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Stability of Image-Reconstruction Algorithms

Pol del Aguila Pla

Abstract—Robustness and stability of image-reconstruction al-
gorithms have recently come under scrutiny. Their importance to
medical imaging cannot be overstated. We review the known results
for the topical variational regularization strategies (¢2 and £; reg-
ularization) and present novel stability results for £,-regularized
linear inverse problems for p € (1, c0). Our results guarantee
Lipschitz continuity for small p and Holder continuity for larger
p. They generalize well to the L,,(£2) function spaces.

Index Terms—Bridge regression, inverse problems, Lipschitz
continuity, variational problems.

I. INTRODUCTION

NVERSE problems are at the core of computational imaging.

Medical imaging critically depends on the guarantees pro-
vided by established image-reconstruction methodologies to in-
form diagnostic and treatment decisions. New techniques based
on artificial intelligence and deep neural networks offer major
average performance improvements in most applications [1],
[2], [3], [4], at the cost of poor practical stability [5], [6] and
a lack in theoretical guarantees. In particular, seemingly small
perturbations of the measurements can produce large errors in
the resulting image. Insidiously, these errors may incorporate de-
ceptive patterns that look realistic because they were learnt from
the training database (hallucination) [7]. Additionally, questions
have also been raised on the stability guarantees provided by
variational inverse-problem approaches using £,,-regularization
strategies to induce structure [8], [9]. In this paper, we first review
the unicity and stability properties of classical Tikhonov regular-
ization (p = 2) and sparsity-promoting regularization (p = 1).
Then, we present novel stability results for £,,-regularized inverse
problems for p € (1, 00). In particular, we show that the solution
map is locally Lipschitz continuous for p € (1,2] and glob-
ally 1/(p — 1)-Hélder continuous for p € (2,00). The proofs
also cover the case of the L,({2) function spaces. Our aim in
presenting these results is to pave the way toward a quantita-
tive comparison of image-reconstruction methods in terms of
stability.

Manuscript received 16 August 2022; revised 27 November 2022; accepted
1 January 2023. Date of publication 11 January 2023; date of current ver-
sion 3 February 2023. This work was supported by the European Research
Council through European Union’s Horizon 2020 Agreement Project under
Grant 101020573 FunLearn. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Ivan W. Selesnick.
(Corresponding author: Pol del Aguila Pla.)

Pol del Aguila Pla is with the CIBM Center for Biomedical Imaging, 1015
Lausanne, Switzerland.

Sebastian Neumayer and Michael Unser are with the Biomedical Imag-
ing Group, Ecole polytechnique fédérale de Lausanne, 1015 Lausanne,
Switzerland (e-mail: pol.delaguilapla@epfl.ch; sebastian.neumayer@epfl.ch;
michael.unser@epfl.ch).

Digital Object Identifier 10.1109/TCI.2023.3236161

, Member, IEEE, Sebastian Neumayer

, and Michael Unser", Fellow, IEEE

A broad category of image-reconstruction algorithms can be
formulated as the variational problem [10], [11], [12], [13], [14],
[15]

. I F|P
min {[ly — AR5+ 2[|LE; M

For p = 2, (1) corresponds to classical Tikhonov regulariza-
tion [16], [17]; and for p = 1, (1) corresponds to sparsity-based
regularization [18], [19]. Here, A € RM*N with M <N is
the forward operator. For a given imaging system, it relates
the discrete image representation f € RN to the measurements
y € RM . Furthermore, L is a linear transform (e. g., the finite-
difference operator) that gets penalized through the £, norm, and
A € Ry is the regularization parameter controlling the tradeoff
between the data-fidelity term and the regularizer. An alternative
formulation to (1) is the synthesis formulation

i — AF||Z2 + A [F]|P 2
fglﬂg}v{l\y I3+ A [If12}, 2

which, if L is invertible, corresponds exactly to (1) with f =
Lf and A = AL L. Beyond image reconstruction (e.g., for
template-based reconstruction methods [20], [21], [22], [23]),
this type of variational problem appears in, for example, statistics
under the name of bridge regression [24], [25] forp € (1,2), and
in machine learning as part of the multiple-kernel learning [26]
literature.

The objective of this paper is to study the robustness of the
reconstruction of f from y based on (2). Although concrete
definitions of robustness, stability, and similar concepts vary, the
predominant view in the literature is that robustness should be
measured in terms of the continuity properties of the reconstruc-
tion (or solution) map S : RM — R, This map is only well
defined if (2) has a unique solution fy, in which case S : y — fy,.
In this context, we study the stability of the reconstruction in
terms of bounds on |[/fy, — fy,||,, with respect to |ly1 — yall2
for any two measurements y; and y». Depending on the relation
between these terms, the stability is weaker or stronger. The most
general category we contemplate for stability is local Holder
continuity, where

Ify, — £y, lle, < K [ly1 — yall5. 3)

with K > 0 and § € [0, 1] for any two measurements y1,y2 €
RM within a set of measurements Y C R™ . Here, local sig-
nifies that X' = K (Y) depends on the choice of set Y, which
may be a cube or ball in R containing expected reasonable
measurements. The strongest stability result comprised within
the same expression (3) is global Lipschitz continuity, where
Y =RM and 8 = 1. Given bounds such as (3) for any two
image-reconstruction algorithms, one can objectively compare
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their stability properties in terms of the exponent (3 and the value
of K.

A. Related Work

Although the robustness of regularized variational problems
has been studied extensively before, most studies relied on
asymptotic criteria for vanishing noise [27], [28], [29], [30].
These are valid only when ||ly; — y2||2 — 0 and are weaker than
the ones we target under the conditions stated in (3). (See [31]
for an extensive overview on stability criteria for variational
problems.)

