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Abstract
This paper showcases the theoretical and numerical performance of the Sliding 
Frank–Wolfe, which is a novel optimization algorithm to solve the BLASSO 
sparse spikes super-resolution problem. The BLASSO is a continuous (i.e. off-
the-grid or grid-less) counterpart to the well-known �1 sparse regularisation 
method (also known as LASSO or basis pursuit). Our algorithm is a 
variation on the classical Frank–Wolfe (also known as conditional gradient) 
which follows a recent trend of interleaving convex optimization updates 
(corresponding to adding new spikes) with non-convex optimization steps 
(corresponding to moving the spikes). Our main theoretical result is that this 
algorithm terminates in a finite number of steps under a mild non-degeneracy 
hypothesis. We then target applications of this method to several instances 
of single molecule fluorescence imaging modalities, among which certain 
approaches rely heavily on the inversion of a Laplace transform. Our second 
theoretical contribution is the proof of the exact support recovery property 
of the BLASSO to invert the 1D Laplace transform in the case of positive 
spikes. On the numerical side, we conclude this paper with an extensive 
study of the practical performance of the Sliding Frank–Wolfe on different 
instantiations of single molecule fluorescence imaging, including convolutive 
and non-convolutive (Laplace-like) operators. This shows the versatility and 
superiority of this method with respect to alternative sparse recovery technics.

Keywords: super-resolution, convex optimization, Frank–Wolfe, microscopy, 
sparsity, BLASSO, Laplace transform

(Some figures may appear in colour only in the online journal)

Q Denoyelle et al

The sliding Frank–Wolfe algorithm and its application to super-resolution microscopy

Printed in the UK

014001

INPEEY

© 2019 IOP Publishing Ltd

36

Inverse Problems

IP

1361-6420

10.1088/1361-6420/ab2a29

Paper

1

1

42

Inverse Problems

IOP

2020

1361-6420/ 20 /014001+42$33.00  © 2019 IOP Publishing Ltd  Printed in the UK

Inverse Problems 36 (2020) 014001 (42pp) https://doi.org/10.1088/1361-6420/ab2a29

https://orcid.org/0000-0002-7709-256X
https://orcid.org/0000-0002-4477-0387
mailto:denoyelle@ceremade.dauphine.fr
mailto:vincent.duval@inria.fr
mailto:gabriel.peyre@ens.fr
mailto:emmanuel.soubies@epfl.ch
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/ab2a29&domain=pdf&date_stamp=2019-12-03
publisher-id
doi
https://doi.org/10.1088/1361-6420/ab2a29


2

1.  Introduction

1.1.  Super-resolution using the BLASSO

Super-resolution consists of retrieving the fine scale details of a possibly noisy signal from 
coarse scale information. The importance of recovering the high frequencies of a signal comes 
from the fact that there is often a physical blur in the acquisition process, such as diffraction in 
optical systems, wave reflection in seismic imaging or spikes recording from neuronal activity.

In resolution theory [27], the two-point resolution criterion defines the ability of a system 
to resolve two points of equal intensities. It is defined as a distance, namely the Rayleigh 
criterion, which only depends on the system. In the case of the ideal low-pass filter (i.e. con-
volution with the Dirichlet kernel) with cutoff frequency fc, the Rayleigh criterion is 1/fc. 
Then, super-resolution in signal processing consists in developing techniques which enable to 
retrieve information below the Rayleigh criterion.

Let us introduce in a more formal way the problem which will be the framework of this 
article. Let X  be a connected subset of Rd with non-empty interior or the d-dimensional torus 
Td  (d ∈ N∗) and M(X) the Banach space of bounded Radon measures on X . The latter can be 
seen as the topological dual of C0(X,R), the space of continuous functions on X  that vanish at 
infinity. We consider a given integral operator Φ : M(X) → H, where H is a separable Hilbert 
space, whose kernel ϕ is supposed to be a smooth function (see definition 4 for the technical 
assumptions made on ϕ), i.e.

∀m ∈ M(X), Φm def.
=

∫

X
ϕ(x)dm(x).� (1)

The operator Φ models the acquisition process. It includes translation-invariant operators such 
as convolutions (i.e. ϕ(x) = ϕ̃(· − x)) as well as non-translation invariant operators such as 
the Laplace transform (X = R∗

+ and ϕ(x) = (t �→ e−tx) ∈ L2(R+)) considered in the present 
paper.

The sparse spikes super-resolution problem aims at recovering an approximation of an 

unknown input discrete measure ma0,x0

def.
=

∑N
i=1 a0,iδx0,i from noisy measurements y def.

= y0 + w 
where y0

def.
= Φma0,x0 and w ∈ H models the acquisition noise. Here a0,i ∈ R are the ampl

itudes of the Dirac masses at positions x0,i ∈ X. This is an ill-posed inverse problem and 
the BLASSO is a way to solve it in a stable way by introducing a sparsity-enforcing convex 
regularization.

