ful to solve continuous-domain linear inverse problems with a sparsity prior. They provide a
general framework for the recovery of sparse continuous-domain signals (e.g., Dirac streams
or splines) from possibly corrupted finite-dimensional measurements. Such techniques rely on
solid theoretical foundations [2—6], but also on many algorithmic advances [4, 7, 8], and have
found various data-science applications [7, 9—11]. It is well known that their discrete-domain
counterparts (i.e., ¢' regularization methods) lead to variational problems whose solutions are
not necessarily unique [12]. Our goal in this paper is to provide a systematic study of the
uniqueness and of the main properties of the solutions of the TV norm minimization problem
when the low-frequency Fourier coefficients of the signal are prescribed.

1.1. Reconstruction via TV minimization

Let T = R/27Z be the 1D torus. We study the problem of recovering real Radon measures
w € M(T) defined on the domain T based on their low-frequency Fourier coefficients

1 2T
VkeZ, k| < Ke, @Ikl = —/ e du(r) = yi, (1)
27 0

where K. € N denotes the cutoff frequency and y = (y k., ..., Y 1,50, V1, - - » Yk, ) € CHet1
are the observations. As the measures w € M(T) are real, we must have y, € R and for all
ke {l1,...,K.}, yr = Y. Therefore, the Toeplitz matrix

Yo 1 I I ch
y-1 Yo Vi s VK1
Ty=2r| - - . | ecKerDxkean, )
Y-Ke+1 -+ Y-1 Yo Vi
y_KC e e y_l yo

which is at the core of our main contribution, is also Hermitian symmetric. Moreover, the
observation vector y € C>%<*! has only 2K, + 1 (real) degrees of freedom.

The recovery of a periodic Radon measure from finitely many observations is clearly an
ill-posed problem. Therefore, we choose to formulate the reconstruction task as a regularized
optimization problem using a sparsity prior. More precisely, in this paper, we consider the
problem

inf , 3
weM(ﬂl‘;l v(w)=y ”wHM )

where v : M(T) — C2%+1 is the measurement vector of Fourier coefficients

and ||-||  is the TV norm on the space of Radon measures M(T). The TV norm can be seen
as an extension of the ' norm to the continuous domain. The choice of the TV norm promotes

41In this paper, the ‘TV’ is understood in the sense of measure theory and should not be confused with the concept of
BV functions [1].
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sparse continuous-domain reconstruction, and has recently received a lot of attention (see
section 1.2). In the following, we name the problem (3), the basis pursuit in the continuum
(BPC), in reference to its discrete-domain counterpart, the basis pursuit in [13].

1.2. Related works

Optimization over Radon measures. The historical motivation to consider the TV norm as a
regularization was to extend discrete ¢' regularization techniques, used in the theory of com-
pressed sensing to recover sparse vectors [14—17], for the recovery of continuous-domain
Dirac masses. The goal is to recover point sources, modeled as a sum of Dirac masses, from
finitely many measurements. This question has received considerable attention in the 21st
century, including methods that are not based on TV regularization, such as finite rate of inno-
vation techniques [18] and Prony’s methods [19, 20]. Several data-science problems can be
formulated as a continuous-domain Dirac recovery problem, including radio-astronomy [21],
super-resolution microscopy [7], or 3D image deconvolution [10].

The study of optimization problems over the space of Radon measures can be traced back
to the pioneering works of Beurling [22], where Fourier-domain measurements were also
considered. In the early 2010s, the works of De Castro and Gamboa [2], Candes and Fernandez-
Granda [3, 23], and Bredies and Pikkarainen [4] considered optimization tasks of the form (3)
(or its penalized version), with both theoretical analyses and novel algorithmic approaches to
recover a sparse-measure solution, in the continuum [4, 7, 8, 10, 24—-27]. The existence of
sparse-measure solutions, i.e., solutions of the form ZkK: yax0x,, where K € N*, a; € R, and
dy, is the Dirac mass at the location x;, seems to have been proven for the first time in [22] and
was later improved by Fisher and Jerome in [28]. Since then, a remarkable revival around TV
optimization has occurred recently [8, 29-32].

Algorithms for TV optimization. The numerical resolution of optimization problems based
on the TV norm has been largely studied in the literature. If we do not contribute to these com-
putational aspects in this work, we briefly recall how they have been treated in practice. We can
divide the different strategies to solve the BPC (3) numerically, or its penalized version (often
called the BLASSO [4]), into three main approaches. A first one consists in discretizing the
spatial domain, which converts the infinite-dimensional convex problem into a finite dimen-
sional one, known as the basis pursuit [13] or the LASSO [33]. Many standard solvers exist to
solve these problems, such as block-coordinate descent algorithms [34], homotopy algorithms
[35], or proximal algorithms [36, 37]. A second one is based on reformulating the problem as
a semidefinite program. This has been done for the BPC when the forward operator is a con-
volution with the ideal low-pass filter (which is the setup of this paper) in [23]. One can expect
to recover the positions of the Dirac masses exactly since no discretization is performed. How-
ever, these techniques are limited to the case where the dual problem involves trigonometrical
polynomials, and usually to the one-dimensional setting (although some extensions exist in
higher dimensions [38, 39]). A last line of approaches tackles the BLASSO problem directly
over the space of Radon measures. They involve for instance gradient descents and gradient
flows [27], or the Frank—Wolfe algorithm [40] which leads to greedy methods [4, 7] that can
achieve finite-time convergence in some cases [41].

