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a b s t r a c t

We study the problem of recovering piecewise-polynomial periodic functions from
their low-frequency information. This means that we only have access to possibly
corrupted versions of the Fourier samples of the ground truth up to a maximum
cutoff frequency Kc . The reconstruction task is specified as an optimization problem
with total-variation (TV) regularization (in the sense of measures) involving the Mth
order derivative regularization operator L = DM . The order M ≥ 1 determines the
degree of the reconstructed piecewise-polynomial spline, whereas the TV regularization
norm, which is known to promote sparsity, guarantees a small number of pieces. We
show that the solution of our optimization problem is always unique, which, to the
best of our knowledge, is a first for TV-based problems. Moreover, we show that this
solution is a periodic spline matched to the regularization operator L whose number
of knots is upper-bounded by 2Kc . We then consider the grid-based discretization of
our optimization problem in the space of uniform L-splines. On the theoretical side, we
show that any sequence of solutions of the discretized problem converges uniformly
to the unique solution of the gridless problem as the grid size vanishes. Finally, on
the algorithmic side, we propose a B-spline-based algorithm to solve the discretized
problem, and we demonstrate its numerical feasibility experimentally. On both of these
aspects, we leverage the uniqueness of the solution of the original problem.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In recent years, TV1-based regularization techniques for continuous-domain inverse problems have shown to be
very fruitful, with rapidly growing theoretical developments [2–5], algorithmic progress [6–8], and data science appli-
cations [9–11]. The goal of these techniques is to recover a continuous-domain signal of interest from a finite number
of measurements. To tackle the obvious ill-posedness of this recovery problem, the prior assumption is that the signal is
sparse in a certain basis. This prior is enforced by solving an optimization problem with a regularization term involving
the TV norm.

In this work, we study the reconstruction of an unknown periodic real function f0 : T → R from the knowledge of
ts possibly noise-corrupted low-frequency Fourier series coefficients, where T = R/2πZ = [0, 2π ] is the torus whose
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1 In this paper, the term ‘‘total variation’’ is understood in the sense of measure theory; note that it has a different meaning in other communities,
e.g., [1].
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two points 0 and 2π are identified. Fourier-domain measurements have historically been of particular interest in the
V-based community; some of the earliest works in this field focus specifically on this setting [2]. This interest is driven
y the favorable theoretical recovery guarantees of Fourier-domain sampling as well as by potential applications such as
RI imaging, as demonstrated by existing discrete-domain sparsity-based methods [12].
Let Kc ≥ 0 be the cutoff frequency; we therefore have access to

y = (y0, y1, . . . , yKc ) ∈ R × CKc , (1)

where yk ≈ f̂0[k], the kth Fourier-series coefficient of f0. Note that since f0 is a real function, y0 ∈ R is approximately the
mean f̂0[0] = ⟨f0, 1⟩ of f0, while yk ∈ C for k ̸= 0. Moreover, the Fourier series of f0 is Hermitian symmetric, meaning that
f0[−k] = f̂0[k] ∈ C for every k ∈ Z. The observation vector y in (1) has 2Kc + 1 (real) degrees of freedom: one for the real
ean y0 and two for each of the other complex Fourier series coefficients.

.1. Reconstruction via TV-based optimization

We formulate the reconstruction task as a regularized optimization problem with a sparsity prior, which is enforced
ia TV-based regularization. More precisely, the reconstruction f ∗ of f0 is a solution of

f ∗
∈ argmin

f
E(y, ν(f )) + λ∥Lf ∥M, (2)

here y ∈ R × CKc is the observation vector; ν(f ) is the measurement vector

ν(f ) = (̂f [0], f̂ [1], . . . , f̂ [Kc]) ∈ R × CKc ; (3)

E(y, ·) : R×CKc → R+
∪{∞} is a data-fidelity functional which is a proper convex function, strictly convex over its effective

domain,2 lower semi-continuous (lsc), and coercive; ∥ · ∥M is the total-variation (TV) norm on periodic Radon measures;
and L is a regularization operator acting on periodic functions. The regularization operator specifies the transform domain
in which the signal f0 is assumed to be sparse. The composition of the TV norm with an operator L is known as generalized
TV regularization [5]. For the sake of clarity, we focus on derivative operators of any order, i.e., L = DM where M ≥ 1,
lthough our results can be extended to more general classes of operators such as fractional derivatives.
The data-fidelity term encourages the measurement vector ν(f ) to be close to the observations y. A typical example is

he quadratic functional

E(y, ν(f )) =
1
2
∥y − ν(f )∥2

2 =
1
2

Kc∑
k=0

|yk − f̂ [k]|
2
. (4)

he data fidelity (4) is well-suited to an additive noise model where the measurements y are generated as y = ν(f0) + n
ith n a complex Gaussian vector (see [14, Section IV-B] for more details). Another case of interest is the indicator function
(y, ν(f )) = 0 if y = ν(f ) and ∞ otherwise, which leads to the constrained optimization problem3 of the form

argmin
f , ν(f )=y

∥Lf ∥M. (5)

ther classical data-fidelity functionals can be found in [10, Section 7.5].
The choice of the TV norm promotes sparse and adaptive continuous-domain reconstruction, and has recently received

lot of attention (see Section 1.3). The operator L specifies the transform domain in which sparsity is enforced together
ith the regularity properties of the recovery. In the absence of a regularization operator L, Problem (2) leads to the
ecovery of periodic Dirac masses; this scenario is the subject of our previous paper [15]. In the latter, we thoroughly
nalyze the cases of uniqueness of the solution of the resulting optimization problem. In particular, we show that unlike
n this manuscript, both cases (uniqueness and nonuniqueness) can occur, and we gave a necessary and sufficient condition
n the data vector y that guarantees uniqueness.