1.1.1.  From the LASSO to the BLASSO.  The common practice in sparse spike recovery relies 
on �1 regularization which is known as LASSO in statistic [83] or basis pursuit in the signal 
processing community [17]. Given a grid of possible positions, the reconstruction problem 
is addressed as the minimization of a quadratic error subject to an �1 penalization. The �1 
prior provides solutions with few nonzero coefficients and can be computed efficiently with 
convex optimization methods. Moreover, recovery guarantees have been proved under certain 
assumptions [29].

Following recent works (see for instance [6, 12, 15, 22, 33]), we consider instead sparse 
spike estimation methods which operate over a continuous domain, i.e. without resorting to 
some sort of discretization on a grid. The inverse problem is solved over the space of Radon 
measures which is a non-reflexive Banach space. This continuous ‘grid-free’ setting makes 
the mathematical analysis easier and allows us to make precise statement about the location 
of the recovered spikes.
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The technique that we are considering in this paper consists in solving a convex optim
ization problem that uses the total variation norm, which is the counterpart of the �1-norm for 
measures. It favors the emergence of spikes in the solution and is defined by

∀m ∈ M(X), |m|(X) def.
= sup

ψ∈C0

{∫

X
ψdm; ‖ψ‖∞,X � 1

}
.� (2)

In particular, for ma0,x0

def.
=

∑N
i=1 a0,iδx0,i,

|ma0,x0 |(X) = ‖a0‖1 ,

which shows in a way that the total variation norm generalizes the �1-norm to the continuous 
setting of measures (i.e. no discretization grid is required).

When no noise is contaminating the data, one considers the classical basis pursuit, defined 
originally in [17] in a finite dimensional setting, written here over the space of Radon measures

min
m∈M(X)

|m|(X) s.t.Φm = y0 (P0(y0)).

This problem is studied in [15], in the case where Φ is an ideal low-pass filter on the torus 
X = T.

When the signal is noisy, i.e. when one observes y = y0 + w, with w ∈ H, we may rather 
consider the problem

min
m∈M(X)

1
2
‖Φm − y‖2

H + λ|m|(X) (Pλ(y)).

Here λ > 0 is a parameter that should be adapted to the noise level ‖w‖H. This problem is 
coined as BLASSO [22].

1.1.2.  BLASSO performance analysis.  In order to quantify the recovery performance of the 
methods P0(y0) and Pλ(y), the following two questions arise:

	 (i)	�Does the solutions of P0(y0) recover the input measure ma0,x0? 
	(ii)	�How close is the solution of Pλ(y) to the solution of P0(y0)? 

When the amplitudes of the spikes are arbitrary complex numbers, the answers to the above 
questions require a large enough minimum separation distance ∆(ma0,x0) between the spikes, 
where

∆(ma0,x0)
def.
= min

i�=j
dX(x0,i, x0,j).� (3)

When X = T, dX is the geodesic distance on the circle

∀x, y ∈ R, dX(x + Z, y + Z) = min
k∈Z

|x − y + k|.� (4)

In [15], the authors show that for the ideal low-pass filter, ma0,x0 is the unique solution of 

P0(y0) provided that ∆(ma0,x0) �
C
fc

 where C  >  0 is a universal constant and fc the cutoff 
frequency of the ideal low-pass filter. In the same paper, it is shown that C � 2 when a0 ∈ CN  
and C � 1.87 when a0 ∈ RN . In [41], the constant C is further refined to C � 1.26 when 
a0 ∈ RN . Suboptimal lower bounds on C were given in [33, 81]. Moreover, it was recently 
shown in [20] that necessarily C � 1 in the sense that for all ε > 0, and for fc large enough, 
there exist measures with ∆(ma0,x0) � (1 − ε)/fc which are not identifiable using (P0(y0)).

The second question receives partial answers in [3, 12, 14, 40]. In [12], it is shown that if 
the solution of P0(y0) is unique then the measures recovered by Pλ(y) converge in the weak-* 
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sense to the solution of P0(y0) when λ → 0 and ‖w‖H /λ → 0. In [14], the authors measure 
the reconstruction error using the L2-norm of an ideal low-pass filtered version of the recov-
ered measures. In [3, 40], error bounds are given on the locations of the recovered spikes with 
respect to those of the input measure ma0,x0. However, those works provide little information 
about the geometrical structure of the measures recovered by Pλ(y). That point is addressed 
in [33] where the authors show that under the non degenerate source condition, there exists a 
unique solution to Pλ(y) with the exact same number of spikes as the original measure pro-
vided that λ and ‖w‖H /λ are small enough. Moreover in that regime, this solution converges 
to the original measure when the noise drops to zero.

BLASSO for positive spikes.  For positive spikes (i.e. a0,i > 0), the picture is radically dif-
ferent. Exact recovery of ma0,x0 without noise (i.e. (w,λ) = (0, 0)) holds whatever the dis-
tance between the spikes [22], but stability constants explode as ∆(ma0,x0) → 0. However, the 
authors in [68] show that stable recovery is obtained if the signal-to-noise ratio grows faster 
than O(1/∆2N). This closely matches the optimal lower bounds of O(1/∆2N−1) obtained by 
combinatorial methods [25].