The stability of solutions of variational inverse problems has
also been investigated using criteria similar to ours. In [32],
the authors assume that the forward operator is injective and
invertible and that directional derivatives do not vanish at non-
smooth points of the objective functional. These conditions
are rather restrictive and superfluous in our particular setting.
In [33], the authors consider finite-dimensional constrained-
optimization problems and use ideas similar to ours. However,
our analysis builds on a condition that involves the modulus of
convexity of the regularizer and that is less limiting than the
strong convexity imposed in [33].

A related but fundamentally different problem than the one
we discuss is algorithmic stability in learning theory. There, the
interest is to bound the magnitude of changes in the output of a
learned algorithm with respect to changes in its training data. In
that context, ¢, and ¢, regularization have also been studied in
detail [34].

II. VARIATIONAL REGULARIZATION OF INVERSE PROBLEMS

‘We now discuss the variational regularization of linear inverse
problems from the perspective used in [35], [36], [37], [38], [39].
The theory is formulated for Banach spaces, which are complete
vector spaces with a norm. This level of generality is appropriate
for our study because the ¢, spaces that characterize (2) are
Banach spaces. Throughout the main body of the paper, we
rely on the intuitive understanding of some of the mathematical
terms, without diverting the reader’s attention with extensive
technical details. Appendix A is designed to complement the
paper by providing the basic functional analytical background
for our work.

An image f is considered as an object in a Banach space X'.
The measurements y € R of f are modeled as some noisy
version of v(f), where v : X — R is a linear operator given
by

fHV(f) = (<V1’f>2\7’></\7""7<VM7f>X’><X)7 “)

for the set {v,,}M_; C X’ of linearly independent measure-
ment functionals. Here, the v, are elements of the dual space
X', which is made of all the linear continuous functionals
v: X — R (see Definition 15). The notation (v, f)xxx is
used to denote the evaluation of v, at f. The operator v in (4)
generalizes the role of the matrix A in (2). The choice of the
pair (X, X') for a specific problem corresponds to the choice of
regularizer and, thus, to the choice of the desired properties of
f (see (5) below). Although the theory is more general [39] we
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make here the restrictive assumption that X is a reflexive and
strictly convex Banach space (see Definition 21). This is true
for the spaces of interest in this paper, which are X = ¢, and
X' =, withp € (1,00) and g = p/(p — 1). Then, the solutions
to the variational problem

min {E (y,v(f)) + 4 (If]lx)} ®)

are taken to be reconstructions of f from the measurements y.

The function E : RM x R™ — R, is a data-fidelity term. It
penalizes reconstructions f that do not agree with the measure-
ments y; for example, this could be the least-squares term used
in (2). The function F is assumed to be lower semi-continuous,
proper, and strictly convex in its second argument. The function
1 : Ry — R is assumed to be strictly increasing and strictly
convex. It regulates how much we penalize f according to its
norm || f]|x. In general, more than one reconstruction f may
achieve the same minimum cost

Sy, ) =E @ v(f) + ¢l fllx)- (6)

Such reconstructions are considered as equally good for the
variational problem (5). As an example of the setup above,
in the case of two-dimensional computed tomography (CT)
problems, one can usually model X-Ray detectors using an
impulse response h € Ly(R) for some ¢ € (1,00), so that
the M measurements at angles {6,,}M_, C [0,7) and off-
sets {t, }M_, C R are given by v,,, = h(t,, — (-, 0,,)), where
0., = [cos(0,,),sin(6,,)]. Then, we have that v, € L,(2) =
X' for any bounded Q2 C R?, and thus X = L,(Q) with p =
1/(1 — 1/q). Then, the regularizer in (5) can be chosen as the
L, regularizer.

The main object of study in this paper, the optimization
problem (2), corresponds to the setup above with

X =@, ],). b(a) = 2a? andh € Ry (T)

Theorem 1 characterizes the solutions of (5) in full generality
using the duality map of the dual space X”. In this setting, the
duality map is the nonlinear map Jy+ : X’ — X that generalizes
the concept of parallel vectors to Banach spaces (see Proposi-
tion 17 and Definition 18).

Theorem 1 (Representer Theorem for Inverse Problems [39]):
For areflexive and strictly convex pair (X', X”) of Banach spaces
with duality map J : X’ — X, the variational problem (5) has
the unique solution

M

fy = Jw(vy), with vy, = Z ay [m)vpm, (8)

m=1

for a unique coefficient vector a, € R,

Theorem 1 reveals several favorable properties of the vari-
ational approach to inverse problems. First, it guarantees that
(5) always has a well-defined, unique solution. Further, (8)
transforms the search for f,, € X’ (inthe case of (2), of dimension
N > M and, in general, possibly infinite-dimensional) into a
finite-dimensional search for a, ¢ RM, a vector of the same
dimension as the measurements. Prior information is injected
in the solution by means of the duality map Jy given by
the chosen regularization—through the choice (X', X’)—which
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Fig. 1. Application of different duality maps Jy to a vector vg € X’ when

X = (RY,[|-|,) C £, for different values of p.

maps vy — fy. The regularizing effect of the duality map can
be seen in Fig. 1. The general result of Theorem 1 fits within
a family of representer theorems for variational problems [35],
[371, [38], [39], [40], [41], [42], [43], [44].

For the variational problem (2), Theorem 1 guarantees that
the reconstruction map S : RM — X is well defined and that it
is the composition of an unknown map y +— vy, with the duality
map Jy. Thereby, the study of Jy offers a first, more intuitive,
approximation to the problem. Fortunately, its expression is
known in closed-form for X = ¢, (see Proposition 19). Fig. 2
illustrates the duality map with small computational examples
forp € {1.25,1.5,1.75}, where we control the coefficient vector
a, € R? and depict the resulting solutions f,, € R®. These sug-
gest that stability highly depends on p, with rougher landscapes
as p approaches 1 and smoother ones as it approaches 2.

