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Spline-Based Deforming Ellipsoids for Interactive
3D Bioimage Segmentation

Ricard Delgado-Gonzalo, Nicolas Chenouard, and Michael Unser

Abstract— We present a new fast active-contour model (a.k.a.
snake) for image segmentation in 3D microscopy. We introduce a
parametric design that relies on exponential B-spline bases and
allows us to build snakes that are able to reproduce ellipsoids. We
design our bases to have the shortest-possible support, subject to
some constraints. Thus, computational efficiency is maximized.
The proposed 3D snake can approximate blob-like objects with
good accuracy and can perfectly reproduce spheres and ellipsoids,
irrespective of their position and orientation. The optimization
process is remarkably fast due to the use of Gauss’ theorem
within our energy computation scheme. Our technique yields
successful segmentation results, even for challenging data where
object contours are not well defined. This is due to our parametric
approach that allows one to favor prior shapes. In addition, this
paper provides a software that gives full control over the snakes
via an intuitive manipulation of few control points.

Index Terms— Active contour, active surface, parametric
snake, exponential B-spline, segmentation, parameterization,
microscopy, 3D, sphere, ellipsoid.

I. INTRODUCTION

CTIVE surfaces are effective tools for 3D image seg-

mentation. An active surface is a 3D generalization of
a snake (also known as active contour). It evolves from an
initial position, typically specified by the user, toward the
boundary of an object in a 3D volumetric image. Its evolution
is formulated as a minimization problem. The associated cost
function is called snake energy. Snakes have become popular
because it is possible for the user to interact with them, not
only when specifying its initial position, but also during the
segmentation process.

Many snake variants have been proposed utilizing different
types of surface representation and various energy terms.
Implicit methods based on a level-set formulation of the Chan-
and-Vese problem have been investigated extensively over the
past decade [1]. Some effort was invested to obtain semi-
parametric approaches using simplex meshes [2] and, more
recently, 3D triangular meshes [3]. A first approach to fully
parametric snakes named active geometric functions (AGF)
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was proposed in [4] using the variational framework and the
Mumford-Shah energy functional. Then, a refinement of the
AGF method was presented using polynomial B-splines [5].
Lastly, a spline-based parametric snake with a sphere-like
topology was proposed in [6]. This last model incorporated
special points that broke the smoothness and symmetry of the
model.

In this paper, we propose a generic 3D spline-based para-
metric snake. To the best of our knowledge, it is the first of
its kind where the topology can be constrained to segment
ellipsoid-like objects. It is well adapted to handle the quasi-
elliptical biological objects encountered in 3D microscopy.
Moreover, our scheme is flexible and can also deal with more
complex shapes.

Our snake surface is parameterized by few control points
and uses a special kind of exponential B-splines as basis
functions. Their most important feature is that they can be
made to perfectly reproduce ellipsoids. Moreover, they have
the shortest-possible support that is compatible with the repro-
duction of ellipsoids. Because they are also refinable, they
provide a good approximation of any closed surface with a
sphere-like topology in 3D.

Because speed is crucial for biological applications such
as cell tracking in time-lapse sequences of 3D images, which
produce tremendous amounts of data, we have designed edge
and region energies that admit a fast implementation due to
the use of pre-integrated images and Gauss’ theorem. We
have analyzed extensive sets of real microscopic images and
are reporting real-time performance. In addition, the spline-
based parameterization and, more precisely, the use of our
exponential B-splines, allow us to derive a fast algorithm
for image segmentation. We also propose a simple method
to detect self-intersection of the surface during the snake
evolution.

Our parametric snakes proposed here can be made fully
automatic. Meanwhile, they are also consistent with semi-
automatic segmentation scheme that allows for user-friendly
interaction. Because the snake is parameterized by only a
few 3D control points, the user is able to easily guide it
by interacting with anchors in dedicated 2D and 3D image
views. These views feature a live display of the snake and
provide feedback to the user. This ability is precious for
crowded biological environments. The software implementing
our techniques is given as an open-source library in an effort
to provide useful tools for the bioimaging community.

This paper is organized as follows: In Section II, we review
the general framework of parametric surface representations
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based on B-splines. Then, we formalize the mathematical
conditions that basis functions must satisfy to make the para-
metric surfaces suitable for segmentation. Next, we specify a
3D snake model with a sphere-like topology. Implementation
details such as energy functionals and discretization issues are
addressed in Section III. Finally, we illustrate the capabilities
of our snake with synthetic and real data in Section IV.

II. SPLINE SURFACES FOR OBJECT SEGMENTATION

In this section, we extend to 3D the representation of 2D
curves originally developed in [7]. Topology and smoothness
issues make the extension non-trivial.

A. Parametric Representation of Surfaces

We consider a parametric representation of a surface o («, v)
in 3D space that is described by a triplet of Cartesian coordi-
nate functions x (1, v), y(u, v), and z(u, v), where u, v € R are
continuous parameters. The two-dimensional functions x, y,
and z are represented by linear combinations of suitable basis
functions. Among all possible bases, we focus on those derived
from a compactly supported generator ® : R?> > R and its
multi-integer shifts {®(u —i,v — j)} j)ez2. The parametric
representation of the curve is then given by the vectorial
equation

o0 o u v
owv)= D, D, cijl® (71 —ig —J), (0
i=—00 j=—00

where {c[i, j] € R3}(ij j)ezz are the control points in 3D that
define the shape of the surface and where 71, T» € (0, c0)
are the sampling steps for each parametric dimension. We
denote by S C R? the set of points of the surface, and we are
especially interested in the case when S is a closed surface.

In view of the nature of the domain set defined by u and
v, a common strategy is to consider using tensor-products for
the construction of the base function ®. Then, the generator
can be written as

O (u, v) = p1(u) p2(v). (2)

This representation of closed surfaces has been studied
by several authors [8]-[10], albeit not in the context of
snakes. Various choices of ¢; and ¢ have been con-
sidered, such as polynomials, polynomial B-splines, and
trigonometric B-splines. This tensor-product decomposition
(2) allows one to take advantage of fast and stable interpolation
algorithms [11]-[13].

We define the tangent space at any point p = o (ug, vg) € S
as the vector space generated by the tangent vectors to S at p

d

T = 22 (u, )l wo.0) 3)
ou
oo

T, = E(M’D)HMO,UO)' “)

The tangent bundle is defined as the disjoint union of all
tangent spaces indexed by the points on the surface p € S.
The tangent bundle is said to be well defined if all tangent
spaces have their dimension equal to two—they must be
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planes. In this case, the surface S is said to be regular [14].
Requiring S to be regular implies that the surface should not
self-intersect or have any border. Loosely speaking, S should
locally look like a plane. Under these conditions, the vector
normal to S at p = o (1, vo) can be computed by

n=T; xTs, )

where x denotes the three-dimensional cross product.

B. Desirable Properties of Basis Functions for Segmentation

We now enumerate the formal conditions that our parametric
surface model should satisfy for the purpose of 3D shape
segmentation.