.2. Contributions

This paper is closely related to and relies on a result of our previous work [15], in which we also study problems of the
orm (2), but in the absence of a regularization operator L. Problems of the form (2), which deal with periodic functions,
ave previously been studied in [16] in a more general setting where the operators ν and L can take various forms. In
his paper, we focus on the specific case where ν is a low-pass Fourier-domain operator and L is the Mth order derivative
perator; this specificity allows us to prove additional theoretical results. The representer theorem from [16] guarantees

2 The effective domain of a convex function g : X → R+
∪ {∞} is the set {x ∈ X, g(x) < ∞} [13].

3 In this case, the value of the regularization parameter λ > 0 plays no role.
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the existence of a solution to Problem (2), but without adjudicating on its uniqueness. Moreover, it gives the form of the
extreme-point solution(s) as periodic L-splines, i.e., functions f such that

Lf =

N∑
n=1

anX(· − xn) (6)

is a finite sum of shifted Dirac combs, the distinct Dirac locations xn being the knots of the spline (see Definition 1).
Moreover, known proof techniques [5,16,17] allow us to show that the number of knots N is bounded by N ≤ 2Kc + 2.
Our contributions can be detailed as follows.

(i) Uniqueness of the Solution. Our main result is Theorem 1, in which we prove that the solution to Problem (2) is
always unique. Moreover, we slightly improve the upper bound on the number of knots to K ≤ 2Kc in (6). To the best of
our knowledge, Theorem 1 is the first systematic uniqueness result for the analysis of TV-based variational problems such
as (2). This result has both theoretical and algorithmic implications, which we leverage in our other contributions. Our
proof of Theorem 1 relies on a uniqueness result of our previous paper [15, Corollary 1] for Problem (2) in the absence
of a regularization operator L. Interestingly, contrary to Problem (2), uniqueness is not systematic in that setting.

(ii) Uniform Convergence of Grid-Based Methods. We study the grid-based discretization of Problem (2). More precisely,
we restrict its search space to the finite-dimensional space of uniform L-splines, i.e., L-splines whose knots lie on a uniform
grid. We show that as the grid gets finer, any sequence of solutions of the discretized problems converges in uniform
norm towards the unique solution of Problem (2). This form of convergence is remarkably strong: in particular, it implies
convergence for any Lp norm with 1 ≤ p ≤ ∞. This result is a significant improvement over known convergence results
for grid-based methods which exhibit weak∗-type convergence such as [18, Proposition 4] and [19, Theorem 3].

(iii) Grid-Based Algorithm. We propose an adaptation of the B-spline-based algorithm developed in [19] to solve
Problem (2). The main difference with the latter is the periodic setting, which does not add major difficulties but requires
a different treatment of the boundaries. Thanks to our aforementioned uniform convergence result, the reconstructed
signal is guaranteed to be uniformly close to the gridless solution when the grid is sufficiently fine. We provide some
experimental results of our algorithm on some simulated data that demonstrate its numerical feasibility.

1.3. Related works

Optimization over radon measures. There exists a vast literature concerned with Dirac recovery using the TV norm as a
regularizer, that is, problems of the form (2) in the absence of a regularization operator L. Some of the more recent works
concerning this topic include [2,3,8,18,20–24]. However, our focus in this paper is on generalized TV regularization with
a nontrivial operator L. We refer to the introduction of our previous paper [15] for a more detailed coverage of the Dirac
recovery literature.

From sparse measures to splines and beyond. In recent years, several works have extended the TV-based Dirac recovery
framework to smoother continuous-domain signals by considering generalized TV regularization, i.e., problems such as (2)
with a nontrivial regularization operator L. In [5], Unser et al. revealed the connection between the constrained Problem (2)
(in a nonperiodic setting) and spline theory for general measurement functionals: the extreme-point solutions are
necessarily L-splines. This result was revisited, extended, and refined by several authors [10,16,25–31]. This manuscript
will strongly rely on the periodic theory of TV-based optimization problems recently developed in [16], of which
Problem (2) is a special case.

The purpose of most of these works is to describe the solution sets of certain relevant optimization problems, which are
typically nonunique. However, in our setting, as we show in Theorem 1, the solution to Problem (2) is always unique. The
closest work in this direction is our recent paper [32], where we provide a full description of the solution set of nonperiodic
TV-based optimization problems with a regularization operator L = D2 (which leads to piecewise-linear reconstructions),
and spatial sampling measurements ν. This study includes the characterization of the cases of uniqueness [32, Proposition
6 and Theorem 2], which, contrary to Problem (2), is not systematic.

Convergence results and algorithms for discretized problems. The convergence of discretized optimization schemes to the
solutions of continuous-domain TV-regularized problems has been studied by several authors, such as [3,4,7,8,33]. Grid-
based methods have specifically been considered in [4,18,23]. In these works, the authors prove convergence results in
the weak∗ sense, which is suited to the space of Radon measures, in a setting where no systematic uniqueness results are
known. To the best of our knowledge, our work is the first to prove the convergence of solutions of discretized generalized
TV-based problems towards the solution of the original problem in a such a strong sense as the uniform norm. To achieve
this, we leverage our uniqueness result of Theorem 1. On the algorithmic side, grid-based methods to solve optimization
problems with TV-based regularization have been proposed in [19,25,34–36].
3
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1.4. Outline

The paper is organized as follows. Section 2 introduces the mathematical material used in this paper. In Section 3,
e present our optimization Problem (2) of interest and prove that it always has a unique solution. In Section 4, we
resent our proposed grid-based discretization of Problem (2), and prove that its solutions converge uniformly to that of
he original problem when the grid size goes to zero. We present our method for solving this discretized problem using
B-spline basis in Section 5. Finally, we exemplify our results on simulations in Section 6.