As a prelude to Section III, where we characterize the ro-
bustness of image reconstruction using ¢, regularization for
p € (1,00), we now discuss the two topical examples of ¢ reg-
ularization and sparsity-promoting ¢; regularization. Although
known for the most part, the results will set the context for the
later, more general results for p € (1, 00).

A. {5 Regularization and Hilbert Spaces

The classical example of variational regularization is {5 regu-
larization, as in (7) with p = 2. As it turns out, the analysis of the
stability of the solution is not specific to the finite-dimensional
case where f € R It can be transposed into the more general
space of finite-energy discrete signals f € /5. In fact, because
{5 is a Hilbert space (a Banach space with an inner product,
see Definition 14), {5 regularization can be analyzed in the
broader setting of Tikhonov regularization in Hilbert spaces.
The following analysis is valid for every Hilbert space H,
including Lo () and other Hilbert/Sobolev function spaces. In
the context of Theorem 1, then, this corresponds to choosing
X = H.Because Hilbert spaces are strictly convex and reflexive,
Theorem 1 applies. The duality map in Hilbert spaces with the
choices above corresponds to the Riesz map R : H' — H (see

Definition 20 and the subsequent discussion). The Riesz map is
linear. Thus, it holds that

>

m=1

.fy = ay[m]@nu where ¢, = R{V’m} 9

for a unique vector of coefficients a, € R™. Using that
Il f113, = (f, f)u for any f € H (see Definition 14), and that

Wins ©n) 1 xi = (@Pm, Pn)n (see Definition 20), where (-, )y
is the inner product in H, we obtain that

Iyl = ay Hay, and v(fy) = Hay, (10)

with

H= (<90m7 @n>H)n,me{1,...,M} € RMM.

Using (9) and (10), we then write (5) as the finite-dimensional
optimization problem
min {E (y,Ha) + Aa'Ha}.

acRM

(1D
For the specific case of least squares, where E' is chosen as

1
E(y1,y2) = 5 lly1 = y2l3, (12)

this results in a fully quadratic problem on the coefficients a,
with closed-form solution

a, = (H'H+2H") 'H'y = (H+2:1d) 'y, (13)

where we took advantage of the property that H is Hermitian
by construction and full-rank due to the linear independence of
the measurement functionals v,,,. This allows us to characterize
stability as in Proposition 2.

Proposition 2 (Lipschitz Continuity of Tikhonov-Regularized
Least Squares): Consider the /5-regularized least-squares opti-
mization problem

min{ 2 ly (D2 + 2715}

in (14)

Moreover, consider two measurements y1,ys € RM and their
associated solutions of (14), fy,, fy, € f2. Then, one has that
/O

m
max ||Y1 - y2||2

—_— 15
me{1,2,...,M} Opy + 2A (as)

||fY1 - fYQ HH <
and the reconstruction map S : y > fy is Lipschitz continuous.
Here, {0, }M_, is the set of eigenvalues of the matrix H.
Proof: Consider (13) and (10). Then,

ny1 - f)“z”?—[ = (fy1 - fyz)TH (fyl - fy2)

A
_ Tp__ >  pT _
(y1—y2) (A + 221d)2 (y1—y2)

Om

< T m”)ﬁ —ya2l3, (15
where P is the orthogonal matrix of eigenvectors of H such
that H = PAPT and A is the diagonal matrix containing the
eigenvalues of H. |
Of particular interest is how the bound (15) scales with respect

to the measurement functionals v,,, and their Gram matrix H for

a given regularization parameter A. For instance, if we consider
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Fig.2. Dependence of f = Jy/(v) on the vector of coefficients a, with v = a[1]v1 + a[2]va. The norm of the vector of coefficients is encoded in the intensities.
Here, X = (R3, || - ||p) for p € {1.25, 1.5, 1.75}, the measurement operator v : R3 — IR? is composed of two £2-normalized random measurement vectors v

and vz, and a regular (32 x 32) grid of a in [—1, 1]2 is explored. .

0.4 T T I
Lipschitz constant from (15)

1/ ming, {o\/om}

0.3 -

Fig.3. Lipschitz constant in (15) compared to experimental values of ||fy,, —
fyall2/lly1 — y2||2 for £2-regularized least-squares problems with A = 1 and
U = ov, where v : R3 — R? has random-normal entries.

a measurement operator = ov, we see that the Lipschitz
constant in (15) decays as 1/ min,,{o/o,} for ¢ — oco. In
other words, stability is ultimately regulated by those changes
to which v is least sensitive. The behavior of the bound with
respect to o as well as empirical results are portrayed in Fig. 3,
together with the expected asymptotic behavior.

As expected, in (15) we see that increasing the regular-
ization parameter A will result in more stable solution maps.
However, doing so will also increase the bias of the resulting
algorithm—c.f. (13)—negatively affecting performance. Our
results throughout the paper aim to compare the stability of
algorithms once all parameters have been selected to obtain the
best achievable performance.

To summarize, ¢» regularization (and, in general, Tikhonov
regularization in any Hilbert space) leads to a unique solution,
with a solution map that is globally Lipschitz continuous. Al-
though Proposition 2 only covers least-squares problems, we
shall see in Section III that this remains true for any other strictly
convex data-fidelity term.

B. {1 Regularization and Sparsity

Variational image reconstruction driven by sparsity-
promoting regularization using the ¢; norm is supported by the
theory known as compressed sensing [18], [19]. The optimiza-
tion problem

min ||f]]; subjectto ||Af —y|ls <o (16)
feRN

has for solution the sparsest vector within the constraint set
Co ={f e RV : ||Af —y|2 < o}, provided A fulfills some
rather strict conditions, namely, the restricted-isometry property.
The minimization in (16) is portrayed in Fig. 4, where the radii
of the ¢5- and ¢;-norm balls are increased until they meet the
boundary of C,,. In that example, the /1 -norm minimization does
indeed lead to a sparse solution. Although this analysis relies on
the constrained formulation in (16), the effect of the £1-norm on
the set of solutions of the corresponding regularized formula-
tion is effectively the same [15, Remark 3.3]. This regularized
formulation corresponds to (7) when p = 1.