Finally, provided a certain nondegeneracy condition, it was recently shown in [28] that 
support recovery is guaranteed in the presence of noise if the signal-to-noise ratio grows faster 
than O(1/∆2N−1).

1.2.  Solving the BLASSO

As the BLASSO is an optimization problem over the infinite dimensional space of Radon mea-
sures M(X), its resolution is challenging. We review in this section the existing approaches to 
tackle this problem. They can be roughly divided into three main families although there exists 
a flurry of generalizations and extensions that must be considered separately.

1.2.1.  Fixed spatial discretization.  A common approach consists in constraining the measure 
to be supported on a grid. This leads to a finite dimensional convex optimization problem—
known as LASSO [83] or basis pursuit [17]—for which there exist numerous solvers. These 
include the block-coordinate descent (BCD) algorithm [86, 87], the homotopy/LARS algo-
rithm [36, 80], or proximal forward-backward splitting algorithms [18] such as the iterative 
soft thresholding (IST) [21]. Although simples to implement, the latters are in general slow to 
converge (the error in the objective function is typically of the order of O(1/k), where k is the 
number of iterations) [21, 30, 42]. However, there exist accelerated versions such as FISTA 
[4], which benefit from a better non-asymptotic rate of convergence (O(1/k2)). Finally, it is 
noteworthy that these proximal methods enjoy a linear asymptotic rate (see for instance [64]), 
but this regime takes time to reach.

The main limitation of these grid-based methods is that, in order to go below the Rayleigh 
limit and perform super-resolution, the grid must be thin enough. This leads to theoretical and 
practical issues. Indeed, refining the grid not only increases the computational cost of each 
iteration, but it also deteriorates the conditioning of the linear operator to invert. Hence, in 
practice, these methods provide solutions which are composed of small clusters of non-zero 
coefficents around each ‘true’ spike. A way to mitigate this issue is to perform a post process-
ing by replacing each cluster of spikes by its center of mass, as proposed in [43, 82]. This dras-
tically reduces the number of false positive spikes although it is hard to analyze theoretically 
and can be unstable. Instead, one can also consider methods based on safe rules [39] which 
perform a progressive pruning of the grid and keep only active sets of weights [67]. Finally, it 
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has been shown in [34, 35] that the solution of the LASSO, in a small noise regime and when 
the step size tends to zero, contains pairs of spikes around the true ones.

1.2.2.  Fixed spectral discretization and semidefinite programming (SDP) formulation.  In 
[15], the authors propose a reformulation of the basis Pursuit for measures into an equivalent 
finite dimensional SDP for which solvers exist. Similarly, one can get an SDP formulation of 
the BLASSO. However, these equivalences are only true in a 1D setting. In higher dimensions 
(d � 2), one needs to use the so-called Lasserre’s hierarchy [61, 62]. This principle has been 
used for the super-resolution problem in [23].

The resolution of SDPs can be tackled through proximal splitting methods [84] as well 
as interior point methods [11]. However, the overall complexity of the latter is polynomial 
in O( f 2d

c ), where d is the dimension of the domain X , which restricts its application to small 
dimensional problems. This limitation has led to recent developments [16] where the authors 
proposed a relaxed low rank SDP formulation of the BLASSO in order to use a Frank–Wolfe-
type method (see below). The resulting method enjoys the better overall complexity of 
O( f d

c log( fc)) per iteration.
Finally, note that these SDP-based approaches are restricted to certain type of forward 

operators (typically Fourier measurements). In contrast, grid-based proximal methods as well 
as Frank–Wolfe (directly on the BLASSO, see below) can be used for a larger class of opera-
tors Φ.

1.2.3.  Optimization over the space of measures.  In order to directly solve the BLASSO, one 
needs to design algorithms that do not use any Hilbertian structure and can instead deal with 
measures. The benefit is the fact that one can exploit advantageously the continuous setting 
of the problem (typically moving continuously spikes over the domain). In contrast to fixed 
spatial or spectral discretization methods, these algorithms proceed by iteratively adding new 
spikes, i.e. Dirac masses, to the recovered measure.

The Frank–Wolfe (FW) algorithm [44] (see section 4), also called the conditional gradient 
method (CGM) [63], solves optimization problems of the form minm∈C f (m), where C is a 
weakly compact convex set of a topological vector space and f  is a differentiable convex func-
tion (in the case of the BLASSO, m is a Radon measure). It proceeds by iteratively minimizing 
a linearized version of f . No Hilbertian structure is used, which makes it well suited to work on 
the space of Radon measures. It has been proven under a curvature condition on f  (which holds 
on a Banach space for smooth functions having a Lipschitz gradient) that the rate of conv
ergence of this algorithm in the objective function is O(1/k) (see for instance [26]). However, 
it is possible to improve the convergence speed of FW by replacing the current iterate by any 
‘better’ candidate m ∈ C  that further decreases the objective function f . This simple idea has 
led to several successful variations of the standard FW algorithm. For instance, the authors 
of [12] proposed a modified Frank–Wolfe algorithm for the BLASSO where the final step 
updates the amplitudes and positions of spikes by a gradient descent on a non-convex optim
ization problem. Moving the spikes positions takes advantage of the continuous framework 
of the problem (the domain X  is not discretized) which is the main ingredient that leads to a 
typical N-step convergence observed empirically. Finally, this approach has later been used 
in [10] and provides state of the art results in many sparse inverse problems such as matrix 
completion or single molecule localization microscopy (SMLM) [75, 76].