Uniqueness results for TV optimization. 1t is well know that finite-dimensional ¢'-
regularization, of which the TV norm for Radon measures is the continuous-domain gener-
alization, can lead to nonunique solutions [12, 42]. This is also the case for TV regularization.
However, under some assumptions uniqueness may hold. Many uniqueness results for con-
strained or penalized TV-based optimization problems have thus been given in the literature,
but from different perspectives than the one studied in this paper.

3
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Usually, the underlying assumption is that the observations y are generated via a sparse
measure wy and the question becomes whether it is possible to uniquely recover wy, either
exactly or in a stable way. In [2], de Castro and Gamboa introduced the concept of extrema
Jordan type measure (see [2, definition 1]), which gives sufficient conditions on a given signed
(with positive and negative weights) sparse measure to be the unique solution of a TV-based
optimization problem. They also proved that when the input measure is nonnegative, k-sparse
and the number of measurements is greater or equal than 2k + 1, then it is the unique solu-
tion of (3) if the measurement operator is defined from a T-system. Note that it has recently
been proved [43—46] that in the nonnegativity setting, a k-sparse nonnegative measure can be
uniquely recovered from at least 2k + 1 measurements and a nonnegativity constraint without
the need for TV minimization.

Candes and Fernandez-Granda also studied the super-resolution problem of recovering
a ground-truth sparse Radon measure wy from its low-frequency measurements. They have
shown that if the minimal distance between the spikes of wy is large enough, then (3) has a
unique solution, which is wy itself [3, theorem 1.2]. Duval and Peyré identified the so-called
nondegenerate source condition [5, definition 5], under which the uniqueness of the reconstruc-
tion together with the recovery of the support of the underlying ground-truth sparse measure
are shown. These results are based on the key notion of dual certificates, which also play an
important role in our work. This notion has been introduced for discrete compressed sensing
problems in [47] and connected to TV-based optimization problems in [2].

All these works are clearly related to this paper. However, the approach we propose here
is different: we aim at characterizing the cases of uniqueness directly over the measurement
vector y, and we are agnostic to the ground-truth signal that generated it. The closest work in
this direction is our recent publication [48]. We provide a full description of the solution set
of non-periodic TV optimization problems with a regularization operator D?, where D is the
derivative operator, and spatial sampling measurements.

The problem of moments. This problem, or its extension the generalized problem of moments
[49, 50], is a classical one where one seeks to recover a measure from a sequence of its
(potentially generalized) moments. This problem covers many applications in various fields,
including Fourier-domain measurements, which are simply moments of trigonometrical poly-
nomials. As a result, the tools developed in this domain can be harnessed, for example, to solve
numerically (3) using semi-definite programming formulations by generalizing [3] to the mul-
tivariate case [38, 39]. Moreover, there are many existence results for the problem of moments.
In [51, theorem 6.12], Curto and Fialkow prove the existence of a sparse nonnegative measure
wy € M(T) solution of the truncated trigonometric moment problem (as referred to in [51])

we M), y=wvw), )

if and only T, is positive semi-definite. Furthermore, solution wq has rank(T,) Dirac masses.
Additionally, when T is invertible, there exist infinitely many such wy. When it is not, wy is
unique. The contributions of [51] and their relation to ours are be discussed more precisely in
remark 4.

1.3. Contributions

The existence of a solution to problem (3) is well established and can be obtained from the
direct method in the calculus of variations. Moreover, it is known that there is always at least
one sparse solution composed of at most 2K, + 1 Dirac masses [28]. However, the solution is
in general not unique (the simplest case of nonuniqueness is with K. = 0), and previous works
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studying this question often start by assuming that the measurements come from a particular
input signal. In this paper, we focus on

(a) Characterizing all the cases of uniqueness for (3);

(b) Describing the sparse solutions, e.g. the bounds on the number of Dirac masses and the
signs of the weights;

from simple conditions depending only on the measurement vector y, involving in particular
the matrix T,. The novelty of our approach thus lies in the fact that we are able to provide
relatively deep information on the form of the sparse solutions of (3) and answer in all cases
the question of uniqueness agnostically to the input signal that generated y.

Our first contribution, theorem 1 in section 3.1, provides several equivalent conditions for
the solution set of (3) to be composed of only nonnegative measures. We prove that if one
of these conditions is not satisfied and y, > 0, then there is a unique solution composed of
at most 2K, Dirac masses, with at least one positive and one negative weight. One of these
equivalent conditions is used, in corollary 1, to formulate a simple criterion on the magnitudes
of the entries of y which is a sufficient condition for uniqueness. Theorem 1 can of course be
readily adapted to the nonpositive case.

Theorem 1 does not cover all the situations that may arise since it does not adjudicate
the uniqueness of a solution to (3) when the solution set is composed of only nonnegative
(or nonpositive) measures. This limitation is tackled in our main contribution, theorem 2, in
section 3.2, which we state below. We recall that the Toeplitz matrix T, is given in (2).