The same restricted-isometry property that guarantees a
unique, sparse solution to (16) also provides the Lipschitz
stability [18] of that solution with respect to variations in the
measurements. In particular, when A is composed of linearly in-
dependent measurement functionals, as assumed in Theorem 1,
it can be shown that there exists a constant K € R such that

1y, —fy, ll2 < Ksllyr — 22 (17)

The caveat, however, is that it is challenging (or impossi-
ble) to obtain or bound the constant K for specific practi-
cal problems. Because compressed sensing is formulated for
finite-dimensional spaces, norm equivalence, together with (17),
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Fig. 4. Pictorial representation of the solution to ming p ~ ||f||, subject to
|Af —y|2 < oforp € {1,2}. Here, A € R2 and f = (fy, fz) € R2. The
solution is unique both for p = 1 and p = 2, while the ¢; penalty leads to the
sparse solution, indicated by a star.

TABLE I
CONTINUITY BOUNDS OBTAINED ON THE STABILITY OF SOLUTIONS TO
£,-REGULARIZED INVERSE PROBLEMS

2rp(Y))*PE,

p€(1,2) — < _
I = foally < E2 By, g
P-2[,\ 7T L
p= -1
PER) | gy~ fyall, < (Z) " v - vall§

imply Lipschitz stability, as initially described in (3) (8 = 1 and
Y = RM). In particular, the fact that ||f|; < K 2|/f|2 for any
f € RY and some fixed K2 € R implies that K = K 2 K.

These attractive theoretical results, however, cannot be ap-
plied to many sparsity-based image-reconstruction algorithms,
particularly to those that fail to operate within the regime of the
restricted-isometry property. When this happens, one may be
faced with an infinite number of solutions of (16), as portrayed
in Fig. 5. Then, the corresponding regularized problem has to
be characterized by a version of the representer theorem that
is more general than the one we presented in Theorem 1 [39,
Section 4]. Indeed, the extended version contemplates Banach
spaces that are not strictly convex and the solution set is shown
to be the convex hull of a number of sparse extreme points. Note
that, under slightly more general conditions than the restricted
isometry property, weaker forms of stability than the ones we
are interested in can still be obtained for ¢; regularization [45],
[46].

III. STABILITY OF SOLUTIONS

In this section, we present our results for the general case of
¢, regularization with p € (1, 00). Because, as in the case of
{5 regularization in Section II-A, the analysis of the stability of
the solution is not particular to the finite-dimensional setting, we

£
K
‘/ .\ y
./ ~\
4 4 \\
[ohe =N
> N\
/
’
s N,
’1 W
s LN
2 VN .
. ' 1 ‘, -
N 1 . <
N [N fl
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N~ado=-77
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Fig.5. Same representation as in Fig. 4, but for another linear operator. Here,
the 1 penalty leads to a problem with infinitely many solutions. In particular,
the solution set contains an entire edge of the £1-norm unit ball: the convex hull
of {(0,1),(1,0)}. This generalizes well to the infinite-dimensional sparsity-
promoting regularization setting, see [35].

directly expose it for a (potentially infinitely-supported) discrete
signal f € £,. We study the problem

;gieg{E(y,v(f)) + A7} (18)
with & € R, under the following assumptions:

1) the data-fidelity term E : R™ x RM — R, is lower-
semicontinuous and strictly convex in its second argu-
ment;

2) the data-fidelity term E is differentiable in its second
argument, and the gradient V ;{ E(y, v(f))} is Lipschitz
continuous with respect to changes in the measurements
y with constant K, for any f;
the measurement operator v is composed of M linearly
independent functionals {v,, }}_; asin (4).

We now discuss our main results (Theorems 3 and 4), which
are summarized in Table 1. The proofs are deferred to their more
general cases (Theorems 11 and 12), which cover the case of
L, (£2) function spaces.

3)

A. Holder Continuity for p € [2,00)

The case of p = 2 has been discussed for least-squares prob-
lems in Section II-A. There, we proved Lipschitz continuity of
the solution using a Hilbert-space analysis (see Proposition 2).
Our result here extends this claim for p = 2 to any E that fulfills
(A1) and (A2).

Theorem 3 (Holder Continuity of £,-Regularized Linear In-
verse Problems, p € [2,00)): Consider the variational problem
(18) with p € [2,00) and assume that (A1)—(A3) are fulfilled.
Then, for any given measurement y € R, (18) has a unique
solution fy € ¢,,. Moreover, it holds that

?W2K,

1
P 1
|| 7T 19
» > ly1=yells7, (19

Vs = Foalle, < (

for any two y1,y2 € RM,

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on February 07,2023 at 16:39:47 UTC from IEEE Xplore. Restrictions apply.



The exponent = 1/(p — 1) in (19) characterizes the con-
tinuity bound of Theorem 3. In particular, this exponent takes
unit value for p = 2, which indeed leads to Lipschitz continuity,
cf B)withg =1andY = RM Forp > 2, the result is weaker
because, in the low-noise regime where ||y; — y2||2 — 0, the
bound on || fy, — fy, ¢, gets larger as p increases. The change
of the type of continuity result for different values of p is an
unexpected result. One might think that this is caused by the
mismatch between the norms used in either side of (19). How-
ever, because all norms are equivalent in the finite-dimensional
space of measurements R | the exponent in (19) holds for every
other norm in R and the choice of any other specific norm
would simply be absorbed by the preceding constant.

The term K, that appears in the leading constant of the
bound characterizes the role of the data-fidelity term E on the
stability of the solution. Most importantly, and as opposed to
what happens in (17) with compressed sensing, all terms in the
bound of Theorem 3 can be computed or bounded in practical
applications. In particular we evaluate our result in Section III-C
in the case of /,,-regularized least-squares problems, where K,
is tied to the norm of the measurement operator v.