1) Unique and Stable Representation. We want our para-
metric functions x, y, and z to be uniquely determined
by a single sequence of coefficients {c[i, j ]}(,-, j)ez? for
all u,v € R. Furthermore, for computational purposes,
we ask this interpolation procedure to be numerically
stable, which require that there exist two constants 0 <
A < B < oo such that

A llelle, = llolir, = B lelle, (6)

for all ¢ € ¢, where o takes the form (1).

A direct consequence of the lower inequality of (6),
which is called the Riesz basis condition, is that the
equality >0 >0 eli, j1O(F — i, —j) =
0 for all (u,0) € R? implies that ¢[i, j] = 0 for
all (i, j) € Z*. Thus, the basis functions are linearly
independent and every function is uniquely specified by
its coefficients. The upper inequality ensures the stability
of the interpolation process [13].

It has been shown in [15] that, due to the integer-shift-
invariant structure of the representation, the Riesz basis
condition has the following equivalent expression in the
Fourier domain:

o0 o
A 2
a3 > ‘CD(a)1+27Ti,a)2+27Tj) <B
i=—00 j=—00
@)

for all (w1,wp) € R2, where ® denotes the two-
dimensional Fourier transform of ®. Once expressed
in the Fourier domain, the Riesz condition provides
a practical way to verify whether a given generating
function ® satisfies (6) or not.

Given the fact that ® is built from the tensor product
of the two one-dimensional functions ¢; and ¢», a
sufficient condition to satisfy (7) is to require ¢; and ¢»
to be valid Riesz generators. In particular, they should

satisfy
. 2
Az Y |de+2mn| < B
i=—o00
ad 2
A= Y |h@r2np| < B,
j=—00

where ¢§1 and ¢A2 are the one-dimensional Fourier trans-
forms of ¢ and ¢;, respectively, and A, By, As, and
B; are the corresponding Riesz bounds.
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2) Affine Invariance. Since we are interested in outlining

3)

shapes irrespective of their position and orientation,
we would like our model to be invariant to affine
transformations. We formalize this by requiring that

Ao(u,v)+b ®)
- - . u v
=i§oo jzzoo (AC[I,JH‘b)(D(E—lan—J),

where A is a (3 x 3) matrix and b € R3. From (8), it
is easy to show that affine invariance is ensured if and
only if

(@] o
> X o(g-ig-i)=t©
. . T, T

i=—00 j=—00
for all (u,v) € RZ. In the literature, this constraint is
often named the partition-of-unity condition [16].
Since @ is built from the tensor product of two one-
dimensional functions, (9) holds if and only if

VueR: > ¢1(%—i):1

1=—00

o 0
Yo eR: ,-—Z_:oo ¢2(T2 ]) 1.
Thus, both ¢; and ¢» are required to satisfy the one-
dimensional partition-of-unity condition.
Well-Defined Gaussian Curvature. The Gaussian curva-
ture of a parametric surface at a point p = o (ug, vg)
can be expressed as the ratio of the determinants of the
second and first fundamental forms
detII
o detI’

The first fundamental form is the inner product on
the tangent space of a surface in three-dimensional
Euclidean space which is induced canonically from the
dot product of R3. It can be expressed as the symmetric

matrix
= T, -T; T -T2
AT T2 T2 -T2 )
where T and T, are the tangent vectors defined in (3)
and (4), respectively.

The second fundamental form is a quadratic form on the
tangent plane in the three-dimensional Euclidean space,

’0 o %0 &

I = 0142 - 3u31)'n
’c o %0 a )

n<s-n

where i = % denotes the normal unit vector that can
be computed using (5). Together with I, II serves to
define extrinsic invariants of the surface.

We would like to be able to compute the Gaussian
curvature K for every point on the surface. To do so,
each coordinate function (or, equivalently, the functions
¢1 and ¢») must be at least twice differentiable, and its
second derivative must be bounded.
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4) Reproduction of Particular Shapes. There are several

shapes that appear repeatedly in segmentation problems
in 3D microscopy (e.g., ellipsoids). For that reason,
it is important that our surface model (1) perfectly
reproduces ellipsoids. Formally, we want a parametric
description of all ellipsoids to lie within the span of
(1). In other words, the basis {®u —i,v — j)}; jyez2
should reproduce the family of functions that describe
any ellipsoid. Since our model is vectorial, we can
impose this condition component-wise.
In mathematical terms, we say that a generating function
@ reproduces a function f : R +— R if and only if there
exists a sequence of coefficients {c[i, j] € R}(i, ez?
such that

o0 o
fao)y= D" > cli, jlOWu—iv— j)
I=—00 J=—00
holds almost everywhere. The analysis is further sim-
plified if the function f is separable in u# and v, so
that there exists a decomposition such that f(u,v) =
f1(u) f2(v). In this situation, it is sufficient to approach
the problem separately for each variable. Then, we
say that @ reproduces the function f if there exists
sequences {c[il};ez and {c2[jl} ez such that

fiwy= D alilgi—i)
L) = D aljilgw - j)
j=—00

holds almost everywhere. In addition, we say that ¢
reproduces fi and that ¢ reproduces f>.

C. 3D Snake Model

We define our 3D snake model as a closed parametric
surface o following the parametric vectorial equation (1).
Since the surface is closed, it is not necessary to consider
that the parameters (i, v) take all possible values in R, It is
enough to consider a domain that is a compact set Q C R2.
By convention, we normalize the range of the parameters u,
v to lie within [0, 1], setting the domain to be Q = [0, 112,
Then, the parametric representation of the surface is given by

o0 o
oc,0)= > > i, jl¢pr(Miu—i)r(Mav - j),
i=—00 j=—00
(10)
where we have substituted the sampling steps 77 and 7> by
the positive integers M| = TL and M, = Tiz Together with
the compactness of ¢ and ¢», the fact that we impose M1 and
M> to be positive integers guarantees that the functions x, y,
and z are represented by an integer number of basis functions
within their domain Q = [0, 1)%. The larger these values are,
the more basis functions come into the domain Q. In this
situation, ¢ has more degrees of freedom and can represent a
larger variety of shapes.
The particular choice of ¢; and ¢, determines the prop-
erties of the surface generated by (10), such as smoothness,
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Fig. 1. Rendering of a snake surface taking the form of an oblate spheroid
flattened at the poles. The mesh has been obtained by sampling (11). The
circles of latitude are obtained when v is fixed to vg in (11), and the meridians
are obtained by fixing u to ug in (11).

computational load of the resulting model, or reproduction of
particular shapes. With the appropriate choice of ¢ and ¢», we
can force the surface generated by (10) to take the topology of
an ellipsoid by imposing boundary conditions on the sequence
of control points {c[i, j]}(,-,j)ezz.