. Mathematical preliminaries

.1. Periodic functions and periodic splines

We first introduce some notations and recall some basic facts concerning periodic functions and their Fourier series.
ore details can be found in [16, Section 2]. The Schwartz space of infinitely smooth periodic function is denoted by S(T),
ndowed with its usual Fréchet topology. Its topological dual is the space of periodic generalized functions S ′(T).
For k ∈ Z, let ek : T → C be the complex exponential function ek(x) = exp(ikx), which is clearly in S(T). The Fourier

series coefficients of f ∈ S ′(T) are given by f̂ [k] = ⟨f , ek⟩ ∈ C. For a real function f , these coefficients are Hermitian
symmetric, i.e., f̂ [−k] = f̂ [k] for all k ∈ Z, which implies in particular that f̂ [0] ∈ R. We then have that f =

∑
k∈Z f̂ [k]ek

or any f ∈ S ′(T), where the convergence is in S ′(T). The Dirac stream is defined as X =
∑

n∈Z δ(· − 2πn). Its Fourier
oefficients are X̂[k] = 1 for any k ∈ Z. The derivative operator is denote by D. More generally, we consider theMth-order
erivative operator L = DM for a fixed integer M ≥ 1. We then have that Lf =

∑
k∈Z(ik)

M f̂ [k]ek.
We define the periodic Green function gL of L = DM as the function

gL(x) =

∑
k̸=0

ek
(ik)M

. (7)

Then, gL is the unique periodic and zero-mean function such that DMgL = X−1. It is worth noting that gL is not a Green’s
function in the usual sense: there is no periodic function g such that DMg = X, since DMg necessarily has zero mean,
whereas the Dirac stream does not. See [16, Section 2.2] for more details on this matter.

Definition 1. Let M ≥ 1 and L = DM . We say that f is a periodic L-spline (or simply a L-spline) if

Lf = w =

N∑
n=1

anX(· − xn) (8)

where N ≥ 0, an ∈ R\{0}, and the knots xn ∈ T are pairwise distinct. We call w the innovation of the L-spline f .

A function f satisfies (8) if and only if

f = a0 +

N∑
n=1

angL(· − xn) (9)

for some a0 ∈ R. In this case, we necessarily have that
∑N

n=1 an = 0. This is a particular case of [16, Proposition 2.8] and
simply follows from taking the mean (or 0th Fourier coefficient) in (8), giving 0 = L̂[0]̂f [0] =

∑N
n=1 an. It is worth noting

that the Green’s function gL is not a L-spline. However, for any x0 ∈ T \ {0}, gL − gL(· − x0) is a periodic L-spline.
A L-spline is a periodic piecewise-polynomial function of degree at most (M − 1) and with (M − 2) continuous

derivatives. The case M = 1 corresponds to piecewise-constant functions, while M = 2 leads to piecewise-linear
continuous functions.

2.2. Periodic Radon measures and native spaces

Let M(T) be the space of periodic Radon measures. By the Riesz-Markov theorem [37], it is the continuous dual of the
space C(T) of continuous periodic functions endowed with the supremum norm. The total-variation norm on M(T), for
which it forms a Banach space, is given by

∥w∥M = sup
f∈C(T), ∥f ∥∞≤1

⟨w, f ⟩. (10)

We denote by M0(T) the set of Radon measures with zero mean, i.e. M0(T) = {w ∈ M(T), ŵ[0] = 0}. It is the continuous
dual of the space C0(T) = {f ∈ C(T), f̂ [0] = 0} of continuous functions with zero mean.

Let L = DM for some M ≥ 1. We define the native space associated to L as

M (T) = {f ∈ S ′(T) : Lf ∈ M(T)}. (11)
L

4
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Periodic native spaces have been studied for general spline-admissible operators (i.e., periodic operators with finite-
imensional null space and which admit a pseudoinverse) in [16, Section 3]. Proposition 1 recalls some important
roperties of native spaces for the particular case of the Mth order derivative operator. For this purpose, we define the
seudo-inverse operator L† such that

L†f =

∑
k̸=0

f̂ [k]
(ik)M

ek (12)

or any f ∈ S ′(T). In particular, we have that L†X = gL.

roposition 1 (Theorem 3.2 in [16]). Let L = DM for some M ≥ 1. We have the direct-sum relation

ML(T) = L†M0(T) ⊕ Span{1}, (13)

nd any f ∈ ML(T) has a unique decomposition as

f = L†w + a (14)

here w ∈ M0(T) and a ∈ R are given by w = Lf and a = f̂ [0]. Then, ML(T) is a Banach space for the norm

∥f ∥ML = ∥w∥M + |a|. (15)

3. Uniqueness of TV-based penalized problems

It is well known that TV-based optimization problems with regularization operators lead to splines solutions [5]. This
is both an existence result and a representer theorem, which provides the form of the (extreme-point) solutions of the
optimization task. Here, we focus on problems of the form (2), whose main specificity compared to related works in the
literature is the periodic setting and the Fourier-domain measurement operator ν.

We now state our main result, which guarantees the uniqueness of the solution to Problem (2). The proof relies on a
result of our previous paper that focuses on the recovery of Dirac impulses from low-frequency Fourier measurements.
We recall this result here.

Proposition 2. [15, Corollary 1] If |y0| < |yk0 | for some k0 ̸= 0, then the optimization problem

min
w∈M(T), ν(w)=y

∥w∥M (16)

as a unique solution, which is the sum of at most 2Kc Dirac impulses.