B. Local Lipschitz Continuity forp € (1,2)

Now, we turn to the case p € (1,2) which describes the con-
tinuous bridge between sparsity-promoting regularization and
Tikhonov regularization. Our mathematical treatment requires
one additional assumption

1) There is_at least one f where the data-fidelity term

E(y,v(f)) is continuous with respect to its first
argument y.

Theorem 4 (Local Lipschitz Continuity of {,-Regularized
Linear Inverse Problems, p € (1,2)): Consider the variational
problem (18) with p € (1,2) and assume that (A1)-(A4) are
fulfilled. Then, for any given measurement y € R, (18) has
a unique solution f, € £,. Moreover, for any compact set Y C
RM | there is a constant 7,(Y) € R such that

Q2rp(Y)*?

K
||fY1 _f)'2||€p < )»p(p—l) p”yl _y2||27

for any two measurements y;,y2 € Y.

We thus recover again Lipschitz continuity for p — 2, for
which the bound coincides with the one in Theorem 3. For p €
(1,2), we achieve Lipschitz continuity, albeit only locally in
the space R™ of measurements. Assumption (A4) guarantees
the existence of the constant r,(Y"). We defer to Section IV
the establishment of an easy-to-evaluate upper bound for this
constant.

C. !lp-Regularized Least Squares

Regularized least squares, where the data-fidelity term F is
given by (12), is popular in many applications. In this section,
we choose £,-regularized least squares to illustrate our findings
expressed in Theorems 3 and 4. For this scenario, (A1) and (A4)
hold due to the the properties of the /5 norm in finite-dimensional
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spaces. For (A2), we have that F is differentiable with gradient
E'(y) =V {E(y.v(f)} =v'vf-y),

where v* : RM — ¢, is the adjoint of the measurement operator
v, with ¢ = (1 — 1/p)~L. Thus,

E'(y1) — E'(y2) =v*(y2 — y1)

and, therefore,

Kp = [Vllze,,ra) := sup 7”1/”)”27

ret, Sl
where || - ||z, , Ry is the norm of an operator from £, to RM,
For a generic value of p, this norm might be challenging to
compute or approximate. However, if p is between two values for
which we know how to compute it, we can use the Riesz-Thorin
theorem to bound it from above. For instance, for p € (1,2) and
0, = (2 —2/p), we obtain that

1-6 0
||V||L(ZP,RM) < H’/Hg(glp’]RM)||VH£IEK27]RM)-

1) Revisiting {s-Regularized Least Squares: For (s, as for
any other Hilbert space H, we have that

max
me{l,...,M}

VOm,

||V||£(£2,RM) =

where o, is defined with respect to the Gram matrix H asin Sec-
tion II-A. Therefore, for p = 2, the bounds in both Theorems 3
and 4 evaluate to

\/O
||fY1 7fY2Hf2 < max 7m||y1

20
me{l,....M} 2\ (20)

- yall2.
This bound is consistent with (15), but looser. In particular, it
does not take into account the assymptotic regime visible in
Fig. 3, where the norm of the measurement operator dominates.
Instead, it characterizes (18) in the strongly regularized regime
that corresponds to large A. We verify this insight providing in
Fig. 6 a visual comparison of (15) and (20) in terms of A. This
relative behavior is not surprising because Theorems 3 and 4
do not exploit the linearity of the Riesz map, which leads to
the closed-form solution (13) and, thereby, to a more nuanced
understanding of the effect of the norm of the measurement
operator on stability. Here, we note that the behavior observed
in Fig. 61s to be expected: increased regularization leads to more
stable solution maps. However, the value of the regularization
parameter X still needs to be tuned to obtain the least error, not
the most stable reconstruction map.

2) Local Behavior of {-Regularized Least Squares for p €
(1,2): Asexample of the local behavior ruled by Theorem 4, we
now discuss (A4) in more details and exemplify the local con-
stant 7, (V) when Y is the closed ball Y = {y € RM : ||y] <
p}. Essentially, r,(Y") bounds the norm of the optimal solution
and (A4) provides a (loose) bound based on the continuity of
the overall cost function at f (see Section IV).

Because the least-squares data-fidelity term is continuous for
any [ € {,, we may choose f =0 for simplicity. This results
in 7,(Y) = (p?/21)/? and, thus, Theorem 4 implies, for p €
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0.5 T I I I I I I I I
\ | = == £p-space bound in Theorems 3 and 4 for p = 2
Hilbert-space bound in (15)

Fig.6. Lipschitzconstant derived in (15) compared to (20), the bound obtained
in Theorems 3 and 4 for p = 2, in terms of the regularization parameter . € R ..
The experimental values are as in Fig. 3.

(1,2) and for y1,y2 € Y as above, that

||f)’1 - fy2||ep
lyr — y2ll2

D

.
< <2P1p2> ! #
- A Ap(p —

1) ||VHL(eP,JRM)~

IV. MATHEMATICAL FORMALIZATION

We adopt a functional formulation to prove the results of
Theorems 3 and 4 in full generality. The interested reader who
would not be acquainted with the terminology is referred to
Appendix A, which includes a curated selection of definitions
and discussions.

We start by formalizing our assumptions and statements with
respect to the optimization problem

min {E (y,v(f) + /17, o)}

2D
FELy(Q)

which generalizes the analysis to function spaces L, (£2) over a
domain  C R?. The choice of a countable or finite Q equipped
with the counting measure particularizes (21) to either (2) or
(18), respectively.

Similarly to the relationship between (1) and (2), (21) can be
seen as the synthesis formulation of the reconstruction problem

; > p
jefin g, VB D) + ALY}

where the regularization operator L is invertible, f = L f , and
v = U o L™L. This type of variational problem has been used, for
example, for spline-based interpolation and approximation [47],
[48], [49], [50], [51], inverse diffusion [52], [53], and inverse
scattering [54].