Theorem 1 The solution set of problem (3) can be characterized as follows:

(a) If T, has at least one negative and one positive eigenvalue, then (3) has a unique solution
composed of at most 2K, Dirac masses, with at least one positive and one negative weight;

(b) If Ty is positive, respectively negative, semi-definite and rank(Ty) < K. + 1, then (3) has
a unique solution composed of exactly rank(T)) positive, respectively negative, Dirac
masses;

(¢) If Ty is positive, respectively negative, definite (which implies that rank(T\) = K. + 1),
then (3) has infinitely many solutions, and among sparse solutions none with less than
K. + 1 Dirac masses and uncountably many of them composed of K. + 1 positive, respec-
tively negative, Dirac masses.

This theorem provides information on the form of the sparse solutions, from conditions on
the spectrum of the Hermitian Toeplitz matrix T. Moreover, all possible scenarios are covered
since all vectors y € R x CKe fall in one single case of the theorem. Therefore, it also yields a
final answer to the question of uniqueness.

In the case when T, is positive (or negative) semi-definite and rank deficient, our result can
be derived from [51, theorem 6.12], once we admit that any nonnegative (or nonpositive) mea-
sures that match the observations is a solution of (3).> Our contributions are therefore closely
related to this literature. However our framework is also different, and one of the novelty of
our work lies in the bridges made between these related results in order to answer the question
of uniqueness for (BPC). Consequently, we also choose to present, as much as possible, our
contributions in a self-contained fashion. The proofs are based upon known tools from the field
of point-source recovery:

5 For a more detailed discussion on this matter, see remark 4.
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e Dual certificates (see proposition 1);

e The Herglotz theorem (see proposition 4), which characterizes positive sparse measures
in terms of their Fourier coefficients;

e The Carathéodory—Pisarenko—Fejér (CFP) decomposition [52—54] (see proposition 7),
which leads to algorithms such as MUSIC [19].

2. Mathematical preliminaries

In section 2.1, we introduce the mathematical background of this paper. We also present the
optimization problem of interest. In section 2.2, we then remind the main tools from duality
theory that we use for studying the TV minimization problem.

2.1. Periodic Radon measures and BPC

Radon measures. Let M(T) be the space of periodic real Radon measures. By the
Riesz—Markov theorem [55], M(T) is the continuous dual of the space C(T) of continuous
periodic real functions endowed with the supremum norm ||| ... The TV norm on M(T) is the
dual norm associated to (C(T), ||-||,.) and is thus given by

lwliy = sup  (w, p). (6)
PECD) ol <1

The normed space (M(T), ||-|| ,,) is then a Banach space. The duality product between w &
M(T) and ¢ € C(T) is given by

1 2
(wp) =5 | ptodu )
™ Jo
The TV norm can be seen as the extension to the continuum of the ¢! norm for vectors, as
for any sparse measure

K
Wax = Zakdxk, with K € N ,vke {l,...,K}, « €R, x, €T, (8)

k=1

where the locations of the Dirac masses x; are pairwise distinct, we have

1
lwall v = 5 llall;- ©)

We also consider the set of nonnegative Radon measures M (T), which are Radon measures
w such that (w, ) > 0 for any positive continuous function ¢ on T. Similarly, we define the
set of nonpositive Radon measures as M _(T).

Forward operator. For any k € Z, we define ¢, : T — C as ¢ (f) = ¢
measurement operator given by

ik We consider the

viwe M) — (0[—K.],...,0[0],...0[K.]) € CE x R x CKe, (10)

where K. € N is the cutoff frequency and for all k| < K.,

1

T or

27
wlk] / e M dw(r) = (w,ex) (11)
0
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is the kth Fourier coefficient of w. Note that we extended the duality product (7) to complex
test functions ¢ : R — C as (w, ¢) = % fozﬂmdw(t). The operator v is a low-pass operator
that only keeps the low-frequency Fourier coefficients.

Optimization problem. Let y = (y_g_, - - > Y0 - - - » Yk.) € C*(<T1 such that®

yo €R and Vke{l,....K.}, vk = V% (12)

be a given observations vector. We aim to solve the linear inverse problem v(w) = y. We
introduce our terminology for solutions of this problem in the following definition.

Definition 1. Let y € C?%*! given as in equation (12). We say that w € M(T) is a repre-
senting measure for y, if w satisfies v(w) = y.

This linear inverse problem is ill-posed, as it has infinitely many representing measures.
To tackle this issue, we choose to favor sparse solutions. Our approach consists in solving the
following optimization problem

min W - BPC
weM(T), v(w)=y ” HM ( )
A solution of (BPC) (which is known to exist) therefore has the minimal TV norm among all
representing measures for y. As the TV norm is an extension of the ¢! norm, it is known to
promote sparse solutions (composed of a sum of Dirac masses). We denote this problem the
BPC as a tribute to its finite-dimensional counterpart, the basis pursuit [13].

2.2. Dual certificates for the BPC

The analysis of (BPC) benefits from the theory of duality for infinite-dimensional convex opti-
mization, as exposed for instance by Ekeland and Temam in [56]. This line of research has
proven to be fruitful to study optimization on measure spaces [2, 5, 23, 30, 48, 57]. We mostly
rely on the concepts and results exposed in [5, 48], but very similar tools can be found else-
where [2, 23]. Considering the dual problem to (BPC) and writing the optimality conditions
that link the solutions of both problems7 leads to the notion of dual certificates, which are
continuous functions on T satisfying some conditions (see proposition 1 below). In particular,
dual certificates enable to certify that some w € M(T) is a solution of (BPC) and to localize
its support. In the next definition, we introduce some notations that ease the related statements.
We recall that a Radon measure w € M(T) can be uniquely decomposed as w = w4 — w_,
where w and w_ are nonnegative measures (Jordan decomposition).