Our proof technique consists in reformulating Problem (2) over the space of Radon measures and applying Proposition 2
o this equivalent problem. Interestingly, the regularization operator L = DM leads to systematic uniqueness, which is not
rue of Problem (16) (where there is no regularization operator) in the general case.

heorem 1. Let L = DM with M ≥ 1, Kc ≥ 0 be the cutoff frequency of the low-pass filter ν : ML(T) → R × CKc defined in
3), y ∈ R × CKc , E(y, ·) : R × CKc → R+ be a functional which is a proper convex function, strictly convex over its effective
omain, lsc, and coercive, and λ > 0. Then, the optimization problem

Vλ(y) = argmin
f∈ML(T)

E(y, ν(f )) + λ∥Lf ∥M, (17)

dmits a unique solution which is a L-spline whose number of knots is bounded by 2Kc .

roof. Using a classical argument based on the strict convexity of E(y, ·) (see for instance [32, Proposition 7]), we deduce
hat all solutions f ∗ of Problem (17) share an identical observation vector yλ ∈ RM , that is, ∀f ∗

∈ Vλ(y), we have ν(f ∗) = yλ.
Hence, Problem (17) is equivalent to

Vλ(y) = argmin
f∈ML(T), ν(f )=yλ

∥Lf ∥M. (18)

By Proposition 1, any f ∈ ML(T) admits a unique decomposition f = L†w + a ∈ ML(T) with (w, a) ∈ M0(T) × R. By
plugging in this expansion into the cost functional of Problem (18), we get that the latter is equivalent to

argmin
(w,a)∈M0(T)×R, ν(L†w+a)=yλ

∥w∥M. (19)

We then observe that ν(L†w + a) =

(
a, ŵ[1]

L̂[1]
, . . . , ŵ[Kc ]

L̂[Kc ]

)
and thus that (w∗, a∗) is solution of (19) if and only if a∗

= (yλ)0
and w∗ is solution of the new problem

argmin ∥w∥M (20)

w∈M(T), ν(w)=z

5
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where z ∈ R × CKc is given by z0 = 0 and zk = L̂[k](yλ)k for k ̸= 0. Note that the condition w ∈ M0(T) in (19) (i.e.,
has zero mean) has been removed in (20) since it is automatically satisfied via the constraint ν(w) = z which givesˆ[0] = z0 = 0.
We now prove that Problem (20) has a unique solution w∗ which is a sum of at most 2Kc Dirac impulses. If z = 0, then

he result trivially holds, the unique solution being w∗
= 0. We now assume that z ̸= 0. In this case, Problem (20) has

nonzero optimal value due to the fact that w = 0 cannot be a solution. Since z0 = 0 and z ̸= 0, Problem (19) satisfies
the assumptions of Proposition 2. This proves the uniqueness of w∗ and the fact that it is a sum of at most 2Kc Dirac
impulses. This in turn implies the uniqueness of the solution f ∗

= L†w∗
+ (yλ)0 as well as the fact that it is an L-spline

with at most 2Kc knots. □

Remark. Theorem 1 remains valid for more general operators L, namely any spline-admissible operator in the sense
of [16, Definition 2] whose null space includes constant functions, i.e., L{1} = 0.

Theorem 1 has three components: (i) it guarantees the uniqueness of the solution, it provides (ii) the form of the
solution and (iii) an upper bound on the number of knots of the solution. The first item, arguably the most striking one, is
completely new; existing results typically provide the form of extreme-point solutions of the problem. We are not aware
of any other systematic uniqueness results concerning inverse problems with TV-based regularization in the literature.
The second item is already known; it has been proved for our setting in [16, Theorem 4]. Finally, concerning the third
item, known proof techniques [5,16,17] allow us to reach the bound 2Kc + 1, which we improve to 2Kc .

One can actually be slightly more precise and show that the mean of the solution is known under very mild conditions
n the cost functional E. Under this assumption, we also provide a reformulation of Problem (17) over the space of Radon
easures.

roposition 3. We assume that we are under the conditions of Theorem 1 and that the data-fidelity cost functional E is such
hat for any fixed (z1, . . . , zKc ) ∈ CKc , we have

y0 = argmin
z0∈R

E(y, z) (21)

here y = (y0, y1, . . . , yKc ) ∈ R × CKc and z = (z0, z1, . . . , zKc ) ∈ R × CKc . Then, the unique solution f ∗ to (17) admits the
decomposition f ∗

= y0 + L†w∗ where

w∗
= argmin

w∈M0(T)
E(y, ν(L†w + y0)) + λ∥w∥M. (22)

n particular, this implies that f̂ ∗[0] = y0.

roof. Similarly to our manipulation in (19), Problem (17) is equivalent to

(w∗, a∗) = argmin
(w,a)∈M0(T)×R

E(y, ν(L†w + a)) + λ∥w∥M, (23)

with f ∗
= L†w∗

+ a∗. Problem (23) has a unique solution due to that of Problem (17) (proved in Theorem 1), and to the
uniqueness of the decomposition of f ∗ (Proposition 1). Then, we have that ν(a∗

+ L†w∗) = (a∗, L̂†w∗[1], . . . , L̂†w∗[Kc]),
hich by (21) implies that E(y, ν(a∗

+ L†w∗)) ≥ E(y, ν(y0 + L†w∗)), with equality if and only if a∗
= y0. Hence, since

he constant a does not impact the regularization in (22), we must have that a∗
= f̂ ∗[0] = y0. Problem (23) can thus be

ewritten as (22). □

emark. The relation (21) holds for virtually all classical cost functionals, including any ℓp norm-based cost such as the
uadratic data fidelity (4), or any separable cost whose minimum over each component is reached when ym = zm, such
s indicator functions. Proposition 3 ensures that the mean of the solution of Problem (17) is given by f̂ ∗[0] = y0.