1) Topology: To describe the parametrization, we shall
adopt an earth-like cartographic terminology referring to
meridians and circles of latitude. Then, the curves that are
obtained when fixing the second parameter in (10) correspond
to circles of latitude, as shown in Figure 1. It follows that, the
curves obtained when v is constant in ¢ must be closed. This
is achieved by letting the functions of each component of &
in u to be 1-periodic when v is constant. Thus, it is necessary
to apply periodic boundary conditions along the first index of
the sequence of control points. The sequence of coefficients
becomes M;-periodic and satisfies c[i, j] = c[i + My, j].
Under these conditions, we can reorganize the first infinite
summation in (10) to a finite one involving periodized basis
functions. Then, the parametric representation of the surface
is expressed as

M]*] oo

o, )= > D cli, jlp1per(Miu—i) po(Mav — j),

i=0 j=—o00
(11)

where @1 per() = D02 d1(u — Min) for all u € R.
Moreover, continuing with our earth simile, the curves that
are obtained when fixing u in (10) correspond to meridians,
which are open curves starting at the north pole ey and ending
at the south pole cs.

2) Reproduction of Ellipsoids: We want to let our snakes
reproduce ellipsoids perfectly, irrespective of their size, posi-
tion, and orientation. Then, since every ellipsoid can be
obtained by an affine transformation of a sphere of unit radius,
we focus on the reproduction of this simpler shape and take
advantage of (8).

The classical parameterization of a unit-radius sphere is

x(u,v) = cos2mu sinTo
y(u,v) = sin27u sin7to
z(u,v) = cosTo,

12)

where u, v € [0, 1]. These equations are separable in u# and v,
and each part can be efficiently taken care of with our separa-

3929

ble model (11). For @ to be able to reproduce (12) and satisfy
the condition of Section II-B, ¢ must reproduce constants and
sinusoids of unit period, while ¢, must reproduce constants
and sinusoids of period equal to 2.

The optimal choice of ¢ and ¢, is dictated by a theorem
in spline theory about the reproduction of exponential polyno-
mials [17], that we include here for the sake of completeness.

Theorem 1: The centered generating function with minimal
support and maximal smoothness that satisfies the Riesz-basis
condition, the partition-of-unity condition, and that reproduces
sinusoids of unit period with M coefficients is

3
3
pm() =D (=DF hylklem(- + Sk, a3
k=0

where

si Z(E.
gM() — %Sgn() Slsl';nzMﬂ)
hy = [1,1+2 cos 5%, 142 cos 37, 1].
Therefore, we take ¢1(u) = pup, (1) and ¢2(v) = @2 m, (v).
If we expand (13) we obtain

2 7t |u| T 27
COS =3-— COS 77— —COS 57-
T —L 0 < |ul <3
l—cosM—g
_ 17COS2TE(3/2—|M|
A B e E RS
2(1—cos M—])
3
0 5= |ul

for all u € R, and

cos Zl2l cos - —cos 7
My 2My My 0< ol < l
i R
T(3/2—v
$2(0) = <ol <3
2(17cosl) 2= 2
M
3
0 5 < v

for all 0 € R. Note that ¢; and ¢, are equal if and only
if M1 = 2 M,. We show in Figure 2 some members of the
family of functions ¢, indexed by M. They are continuous,
have a finite support of length W = 3, and tend to be bump-
like. Moreover, when M — oo, they converge to the quadratic
B-spline. These functions allow the snake to perfectly replicate
constants and sinusoids of the appropriate frequency at each
component. This means that they can perfectly reproduce the
parametric equations (12) with the appropriate configuration
of control points. The approximation properties of our basis
functions [17] guarantee that any coordinate function can be
approximated as finely as desired by decreasing the sampling
steps 771 and T (or, equivalently, by increasing M| and M>).
Moreover, the approximation error decreases quadratically
with M; and M,. The most remarkable feature, though, is
that the size of the support of these functions is the shortest
possible to satisfy the conditions from Section II-B. This
results in a maximally efficient scheme due to the fact that
the computation of each point on the surface of the snake
depends on the minimum-possible number of basis functions.
It also ensures a local control of the surface by modifying
single control points.
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Fig. 2. Plot of a quadratic B-spline B2 and of the generating functions
in (13) for M = 3, 4, 5, and 6. The function with the lowest peak at r = 0
corresponds to M = 3. As M increases, the central peak increases as well.

The control points that make our snake take the shape of
a perfect unit sphere are a direct consequence of Theorem 1.
Their explicit expression is

CM,y [l] S22 M, [.]]

cli, jl=| smlils2mlj] |,
C2Mz[j]
where

2 (1 —cos 22 27k

culk] = (ﬂ A’él cos
COs 77 — CoS St M
2 (1 —cos 2% 27k

sulk] = (ﬂ A/éi sin )
Cos 7 — COS 7t M

The derivation of the above result can be found in [17]. Note
that the set of control points that generate the unit sphere is
not unique, since we can arbitrarily choose the origin of the
parameterization.

3) Smoothness: The chosen basis functions are twice dif-
ferentiable and their second derivative is bounded. However,
the parametric model (11) has two singular points where the
continuity and smoothness are not guaranteed and need special
attention: the poles ¢y and cs.

In order for the surface to be well-defined and continuous
at the poles, we require the function o (4, v) to be independent
of u for v = 0 and v = 1. Moreover, to ensure that the tangent
plane varies continuously, we need to make some assumptions
about the partial derivatives of o. It was shown in [8] that a
sufficient condition for continuity of the tangent plane is that
the partial derivatives satisfy

oo
a—(u, V)p=0 =TiNncos2mtu+Trnsin 2tu  (14)
v
oo .
a—(u, 0)|p=1 =Ti,s cos 2mu + Ty s sin 2mwu, (15)
0}
where T N, T2 N, T1,s, T2,s € R3 are constant vectors.
Tensor-product polynomial splines on the sphere have

already been considered in [18] in the context of estimation
techniques for fitting data on the sphere. However, no attempt

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 10, OCTOBER 2013

was made to deal with the pole problem or to take full advan-
tage of B-splines. Then, the sufficient conditions to obtain a
continuously varying tangent plane or, equivalently, C! surface
continuity, were first formulated in [8]. However, the proposed
scheme could only fulfill the conditions approximately, the
main reason being that (14) and (15) can only be satisfied if
the basis function associated to u is capable of reproducing
sinusoids of unit period. An extension of this work was
presented in [10], where the basis function associated to u
was substituted by periodic trigonometric splines, being able
to satisfy (14) and (15). Here, we use B-splines instead, which
leads to the perfect reproduction of sinusoids. To the best of
our knowledge, this has not been done previously.

We would like our parameterization to include implicitly
the conditions exposed in Section II. We translate them as
conditions over the control points. We categorize the required
conditions in two types.

1) Interpolation Conditions at the Poles: All meridians
originate at the north pole if and only if o (1, 0) = en for
all u € [0, 1]. Likewise, all meridians terminate at the
south pole if and only if o (4, 1) = ¢g for all u € [0, 1].
The condition concerning the north pole can be rewritten
in terms of the control points by evaluating (11) at o = 0.
This yields

en = c[i, 1] ga(—1) + ¢[i, 0] ¢2(0) + e[i, —1] $2(1),

forall i € [0...M; — 1], where we have used the fact
that ¢, satisfies the partition-of-unity condition and that
its support is limited to the interval [—%, %]. Likewise,
the condition concerning the south pole can be rewritten
in terms of the control points by evaluating (11) ato = 1.
This yields

cs = c[i, Mz + 1] ¢a(—1) + c[i, M2] ¢$2(0)
+c[i’ M2 _2]¢2(1)9

foralli € [0...M; —1].