Definition 2. Let w € M(T). We define the signed support of w as
supp., (w) = supp(w) x {1} Usupp(w-) x {1}, (13)

where supp(w) is the support of w € M(T).
Let n € C(T). The positive and negative saturation sets of 77 are given by

sat () =n"'({1}) and sat_(n) =n"({-1}), (14)
respectively. Finally, we define the signed saturation set of n as
sat.(n) = saty(n) x {1} Usat_(n) x {—1}. (15)

6 These requirements on the observations vector y come from the fact that otherwise, the equation /(w) = y has no
solution in M(T), since w is a real Radon measure.
7 Note that dual certificates always exist for the (BPC) with Fourier measurements [3].

7
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Now, we give two results which help us to characterize the cases of uniqueness for (BPC),
in our main contribution theorem 2. The next proposition introduces formally the notion of
dual certificates for the (BPC) problem.

Proposition 1.  There exists a functionn € C(T), which is a real trigonometrical polynomial
of degree at most K., satisfying ||n||, < 1 and such that for any solution wy € M(T) of (BPC),
we have one of the following equivalent conditions:

e (wo, n) = [[wol| ps
e supp.(wp) C sati(n).

Such a function n is denoted as a dual certificate.

Proposition 1 is stated in some other, nonetheless equivalent, form in [5, proposition 3],
where dual certificates of the optimization problem (BPC) are studied®. A key role is played
by the adjoint operator v* : CKe x R x CKe — C(T) (denoted by ®* in [5]), due to the fact that
dual certificates must be in Im(v*). In our setup, we have that

II*(C_KC,...,C_l,C(),Cl,...,CKC): Z Cre_. (16)
k| <K

The role of real trigonometric polynomials in proposition 1 is explained by the fact that the vec-
tors¢ € CX x R x CXe involved in our study are Hermitian symmetric because they belong to
Im(v). We do not provide a detailed proof of proposition 1, since it has already been exposed
elsewhere. It is for instance done in [48, propositions 1 and 2] in a different setting, but the
arguments can be readily adapted.

An important consequence of proposition 1 for the study of uniqueness of (BPC), is the
following proposition that can also be deduced from [5] (see also [2]).

Proposition 2. If there exists a nonconstant’ dual certificate for the problem (BPC), then
it has a unique solution of the form w = ZkK:Iakéxk with K < 2K. and a;, € R, x;, € T.

For the sake of completeness, a proof of proposition 2 can be found in appendix A.

3. Toeplitz characterization of (BPC)

In this section, we present our contributions. We recall that all the main notations are intro-
duced in section 2.1. In particular, the measurement vector y € CKe x R x CX« is given in
equation (12). Theorem 1 in section 3.1 first provides several equivalent conditions which
ensure that the solution set of (BPC) is solely composed of nonnegative (or nonpositive) mea-
sures. This can be proved not to hold when a simple criterion on the coefficient values of y
is satisfied, see corollary 1. By the second part of theorem 1, this leads to the existence of a
unique sparse solution composed of at most 2K, Dirac masses, with at least one positive and
one negative weight. Theorem 1 paves the way towards our main contribution, theorem 2 in
section 3.2, which characterizes the solution set of (BPC) from simple condition on the spec-
trum of the Toeplitz and Hermitian symmetric matrix T, introduced in (2). In particular, it gives
all the cases where uniqueness holds, see corollary 2.

8 Duval and Peyré consider more general measurement operators whose image can lie in a Hilbert space and exemplify
their results for low-frequency measurements.
9 In the more general case studied in [5], this corresponds to the nondegeneracy condition of the dual certificate.

8
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3.1. A new criterion of uniqueness for (BPC)

Before stating the main results of this section, let us first prove, in the next lemma, that the
TV norm of a Radon measure upper-bounds its Fourier coefficients. Lemma 1 also provides
elementary characterizations for nonnegative Radon measures that we use in theorem 1.

Lemma 1. Letw € M(T). Then,

(a) Forany k € Z, we have |w[k]| < ||w]| .
(b) w e M (T) if and only if ||w| ,, = w[O];

Proof. Let k > 0. Any w € M(T) can be uniquely decomposed as w = w4 — w_ where
wy, w-_ € M4(T) (Jordan decomposition). We then observe that

BT = [(w, ] = [y e8) — (- ex)] < [ )| + )]
1 1
< 2—/ x| (1) + —/\ek(mdw_(r) — (wy, 1)+ (w, 1)
™ )T 2’/T T
= [Jwl| a1 (17)

For (b), we observe that |[w|m = ||lwi]lm + Jw-|lm = (wy, 1) + (w_, 1) = ©4[0] +
w_[0]. Then,

weM(T) & w.=0 < 0_[0]=0 & ||w||y=0,L[0] =o[0],

(13)
which concludes the proof.
Next, we provide a lower bound on the minimal value of (BPC).
Lemma 2. We have that
i > . 19
weM(D). ww)=y el 02kEK, b (19)

Proof. We know that (BPC) has at least one solution wy € M(T) that reaches its minimum
value. Then, according to lemma 1, we have ||wo|| ,, = |wolk]| = |y«| for all —K. < k < K.,
which yields (19).