. Uniform convergence of grid-based methods

A common way to solve infinite-dimensional continuous-domain problems such as (24) algorithmically is to discretize
hem using a uniform finite grid [18,23]. In this section, we propose such a discretization method of the problem

f ∗
= argmin

f∈ML(T)

1
2

∥y − ν(f )∥2
2 + λ∥Lf ∥M, (24)

hat is, Problem (17) with a quadratic data-fidelity cost E(y, z) =
1
2∥y − z∥2

2. Note that we no longer denote the solution
f Problem (24) as a set but as a function f ∗, since Theorem 1 guarantees that this solution is unique. We restrict to the
ase of the quadratic data fidelity for the sake of simplicity, although our results hereafter hold for more general choices
f E. Our choice clearly satisfies the assumption of Proposition 3, hence the solution f ∗ of (24) satisfies f̂ ∗

[0] = y0.
Our discretization method, which was introduced for similar problems in [19], consists in restricting the search space

f Problem (24) to the space of uniform L-splines M 2π (T), i.e., L-splines in the sense of Definition 1 with knots x on a
L, P
n

6
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uniform grid. The space ML, 2πP
(T) is defined as follows for a grid size h =

2π
P , where P ∈ N, P ≥ 1, is the number of grid

oints:

ML, 2πP
(T) =

⎧⎨⎩f ∈ S ′(T), Lf =

P−1∑
p=0

a[p]X
(

· −
2πp
P

)⎫⎬⎭ . (25)

Our choice of restricting the search space of Problem (24) to ML, 2πP
(T) is guided by Theorem 1, which states that

he unique solution to this problem is a L-spline. Hence, this choice of space is compatible with the sparsity-promoting
egularization ∥L · ∥M. Although in general, the solution of our problem does not have knots on a uniform grid, it can
e approximated arbitrary closely with an element of ML, 2πP

(T) when P is large. The other main feature of our method
s that the computations are exact in the continuous domain, both those of the forward model and of the regularization
erm. Our discretized optimization problem then becomes

Vλ,P (y) = argmin
f∈M

L, 2πP
(T)

1
2

∥y − ν(f )∥2
2 + λ∥Lf ∥M. (26)

ote that contrary to the original Problem (24), the solution set Vλ,P (y) of the discretized problem (26) is not necessarily
nique.
As we shall demonstrate in Section 5, Problem (24) can be solved algorithmically with standard finite-dimensional

olvers. However, the important question of how well it approximates the original Problem (24) still remains. We answer
his question in Theorem 2 by proving that any sequence of elements of Vλ,P (y) converge in a strong sense – namely,
niform convergence – towards f ∗ when P → ∞.

heorem 2. Let L = DM with M ≥ 2, y ∈ R+
×CKc , and λ > 0. We denote by f ∗ the unique solution to (24). For any P ≥ 1,

we set f ∗

P ∈ Vλ,P (y). Then, we have that

∥f ∗
− f ∗

P ∥∞ −→
P→∞

0. (27)

Remark 1. Despite the fact that the solutions to (26) may not be unique, Theorem 2 ensures that the convergence (27)
holds for any choice of the f ∗

P .

Remark 2. Uniform convergence implies convergence with respect to any Lp norm for 1 ≤ p ≤ ∞, since we have
∥f ∥p ≤ (2π )1/p∥f ∥∞ for any f ∈ ML(T).

Remark 3. Theorem 2 holds for more general settings than Problem (24). More specifically, our proof seamlessly extends
to the more general setting of Theorem 1 for any cost functional E that is continuous with respect to its second argument,
such as ℓp losses of the form E(y, z) = ∥y − z∥p

p. Compared to the setting of Theorem 1, this notably excludes indicator
functions, i.e., the constrained optimization Problem (18). Concerning the regularization operator L, Theorem 2 readily
extends to any operator L such that L{1} = 0 and whose periodic Green’s function is Lipschitz. This notably excludes the
case L = D, i.e., M = 1.

Proof. We first introduce M0, 2πP (T) = {w ∈ M0(T), w =
∑P−1

p=0 a[p]X(· −
2πp
P )}, the uniform discretization of M0(T)

using Dirac impulses. Then, using Proposition 3 (with a restriction of the search space which does not affect the proof),
we have that f ∗

P = y0 + L†w∗

P , where

w∗

P ∈ argmin
w∈M

0, 2πP
(T)

1
2
∥y − ν(L†w + y0)∥2

2 + λ∥w∥M. (28)

e now prove that the Radon measures w∗

P converge towards the unique solution of

w∗
= argmin

w∈M0(T)

1
2
∥y − ν(L†w + y0)∥2

2 + λ∥w∥M (29)

or the weak* topology when P → ∞, where the uniqueness of w∗ follows from (22) in Proposition 3. This convergence
s proved by following [18, Proposition 4]; the fact that the search space in (29) is M0(T) rather than M(T) does not
mpact the proof. Then, the operator L† is linear and continuous between M0(T) and ML(T) for their respective weak*
opologies. This implies that f ∗

P converges to f ∗ for the weak* topology over ML(T). According to [16, Proposition 9],
= DM is sampling-admissible for M ≥ 2, which implies in particular that X is in the predual of ML(T). Equivalently,

his implies that f ↦→ f (x) is weak*-continuous over ML(T), which implies that f ∗

P (x) → f ∗(x) for any x ∈ T (pointwise
convergence).
7
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We now prove that the family (f ∗

P )P∈N is equicontinuous. Then, by [38, Theorem 15, Chapter 7], pointwise and uniform
convergences are equivalent, which will conclude the proof. Since f ∗

P is a L-spline, using the expansion (9), we have

f ∗

P = y0 + L†w∗

P = y0 +

Np∑
n=1

aP [n]gL(· − xP,n), xP,n ∈

{
2πp
P

, 0 ≤ p ≤ P − 1
}

(30)

or some coefficients aP [n], 1 ≤ n ≤ Np, where gL is the Green’s function of L defined in (7). Moreover, gL is a periodic
ipschitz function for L = DM and M ≥ 2, hence ∥gL∥Lip := supx,y∈R, x̸=y

|gL(x)−gL(y)|
|x−y| < ∞. For any x, y ∈ R, we have that

|f ∗

P (x) − f ∗

P (y)| ≤

Np∑
n=1

|aP [n]||gL(x − xP,n) − gL(y − xP,n)| ≤

⎛⎝ Np∑
n=1

|aP [n]|

⎞⎠ ∥gL∥Lip|x − y|

=
w∗

P


M∥gL∥Lip|x − y|. (31)

We have seen that w∗

P → w∗ when P → ∞ for the weak* topology. It is therefore bounded for the total-variation norm,
thanks to the uniform boundedness principle. We therefore deduce from (31) that the f ∗

P are uniformly Lipschitz, and
herefore equicontinuous, which proves the desired result. □

The first part of the proof of Theorem 2, dealing with the pointwise convergence, mostly relies on the generalization
f the weak* convergence studied in [18, Proposition 4]. Duval and Peyré use tools from Γ -convergence (see [39] for an
ntroduction) and are themselves inspired by [40].