In Sections IV-A and IV-B, we present results that are instru-
mental to complete our proofs.

A. Abstract Characterization of Stability in Variational
Inverse Problems

Let us consider the generic optimization problem

min J(y, f),

feaxr (22)

with a cost functional J : RM x X’ — R. We assume here
that the optimization is performed over a Banach space X’
with a predual X, in accordance with a more general version
of Theorem 1 (see [39]). However, this does not impact the
applicability of the results in this section to (21) because L, (£2)
spaces are reflexive. For the cost functional .J, we assume that
1) for any given y € R, there is a unique solution fy to
(22). Thus, the solution map S : RM — X’ withy +— fy,
is well defined.
2) The cost function .J is differentiable through its second
argument, and there is a constant & > 0 such that, if

eij = Vy{J(yi, f)} (fy,) € X" fori,j € {1,2},
(23)
we have that, for any y;,y, € RM,

llers —ez1llar < Klly1 — yalf2- (24)

3) There is a subset Y C R™ and constants o > 2 and
C(Y) € R such that

(€11 —e12, fy, — fy2>x//x;r/ > CY)fy — fyall%
(25)
forally;,yo €Y.
Theorem 5 (Local Hélder Stability of (22)): Consider the
variational problem (22). Assume (B1)—(B3) are fulfilled. Then,

K
Vs — Fyall < (C(Y))

forall y1,y2 € Y, and S is Holder continuous on Y.
Proof: From the optimality of f,,, we have that e; ; = 0 for
i € {1, 2}. Then, we have that

CY)fy, = fyall% < (e21 = €22, fyr = fya)pmnr 27
< ez —ezzllarllfy, = fyallar (28)
= [le2n —evallarllfy, — fyallae (29)
< Kly1 = y2ll2llfy, = fyallar, (30

where (27) makes use of (25), (28) follows from the duality
bound in Definition 17, (29) is obtained from e; ; = €22 = 0,
and (30) makes use of (24). The statement (26) then follows
readily by rearrangement of the terms above. |

Remark 6: The a-uniform convexity of J with respect to f
implies (B3). (See [55] for an extensive treatment of uniformly
convex functions, and particularly Corollary 3.5.11 for a detailed
account of equivalent conditions.)

_1_
o

L L
ly1 —yells™" (26)

B. Growth of the Gradient of L, Regularizers

In our proofs, we need to verify that (21) fulfills (B3). To do
so, we rely on two results on the gradient of the regularizer in
(21), namely, on the gradient of the pth power of the L, norm.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on February 07,2023 at 16:39:47 UTC from IEEE Xplore. Restrictions apply.



In order to simplify the notation, we introduce a useful function
in Definition 7.

Definition 7 (Gradient of the Ly, Regularizer): Let g, : R —
R be such that

gp(z) = sign(x)|x[P~! for any € R. 31)

Here, sign(z) = z/|x| forx € R\ {0} and sign(0) = 0.
Then, the gradient of the L, regularizer evaluates to

VA, Y = ploso )

Remark 8: Since g, o f is proportional to the differential of
a functional defined on L, (Q2) at f € L,(£2), we have that g, o
f € Ly(Q) forany f € L,(2) (see also Remark 23).

Together, Proposition 9 and Lemma 10 characterize the func-
tionin (31) for p € (1, 00). First, a known result [56] bounds the
growth of g,, for p € [2, 00).

Proposition 9 (Growth of g, for p € [2,00) [56]): The func-
tion g, in Definition 7, for 2,y € R and p € [2, 00), satisfies
that

(9p(z) — gp () (x — y) = 2°P|lz — yP. (32)

Second, we show that g, also grows controllably for p
(1,2).

Lemma 10 (Growth of g,, for p € (1,2)): The function g, in
Definition 7, for z,y € R and p € (1, 2), satisfies that

gp(x) = gp(y) = (p— 1) 2" 2 (x —y) (33)

for some z < |z| + |y|.

Proof: Note that g, is a differentiable function in R \ {0},
with derivative g/, (z) = (p — 1)[z["~2.

If xy > 0 (i.e., x and y have the same sign or one is zero), then
(33) corresponds to the statement of the mean-value theorem
with z € [|z|, ly|] and, thus, z < |z| + |y|.

If xy < 0, assume without loss of generality that x > 0 > y.
Then, by applying the mean-value theorem twice (once between
2 and 0, and once between 0 and y), we obtain that

2 y),

with 21 € [0, |z[] and 2 € [0, |y[]. Then, let & = - and note
that

Ag, = gp(x) - gp(y) =(p-1) (Z]f_Qa? —z

&

Ag, = (p— 1)(zf72a + 2572(1 _

a)) .

(z —y).

Because o € [0, 1], we know that & € [z~ 2, 22~ %]. Then, by the
intermediate-value theorem applied to the continuous function
x + P2, we know that there is a point z € [21, 23] such
that 2P~2 = &. Furthermore, we have that z < maX;ec(1,2) 2 <
|| + [yl

C. General Statements and Proofs

We are now equipped to present the generalizations of Theo-
rems 3 and 4 to (21), together with their proofs. In both cases,
the proof has the same structure. First, Theorem 1 guarantees
(B1) due to the properties of the L,,(£2) spaces and assumptions
(A1) and (A3). Second, (B2) follows because F has a Lipschitz-
continuous gradient (A2) and the regularizer does not depend
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on y. Finally, we show that (B3) is fulfilled by exploiting the
characterization of g, in Section IV-B. Then, because (B1)—~(B3)
are fulfilled, we can apply Theorem 5. Note that

Vildy, N} =ViH{Ey,v(f)} +rpg(f),

where g,, is applied pointwise.