Let us mention that, as observed in [37], the Frank–Wolfe algorithm for the resolution of 
the (constrained variant of the) BLASSO is equivalent to the exchange method (introduced by 
Remez in the 1930s, see [71]) applied to its dual problem. Since the main focus of the present 
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paper is on solving the primal problem (Pλ(y)), we refer to this method as the Frank–Wolfe 
algorithm in the rest of the paper.

1.3.  Other methods for super-resolution

The Prony method [24] and its successors such as MUSIC (MUltiple SIgnal classification) 
[77], ESPRIT (estimation of signal parameters by rotational invariance techniques) [59], or 
matrix pencil [51], are spectral methods which perform spikes localization from low frequency 
measurements. They do not need any discretization and enable to recover exactly the initial 
signal in the noiseless case as long as there are enough observations compared to the number 
of distinct frequencies [65]. Extensions to deal with noise have been developped in [13, 19] 
and stability is known under a minimum separation distance [65]. Greedy algorithms consti-
tute another class of popular methods for sparse super-resolution. The matching pursuit (MP) 
[66] adds new spikes by finding the ones that best correlate with the residual. The orthogonal 
matching pursuit (OMP) [49, 79, 85] is similar to MP but imposes that the current estimate 
of the observations, i.e. Φ(

∑k
i=1 aiδxi), is always orthogonal to the residual. Hence, the ampl

itudes of the Dirac masses are updated by an orthogonal projection after every support update 
(i.e. addition of a new spike). It is noteworthy that there exist many generalizations/variants 
of OMP. For instance, the results of OMP can be improved with a backtracking step at each 
iteration, allowing to remove non reliable spikes from the support of the reconstructed mea-
sure [53].

These greedy pursuit algorithms can be applied without grid discretization [56] which 
enables the use of local optimizations over the spikes’ positions [38]. Finally, let us mention 
the class of nonconvex optimization methods which include the well known iterative hard 
thresholding (IHT) [7, 8]

1.4.  Contributions

Our first set of contributions, detailed in section 3, studies the BLASSO performance in the 
special case of several types of Laplace transforms. This theoretical study is motivated by the 
use of these Laplace transform for certain types of fluorescence microscopy imaging devices. 
Our main finding is that for positive spikes, these operators can be stably inverted without 
minimum separation distance. This study makes use of the theoretical tools developed in our 
previous work [28].

Our algorithmic contributions are detailed in section  4, where we introduce the 
Sliding Frank–Wolfe, which is an extension of the initial FW solver proposed in [12]. 
Proposition 5 shows that this algorithm, used to solve the BLASSO, enjoys the same conv
ergence property as the classical Frank–Wolfe algorithm (weak-* convergence with a rate 
in the objective function of O(1/k)). Our main theoretical contribution is theorem 3 which 
proves that our algorithm converges towards the unique solution of the BLASSO in a finite 
number of iterations.

Section 5 makes the connection between these two sets of contributions, by showcasing the 
SFW algorithm for 3D PALM/STORM super-resolution fluorescence microscopy. We study 
its performance for several imaging operators, among which some relies on the inversion of a 
Laplace transform along the depth axis.

The code to reproduce the numerical illustrations of this article can be found online at 
https://github.com/qdenoyelle.
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1.5.  Notations and definitions

This section gathers some useful notations and definitions.

1.5.1.  Ground space and measures.  We frame our theoretical and numerical analysis of the 
BLASSO on the space of Radon measure over a set X .

Definition 1 (Set X  of positions of spikes).  The set of positions of spikes, denoted X , 
is supposed to be a subset of Rd with non-empty interior 

◦
X , or Td  with d ∈ N∗.

Definition 1 covers the particular case of X = Rd, X = Td  or any compact subset with 
non-empty interior of Rd.

Definition 2 (Continuous functions on X).  Let (Y , ‖·‖Y) be a normed space. We denote 
by Cc(X, Y) the space of Y-valued continuous functions with compact support, by C0(X, Y) the 
set of continuous functions that vanish at infinity i.e.

∀ε > 0, ∃K ⊂ X compact, sup
x∈X\K

‖ϕ(x)‖Y � ε,

and by C k(X, Y) the set of k-times differentiable functions on X . Note that when X  is com-
pact, Cc(X, Y) and C0(X, Y) are simply the set C (X, Y) of continuous functions on X .

Now we can define rigorously the space of real bounded Radon measures on X .

Definition 3 (Set M(X) of radon measures).  We denote by M(X) the set of real 
bounded Radon measures on X  which is the topological dual of C0(X,R) endowed with 
‖·‖∞,X  (the supremum norm for functions defined on X).

By the Riesz representation theorem, M(X) is also the set of regular real Borel measures 
with finite total mass on X . See [73] for more details on Radon measures.