Theorem 2 shows that our grid-based discretization yields spline solutions that are arbitrarily close to the unique
olution f ∗ of (24) in the uniform sense when the discretization step h =

2π
P vanishes. It leverages the uniqueness of the

spline reconstruction from Fourier measurements ensured by Theorem 1.

5. B-spline-based algorithm

We now introduce our proposed algorithm to solve the discretized Problem (26) in an exact way, i.e., without any
iscretization error. The algorithm is based on [19] and uses the B-spline basis to represent the space of uniform splines
L, 2πP

(T). The main difference here with [19] is the periodic setting, which actually simplifies the treatment of the
oundary conditions. Moreover, for the sake of conciseness, we focus here on discretizing for a fixed grid; we do not
resent the multiresolution aspect of the algorithm introduced in [19], although it can seamlessly be adapted to our
etting.

.1. Preliminaries on uniform periodic polynomial splines

A convenient feature of the space ML, 2πP
(T) is that it is generated by periodic B-splines, as will be proved in

Proposition 4. To this end, we first provide some background information on B-splines and their periodized versions.
B-splines are popular basis functions [41] that are widely used in signal processing applications [42,43], in part due to
their short support which leads to well-conditioned optimization tasks. In the non-periodic setting, the scaled B-spline
βL,h of the operator L = DM with grid size h > 0 is characterized by its Fourier transform

β̂L,h(ω) =
1

hM−1

(
1 − eiωh

iω

)M

, ∀ω ∈ R. (32)

he scaled B-spline βL,h is a piecewise polynomial of order (M−1) with continuous (M−2)-th derivative, and is supported
ver the interval [0, hM].
For any integer P ≥ 1, the periodized L B-spline with grid size h =

2π
P is then defined as

β
per
L, 2πP

(x) =

∑
k∈Z

βL, 2πP
(x − 2πk), ∀x ∈ T, (33)

which is a converging sum due to the finite support of βL, 2πP
. In fact, for P ≥ M , the periodic B-spline is not aliased,

since we have Supp(βL, 2πP
) = [0,M 2π

P ] ⊂ [0, 2π ] = T: we thus have β
per
L, 2πP

= βL, 2πP
in the interval T. Clearly, β

per
L, 2πP

is
π-periodic, and one readily shows from standard Fourier analysis that its Fourier series coefficients are given by

β̂
per
L, 2πP

[k] =
1
2π

β̂L, 2πP
(k) = PM−1

(
1 − eik

2π
P

2π ik

)M

. (34)

oreover, βper
L, 2πP

is a periodic L-spline in the sense of Definition 1, and its innovation is given by

Lβper
L, 2πP

=

(
P
2π

)M−1 M∑
dL[m]X(· − m

2π
P

), (35)

m=0

8
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where the P-periodic sequence dL is characterized by its discrete Fourier transform (DFT) DL[k] = (1 − e−ik 2π
P )M . This

elation is easily verified in the Fourier domain. As an example, for L = D, dL is the P-periodized finite-difference sequence
dL[k] = δP [k] − δP [k − 1] where δP [k] is the P-periodized Kronecker delta sequence. As stated earlier, periodic B-splines
share the same celebrated property as regular B-splines: they are generators of the space of uniform (periodic) splines
ML, 2πP

(T) introduced in (25).

roposition 4. The periodic B-spline β
per
L, 2πP

is a generator of the space ML, 2πP
(T), i.e., we have

ML, 2πP
(T) =

⎧⎨⎩f =

P−1∑
p=0

c[p]βper
L, 2πP

(
· −

2πp
P

)
, c = (c[0], . . . , c[P − 1]) ∈ RP

⎫⎬⎭ . (36)

Proof. We first observe that the space ML, 2πP
(T) is a P-dimensional vector space: there are (P − 1) degrees of freedom

for the a[p] coefficients in (25) (P coefficients and one linear constraint
∑P−1

p=0 a[p] = 0), and one for the mean f̂ [0] (see
Proposition 1). Next, we prove that for any c = (c[0], . . . , c[P−1]) ∈ RP , we have f =

∑P−1
p=0 c[p]β

per
L, 2πP

(·− 2πp
P ) ∈ ML, 2πP

(T).
Indeed, we have

Lf =

(
P
2π

)M−1 P−1∑
p=0

M∑
m=0

c[p]dL[m]X

(
· − (p + m)

2π
P

)

=

(
P
2π

)M−1 P−1∑
p=0

(dL ∗ c)[p]X
(

· −
2πp
P

)
, (37)

here (35) was used for the first line, and (dL ∗ c) denotes here the cyclic convolution between the vectors dL =

dL[0], . . . , dL[P − 1]) and c . This proves that f ∈ ML, 2πP
(T) with coefficients (a[0], . . . , a[P − 1]) =

