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ABSTRACT

We present a new fast active contour for images in 3D microscopy.
We introduce a fully parametric design that relies on exponential
B-spline bases and allows us to impose a sphere-like topology. The
proposed 3D snake can approximate blob-like objects with good ac-
curacy. The optimization process is remarkably fast. Our technique
yields successful segmentation results even for a challenging data
set where object contours are not well defined. This happens be-
cause our parametric approach allows us to favor prior shapes. This
work comes with a companion software that allows extensive inter-
actions between the end-user and our snakes through the intuitive
manipulation of the few control points that fully characterize them.

Index Terms— Active contours, segmentation, 3D, parameteri-
zation, microscopy.

1. INTRODUCTION

Three-dimensional (3D) active contours (a.k.a. snakes) are popular
segmentation tools in 3D biomedical images. They provide accurate
shape detection while enforcing object integrity. Implicit methods
based on a level-set formulation of the Chan-and-Vese problem have
been investigated extensively over the past decade [1]. Some effort
was invested to obtain semi-parametric approaches using simplex
meshes [2], and, more recently, 3D triangular meshes [3]. However,
fully parametric snakes still need to be worked out in 3D. In this
paper, we propose the first 3D spline-based parametric snakes for
the analysis of images in 3D microscopy.

We propose a continuous model of the 3D snake surface that is
parameterized by few control points by using exponential B-splines.
The framework is versatile. By contrast with most implicit tech-
niques, it allows one to impose prior-shape constraints to the snake.
In particular, we propose a model for outlining ellipsoidal objects
and sphere-like closed surfaces that are often met in cell biology.
This is an extension to 3D of the work in [4] whereby the spline-
based parameterization allows us to derive a fast algorithm. This
is crucial for biological applications such as cell tracking in time-
lapse sequences of 3D images, which produce tremendous amounts
of data. We have investigated the efficiency of the proposed ap-
proach with the analysis of several sets of real microscopic images
and demonstrated real-time performance.

The parametric approach for the design of 3D snakes also allows
us to design a novel type of semi-automatic 3D segmentation scheme
in which user interaction plays an important role. Because the snake
is fully parameterized by only few control points in space, the user
is able to easily guide and modify the snake by interacting with an-
chors in dedicated 2D and 3D image views which also feature a live
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Fig. 1. Rendering of the snake surface.

display of the snake. This ability is precious for busy biological envi-
ronments which may require user input and feedback. The software
implementing our techniques is provided as an open-source library
in an effort to provide useful tools to the bioimaging community.

2. 3D SNAKE MODEL

We define our 3D model for a snake as a closed parametric sur-
face o (u,v), where u and v are arbitrary continuous parameters.
The bivariate coordinate functions z(u,v), y(u,v), and z(u,v)
are efficiently parameterized by linear combinations of suitable
basis functions and an arbitrary sequence of vector control points
{c[i,j]}i,jez. Among all possible bases, we focus on those de-
rived from the tensor product of a compactly supported generator
¢ : R +— R and its integer shifts {¢(- — k) }rez. This allows us
to take advantage of the availability of fast and stable interpolation
algorithms [5]. Then, the parametric representation of the surface is
given by the vectorial equation

cwv)= 3 3 eiile(Mu—i)e(Mv—35), 1)

i=—00 j=—00

where ¢ determines the shapes the parametric surface can adopt, and
the integer M fixes the degrees of freedom of the model.

Using an earth simile for our sphere-like snake, the curves that
are obtained when fixing the second parameter in (1) correspond to
the circles of latitude shown in Figure 1. Formally, the functions
v, (u) = o(u,vo) for all vg have to be periodic in u in order to
generate closed curves. In order to satisfy this condition, it is nec-
essary to apply periodic boundary conditions along the first index
of the sequence of control points. Therefore, the sequence of co-
efficients becomes M -periodic and satisfies c[i, j] = c[i + M, j].
For simplicity, in (1) we normalized this period to be unity. Under
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these conditions, we can reduce the first infinite summation in (1) to
a finite one involving periodized basis functions as

M—1 oo

LOED DY

1=0 j=—o0

cli, jl om (M u — i) (M vo — 5),  (2)

where o () = > 07 (- — M n) is the M-periodization of ¢.
This reorganization of the terms is computationally efficient [6].

Using this model, o, (u) can approximate any closed curve as
accurately as desired by increasing the value of M [5]. We choose ¢
to be the basis function made of exponential B-splines we designed
in [4], with
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It has a quadratic approximation rate, allows the snake to perfectly
replicate elliptic shapes, and the size of its support is the shortest pos-
sible to satisfy this two conditions [6]. This results in a maximally
efficient scheme.

Moreover, following our earth simile, the curves that are ob-
tained when fixing u in (1) correspond to meridians. Formally, the
curves o, (v) = o (uo, v) originate at the north pole ex and end at
the south pole cs. Therefore, 6, (0) = ex and 0y, (1) = cs. By
convention, the parameter range is normalized to lie within [0, 1].