2) Smoothness Conditions at the Poles: The sufficient
conditions (14) and (15) were stated for any generic
parameterization. For our case, this translates into

Ty N cos2mtu+ Ty N sin 27u
Mi—1 00
=My > > cli, jld1per(Myu— i) $h(—j)

i=0 j=—o0
and

Ty s cos 2mu+ Trs sin 2u
Mi—1 00
=My D > cli, jldrper(Miu —i) ¢h(Ma — )
i=0 j=—o0
by evaluating the left-hand-side of (14) and (15).
Here, Ty N, ToN € R3 represent two free vectors that
determine the tangent plane at the north pole, and
Tis, Tas € R3 are two free vectors that determine
the tangent plane at the south pole. The proposed
smoothness conditions can be satisfied if and only if
the model can reproduce sinusoids of unit period over u
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(a) (b) (©)

Fig. 3. Surfaces generated by the snake model (11). (a) Interpolation
conditions are not satisfied. (b) Smoothness conditions are not satisfied.
(c) Interpolation and smoothness conditions are satisfied.

with a specified sampling rate. Since ¢ was designed
to reproduce sinusoids of unit period over u with a sam-
pling rate of M1, we are guaranteed that the smoothness
conditions can be satisfied.

In Figure 3, we show some surfaces generated by (11)
that fail to satisfy some of the conditions on the poles. If
the interpolation conditions are not satisfied at the poles, the
surface may not be completely closed. If the smoothness
condition is not satisfied either, the surface may have kinks at
the poles, leaving an ill-defined tangent plane at these points.

The final step is to incorporate the exposed conditions into
the parameterization and to obtain explicit formulas.

Theorem 2: A parametric spline-based surface with a
sphere-like topology, C! continuity, and the capability of repro-
ducing ellipsoids irrespective of their position and orientation
can be expressed as

Mi—1 Ma+1
o,0)= D D i, 1p1per(Miu—i) po(Mav — j),
i=0 j=—I
' (16)
restricted to
) o Ty N em ]+ To N sy ]
cli,=1]1=c[i, 1]+ M, ¢§(1) (17
. CN ¢2(1) (c[i, =11+ c[i, 1])
0] = 18
=0t 500) (%)
. Cs
 Ms] = 19
c[i, M>] 50) 19)
_ ¢o(D) (cli, M2 — 1] +c[i, My 4 1])
$2(0)
cli, My + 1] = c¢[i, M — 1] (20)

~ Tiseamlil+ Tos s, li]
M> ¢ (1) ’

where {c[i, j1}ie[0..0,-11,jel1..Mo 115 €N, €5, T1 N, T2,N, T1 s,
and T, s are free parameters. This adds up to a total number
of (M} (My — 1) + 4) free control points.

proof: First, since the support of ¢, is limited to the
interval [—%, %] and v lies within the interval [0, 1], the
second summation in (11) can be restricted to the indices
jel-1...1L

The restrictions (18) and (19) are obtained directly from the
interpolation conditions at the poles. We rewrite the condition
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at the north pole as
en + (1) (eli, —1] + cli, 1])
#2(0)
for all i € [0...M; — 1], where we have used the fact
that ¢2(1) = ¢a2(—1) since ¢, is symmetric, giving us (18).
Likewise, the interpolation condition at the south pole is
rearranged as

c[i,0] =

cs — ¢o(1) (cli, Mo — 1]+ cli, My + 1)
$2(0)
for all i € [0...M; — 1], giving us (19).
Now, we simplify the right-hand side of the smoothness
condition at the north pole to

cli, M>] =

Mi—1

> My (cli, —11¢5(1) — cli, 11¢5(1)) b1 per (M1 u — i),

i=0
where we have used the fact that ¢) is an antisymmetric
function that satisfies ¢)(-) = —¢5(—). We expand the
sinusoids of the left-hand side of the smoothness condition
at the north pole using ¢ per. It results in

Tin cos2mtu+ Ty N sin 27u

Mi—1
=TI N Z e il @1 per(Myu — i)
i—0
Mi—1
+ ToN Z suy [i1 1 per(My u — i)
i—0
Mi—1
= Z (TN ean i1+ TaN sy [i1) @1per (M1 u — i).

i=0
By identification of the coefficients, we obtain
Ty ~nem i1+ TN sm li]

M ¢5(1)
for alli € [0...M; — 1], which gives (17). The expression for
(20) is obtained analogously using the smoothness condition
at the south pole.

Theorem 2 is crucial when specifying the snake, since it
ensures that any point on the resulting snake surface has at
least C! regularity, and eliminates the singularities that would
otherwise exist at the poles.

cli,—1]=cl[i, 1]+

III. ENERGIES AND IMPLEMENTATION
A. Snake Energies

We follow the standard paradigm and formulate the sur-
face evolution as an energy-minimization problem. The snake
energy is typically the linear combination of three terms [19]:

« the image energy, which is responsible for guiding the

snake toward the boundary of interest;

« the internal energy, which ensures that the segmented

region has smooth boundaries;

« the constraint energy, which provides a means for the user

to interact with the snake.

The total energy of the snake is written as

Egnake(€) = Eimage(c) + Eint(c) + Ec(©).
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The optimal spline parameters are obtained as
¢ = argmin Egpaie(c).
C

The quality of segmentation depends on the choice of the
energy terms. The energy-minimization process is then essen-
tially an optimization procedure, where we iteratively update
the snake coefficients to approach the minimum of the energy
function from a starting position. In our model, we obviated
the constraint energy by accommodating the user interaction
as a hard constraint and leaving the coefficients be specified
by the user of the optimization routine.

1) Image Energy: There are many construction strategies
which can be categorized in two main families: 1) edge-
based methods, which use gradient information to detect
contours [19]-[21] and 2) region-based methods, which use
statistical information to distinguish different homogeneous
regions [22], [23]. Both have advantages and disadvantages.
On one hand, the edge-based energy can give a good local-
ization of the contour near the boundaries. Unfortunately, it is
very sensitive to noise and has a small basin of attraction, thus
requiring a good initialization. On the other hand, the region-
based energy has a large basin of attraction and can converge
even if explicit edges are not present. However, it does not
give a localization that is as good as the edge-based energy at
the image boundaries. In order to benefit from the advantages
of both strategies, a unified energy was proposed in [24]. In
our case, we are going to follow a similar approach by using
the convex combination of gradient and region energies

Eimage = & Eedge + (1—-a) Eregion,

where o € [0, 1]. The tradeoff parameter o balances the energy
contributions. Its value depends on the characteristics of each
application.

For the gradient-based (or edge) energy, traditional snakes
rely on the guidance provided by edge maps. The most popular
approach is based on the magnitude ||V f|| of the gradient [19].
Mathematically, it is desired minimize

Eunag = — yﬁg IV £1lds,

where the integration is performed on the closed surface S,
and dS represents the area increment.