( P
2π

)M−1
(dL ∗ c),

nd thus that the space generated by shifts of β
per
L, 2πP

is included in ML, 2πP
(T). Yet both are P-dimensional vector spaces,

which proves that they are in fact equal. □

5.2. Discrete problem formulation

In practice, to solve Problem (26), we use the B-spline representation (36) of ML, 2πP
(T). The choice of the B-spline

epresentation is guided by numerical considerations: B-splines have the shortest support among any uniform L-spline,
nd thus lead to well-conditioned optimization tasks. The problem thus consists in optimizing over the c[0], . . . , c[P −1]
oefficients, which leads to a computationally feasible finite-dimensional problem, as demonstrated in the following
roposition.

roposition 5. Problem (26) is exactly equivalent to solving the finite-dimensional problem

Wλ,P (y) = argmin
c∈RP

1
2
∥Hc − y∥

2
2 + λ

(
P
2π

)M−1

∥dL ∗ c∥1, (38)

here the matrix H ∈ C(Kc+1)×P is given by Hk,ℓ = νk

(
β

per
L, 2πP

(· − ℓ 2π
P )
)

= e−iℓ 2π
P β̂

per
L, 2πP

[k], dL = (dL[0], . . . , dL[P − 1]), and

c = (c[0], . . . , c[P −1]). The continuous-domain reconstructed signal is then f =
∑P−1

p=0 c
∗
pβ

per
L, 2πP

(·− 2πp
P ), where c∗

∈ Wλ,P (y).

roof. This equivalence is obtained by plugging in f =
∑P

p=1 c
∗
pβ

per
L, 2πP

(· −
2πp
P ) ∈ ML, 2πP

(T) into the cost function of
problem (24). The expression of the system matrix H immediately follows. The expression of the regularization term
follows from (37) and the fact that ∥

∑P−1
p=0 apX(· − xp)∥M

= ∥a∥1 for pairwise-distinct knot locations xk. □

6. Experiments

In this section, we present some results of our discretization method presented in the previous section in various
experimental settings. Our method amounts to solving Problem (38), which is a standard discrete problem with ℓ1
regularization. This can be achieved using standard proximal solvers; in our experiments, we use the ADMM solver [44] of
GlobalBioIm [45], a Matlab-based inverse-problem library developed by the Biomedical Imaging Group at EPFL. We solve
the linear inversion step of ADMM with a direct matrix inversion, which is feasible due to the relatively small dimension
of our problems.
9
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Fig. 1. Noiseless reconstruction of a piecewise-linear spline with N = 2 knots, Kc = 3, and λ = 10−7 .

.1. Effect of gridding

.1.1. Qualitative effect
We first present a toy experiment to illustrate the effect of gridding in our discretization method, i.e., restricting the

earch space to ML, 2πP
(T). We therefore design an experiment in which the solution of the problem is known, in order

to observe whether our algorithm is able to reconstruct it. To this end, we take L = D2, and generate a ground-truth
signal f0 which is a periodic D2-spline with 2 knots (the locations and amplitudes of the knots are picked at random).
We then compute the noiseless data vector y = ν(f0) for Kc = 3, and solve the corresponding problem (24) with a small
regularization parameter λ = 10−7 in order to enforce the constraints ν(f ) ≈ y with very low error. Since the form of
f0 is compatible with that of the solution given by Theorem 1, the hope is that f0 will be very close to the solution f ∗ to
problem (24), which is confirmed by our experiments.

In Fig. 1(a), we show the reconstruction result of our algorithm, using a voluntarily coarse grid with P = 16 points for
visualization purposes. We observe that since the knots of f0 are quite far from the grid, it is difficult to approximate f0
with an element of ML, 2πP

(T). The reconstruction therefore requires several knots on the grid to mimic a single knot of
f0, and thus has a much higher sparsity (N = 7 knots versus N = 2 for f0).

However, as we increase the number of grid points, the effect of gridding is greatly reduced, as illustrated in Fig. 1(b):
with P = 512, the reconstruction using our algorithm is visually indistinguishable from f0 (which is why we do not show
it). However, the knot locations of f0 still do not exactly lie on the grid, and thus our reconstruction still requires multiple
knots to mimic a single knot of f0, which leads to a sparsity of N = 4. Specifically, our reconstruction has two knots
at consecutive grid points 1.3990 and 1.4113 mimicking the knot at 1.4103 of f0, and two knots at 4.8106 and 4.8228
mimicking the knot at 4.8122 of f0. This effect of knot multiplication due to gridding has already been observed and
studied extensively in [18] in the absence of a regularization operator L.

The conclusion is thus that gridding leads to visually near-perfect reconstruction when the number of grid points is
very large, which is in line with Theorem 2; however, the sparsity of the reconstruction is a poor indicator of the sparsity
of the true solution of Problem (24), since gridding induces clusters of knots. Note that this effect is also present in the
noisy scenario since, as shown in the proof of Theorem 1, Problem (17) can be reformulated as a noiseless problem of the
form (18).

6.1.2. Quantitative effect
In Theorem 2, we have proved that any sequence of continuous-domain solutions f ∗

P to the grid-restricted problem
converges uniformly towards the unique solution f ∗ of problem (24) when P goes to infinity. In order to quantify the
speed of this convergence, using the same experimental setting as in Fig. 1, we compute the error ∥f ∗

P − f0∥∞ where
f ∗

P is the reconstructed signal using our grid-based algorithm, and the ground truth f0 is a proxy for the solution f ∗ to
problem (24). As explained earlier, this is a reasonable proxy due to the very small regularization parameter λ = 10−7.
In order to limit the effect of randomness in the choice of the knots of the ground truth, we apply a Monte Carlo-type
method by generating 100 different ground-truth signals (following the methodology described in the previous section)
and averaging the error over these 100 runs. These average errors for different grid sizes are shown in Fig. 2. The trend
appears to be linear in log–log scale, which indicates an empirical speed of convergence of ∥f ∗

P − f0∥∞ ≈ ( C
Ps ) for some

onstant C > 0 and where −s < 0 is the slope of the linear function. We observe here that s ≈ 1 with s < 1. Note
hat there is no hope of having s > 1, since a nonuniform piecewise-linear spline cannot be approximated by a uniform
piecewise-linear spline with an error smaller than O(h) in uniform norm, where h =

2π
P is the grid spacing.4

4 This statement can easily be demonstrated geometrically.
10
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Fig. 2. Average error ∥f ∗

P − f0∥∞ over 100 runs for different grid sizes P (in log–log scale).