1.5.2.  Kernels.  This paragraph details the assumptions that we use in the following on the 
kernel ϕ. We recall that the operator Φ : M(X) → H, which models the acquisition process 
of the source signal, has the form:

∀m ∈ M(X), Φm def.
=

∫

X
ϕ(x)dm(x).� (5)

The above quantity is well-defined (as a Bochner integral) as soon as ϕ is continuous and 
bounded. In order to apply some results of [28], we add the hypotheses that are summarized 
below.

Definition 4 (Admissible kernels ϕ).  We denote by KER(k), the set of admissible ker-
nels of order k. A function ϕ : X → H belongs to KER(k) if:

	 •	�ϕ ∈ C k(X,H),
	 •	�For all p ∈ H, x ∈ X �→ 〈ϕ(x), p〉H vanishes at infinity,

	 •	�for all 0 � i � k, sup
x∈X

∥∥Diϕ(x)
∥∥
H < +∞.

where Diϕ is the ith differential of ϕ.

1.5.3.  Operators.  Given x = (x1, . . . , xN) ∈
◦
XN , we denote by Φx : RN → H the linear oper-

ator such that:

Q Denoyelle et alInverse Problems 36 (2020) 014001
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∀a ∈ RN , Φx(a)
def.
=

N∑
i=1

aiϕ(xi),� (6)

and by Γx : (RN × RN × · · · × RN
︸ ︷︷ ︸

d

) → H the linear operator defined by

∀(a, b1, . . . , bd) ∈ RN × (RN)d, Γx




a
b1
...

bd




def.
=

N∑
i=1


aiϕ(xi) +

d∑
j=1

bj,i∂jϕ(xi)


 .

� (7)

We may also write Γx =
(
Φx (Φx)

(1)
)
, where (Φx)

(1) (sometimes denoted by Φx
′) stacks all 

the first order derivatives of ϕ for the different positions xi. Similarly we define (Φx)
(k) for 

k � 1 by stacking all the derivatives of order k. Finally, Γ+
x  refers to the pseudo-inverse of Γx.

When d  =  1, given xc ∈
◦
X, we denote by ϕk ∈ H the kth derivative of ϕ at xc, i.e.

ϕk
def.
= ϕ(k)(xc).� (8)

In particular, ϕ0 = ϕ(xc). Given k ∈ N, we then define

Ψk
def.
=

(
ϕ0 ϕ1 . . . ϕk

)
.� (9)

1.5.4.  Injectivity assumption.  In order to avoid degeneracy issues we sometimes assume the 
following injectivity assumption of the operator when restricted to discrete spikes.

Definition 5.  Let ϕ : X → H. For all k ∈ N, we say that the hypothesis Ik holds at xc ∈
◦
X 

if and only if

ϕ ∈ KER(k) and (ϕ0, . . . ,ϕk) are linearly independent in H. (Ik)

1.5.5.  Norms.  We use the �∞-norm, |·|∞, for vectors of RN  or R2N, whereas the notation ‖·‖ 
refers to an operator norm (on matrices, or bounded linear operators). ‖·‖H is the norm on H 
associated to the inner product 〈·, ·〉H. ‖·‖∞,X  denotes the L∞-norm for functions defined on X .

2.  Reminders on the BLASSO

2.1.  Recovery of the support in presence of noise.

Let x0 ∈
◦
XN , a0 ∈ (R \ {0})N  and ma0,x0 =

∑N
i=1 a0,iδx0,i. The BLASSO is the variational 

problem

min
m∈M(X)

1
2
‖Φm − y‖2

H + λ|m|(X) (Pλ(y)),

where y def.
= Φma0,x0 + w are the noisy observations of a measure composed of a sum of Dirac 

masses. The optimality of a measure mλ for Pλ(y) is characterized by the fact that the function

ηλ
def.
= Φ∗pλ where pλ

def.
=

1
λ
(y − Φmλ)� (10)

Q Denoyelle et alInverse Problems 36 (2020) 014001
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satisfies ‖ηλ‖∞,X � 1. The function ηλ is then called a dual certificate.
When one is interested in the recovery of the support, i.e. finding a solution ma,x of Pλ(y) 

composed of exactly the same number of Dirac masses as the initial measure ma0,x0, in a small 
noise regime, an important object is the so-called vanishing derivatives precertificate intro-
duced in [33].

Definition 6 (Vanishing derivatives precertificate [33]).  If Γx0 has full column rank, 
there is a unique solution to the problem

inf {‖p‖H ; ∀i = 1, . . . , N, (Φ∗p)(x0,i) = sign(a0,i), (Φ∗p)′(x0,i) = 0Rd} .

Its solution pV is given by

pV = (Γ+
x0
)∗

(
sign(a0)

0(Rd)N

)
,� (11)

and we define the vanishing derivatives precertificate as ηV
def.
= Φ∗pV (Γx0 is defined in equa-

tion (7)).

One can show that if ‖ηV‖∞,X � 1 then ηV  is a so-called valid certificate, which ensures 
that ma0,x0 is a solution to the constrained problem (corresponding to setting w  =  0 and λ → 0 
in Pλ(y))

min
Φm=y0

|m|(X) where y0
def.
= Φma0,x0 (P0(y0)).