We can now state the main result of this section.

Theorem 1. Ler y be as in (12). We define € = e(y,) € {+, —} such that € is + if y, > 0,
and € is — if y, < 0. Then, the following conditions are equivalent:

(a) There exists wy € M(T) such that v(wy) = y;
(b) The solution set of (BPC) is {w € M.(T): v(w) = y};
(c) We have the following equality:

= i . 20
|y0| u:EM(I']I‘r)l,Hlll(w):y ||w||M ( )

If the above equivalence is not satisfied, then (BPC) has a unique solution, composed of
at most 2K. Dirac masses, with at least one positive and one negative weight.

9
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Proof. Let us first prove that the items (a), (b) and (c) are equivalent. We assume that y, > 0.
The case y, < 0 is similar.

a) = (c). Set m = min wl| . Let wy € M_L(T) such that v(wy) = y. B
(a) (©) we M =y l|w|| g 0 +(T) (wo) = y. By

lemma 1, we have, for any w € M(T), the equivalence
w € M (T) <= [Jw||,, = w[0]. 20

As aresult, we get that m < ||wo| ,, = wo[0] = yo. Finally, from lemma 2, we have that m >
Yo, Which yields m = y,'°.
(¢c) = (b). Let wyge M(T) be a solution of (BPC) which is equivalent to

min w = ||w . Thus, by (c), this last equality can be equivalentl
penmin Tl = llwoll y (© quality q y

rewritten as yo = [|wol| v, i.e. wo[0] = [Jwo| .- By lemma 1, it is equivalent to wy € M (T).
As wy satisfies the constraints v(wg) = y, we finally obtain that the solution set of (BPC) is
equal to {w € M (T): v(w) = y}.

(b) = (a). This is a direct consequence of the fact that the solution set of (BPC) is non-empty.

Next, if the equivalence is not satisfied, this implies that there is no solution that is a non-
negative or a nonpositive measure. Let wy € M(T) be a solution and 7 a dual certificate for
problem (BPC), as given by proposition 1. Using proposition 2, we know that if the dual cer-
tificate is nonconstant, then the solution of (BPC) is unique and composed of at most 2K Dirac
masses, with at least one negative and one positive weight. Let us assume by contradiction that
7 is constant. As wy # 0, we have supp. (wo) # ), hence sat. (1) # . Since 7 is constant, we
thus have sat. (n) = T x {1} orsaty(n) = T x {—1}, hence wy is nonnegative or nonpositive.
This contradicts our initial assumption, which concludes the proof.

Remark 1. Theorem 1 shows that there exists a nonnegative representing measure for yif and
only if the solution set of (BPC) is composed of all the nonnegative representing measures for y.
This suggests that minimizing the TV norm plays no role in this context and can be replaced by
a simple nonnegativity constraint. This is consistent with recent results [43—46] which proved,
in different setups, that when the observations y are generated by a nonnegative sparse measure,
then replacing the TV norm with a nonnegativity constraint is enough to uniquely recover the
input measure, provided that the number of measurements is sufficient. It is worth noting that,
contrary to the cited works, we do not assume in theorem 1 that y is generated by a sparse
measure that we would like to recover.

More importantly, theorem 1 proves that when the equivalence is not satisfied, then we must
be in a case of uniqueness, which is, to the best of our knowledge, a new result.

From theorem 1 and lemma 2, we can deduce a simple criterion on the magnitude of the
coefficients of y which ensures that the solution of (BPC) is unique. This criterion appears to
be practically fruitful since uniqueness follows trivially for a large class of observation vectors

y.

Corollary 1. If |yo| < |yk,|, for some ko # 0, then (BPC) has a unique solution, composed
of at most 2K, Dirac masses, with at least one positive and one negative weight.

Proof. By lemma 2, we have minyert), vw)=yl|w|| pg = [ko| > |o|- This implies that the
equivalent conditions of theorem 1 do not hold, as item (c) is not valid. We are thus in the
uniqueness scenario of theorem 1.

10 Note that we also proved that wy is solution of (BPC).
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3.2. Characterization of solutions of (BPC) using T,

In this section, we prove, in theorem 2, that the sign of the solutions of (BPC) is directly related
to spectral properties of the matrix T, formed from the observation vector y defined as

Yo i 2 R &
Y-l Yo hJ A
Ty =2r| Y-2 Y-1 Yo e Yke2 | 22)
V-K. Y-Ke+1 Y-Kc4+2 --- Yo

More precisely, as T, is Hermitian symmetric, one of the following three statements must hold:

e T, has at least one negative and one positive eigenvalue;
e T, is positive or negative semi-definite and rank deficient;
e T, is positive or negative-definite.

In theorem 2, we prove that each of these scenarios leads to different properties of the
solution set of (BPC), all expressed in terms of the nature of the sign of the solutions and
of uniqueness. To this end, we first characterize the existence of a nonnegative representing
measure for yin terms of positive semi-definiteness of the matrix T, in proposition 3. It can be
obtained from [52, theorem 6.12], but we include for the sake of completeness.

Proposition 3. The two following conditions are equivalent:

(a) There exists wy € M (T) such that v(wg) = y;
(b) The Hermitian matrix Ty € CEKADX KA dofined in (22), is positive semi-definite.