Fig. 3. Recovery of piecewise-constant spline with 7 knots with Kc = 20. For the our reconstruction (gTV), we use λ = 10−2 and P = 256 grid
points; the sparsity of the reconstruction is N = 20 knots. The data y is noisy in the gTV case, whereas the noiseless data ν(f0) is used for the
ow-pass reconstruction (partial Fourier series of the ground truth signal up to the cutoff frequency Kc ).

.2. Noisy recovery of sparse splines

In our next experiment, we attempt to recover a ground-truth signal f0 based on noisy data y ∈ R×CKc with Kc = 20
and a regularization operator L = D. Once again, the ground-truth signal fits the signal model of problem (24), i.e., f0 is
a periodic D-spline (piecewise constant signal) with N = 7 knots. Each knot xn is chosen at random within consecutive
intervals of length 2π

7 , and the vector of amplitudes a = (a1, . . . , an) is an i.i.d. Gaussian random vector projected on the
pace of zero-mean vectors. The measurements are corrupted by some additive i.i.d. Gaussian noise5 n ∈ R × CKc with
tandard deviation σ = 10−3, i.e., y = ν(f0) + n.
The reconstructed signal using our algorithm is shown in Fig. 3. Despite the presence of noise, the reconstruction of

he ground truth f0 is almost perfect. As observed in the previous experiment, the sparsity of the reconstruction (N = 20)
s higher than that of the ground truth (N = 7) due to clusters of knots. We compare our reconstruction to the truncated
ourier series of f0 up the Kc , i.e., fKc =

∑Kc
k=−Kc f̂0[k]ek, which solely depends on the noiseless data vector ν(f0). Without

ny prior knowledge, this is the simplest reconstruction one can think of based the available data ν(f0) = (̂f0[0], . . . , f̂0[Kc].
s it turns out, fKc is also the unique solution to the following constrained L2-regularized problem

fKc = argmin
f :ν(f )=ν(f0)

∥f ∥L2 , (39)

s demonstrated in [25, Theorem 3]. In fact, adding any LSI regularization operator L in (39) still yields the same solution,
ince the basis functions ϕm in [25, Theorem 3] span the same space. This is due to the fact that the measurement
unctionals νm, i.e., complex exponentials, are eigenfunctions of LSI operators.

As expected from the fact that fKc is a trigonometric polynomial whereas f0 has sharps jumps, the reconstruction is
uite poor and exhibits Gibbs-like oscillations, despite the absence of noise. This clearly demonstrates the superiority of
TV over L2 regularization for sparse periodic splines reconstruction. Note however that the gap in performance decreases
s the order of L = DM increases, since Gibbs-like phenomena are less significant for smoother functions.

5 For complex entries, both the real and imaginary parts are i.i.d. Gaussian variables with the same σ .
11
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Fig. 4. Evolution of SNR value between the ground-truth signal f0 and the reconstructed signal f ∗

λ for varying values of the regularization parameter
averaged over 10 runs (in log–log scale). The star represents the highest SNR value.

.3. Sensitivity to the regularization parameter

In our final experiment, we investigate the sensitivity of our reconstruction method to the choice of the regularization
arameter λ. We choose the regularization operator L = D3 (M = 3) and a cutoff frequency of Kc = 5. The ground-truth
ignal f0 is generated in the same fashion as described in Section 6.2, only with N = 4 knots. The measurements y are
orrupted by some additive i.i.d. Gaussian noise n with standard deviation σ . We monitor the evolution of the signal-
o-noise ratio (SNR) between the ground truth f0 and the reconstructed signal f ∗

λ for varying values of the regularization
arameter λ. In order to reduce the effect of randomness, in the same spirit as in Fig. 2, the results are averaged over 10
ealizations of the ground truth f0. All the experiments are performed with a fixed grid size of P = 256.

The results are shown in Fig. 4 for low (σ = 0.01 ×

∑Kc
k=0 |νk(f0)|
Kc+1 , i.e., one hundredth of the mean amplitude of the

oiseless measurements ν(f0)) and high (σ = 0.5 ×

∑Kc
k=0 |νk(f0)|
Kc+1 ) noise levels. We observe that in general, our method is

ore sensitive to the value of λ when the latter is too high than when it is too low. However, this effect is attenuated
hen the noise level increases: in Fig. 4(a), we observe that for low noise levels, any sufficiently small regularization
arameter λ yields similar reconstruction results, whereas the SNR decreases dramatically past a certain value of λ. In
omparison, as expected, for high noise levels (Fig. 4(b)), excessively low values of λ lead to a larger deterioration of the
econstruction quality.

. Conclusion

This paper deals with continuous-domain inverse problems, where the goal is to recover a periodic function from its
ow-pass measurements. The reconstruction task is formalized as an optimization problem with a TV-based regularization
nvolving a high-order derivative operator. It was known that spline solutions always exist (representer theorem). Our
ain result has proved that the solution is in fact always unique. We then studied the grid-based discretization of our
ptimization problem. We leveraged our uniqueness result to that any sequence of solutions of the discretized problems
onverge in uniform norm – a remarkably strong form of convergence – to the solution of the original problem when the
rid size vanishes. Finally, we proposed a B-spline-based algorithm to solve the discretized problem, and we illustrated
he relevance of our approach on simulations.
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