More importantly, if it satisfies a stronger nondegeneracy condition detailed in definition 7 
below, then ηV  also ensures the stable recovery of the support in a small noise regime when 
solving the BLASSO. This result proved in [33] is stated in theorem 1.

Definition 7 (Nondegeneracy of ηV , [33]).  We say that ηV  is nondegenerate if


∀ x ∈ X \

N⋃
i=1

{x0,i}, |ηV(x)| < 1,

∀ i ∈ {1, . . . , N}, det(D2ηV(x0,i)) �= 0.
� (12)

Theorem 1 (Exact support recovery [33]).  Assume that ϕ ∈ KER(2), Γx0 has full col-
umn rank and ηV  is nondegenerate. Then there exists C  >  0 such that if (λ, w) ∈ R∗

+ ×H 
satisfies:

max (λ, ‖w‖H /λ) � C,

then there is a unique solution ma,x to Pλ(y) composed of N Dirac masses such that 
(a, x) = g(λ, w) where g is C 1. In particular, by taking the regularization parameter 
λ = ‖w‖H /C proportional to the noise level, one obtains

|(a, x)− (a0, x0)|∞ = O(‖w‖H),

where |·|∞ is the �∞-norm for vectors.

Figure 9 displays some example of ηV  associated to several Φ operators for 3D super-
resolution fluorescence microscopy. This shows that for these inverse problems, the BLASSO 
stably recovers the support of the input measure if the noise level is not too high.
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2.2. The super-resolution problem

In this section, X  is considered to be 1D and we now tackle the super-resolution problem in 
presence of noise using the BLASSO. In this setting, we assume that the Dirac masses of the 

initial measure have positive amplitudes and cluster at some point xc ∈
◦
X. We parametrize 

this cluster as

ma0,tz0

def.
=

N∑
i=1

a0,iδxc+tz0,i where a0,i > 0, z0,i ∈ R,

and where the parameter t  >  0 controls the separation distance between the spikes of the input 
measure. This problem in a multidimensional setup has been studied in [69].

In [28], the authors proved that the recovery of the support in presence of noise in the limit 
t → 0 is controlled by the 2N  −  1 vanishing derivatives precertificate.

Proposition 1 (2N  −  1 vanishing derivatives precertificate [28]).  If I2N−1 holds at 
xc (see Definiton 5), there is a unique solution to the problem

inf
{
‖p‖H ; (Φ∗p)(xc) = 1, (Φ∗p)′(xc) = 0, . . . , (Φ∗p)(2N−1)(xc) = 0

}
.

We denote by pW  its solution, given by

pW = (Ψ+
2N−1)

∗δ2N where δ2N
def.
=(1, 0, . . . , 0)T ∈ R2N ,� (13)

and we define the 2N  −  1 vanishing derivatives precertificate as ηW
def.
= Φ∗pW (see equation (9) 

for the definition of Ψ2N−1).

Figure 1 shows ηW  in the case of a Gaussian convolution kernel.

Remark 1.  From proposition 1, one can easily see that ηW  can equivalently be written as

∀x ∈ X, ηW(x) =
2N−1∑
k=0

αk∂
(k)
2 cϕ(x, xc),� (14)

where cϕ is the correlation kernel associated to the correlation operator Φ∗Φ, namely 
cϕ(x, x′) = 〈ϕ(x),ϕ(x′)〉H, and the coefficients αk are defined by the equations

∀k ∈ {0, . . . , 2N − 1}, η
(k)
W (xc) = δk

0.� (15)

If ηW  satisfies some nondegeneracy property (see definition 8) then one can prove that the 
recovery of the support in a small noise regime when t → 0 is possible. Theorem 2 (see [28]) 
makes this statement precise by quantifying the scaling between the noise level and the sepa-
ration t to ensure the recovery.

Definition 8.  Assume that I2N−1 holds at xc and ϕ ∈ KER(2N). We say that ηW  is 

(2N − 1)-nondegenerate if η(2N)
W (xc) �= 0 and for all x ∈ X \ {xc}, |ηW(x)| < 1.

Theorem 2.  Suppose that ϕ ∈ KER(2N+1) and that ηW  is (2N − 1)-nondegenerate. Then 
there exist positive constants t0,C,M (depending only on ϕ, a0 and z0) such that for all 
0  <  t  <  t0, for all (λ, w) ∈ B

(
0, Ct2N−1

)
 with ‖w‖H /λ � C,
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	 •	�the BLASSO has a unique solution,
	 •	�that solution has exactly N spikes, and it is of the form ma,xc+tz, with (a, z) = g(λ, w) 

(where g is a C 2N function),
	 •	�the following inequality holds

|(a, z)− (a0, z0)|∞ � M
(

|λ|
t2N−1 +

‖w‖H
t2N−1

)
.

In the next section, we prove that the main assumption of theorem 2 (the nondegeneracy of 
ηW ) is satisfied for some operators Φ associated to Laplace measurements.