Proof. (a) = (b). Let wy be a nonnegative representing measure for y. Consequently, by
proposition 4 in appendix B, we have that ), ,.,wo[k — £]z:Z¢ > 0, for any complex sequence
(zr)kez With finitely many nonzero terms. In particular, restricting to sequences such that z; = 0
for k < 0 and k > K., we have that

K
> wolk — Oz > 0. (23)
k(=0

Since wo[k — £] = yx—¢ forall k, £ € {0, ..., K.}, we deduce that T, is positive semi-definite.

(b) = (a). We denote Pk (T)= Span(e_k_,e_k.+1,--.,€k,) (Where we recall that
ex(t) = ') the space of real trigonometric polynomials of degree at most K.. Let us con-
sider the linear mapping ® : Pk, (T) — R such that for all || < K¢, ®(ex) = y;. Then, ® must
be positive. Indeed, let p € Pk (T) such that p > 0. According to proposition 5 in appendix B,
p can be written as p = |g|* for some complex trigonometric polynomial g = ZkK;Ozkek with
zx € C. This implies that p = ZkK,Z:o zxZeex—¢ and therefore that

K,

- 1
®(p) = Z Viceuze = =—(Tyz,z) >0 where z=1(2,...,2x.) € CKett,
k=0 2

(24)

Then, according to proposition 6 in appendix B, ® can be extended to a positive, linear,
and continuous functional from C(T) to R. This implies by the Riesz—Markov theorem [55]

1
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that there exists wy € M (T) such that & = wy. Moreover, by construction of ®, w satisfies
v(wg) = y. Consequently, item (a) is proved.

Remark 2. Proposition 3 can readily be adapted to the nonpositive case, since there exists
a nonpositive representing measure for yif and only if T, is negative semi-definite.

Proposition 3 gives another equivalent condition to item (a) of theorem 1 which involves
the matrix T,. Building on this result, the statement on the nature of the solutions of (BPC)
can be refined by leveraging the fact that T, is a Toeplitz matrix. Indeed, it is well known
that a positive semi-definite and rank deficient Toeplitz matrix can be uniquely decomposed as
the product VDV*, where V is a Vandermonde matrix whose columns are given by complex
exponentials, D is a positive-definite diagonal matrix whose size is the rank of the starting
Toeplitz matrix and V* is the conjugate transpose of V. This is the Pisarenko decomposition
[52-54], also known as the CFP decomposition. This result is recalled in appendix C, for the
sake of completeness. The next lemma is then the last missing piece towards theorem 2; it
relates this decomposition of the Toeplitz matrix T, to the existence of a sparse representing
measure for y.

Lemma3. Forall0<K K<K.+1l,a=(ay,...,ax) € Rop)¥and x = (x1,...,xx) € TK
with pairwise distinct entries, the following statements are equivalent:

(@) y=v(Wax) with Wax = Zszlak(S.xk;

(b) Ty = V,D,V; where V, € CEHD*K s the Vandermonde matrix whose kth column is
given by ek, (xx) = (1 el ... efe)T ¢ R x CKe and D, € R¥*K the diagonal matrix
with the entries of a on the diagonal.

Proof. LetK < K.+ 1,a € (R-)X, and x € TX be as in the statement of the lemma.
First, suppose that (a) holds. Then, for any 0 < m < K. and 0 < n < K, — m, we have

1 & 1 & 1
Ym = o E are” " = o E age"™ ke I — %«emxk)lékém (are" ) <<k ).
k=1 =1

(25)

We notice that (e"*); <1<k is the (n + 1)th row of the matrix V, and (aze "% ); <, <x the
(m + n + 1)th column of D, V;. Therefore, 27y, is the (n + 1,m 4 n + 1) entry of the matrix
V,.D,V;. Hence, the elements of the mth upper diagonal of V,D,V; are 27y, and since
V,D,V; is Hermitian symmetric, we get that V,D,V; = T,.

Conversely suppose that (b) holds. Then, the first line of T, gives the vector 27y and as
demonstrated in (25) the first line of VD, V} gives 2mv(w, ), which implies that y = v(wg x).

Remark 3. The statements of lemma 3 can once again readily be adapted to the case where
the weights a are negative. In this case, the Toeplitz matrix T, is negative semi-definite.

We can now state our main result, which relies on theorem 1, proposition 3, proposition 7,
and lemma 3.

12
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Theorem 2. The solution set of (BPC) can be characterized as follows:

(a) If Ty has at least one negative and one positive eigenvalue, then (BPC) has a unique
solution composed of at most 2K. Dirac masses, with at least one positive and one negative
weight;

(b) If T, is positive, respectively negative, semi-definite and rank(Ty) < K. + 1, then (BPC)
has a unigue solution composed of exactly rank(Ty) positive, respectively negative, Dirac
masses;

(¢) If Ty is positive, respectively negative, definite (which implies rank(T,) = K. + 1), then
(BPC) has infinitely many solutions. Moreover, there is no solution that is sum of less than
K. + 1 Dirac masses. Finally, there are uncountably many solutions composed of exactly
K. + 1 Dirac masses with positive, respectively negative, weights.

Proof. If (a) holds, then by proposition 3 there is no nonnegative or nonpositive representing
measure for y. Hence, by theorem 1, (BPC) has a unique solution composed of at most 2K,
Dirac masses, with at least one positive and one negative weight.