Theorem 11 (Hélder Continuity of L,,-Regularized Linear In-
verse Problems, p € [2,00)): Consider the variational problem
(21) with p € [2,00) and assume that (A1)—(A3) are fulfilled.
Then, for any given measurement y € R, (21) has a unique
solution fy € L,(€2). Moreover, it holds that

(34)

1
=2\ p-1 1
N N e I

for any two y1,y2 € RM.

Proof: Because X = L, () is a strictly convex space and
because ¢ : z — AxP withA € R isstrictly convex, Theorem 1
tells us that (A1) and (A3) imply that (21) has a unique solution
fy and, thus, that (B1) is fulfilled. Assumption (A2) implies that
(B2) is fulfilled with constant K.

Now, we show that (B3) is fulfilled using Proposition 9.
Because E is convex in its second argument, we have that
(VAE (D)} f) — VAEE (D)} fya). fyy —
fy2) LoxL, = 0, and using the decomposition (34) for both e; 1
and eq o, we obtain that

<6171 —€1,2, fy1 - fy2>Lq><Lp >

)‘p<gp(f}’1) - gp(fYQ)v fy1 - fy2>Lq><Lpa
(35)

where L, () is the Lebesgue function space that identifies with
the dual of L,(£2) (see Example 16), with ¢ =1/(1 —1/p).
Thus, applying Proposition 9 pointwise, we obtain that

<61,1 — €1,2, fY1 - fY2>Lq><Lp > )‘p227prY1 - f}"z”ip

and (B3) is satisfied with a = p and C(Y) = C = Ap2>7P.
Thus, Theorem 5 applies and the proof is complete. |

Theorem 12 (Local Lipschitz Continuity of L,-Regularized
Linear Inverse Problems, p € (1,2)): Consider the variational
problem (21) with p € (1,2) and assume that (A1)—(A4) are
fulfilled. Then, for any given measurement y € RM, (21) has
a unique solution fy € L,(£2). Moreover, for any closed and
bounded set Y C RM™ of measurements, there is a constant
rp(Y) € Ry such that

(2rp(Y))*PK

Il fy, = fyallz, < Ly = y2ll2,
| Y1 )’2H P )»p(p—l) H

for any two y1,y2 € Y.

Proof: By the same arguments as in the proof of Theorem 11,
(B1) is fulfilled, (21) has a unique solution f,, and (B2) is
fulfilled with constant k.

Now, we use (A4) and Lemma 10 to show that (B3) is
fulfilled. Consider f € L, (€2) and recall that (A4) specifies that

E(-,v(f)) is continuous. Then, it holds that

)‘ny”ip(g) < E(Ya”(fy)) + )‘”fyHip
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< max J(y, f),
yey

(36)
forally € Y. Thelasttermin (36) is finite because Y is compact
and the Weierstrass extreme-value theorem applies. Therefore,
there is 7,(Y") € Ry such that, foreveryy € Y,

1 follz, o < 7p(Y) < (max J(y, F)/2) "

ma (37)

We now combine (37) with Lemma 10 to show that (B3) is
fulfilled. For any two given y1,y2 € Y, let

* {=fyul + | fyal € Lp(2);

* ¢g=1/(1—1/p), the index of the L,(2) space that iden-
tifies with the dual of L, (£2);

* B=p2-p)/%

e t=2/(2—p)ands=2/p=1/(1-1/t).

Then,

2
P

s = Srall, = ([ 850 = falPan)

_f »
< (HgﬁHLt ‘fY1 ngy2| ’L)

= H§||2L;p/9'£p72(fy1 - fyz)2d,u

o @r())r
<
(2rp(Y))*?
Ap(p —1)

(38)

<g(fy1)_g(f)’2)7fy1 _fy2>Lq><Lp (39

S <el,1 761,2;fy1 7fY2>Lq><L,,’ (40)

for any e; 1, eq,2. Here, pu represents the Lebesgue measure on
R?. In (38), we use that 1/t + 1/s = 1 and apply the Holder
inequality for L;(£2) and L4 (€2). Then, in (39), we use Lemma 10
pointwise and apply (37). Then, in (40) we conclude, using (35)
and the fact that F is convex in its second argument. Thus, (B3)
is satisfied with a« =2 and C(Y) = Ap(p — 1)(27,(Y))P~2
Thus, Theorem 5 applies and the proof is complete. |

V. CONCLUSION

We have shown that £,-regularized strategies with p € (1, c0)
in linear inverse problems have good stability properties. The
strongest guarantees are those given by Tikhonov regularization
in Hilbert spaces (¢ regularization), for which the reconstruc-
tion map is globally Lipschitz continuous. For p € (1,2), the
reconstruction map is still Lipschitz continuous, albeit only
locally in the space of measurements R . For p € (2, c0), the
reconstruction map is globally 1/(p — 1)-Holder continuous.
Thus the stability claim is stronger for p closer to 2. To the
best of our knowledge, our bounds are currently the strongest
stability results for ¢, regularization for p € (1, 00). That said,
we have not yet investigated the tightness of our bounds for the
different regimes, and the option of improved bounds for p # 2
remains open.

APPENDIX A
MATHEMATICAL PRELIMINARIES

Here, we give a digest of the technical definitions and results
that are most relevant to our work.

Definition 13 (Banach Space): A Banach space &’ is a vector
space with norm || - || ¥ for which it is complete.

A Banach space is also a complete metric space, as its norm
defines a distance d: X x X — R, via d(f1, f2) = ||f1 —
fallx for any two f1, fo € X. In turn, this distance defines an
associated topology—open sets and convergence are defined in
terms of the distance d. The completeness must be understood
with respect to the distance d, so that Cauchy sequences in the
sense of d must converge in X'. Banach spaces are instrumental
to our work.

Definition 14 (Hilbert Space): A Hilbert space H is a Banach
space with an inner product (-, -}y : H x H — R. Its norm is
induced by the inner product as ||¢|| := \/{p, @)y for any
p €€ H.