3.  BLASSO for Laplace inversion

Most existing theoretical studies of super-resolution are focussed on translation-invariant 
operator Φ (convolution or Fourier measurements), see section  1.1. In contrast, this sec-
tion presents new results for one of the most fundamental non-translation invariant operator: 
the Laplace transform (and variants).

The behavior of the Laplace transform is radically different from the one of the Fourier trans-
form, and understanding the impact of the lack of translation invariance on super-resolution 
is relevant for many applications in imaging, including those considered in section 5. A first 
argument in favor of the BLASSO for the Laplace transform is the study provided in [32]. It 
essentially shows that the recovery of N positive spikes with stability of the support is possible 
using at least 2N measurements, regardless of the spacing of the spikes (and the spacings of 
the samples). The stability is asserted by showing that ηV ,t and ηW  are nondegenerate, using 
abstract T-systems arguments.

Our strategy here is different, as we provide closed form expressions for ηW  for these 
operators in order to show its nondegeneracy. The results presented here are thus complemen-
tary to those of [32], providing additional theoretical guarantees which backup our numerical 
observations. The main differences are

	 •	�we provide closed form expressions to ηW ,
	 •	�some of the impulse responses we consider are L2-normalized, a case which is not cov-

ered by the theory of [32],
	 •	�we cannot deal with arbitrary samplings µ, contrary to [32].

In this section, we suppose that N spikes are clustered at the position xc ∈
◦
X (which appears in 

the following results because of the non translation invariance of the kernel).

Figure 1.  ηW  for a Gaussian convolution (x ∈ R, ϕ(x) = e−
(·−x)2

2σ2 ) for several numbers 

of spikes and σ = 1.
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In the next section, we first detail the different continuous operators considered. Then, 
section  3.3 gives explicit formulas for ηW  in two different setups and shows that ηW  is 
(2N − 1)-nondegenerate. Finally, section 3.4 provides some numerical material concerning 
ηW  when the continuous kernels are approximated by a sampling.

3.1.  Laplace operators

We suppose in this section  that X = [xmin, xmax] ⊂ R∗
+ is a compact interval, and that 

H = L2(R+,µ) for some Radon measure µ on R+. A generic Laplace measurement kernel is 
defined as

∀x ∈ X, ϕ(x) def.
=

(
s �→ ξ(x)e−sx) ∈ H.� (16)

This choice ensures that ϕ defines a valid operator Φ for all the the Laplace-like transform 
models presented below, provided e−xminsdµ(s) has sufficiently many finite moments (in the 
following we require finite moments of order 4N  −  1). The kernel is parametrized by a posi-
tive Radon measure µ on X  (which models the sampling pattern) and a non-negative weight-
ing function ξ ∈ C (X,R) (which takes care of the normalization of the measurement). The 
adjoint operator is thus defined as

(Φ∗p)(x) = ξ(x)
∫

R+

e−sxp(s)dµ(s).

The choice of µ is let to the experimentalist and corresponds to the way samples are cho-
sen. A discrete measure µ =

∑K
k=1 µkδsk corresponds to using a finite set of samples values 

sk. In this case, one can equivalently consider finite-dimensional observations H = RK  and 

define ϕ(x) def.
=(ξ(x)µke−skx)K

k=1 ∈ H. A continuous measure dµ(s) = hµ(s)ds is a mathemati-
cal idealization, where a high value of hµ(s) indicates that a high number of measurements 
have been taken for the index s (or equivalently that there is less noise for this measurement). 
On contrast, a value µ(s) = 0 indicates that this measurement is not available.

In contrast, ξ can be freely chosen but strongly impacts the BLASSO problem by weight-
ing the contribution of each position. The design of such a spatially-varying weighting is 
crucial (and non trivial) here because the operator Φ is not translation-invariant. The most 
frequent normalization for LASSO-type problems is

ξ(x)2 =
1∫

R+
e−2sxdµ(s)

,� (17)

which guarantees that ‖ϕ(x)‖H = 1 for all x ∈ X . See section 3.3.2 for more details for this 
normalization.

Note that both µ and ξ can be independently chosen, since they operate separately on the 
input and output variables x and s.

3.1.1.  Correlation kernel.  The properties of the BLASSO problem (and also the implementa-
tion of BLASSO solvers) only depend on the correlation operator Φ∗Φ (rather than on the 
operator Φ itself). This operator reads (Φ∗Φm)(x) =

∫
X cϕ(x, x′)dm(x′) where cϕ is a sym-

metric positive kernel. For Laplace-type operators, it reads

∀x, x′ ∈ X, cϕ(x, x′) = ξ(x)ξ(x′)
∫

R+

e−(x+x′)sdµ(s).
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The choice of normalization (17) ensures that cϕ(x, x) = 1.
We now detail in the following sections several particular cases covered by equation (16) 

and study the associated ηW .

3.2.  Preliminaries results

This section gathers preliminary results useful for the computation of ηW .
One begins with two elementary lemmas. Their proofs are left to the reader. The first one 

is a simple consequence of the Faa di Bruno formula.