Suppose that the assumptions of (b) are satisfied. Without loss of generality, we can
assume that T is positive semi-definite. Then by the CFP decomposition, which is recalled
in proposition 7 in appendix C, there exist unique sets {xy,...,xx} C T (the x; are pairwise
distinct) and {ay, . ..,ax} C Roo with K = rank(T,) < K. + 1 such that

T, = V.D, V%, (26)
with x = (x1,...,xx), a = (ai, . . .,ax), Vyx € C&+DXK the Vandermonde matrix whose kth
columnis givenby ek (x;) = (1 e ... elke¥)T € CK+1and D, € RX*K isadiagonal matrix

with @ on the diagonal. By lemma 3, equation (26) is equivalent to

K
y=v(Wey) With W= by, (27)

k=1

Then, according to theorem 1 (equivalence between items (a) and (b)), the solution set of (BPC)
is {w € M (T): v(w) = y}. Therefore, w, is a solution of (BPC), which is composed of
K < K. + 1 positive Dirac masses. By lemma 3, the uniqueness of the CFP decomposition,
and item (b) of theorem 1, it is the unique solution of (BPC) with less than K. + 1 Dirac
masses. By [2, theorem 2.1], it is the unique solution altogether, since it is possible to build a
nonconstant dual certificate such that its signed saturation set is exactly supp(wg ), which is
a sufficient condition of uniqueness by proposition 2.

Finally, suppose that the assumption of (c) is satisfied. Without loss of generality, we can
assume that T is positive-definite. Once again by proposition 7, there are uncountably many
decompositions Ty = VD,V with x = (xy,...,xk.41) € TKe+! whose elements are pair-
wise distinct and a = (ay, . . .,ak.+1) € (R=o)*T!. By lemma 3 and theorem 1 (equivalence
between items (a) and (b)), this implies that for all these (a, x) pairs, w,, is a solution of
(BPC).'! As a result, there are uncountably many solutions consisting of K, + 1 Dirac masses
with positive weights. There can be no solution consisting of less than K. + 1 Dirac masses,
since they would necessarily have positive weights and once again, by [[2], theorem 2.1], that
solution would be the unique one, which we have proved to be false.

1T A5 stated in proposition 7, one can arbitrarily choose one of the x; in T in the decomposition T, = V,D,V}, which
proves that 7 € T + 1 is the unique dual certificate in this setup. Indeed any (x, 1) € T x {£1} must be in the signed
saturation set of any dual certificate.

13
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Remark 4. Item (b) of theorem 2 can be deduced from well-grounded results in the liter-
ature. Indeed, it is known from a classical result [52, theorem 6.12] in the field of moment
problems, that y has a unique nonnegative representing measure consisting of rank(T,) Dirac
masses if and only if T), is positive semi-definite and rank deficient (i.e., rank(T,) < K¢). Next,
this measure is the unique solution of (BPC), since by [2, theorem 2.1], y is generated from
a nonnegative measure composed of less than K. + 1 Dirac masses. This can also be proved
by the equivalence between items (a) and (b) of theorem 1. We also again recover the fact,
mentioned in remark 1, that the TV norm plays no role in this context of nonnegativity. Con-
cerning item (c) when T\ is full rank, [52, theorem 6.12] states that there are infinitely many
nonnegative representing measures composed of K. + 1 Dirac masses. However, theorem 1 is,
to the best of our knowledge, the first known result which proves that they are all solutions of
(BPO).

Remark 5. Theorem 2 provides a sharper (and tight'?) upperbound, 2K, on the number of
Dirac masses of a sparse solution for (BPC) than representer theorems [58] which give the
upperbound 2K, + 1. This improved bound arises when the assumptions of (a) hold. Note that
in this context, the sparsity of the unique solution is no longer equal to the rank of T, since
the CFP decomposition is valid only when T, is positive (or negative) semi-definite. This is
confirmed by the fact that one can construct examples of a solution of (BPC) consisting of
more than K, + 1 Dirac masses'!, while the rank of T, is bounded by K. + 1.

From theorem 2, we readily deduce all the situations of uniqueness for (BPC). They are
summarized in the next corollary.

Corollary 2. The problem (BPC) has a unique solution if and only if Ty is neither positive
nor negative definite.

4. Conclusion

This paper deals with the linear continuous-domain inverse problem (BPC), where the goal
is to recover a periodic Radon measure from its low-frequency Fourier coefficients y using a
sparsity prior. We studied the question of uniqueness without making any assumptions of the
ground-truth signal that generated y. In this context, we proved that it can be characterized
from simple conditions on the spectrum of the Toeplitz matrix T,. We also demonstrated that
this matrix contains information on the form of the sparse solutions of (BPC), namely their
number of Dirac masses, or a bound thereon, and the signs of their weights.
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Appendix A. Proof of proposition 2

Proof. Letn be a nonconstant dual certificate for (BPC) and wy € M(T) a solution. Firstly,
7 is a trigonometric polynomial of degree at most K. and so is its derivative 7. Since 7 is
nonconstant, 77’ has at most 2K roots [59, page 150]. By proposition 1, we have supp(wg) C
saty(n), hence any point in the support of wy is a root of 7. Consequently, wq is composed

of at most 2K, Dirac masses. Let 7 = (7, . .

with P < 2K.. Then, we have wg = le):

lap(STp, with a = (ay, ..