The major drawback of this approach is that the snake
gets distracted by edges of nearby targets, since it does
not distinguish between the gradients generated by different
objects in the image. We solve this issue by considering the
direction of the gradient as well and by imposing that the
direction of the gradient and the normals of the surface be
aligned. The parameterization (10) offers us the opportunity
to choose the orientation of the normal vectors at initialization
time. From now on, and without loss of generality, we assume
it to be outwards. If we want to segment a bright object
surrounded by a darker region, we expect the directions of the
image gradients to be the same as the directions of the normal
vectors when the energy reaches its minimum. We formalize
this concept with the following image energy:

Egradz—# Vf-dsz—# (Vf-i) as, (1)
S S In]|
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Fig. 4. 2D schematic representation of two parametric snakes Sy and Sp
(dashed lines), of their interaction with the objects Q; and Qj, of normal
vectors n, and of the gradient vectors V f of the image.

where dS represents the vector differential of area. Using
Gauss’ (or the divergence) theorem, our edge energy can also
be expressed as the volume integral

Egradz—///v div (V f) dV:///VﬂdV, (22)

f edge

where V is the volume enclosed by S, dV represents the
volume increment, and fedge can be precomputed. This allows
for easy combination of region energies with edge-map-based
energies.

The advantage of (22) is that it uses the direction of the
gradient to discriminate between edges of the same target and
between different targets. Its minimization makes the surface
of the snake stick to edges where the image gradient has
similar direction as the normal vector n and to be repelled
from edges with different orientations.

In Figure 4, we present a 2D schematic with the configu-
ration of the various quantities involved in (21). A first snake
is represented by the dashed line Si. It is used to segment the
area labeled as Q1. The normal to the surface n and the image
gradient V f are pointing in the same direction, which will
add a strong negative contribution t0 Egraq. A second snake
is represented by the dashed line S;. It is used to segment the
same area, but this time it is closer to the region labeled as
Q,. In this case, the normal to the surface n and the image
gradient V f are pointing in opposite directions, which adds
a strong positive contribution t0 Egraq because of the minus
sign in (21). Thus, the first snake is more optimal than the
second one, as far as Egrq is concerned.

For the region-based energy, we adopt a strategy similar
to [25]. We first build an enclosing shell Sy, around the snake.
Then, our region-based energy discriminates an object from its
background by maximizing the signed contrast between the
intensity of the data averaged within the volume V enclosed
by the snake, and the intensity of the data, averaged within the
volume Vg, enclosed by the shell. When V C Vg, the region
energy is expressed as

Eregion = L (/ fdav _/ de) > (23)
VI \Jv Ven\V

where |V] is the volume of the snake.
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To enforce that the criterion remains neutral when f takes
a constant value fp, we build the enclosing shell o, such
that |Vgn| = 2|V|. Under these conditions, Eregion|f=r, = 0
depends neither on the snake nor even on fy. We take full
advantage of the affine-invariance property of our snake model
and we build the parameterization of the shell oy, as the affine
transformation of the snake surface (16) with the same center
of gravity and with volume |Vg,|. The explicit parametric
expression is

osh(u,v) = %a(u,v) + (1 — «75) oy,

where
Mi—1 Mp+1

og= Y. > i jl

i=0 j=—1

is the center of gravity of the snake. Since the shell is an affine
transformation of the original snake, it is possible to express
osh with the same basis functions.

2) Internal Energy: The internal energy is responsible for
ensuring the smoothness of the snake. It was first proposed
in [19] in the context of 2D active contours as a linear
combination of the length of the contour and the integral of
the square of the curvature along the contour. This smoothness
term is used most often in most widely-used in applications.
Its direct extension to active surfaces gives

B = 11151+ 12 ff IKP as, 4)
where K is the Gaussian curvature of the surface.

This internal energy can also be expressed specifically in
terms of the tangent vectors and the fundamental forms as

1 1
Eim=zl/ / IT1 x Tall dudo
0 0

Ul det 1|2
+/12/ /
0 0

Totl IT; x T2 dudo,
where the first term makes the snake contract and the second
favors smooth solutions. In the framework of active contours,
most parametric schemes rely on the smoothness of the repre-
sentation, thus eliminating the need for an explicit internal
energy term. However, these approaches can ensure a low
value of the curvature only when the curves are parameterized
at constant speed (proportional to arc-length). For example,
a spline curve may be rough if some of the spline knots
accumulate locally. Similar problems exist with Fourier and
other parametric representations. A practical workaround is to
reparameterize the curve to constant arc-length after each step
of the optimization algorithm, which is quite expensive [26].
Another approach is to substitute the curvature term in (24)
by an energy term that penalizes the curve for not being in
the curvilinear abscissa [24]. This energy is called curvilinear
reparameterization energy. Minimizing this energy causes the
curve knots to move tangentially to the snake, thus bringing
it to curvilinear abscissa. The use of this energy is equivalent
to reparameterizing the snake at each step, but with a much
lower computational load. We adopt a similar approach and
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modify the internal energy (24) to

1 1
Eint:/11|S|+/12/ / (IdetI] —|S])? dudv.  (25)
0 0

Letting the curve be driven by (25) will cause the control
points to distribute uniformly over the snake surface and avoid
accumulation. Then, the smoothness is implicitly enforced by
the underlying parametric representation.

B. Fast Energy Computation

The computational cost of the evolution of the snake is
dominated by that of the volume integrals in (22) and (23).
An efficient way to implement these operations is the use of
pre-integrated images. Let g be the function we are integrating
(f or fedge), and let Q be the domain of integration (V or V).
Then, by Gauss’ theorem, we rewrite the volume integral as
the surface integral in different ways

///ng:# g¥dy ndz
Q oQ
:# g¥dz Adx
oQ
=# gtdx Ady,
0Q

where A is the wedge product, oV is the boundary of V, and

X
g (x,y,2) =/ g(r,y,z)de
o

y
g’ (x,y,2) =/ glx,7,z)de
—o0

Z
g (x,y,2) =/ g(x,y,r)dz.
—0o0

All three possibilities are equivalent and can be stored in
lookup tables to speed up the access to the data. The trans-
lation of volume integrals into surface integrals reduces the
computational load dramatically. This can only be achieved if
the surface is defined continuously, as in (1).

Despite the fact that we are describing our surface contin-
uously, in a real-world implementation we only have at our
disposal a sampled version of the functions we want to pre-
integrate. We therefore perform a bilinear interpolation of the
sampled data and store the result in lookup tables. Then, the
final estimation of the energies is obtained using quadrature
rules with a fixed sampling step.

C. Optimization Algorithm

The optimization of the snake is carried out efficiently by a
Powell-like line-search method [27]. This method requires the
derivatives of the energy function with respect to the parame-
ters (i.e., the knot coefficients) and converges quadratically to
the solution.

The algorithm proceeds as follows: firstly, one direction
within the parameter space is chosen depending on the partial
derivatives of the energy. Secondly, a one-dimensional mini-
mization is performed within the selected direction. The line
optimization is performed by successive parabolic approxi-
mations until the minimum along the direction is achieved.
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Then, a new direction is chosen using the partial derivatives
of the energy function once more, while enforcing conjugation
properties. Among all possible implementations of Powell’s
method, we used the version where the direction of maximum
decrease is replaced with the average descent direction [27].
This scheme is repeated until convergence. This powerful
optimization method is used here because the number of
parameters that define the shape of the snake is very small.