Hilbert spaces are simpler special cases of Banach spaces, in
the sense that many of the properties from finite-dimensional
Euclidean spaces apply. The inner product (-, -)3 allows us to
quantify the alignment between two vectors. Specifically, one
can define an angle 6 between two vectors ¢1, w2 € H by

COS(@) _ <9917902>H 7
e llallpall
even when these vectors in H may be infinite-dimensional.
Definition 15 (Continuous Dual of a Banach Space): The dual
space X’ of a Banach space X’ is the vector space formed by all
linear and continuous functionals v : X — R. The correspond-
ing values v(f) are often expressed in terms of the bilinear
form (the duality product) (-, )xxx : X’ x X = R given by
(v, farxx :==v(f). The dual space X’ is, in turn, a Banach
space, when equipped with the operator norm

‘<V7 f>X’><X|
sup o ro
fexvoy  Ifllx

Example 16 (L, () is the Dual of L,(Q) withq = p/(p — 1),
p,q € (1,00)): The concept of a dual vector space can be made
more concrete by identifying it with another vector space. Most
relevant to our work is X = L, (). Then, the Riesz theorem
asserts that every v € X’ can be expressed, Vf € X, as

(v, Flarxa = /Qf/fdﬂ

for some 7 € Ly(9), and [|v||x = [|7| 1, (). Because of this
one-to-one isomorphism, we abuse the notation and write that
X' =L4(2) and 7 = v. This is common practice but it is to
handle with care, as these are different mathematical objects.

Proposition 17 (Duality Bound): Forany v € X’ and f € X,
one has that

(41)

vl = (42)

[, Pl < [lvllal fllx,

which is called the duality bound. This bound is sharp for any
dual pair of Banach spaces (X, X”).

Proof: The duality bound follows immediately from (42).
Sharpness is a corollary of the Hahn-Banach theorem. ]
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The duality bound generalizes the Cauchy-Schwartz inequal-
ity in Hilbert spaces

[{o1, p2)u| < leillullozlla, Yeor, 02 € H.

The Cauchy-Schwartz inequality is saturated by parallel vec-
tors, corresponding to | cos(f)| = 1 in (41). Analogously, it is
worthwhile to identify the set of dual vectors that saturate the
duality bound for a given vector v € X.

Definition 18 (Duality Map): The duality map is the set-
valued map Jy : X = X' given by

[Vl = [ f1[x and }
W, Nlax = IVl fle f°

As we have seen in Theorem 1, the duality map characterizes
the set of solutions of the variational problems in Banach spaces
that take the form (5). For strictly convex Banach spaces X, the
duality map is single-valued.

Proposition 19 (Duality Map in Lq(Q), ¢ € (1,00) [57,
Corollary 4.10]): The duality map for X" = Ly(2) with ¢ €
(1, 00) is single-valued and given by

jx(f):{’/exli

i
= e e
L‘Z

T (V) 43)

where the absolute value | - | and sign(-) operators are applied
element-wise.

The finite-dimensional discrete equivalent of (43) was imple-
mented to obtain the visualizations in Figs. 1 and 2. There, we
see that the effect of the duality map for X’ = ¢, resembles
the behavior that we expect from ¢,-norm regularization in
variational problems for 1/p 4+ 1/q = 1.

Definition 20 (Riesz Map and Hilbert Spaces): For a Hilbert
space X = H, the duality map Jx is single-valued. Further-
more, its inverse R = J, L' — H is called the Riesz map.
It maps a dual vector v € H' to its Riesz representer o € H,
such that

<Vaf>7-[’><7-l = <’;af>7-[

forall f € H.

This is the equivalent of the phenomenon described in Exam-
ple 16, but in Hilbert spaces.

Definition 21 (Reflexive Banach Space): A Banach space X
is reflexive if it can be identified with its bidual X"

The bidual space X" is simply the continuous dual of X”: that
is, it is formed of all the continuous linear functionals f : X' —
R. In particular, we can construct such a functional from any
f € & through the identity

<f7V>X”><X’ = <V7f>/'\,”><X,

which specifies the canonical embedding of X into X”. Al-
though not formally accurate in the same sense as Example 16,
this is usually denoted as X C X”. In reflexive Banach spaces,
it is in the same sense that X = X": all linear and continuous
functionals on X’ can be represented by an element of X’ through
the canonical embedding, which is then one-to-one.

For a general Banach space &', a more general version of
Theorem 1 (c¢f. [39]) restricts the choice of the measurement
functionals (of f € X”) by assuming that {v,,, }_, c X C &".
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However, this is not a limitation in reflexive Banach spaces
because X = X", which yields the formulation of Theorem 1
in this paper. In that more general version of Theorem 1, E and
1) are also not required to be strictly convex. Then, the solution
is no longer unique. Instead, the solution set is guaranteed to
be nonempty, convex, and weak*-compact. We include here the
definition of weak*-compact for completeness.

Definition 22 (Weak* Compactness): A weak*-compactsetin
the dual of a separable Banach space X isasetC C X" such that,
for any sequence {v,};; C C, there is a weak*-convergent
subsequence {v,,, }52 ;, meaning that

(Vnr,f>X/xX — <V, f>X’><X asr — o0

for some v € C and any f € X.

Weak* compactness is useful in variational theory because it
guarantees the existence of minimizers of certain cost function-
als using the generalized Weierstrass extreme-value theorem.
This makes the result in [39] more attractive, as the further
selection among the solutions of an initial variational problem
is made possible through variational techniques.

Remark 23 (Gradient of a Functional): The gradient of a
differentiable functional (in the Fréchet sense) J : X’ — R is
the map V.J : X' — X such that

I +5) = I() = (VI Flareae
|7l

This contextualizes the proof of Theorem 5, where we explic-
itly treat gradient and subdifferential values as elements of X”.
In the main body of the paper, we can avoid this explicit treatment
because of the reflexivity of the spaces being considered.

lim

£l —0
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