., 7p) € T? be the pairwise distinct roots of 7/,

.,ap) € R? (note that some

weights may be equal to 0). Moreover, any other solution of (BPC) must be of the form w; » =

S 1@pbr,, witha = (@, ..

.,ap) € R” (once again some weights may be equal to 0), where

v(wo) =y = v(War)- (28)
Consider the matrix
M oikem oiKeTp T
ei}l R
_efikcn o iKee |

By definition of v and by equation (28), we get that v(wy — wz ) = M, (a —a) = 0. The
matrix M is a Vandermonde-type matrix, which is therefore of full rank P, since P < 2K, and
T1,...,Tp are pairwise distinct. Hence the nullspace of M is trivial and a = a, which prove
the uniqueness of the solution wy. (]

Appendix B. Trigonometric toolbox

This section is dedicated to known theoretical results (or easily deducible therefrom) that play
a crucial role in our contributions in this paper.

A sequence (ag)rez of complex numbers is positive definite if ay € R4, a_y = @ for any
k > 0, and for any sequence (zx ez of complex numbers with finitely many nonzero terms, we
have

15
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> a2 0. (30)
kL€

Proposition 4 (Herglotz theorem). A sequence (ay)iez is positive-definite if and only if
there exists a nonnegative measure w € M (T) such that W[k] = ay for all k € Z.

This theorem was obtained by Herglotz in [60]. For a modern exposition, we refer to [61,
theorem 7.6]. The Herglotz theorem is an application of the Bochner theorem, which charac-
terizes the Fourier transform of probability measures on locally Abelian groups G [62], here
with G = T.

We recall the definition of the complex sinusoid functions e,(f) = e fort € T and k € Z.
For K > 0, we denote by Px(T) the set of real trigonometric polynomial of degree at most
K; i.e., functions of the form p = Z‘k‘gl{ckek such that co € Rand ¢y =¢; € Cforany 1 <
kv < K.

Proposition 5 (Fejér—Riesz theorem). Letr p= Z‘k‘gkckek € Px(T) be a positive
trigonometric polynomial of degree K > 0. Then, there exists a complex trigonometric poly-
nomial g = Z,If;() zxex such that p = |q|*.

The Fejér—Riesz theorem was conjectured by Fejér [63] and shown by Riesz [64]. See
[65, page 26] for a recent exposition of this classical result. The next proposition deals with
the extension of positive linear functionals from trigonometric polynomials to the space of
continuous functions.

Proposition 6. Let K> 0. Let ®:Px(T)— R be a linear and positive functional
(i.e., ®(p) = 0 for any p > 0). Then, there exists an extension ® : C(T) — R which is still
linear and positive. Moreover, any such extension is continuous on (C(T), || - ||oo)-

Proof. Let E be an ordered topological vector space, C its positive cone, and M C E. By
[66, corollary 2 page 227], if C N M contains an interior point of C, then any continuous, pos-
itive, and linear form over M can be extended as a continuous, positive, and linear form over
E.

We apply this result to £ = C(T), whose positive cone is the space of positive continu-
ous functions C4(T), and to M = Pk(T). Then, CN M = C;(T) N Pg(T) contains the con-
stant function p = 1, which is an interior point of C,(T) since {f € C(T), ||f — 1| < 3} C
C+(T).

In our case, ® is continuous over (Pg(T), || - ||«), since it is a linear functional over a
finite-dimensional space. Hence, ® is continuous, positive, and linear, and admits the desired
extension.

Appendix C. The CFP decomposition

In this appendix, we give, for the sake of completeness, the CFP decomposition which plays
a major role in our main contribution theorem 2. Proposition 7, is a transcription from [54,
theorem 1], up to slight adaptations of notations and reformulations. Before stating the result,
let us define the column matrix ex(x) = (1 e™ ... ¢®)T forallx € Tand K € N.

Proposition 7. Let K € N, T € CXTV*&+D pe g Hermitian Toeplitz matrix, and r =
rank(T). Then, the two following conditions are equivalent:
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(a) T is positive semi-definite;

(b) T =V,D,Vi, wherex = (xi,...,x,) € T" has pairwise distinct elements, V, € CK+TD>r
is the Vandermonde matrix whose columns are eg(x;) fork € {1,...,r},and D, € R"*"
is a diagonal matrix witha = (ay, . . .,a,) € (R~o)" on the diagonal.

Moreover, when T is rank-deficient (i.e. r < K + 1), then the decomposition in item () is
unique up to any permutation applied to the coefficients of x and a. When T has full rank, then
there are uncountably many {x,, ..., xg+1} C T such that the decomposition holds. Note that
Xk41 can be arbitrarily chosen in T.

We remark that the decomposition given in [54, theorem 1] is as a sum of r-rank one matrices
arex(xip)ex(xx)*. This can readily be shown to be equivalent to the decomposition in proposition
7.

Secondly, the result of [54], does not adjudicate on the uniqueness of the decomposi-
tion when the Toeplitz matrix T is of full rank. However, by carefully studying the proof
of [54, theorem 1], one can see that the full-rank case is studied in detail (see in particular
equations (10)—(12)). We summarized the conclusion at the end of proposition 7.
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