D. Self-Intersection Detection

The optimization process can sometimes lead to self-
intersecting surfaces. However, the probability of self-
intersection is greatly reduced by the introduction of (25),
which hinders the clustering of control points.

Despite this refinement, self-intersection may still arise
occasionally when the image energy forces some control
points to move faster than others. This compromises our
approach since we use Gauss’ theorem, which assumes
non self-intersecting closed surfaces. An extensive body of
research can be found on the intersection problem, with numer-
ous articles presenting different approaches for the intersection
of freeform curves and surfaces [28]. Unfortunately, these
method are too time-consuming for our purpose.

As an alternative, we devised a fast method for the detection
of self-intersection that uses the Gauss-Bonnet formula. This
formula states that the Euler characteristic y of a closed,
non-intersecting surface S can be computed by integrating the
Gaussian curvature, as in

1
2(S) = —— # K dS.
27 S

The Euler characteristic is a number that describes the shape
and structure of a topological space, regardless of the way it
is bent or deformed, as long as it does not self-intersect. In the
case of sphere-like topologies, we have y (S) = 2. Therefore,
we know that the snake self-intersects if y (S) # 2.

Unfortunately, (26) can give a correct value even if the
surface is self-intersecting. In principle, it is possible to detect
these cases by splitting the integral (26) over a series of smaller
intervals and checking if there is a self-intersection in each of
the subintervals. However, such cases are unlikely to occur in
practice, and it was not necessary to implement such a finer
level of detection.

When a self-intersection is detected, there are several ways
to proceed. Some authors split their shape descriptor in a way
that new smaller snakes are born [3], [29]. Since we wanted
to preserve the topology of our surface, we opted to stop the
optimization routine and ask for user assistance.

(26)

E. User Interactions

Our 3D segmentation technique has been programmed as
an open-source plugin for the multi-platform software Icy [30]
and is available on the official plugin repository.!

By contrast with many other implicit and global parametric
snakes, ours is fully parameterized by only a few control

1 http://icy.bioimageanalysis.org/plugin/Active_Cells_3D/
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Fig. 5. Segmentation of a cell in a 3D confocal image of a murine brain
(image courtesy of Sabine Scheibe and Sebastian Rhode at TILL Photonics).
Top-left: 3D view of the segmented glomeruli. The solid spheres represent
the control points of the model and their location define the effective contour
of the snakes. From left to right and top to bottom: snake at different z-axis
positions of the 3D volume, overlaid on the original 2D images. We color the
mesh depending on the z-axis coordinate and set its transparency proportional
to the distance of the slice displayed in the 2D viewer. The ‘+’ elements are
the projection to the XY plane of the control points of the model.

points, which eases the interactions with the user. This has
encouraged us to develop a dedicated graphical user interface
that lets the user initialize the 3D snake position and trim it
even after the optimization process. As illustrated in Figures 5,
10, and 11, the user can manipulate the position of any point
by selecting it in either the 2D or 3D mesh representations
of the snake. The 2D view also provides 3D cues, as we
color the mesh depending on the z-axis coordinate and set its
transparency proportional to the distance of the slice displayed
in the 2D viewer. With this strategy, only parts of the snake
close to the displayed image are shown. Editing the points can
be performed with simple mouse actions. The live update of
the 2D and 3D views of the snake is very fast. This is due to
the fact that the change in one parameter affects the structure
locally. Thus, just a limited region of the surface of the snake
has to be recomputed. As a result, a fast, intuitive, and semi-
automatic segmentation procedure that loops between snake
initialization, optimization, and correction, is made possible.

F. Initialization

Our method can be operated in an automated fashion. For
that, the algorithm only requires an initial position. Like
in all segmentation problems, this initialization is strongly
dependent on the imaging modality. For example, in fluores-
cence microscopy, a blurring or a DoG filter followed by the
detection of local maxima/minima suffices to provide an initial
position (see our previous work [7] for examples of automatic
initializations of 2D parametric snakes). In medical imaging,
refined methods based on atlases can also be used [31].

When choosing the initial position of the snake, one must
ensure that the object of interest is within the basin of
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attraction of the chosen image energy. The conditions for the
convergence of our image energies are the following:

e Egpq is only responsive to image gradients. Therefore, the
snake surface must be initialized close to the boundary
of the object. This basin of attraction is usually extended
by preprocessing the input image with a smoothing or a
distance transform [7].

o Eregion 1S responsive to image contrasts between the snake
core and the snake shell. Therefore, the snake surface
must be initialized such that the core intersects the object
and the shell intersects the background.

IV. EXPERIMENTS AND SIMULATIONS

We present in this section five experiments. In the first one,
we deform our snake to show how the self-intersection is
detected by monitoring the Euler characteristic. In the second
experiment, we investigate the sensitivity of our snake to the
presence of noise. In the third setup, we perform a quantitative
evaluation of our algorithm when segmenting neighboring
targets; there the preservation of topology plays a crucial role.
We move away from simulated data in the fourth experiment
where we investigate the approximation properties of our
snake with medical data of a spleen from a CT-scan. In the last
experiment, we illustrate the application to real microscopic
data where the ground truth is not available.

The calculations were performed on a MacPro 3.1 with two
Quad-Core Intel Xeon processors, 16GB of RAM memory,
and an NVIDIA GeForce 8800 GT with 512 MB running Mac
OS X 10.8.2.

A. Twisting the Snake

We deform the snake away from a perfect sphere by rotating
the central layer of control points by an angle , thereby
creating a twist in the center of the structure. In particular,
we set the snake control points to

e il s2m, ]
sulils2m 7] |
CZMz[j]

cli, jl1=

fori € [0...M; — 1] and for all j # L%J, and we set

cos (0) cmy lils2m, [ 7] — sin () sy [i] 520,11
sin (0) e, [i152m,[ 71+ cos (@) su, [i1s2am,05]1 |,
c2m, ]

cli, jl1=

fori € [0...M; — 1] and for j = | 2.

We show in Figure 6 different surface configurations as
a function of the rotation angle 6. We see that, for small
angles, the surface is slightly twisted but not self-intersecting.
However, as we approach 8§ = 1, the central part of the
structure collapses and leads to two self-intersections. We
show in Figure 6 how the Euler characteristic, computed
according to (26), varies in terms of §. The predicted value is
correct for § < 77” and starts increasing when the snake starts
self-intersecting. Hence, the conditions of the Gauss-Bonnet
theorem are violated.
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Fig. 6. Value of the Euler characteristic y (S) of the snake surface, computed
using the Gauss-Bonnet formula when applying a rotation on the central layer
of control points. As the layer rotates, the structure deforms and looses its
sphere-like topology.
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Fig. 7. Cross-sections of the test images used in the assessment of robustness.
Only one realization is shown for each PSNR value. (a) Initialization.
(b) PSNR = 20dB. (c) PSNR = 15dB. (d) PSNR = 10dB. (e) PSNR = 5dB.
(f) PSNR = 0dB. (g) PSNR = —5dB. (h) PSNR = —10dB.