It has been shown that, under the appropriate boundary con-
ditions on o, (v), the parameterization of the poles of a pseudo-
sphere is well defined [7]. In our case, it is necessary to impose
conditions on the vector coefficients. This is solved by identifying
all control points at the extreme of the parameterization with a mul-
tiplicity equal to the length of the support of ¢, so that

c[ilv‘j] = 0[07.7] = 0[17]}
C[M - 17j] = C[Mvj] = C[M+ Lj] vi. (3

CN =

Cs =

Finally, we can rewrite the complete parametric form of our
snake using (2) and (3) as

M-1 M—-2

ST clivlear(Mu—i) (Mo — j)

=0 j=2

o(u,v) =

+es Y (M (v—1)—j), )

j=—1

which leaves a total of M (M — 3) + 2 free control points.
As the parameterization of our snake is explicit, it is straight-
forward to perform a pointwise analysis on its surface. To do so,
do

we define tangent planes by their tangent vectors T,, = 32 and

T, = g—:. Then, the normal vectors to the snake are n = T, A T,,.
Note that these normal vectors are all pointing either inwards or out-
wards, depending on the initialization.

3. FAST ACTIVE CONTOUR OPTIMIZATION

3.1. Image Energy

Active contours are driven by an energy function that determines the
quality of the segmentation. Often, traditional snakes rely on edge
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maps to guide them. The most popular approach is based on the
magnitude |V f|| of the gradient [8]. Mathematically, they minimize

B = — # IV 7] ds,
S

where the integration is performed on the closed surface S of the
contour. The major drawback of this approach is that the snake get
distracted by nearby targets.

We solve this issue by remembering that our goal is to segment
a closed volume. The parameterization (4) offers us the opportunity
to choose the orientation of the normal vectors at initialization time.
From now on, and without loss of generality, we assume it to be
outwards. When the energy reaches its minimum, we expect the
directions of the image gradients to be the same as the directions of
the normal vectors. Assuming that we want to segment a dark object
surrounded by a brighter region, we finally propose the following
image energy:

Egrad - — % Vf -dS = — #g (Vf H ||> ds. (5)

A similar scheme was proposed in 2D in [9], where it was shown that
energies defined by an integral over the boundary of a snake can be
expressed as an integrals over the region enclosed by the snake. This
allows for the easy combination of energies based on edge maps with
region energies. In particular, (5) can be rewritten using the Gauss
(or divergence) theorem as

Egraa = /// div(Vf) dV = // —Af dV, (6)

where V' is the volume enclosed by S, and fa can be precomputed.

3.2. Efficient Implementation

The computational cost of the evolution of the snake is dominated
by that of the volume integral in (6). An efficient way to implement
these operations is the use of pre-integrated images. By the Gauss
theorem, we rewrite the volume integral as the surface integral

///VfAdV:%[é f4dz Ada,

where fX(z,y,2) = f_yoo fa(x,7,2z)dr. The use of the Gauss
theorem to rewrite volume integrals as surface integrals reduces the
computational load dramatically. This can only be achieved if the
surface is defined continuously, like in (1).

Since the number M (M — 3) + 2 of parameters that define the
snake is relatively small, the optimization can be efficiently carried
out by Powell-like line-search methods which require the derivatives
of the energy function with respect to the parameters (i.e., the knot
coefficients), and converge quadratically to the solution.

3.3. Semi-Automatic Segmentation with User Interactions

Our 3D segmentation technique has been programmed as an open-
source plugin for the multi-platform software ICY [10] and is avail-
able on the official plugin repository.

By contrast with many other implicit and global parametric
snakes, only a few control points are sufficient to fully parameterize
our proposed snake, which eases the interactions with the user. This
has encouraged us to develop a dedicated graphical user interface



Fig. 2. Segmentation of a cell in a 3D confocal image of a murine
brain (image courtesy of Sabine Scheibe and Sebastian Rhode at
TILL Photonics). Top-left: 3D view of the segmented glomeruli.
From left to right and top to down: snake at different z-axis posi-
tions of the 3D volume overlaid to the original 2D images.

that lets the user initialize the 3D snake position, and trim it even
after the optimization process. As illustrated in Figures 2 and 3, the
user can intuitively manipulate the position of any point by selecting
it in either the 2D or 3D mesh representations of the snake. The
2D view also provides 3D cues as we color the mesh depending on
the z-axis coordinate and set its transparency to match the distance
to the slide of the volume which is displayed. Editing the points is
performed with simple mouse actions. The live update of the 2D and
3D views of snake is very fast. This is due to the fact that the change
in one parameter affects the structure locally. Thus, just a limited
region of the snake surface has to be recomputed. As a result, a
fast and intuitive semi-automatic segmentation procedure that loops
between snake initialization, optimization, and correction, is made
possible.