B. Robustness to Noise

Next, we investigate the sensitivity of our method to the
presence of noise. We generated 100 realizations of a noisy
sphere for each one of seven different peak-signal-to-noise
ratios (PSNRs). Our test images were obtained by on-voxel-
wise sampling a sphere of radius of 30 voxel units on a regular
grid of (256 x 256 x 256) voxels. We show in Figure 7 one
cross-section of the noisy volumes for every PSNR value.

The initial shape is a sphere with a fixed radius of 50 voxel
centered at a distance of 25 voxel from the real center of the
object to segment (see Figure 7). We constrained the number of
control points to its minimum (M; = M> = 3). Then, we ran
the optimization process until convergence using exclusively
the region-based energy (i.e., we set the tradeoff parameter
a =0).

We used the Jaccard distance J = 1 — [@NQ|/|O U Q|
to quantify, as a percentage, the quality of the segmentation.
This distance provides a measure of dissimilarity between
two binary objects where a low value reflects an accurate
segmentation. In the definition of the Jaccard distance, ®
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TABLE 1
JACCARD DISTANCE WHEN SEGMENTING NOISY SPHERES

PSNR [dB] J[%] oj[%]

20 0.20 0.16

15 0.44 0.26

10 0.61 0.35

5 2.16 2.68

0 12.16 10.05

-5 22.74 11.29

—10 34.69 9.82

corresponds to the ground-truth region and Q corresponds to
the region enclosed by the snake. We computed J following
a on-voxel discretization of the data.

We show in Table I the value of J and its standard deviation
oy across all noisy realizations. We observe from the results
that our snake is robust against noise since it is capable of
giving a proper segmentation even for low PSNRs. The quality
of the segmentation deteriorates quickly when PSNR> 0 due
to the presence of too much noise.

C. Segmentation of Overlapping Objects

In this section, we compare our snake against other seg-
mentation methods in terms of accuracy and speed at the task
of delineating different configurations of overlapping objects.
The goal is to illustrate that the strong topological constraints
imposed in the parametric model are advantageous when
dealing with cluttered environments, without the introduction
of any extra term in the energy functional. An application with
real data of such advantage is presented in Section IV-E.2.

We generated 4 volumetric images (256 x 256 x 256) by
voxel-wise sampling the union of two spheres of radius 50
pixel. We show a rendering of these shapes in Figure 8. They
are parameterized with the distance d, in pixel units, between
the centers of the spheres. For d < 100, the spheres intersect;
for d = 100, the spheres share one single pixel; for d > 100,
the spheres are disjoint. The grayscale values of the images are
255 for the shape and O for the background. We are interested
in isolating each sphere. Without loss of generality, we focus
on segmenting one of them.

We compared our snake to a traditional level-set method
based on the formulation of Chan-and-Vese [1], and to the
3D active meshes of [3]. The implementation of the level-set
method was taken from the free open-source image-processing
package Fiji® implementing the algorithm described in [32].
The implementation of the active-meshes method was taken
from the free open-source image-processing package Icy.>

We initialized the level-set method by providing a point seed
(the only possible initialization afforded by the Fiji plugin).
The initial positions were determined by a detector of local
maxima applied over a version of the image that was smoothed
with a Gaussian kernel of with ¢ = 10. A total number of 2
local maxima were detected in all images. We discarded the
rightmost detection since we are interested in segmenting the
leftmost object. We initialized our snake as a perfect sphere of

2hitp://fiji.sc/
3 http://icy.bioimageanalysis.org/
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Fig. 8. Renderings of the test images used in the analysis of performance
when segmenting overlapping objects. The dark small sphere represents the
seed point for the level-set method, and the center of the initial position for
our snake and the active meshes. (a) d = 80. (b) d = 90. (¢) d = 100.
(d) d = 110.

TABLE II
ACCURACY AND EFFICIENCY OF THE MENTIONED SEGMENTATION
ALGORITHMS WHEN SEGMENTING OVERLAPPING OBJECTS

Method | J [%] Time [s] Segmented shape
d =280
Spline Snake 3.06 0.93 Left sphere
Level-Set 48.66  2808.00  Merged spheres
Active Meshes | 48.91 6.32  Merged spheres
d=90
Spline Snake 2.61 0.91 Left sphere
Level-Set 49.69  2862.03  Merged spheres
Active Meshes | 50.11 6.01 Merged spheres
d =100
Spline Snake 0.83 0.93 Left sphere
Level-Set 50.00 2889.13  Merged spheres
Active Meshes 2.79 3.96 Left sphere
d=110
Spline Snake 0.71 0.93 Left sphere
Level-Set 0.25 1412.09 Left sphere
Active Meshes 1.98 4.44 Left sphere

radius 60 pixel units. Finally, the active meshes cannot take the
form of an ideal sphere but can approximate it. We initialized
this method using the automatic tessellation of the sphere of
radius 60 provided by the plugin.

We chose M| = M, = 3, which are low values that favor
ellipsoid-like shapes during the segmentation process. Then,
we ran the optimization process until convergence using the
edge-based energy (i.e., we set the tradeoff parameter o = 1)
and our internal energy with 11 = 0.1 and 1, = 0.01.

We executed the level-set with an advection value of 220
and a propagation value of 100. These values were chosen to
accelerate the propagation of the evolving level-set front and
to obtain a faster convergence without loosing accuracy.

For the active meshes, we set the mesh resolution to 10, the
time-evolution step to 0.01, the window size to 100, and we
evolved the snake using the gradient criterion with weight 0.5
and regularization weight 0.01.

We show in Table II a comparison across all mentioned
methods of the Jaccard distance J reached at the end of the
optimization process as well as the time it took the algorithms
to converge for the different test datasets. The times shown in
Table II exclude the preprocessing stages of the three methods.

Clearly, the level-set method is the slowest. This is in agree-
ment existing experiments for the 2D case [7]. Meanwhile,
our snake and the active meshes demonstrate a similar level
of performance in terms of speed and accuracy, even though
the active-meshes method takes advantage of the GPU present
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in the hardware, while our snake and the level-set method do
not.

We can also see from Table II that the level-set method
extracts a merged version of the two spheres as long as there
exists a single pixel that connects them. This is due to the
fact that there is no constrain on the evolution of standard
level-sets, and that these can leak through holes. Some special
energy functionals have been proposed in order to constrain
the topology of the solutions at the expense of computational
performance [33], [34]. On the other hand, the active meshes
and our snake succeed in segmenting the left sphere alone
even in the presence of some overlap. In addition, the proposed
method is also the fastest.

D. Approximation of Shapes

In this section, we move away from numerical simulations,
and we investigate the capabilities of our snake when approx-
imating realistic shapes as a function of M; and M,. We
quantify its accuracy at outlining the wall of a spleen within
slices of a 3D CT-scan image sequence.

The data we used are part of the 3D-IRCADb (3D image
reconstruction for comparison of algorithm database). It
includes several sets of medical images of patients and the
manual segmentation of the various structures of interest, per-
formed by clinical experts.* For every patient under analysis,
the ground truth is available as a triangular mesh where the
vertex locations correspond to pixel positions. Moreover, the
database provides a 3D voxel mask with the interior of the
mesh. In the case of the mask, the volume consists of 166
slices with a spacing between slices of 1.8 mm. Each slice is
a (512 x 512) image with a pixel spacing of 0.961 mm.

To approximate the spleen with our snake, we first detect the
boundary pixels of the spleen mask for each slice. Then, for
each slice, we fit a spline corresponding to a circle of latitude
of o. Using this approach we obtain a snake o aligned in
the vertical direction. The north pole is located at the apex
of the spleen, and the south pole is located at its bottom.
The circles of latitude are adapted to the shape of the spleen
in the XY plane. Then, we refine the final fit with a global
3D optimization led by the edge-based energy (i.e., we set
the tradeoff parameter & = 1), and our internal energy with
A1 = 0.1 and 4>, = 0.01. For computational purposes, we
discretized each integral with approximately the same number
of samples. Specifically, we set the number of points along a
meridian and a circle of latitude to the multiple of M that is
the closest to Ngampr = 39.

In the simulations of Figure 9, we investigated the depen-
dence of the Jaccard distance J and the total computation
time on M{ = M, = M. Our results show that the error
decreases quadratically, which demonstrates the ability of
the proposed model to segment objects with an ellipsoid-
like topology. We also observe that the computation time is
increasing quadratically with M plus some fluctuations. This is
due to the fact that each iteration of the algorithm involves the
computation of the energy over O (M? [ Nsamp/M1?) surface
points plus the update of O (M 2) control points. This sums

4http://www.ircad.fr/softwares/SDircadb/SDircadb.php
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Fig. 9. Evolution of the Jaccard distance as a function of M = M| = M»
when approximating a spleen.

up to a total complexity of O (M 2 [ Nsampl/ M 12 + M 2), where
the first term is the dominant one within the range of interest
of M.

In Figure 10, we show the voxelized mask we used as
ground truth and the successive approximations of our snake
for different values of M. We see that, for small values M
(such as M = 3), the snake takes an almost ellipsoidal shape
and is not capable of capturing every detail of the spleen
structure. As we increase the number of control points, the
snake captures the structure of the organ while providing a
smooth surface.

E. Segmentation of 3D Confocal Microscopic Images

We finally illustrate the behavior of our snake and provide
further insights into its capabilities in real-world applications.
In this section, the ground truth is missing, so we must
relinquish quantitative assessments in favor of qualitative ones.
Here, we initialized our snake manually using the interaction
capabilities of our software.

1) Cell-Body Segmentation: We processed a stack
(576 x 504 x 200) of confocal (x60 magnification) images
from the brain cortex of a rat, with YFP labeling for the
neurons and GFP for the microglia.> The challenge was to
segment the body of the neuronal cells, despite their non-
spherical shape, the lack of clear borders, and the presence of
several surrounding objects. We set M} = M, = 7, roughly
initializing the snake position around each cell body as a
sphere, and ran the optimization process until convergence
using exclusively the edge-based energy (i.e., we set the
tradeoff parameter a = 1). One example of the resulting
segmentation is shown in Figure 5. We observe that the snake
was able to adapt well to the 3D cell shape: the surface is
accurately fitted despite the limited degrees of freedom of the
model, while irregularities are properly smoothed out. The
optimization process took only 0.74 s, which is faster than
the duration of the acquisition of such data (usually, much
longer than 1 s).

2) Segmentation of Glomeruli: We investigated the seg-
mentation of olfactory glomeruli in the mouse brain which

3 http://www.cellimagelibrary.org/images/27155/
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Fig. 10.

(d)

Approximation of a 3D CT-scan spleen for different values of of M = M| = M>. (a)-(e) Rendering of the spleen where the 3D snake has been

overlaid with different number of control points: (b) M =3, (c) M =7, (d) M = 10, and (e) M = 20. (f) Cross-section of the spleen where the neighboring
3D mesh has been projected to the slice of interest: (g) M =3, (h) M =5, (i) M =7, and (j) M = 10. In the 2D views, we color the mesh depending on
the z-axis coordinate and set its transparency proportional to the distance of the displayed slice.
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Fig. 11.  Segmentation of an olfactory glomerulus in a 3D confocal image
(256 x 256 x 67) of a mouse brain (image courtesy of Lisa Roux at the
College de France). Top-left: 3D view of the segmented glomerulus. The solid
spheres represent the control points of the model and their location define the
effective contour of the snakes. From left to right and top to bottom: snake
at different z-axis positions (z = 10, 17, and 24 pm) of the 3D volume
overlaid on the original 2D images. We color the mesh depending on the
z-axis coordinate and set its transparency proportional to the distance of the
slice displayed in the 2D viewer. The ‘+’ elements are the projection to the
XY plane of the control points of the model.

represent neuroglial functional units in olfactory information
processing [35]. With Topro staining, glomeruli correspond
to the dark areas delimited by fluorescent cell bodies. In
Figure 11, they are visualized as bright areas with an inverted
look-up-table. However, the surrounding fluorescent cells do
not form continuous boundaries. This penalizes nonparametric
active contours, as the snake may ‘leak out’ between the
neighboring cells. By contrast, we show in Figure 11 that the

proposed snake method (with M1 = M, = 7) is able to accu-
rately identify the glomerulus border. This is a key advantage
of the proposed parametric model, as it allows one to exert a
priori control over the regularity and topology of the snake.
Here again, the optimization process was performed using the
edge-based energy exclusively (i.e., a = 1). Convergence was
reached after 1.74 s, which is remarkably fast.

V. CONCLUSION

Our contribution in this paper is a new fully parametric
snake with a sphere-like topology. It is constructed using
exponential B-splines and it is therefore capable of repro-
ducing any ellipsoid, irrespective of its position or orien-
tation. Our snake is characterized by fewer control points
than nonparametric snakes and can approximate any blob-like
structure with arbitrary precision. The modification of one
control point affects a limited region of the snake surface,
which favors intuitive interactions with the user. Since our
shape model is fully characterized by few control points,
the design of customized shapes becomes possible by simple
manipulation of these points in the same way that control
points are used in the NURBS meshes typical of computer-
aided industrial designs [36]. Moreover, the control points
may be used to perform statistical learning/analysis of the
segmented objects [37].

We designed an edge-based energy that is capable of main-
taining the consistency of the segmentation in the presence of
clutter. This is accomplished by penalizing mismatches in the
directions of the image gradients. Furthermore, we combined it
with a robust region-based energy. We were able to accelerate
the implementation by taking advantage of Gauss’ theorem,
which was facilitated by the availability of explicit expressions
of our bases. Moreover, we introduced a novel technique to
detect self-intersection in order to know when the snake loses
the sphere-like topology. We have applied our snakes to a
variety of problems that involve synthetic simulations and
challenging real datasets, where the object contours were not
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well defined. As a result, various experiments have shown
that the proposed 3D snake can approximate blob-like objects
with good accuracy. Moreover, the optimization process is
remarkably fast as we have designed our bases to have the
shortest-possible support.
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