4. EXPERIMENTS

We present two experimental setups. In the first one, we work with
synthetic data and perform an objective validation. In the second
one, we illustrate some real applications of our snake.

4.1. Accuracy

We generated 7 reference volumes (256 x 256 x 256) by voxelwise
sampling of the combination of two spheres of radius 50 pixel. We
illustrate these shapes in Table 1. They are parameterized with the
distance d, in pixel units, between the centers of the spheres. For
d < 0, the shape is built by the intersection of the two spheres. For
d > 0, the shape is built by the convex hull of their union. The
grayscale values of the images are 255 for the shape and O for the
background. We used the Jaccard similarity index J to measure the
performance of the snake.
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-30 0.92 0.92 0.91 0.91
—20 0.94 0.95 0.94 0.95
—10 0.95 0.97 0.96 0.97
0 0.94 0.98 0.96 0.97
10 0.90 0.97 0.96 0.96
20 0.88 0.89 0.93 0.92
30 0.85 0.93 0.93 0.93

Table 1. Jaccard similarity index of our snake for synthetic data.

In Table 1, we investigated the dependence of J on M and on the
distance d between the spheres. Our results show that the segmen-
tation performance is consistently very high: J ranges from 0.85 to
0.98, which demonstrates the ability of the proposed model to seg-
ment objects with an ellipsoidal-like topology. For compact objects
(d < 0), the models of low order (M = 4) provide a good approxi-
mation (J > 0.92) of the target object and a model of higher order
is not required. For elongated objects (d > 0), the use of a model
of high order is beneficial to the segmentation performance as the
increased degrees of freedom allow for an improvement up to 0.08
when M increases from 4 to 7.

4.2. Segmentation of 3D Confocal Microscopic Images
4.2.1. Cell-Body Segmentation

We processed a stack (576 x 504 x 200) of confocal (x60) images
from the brain cortex of a rat, with YFP labeling for the neurons and
GFP for the microglia'. The challenge was to accurately segment the
bodies of the neuronal cell despite their non-spherical shape, the lack
of clear borders, and the presence of several surrounding objects.
We set M = 7, roughly initialized the snake position around each
cell body as a sphere, and run the optimization process until conver-
gence. One example of resulting segmentation is shown in Figure 2.
It shows that the snake was able to adapt remarkably well to the 3D
cell shape: the surface is accurately fitted despite the limited degrees
of freedom of the model, while irregularities are properly smoothed
out. The optimization process took only 0.74 s, which is faster than
the duration of the acquisition of such data (usually much less than
1 Hz).

4.2.2. Segmentation of Glomeruli

We investigated the segmentation of olfactory glomeruli in the
mouse brain, that represent neuroglial functional units in olfac-
tory information processing [11]. With a Topro staining, glomeruli
correspond to the dark areas delimited by fluorescent cell bodies.
In Figure 3, they are visualized as bright areas with the inverted
look-up-table. However, the surrounding fluorescent cells do not
form continuous boundaries which penalizes nonparametric active-
contour as the snake may ‘leak out’ between the neighboring cells.
By contrast, we show in Figure 3 that the proposed snake method
(with M = 7) is able to accurately identify the glomerulus border.

Uhttp://www.cellimagelibrary.org/images/27155/
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Fig. 3. Segmentation of an olfactory glomerulus in a 3D confocal
image (256 x 256 x 67) of a mouse brain (inverted colors, image
courtesy of Lisa Roux at the College de France). Top-left: 3D view
of the segmented glomeruli. From left to right and top to down:
snake at different z-axis positions (z = 3, 10, 17, 24 and 31 pm) of
the 3D volume overlaid to the original 2D images.

This is an key advantage of the proposed method that allows one
to exert one an a priori control over the snake regularity and topol-
ogy through the design of the parametric model. Here again, the
optimization process was remarkably fast and lasted 1.74 s.

5. CONCLUSION

Our contribution in this paper is a new fully parametric snake with a
sphere-like topology built upon exponential B-splines, and an edge-
based energy functional capable of maintaing the consistency of the
segmentation in the presence of clutter. Our snake is characterized
by fewer control points than nonparametric snakes and can approxi-
mate any sphere-like surface with arbitrary precision. The modifica-
tion of one control point affects a limited region of the snake surface,
which results in intuitive interactions with the user. This is made
possible by a parameterization based on splines. We were able to
accelerate the implementation by taking advantage of Gauss’ theo-
rem, which was facilitated by the availability of explicit expressions
of our bases.

We have applied our snakes to a variety of problems that involve
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synthetic simulations, and challenging real datasets where the ob-
ject contours were not well defined. As a result, various experiments
have shown that the proposed 3D snake can approximate with good
accuracy blob-like objects. Moreover, the optimization process is
remarkably fast. It may consequently open the way to real-time ap-
plications.
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