Lemma 1.  Let I, I′ ⊂ R be open intervals, and h : I′ → I  be a smooth diffeomorphism. Let 
xc ∈ I , tc := h−1(xc) ∈ I′, and let η : I → R be a smooth function. Then η satisfies

η(xc) = 1, η′(xc) = 0, . . . , η(2N−1)(xc) = 0,� (18)

if and only if ν
def.
= η ◦ h satisfies

ν(tc) = 1, ν′(tc) = 0, . . . , ν(2N−1)(tc) = 0.� (19)

Moreover, in that case, ν(2N)(tc) = η(2N)(xc)(h′(tc))2N.

The next one follows from the general Leibniz rule.

Lemma 2.  Let I be an open interval, tc ∈ I  and let g : I → R, η : I → R be two smooth 
functions. If η satisfies:

η(xc) = 1, η′(xc) = 0, . . . , η(2N−1)(xc) = 0,� (20)

then P def.
= η × g satisfies:

P(xc) = g(xc), P′(xc) = g′(xc), . . . , P(2N−1)(xc) = g(2N−1)(xc).� (21)

In particular, if P ∈ R2N−1[T], then P is the Taylor expansion of g at xc of order 2N  −  1, and 

η
(2N)
W (xc) = −g(2N)(xc)/g(xc) provided that g(xc) �= 0.

3.3.  Explicit formulas for ηW  in continuous settings

3.3.1.  Classical Laplace operator.  We suppose that µ = L, where L is the Lebesgue measure 
on R+, and ξ = 1. Then one has

cϕ(x, x′) =
1

x + x′
.� (22)

The following proposition provides a formula for ηW  in this unnormalized continuous set-
ting and proves that it is nondegenerate.

Proposition 2.  ηW  is (2N − 1)-nondegenerate. More precisely, we have

∀x ∈ X, ηW(x) = 1 −
(

x − xc

x + xc

)2N

.� (23)
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In figure 2, one sees that when the position xc where the spikes cluster increases, the curva-
ture of ηW  at xc decreases. This means that it is harder in this situation to perform the recovery. 
It reflects the exponential decay of the kernel ϕ.

Proof of proposition 2.  From equations (14) and (22), one sees that ηW  has the form

ηW(x) =
2N∑

k=1

βk

(x + xc)k , where βk ∈ R.

We set h : t �→ (1/t − xc), ν
def.
= η ◦ h so that

ν(t) =
2N∑

k=1

βktk,

is a polynomial with degree at most 2N with ν(0) = 0. By lemma 1, ν  satisfies (19) at tc
def.
= 1

2xc
. 

As a result, ν(t) = 1 + β2N(t − tc)2N . The constant β2N  is fixed by the condition ν(0) = 0, so 

that ν(t) = 1 −
(

t−tc
tc

)
2N , and ηW  is given by (23).

The 2N derivative is ν(2N)(tc) = − (2N)!
(tc)2N , so that ηW(xc) = − (2N)!

(2xc)2N < 0.� □ 

3.3.2.  L2-normalized Laplace operator.  We choose µ = L, where L is the Lebesgue measure 
on R+ , and

∀x ∈ X, ξ(x) =

√
1∫

R+
e−2sxds

=
√

2x,

so that for all x ∈ X , ϕ(x) : s �→
√

2xe−sx and ‖ϕ(x)‖H = 1. One gets

∀x, x′ ∈ X, cϕ(x, x′) def.
= 〈ϕ(x),ϕ(x′)〉H =

2
√

xx′

x + x′
.� (24)

The following proposition provides a formula for ηW  in this normalized setting and proves 
that it is nondegenerate.

Figure 2.  ηW  for the unnormalized Laplace model for a varying xc with fixed N  =  2 
and a fixed xc = 1 with varying N ∈ {2, 4, 6}.
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Proposition 3.  ηW  is (2N − 1)-nondegenerate. More precisely, we have the following 
formula:

∀x ∈ X, ηW(x) =
2
√

xxc

x + xc

N−1∑
k=0

(2k)!
22k(k!)2

(
x − xc

x + xc

)2k

.� (25)

In figure 3, one sees that when the position xc where the spikes cluster increases then the 
curvature of ηW  at xc decreases. The interpretation is the same as in the previous paragraph.

Proof of proposition 3.  From the general Leibniz rule, we have for all n ∈ {0, . . . , 2N − 1} 
and for all x, x′ ∈ X :

dn

dx′n
(cϕ(x, x′)) = 2

√
x

n∑
k=0

(
n
k

)
dn−k

dx′n−k

(√
x′
) dk

dx′k

(
1

x + x′

)
.

Evaluating this expression at x′ = xc, one gets that:

∂n
2cϕ(x, xc) =

√
x

n∑
k=0

αk

(x + xc)k+1 ,

for some coefficients αk ∈ R. As a result, ηW  is the unique function the form

ηW(x) =
√

x
2N−1∑
k=0

βk

(x + xc)k+1

for some coefficients βk ∈ R, which satisfies (15). As before, we set t = 1
x+xc

, that is 
x = h(t) def.

= 1
t − xc, and h is a diffeomorphism of (0, 1/xc) onto (0,+∞). Then:

ηW ◦ h(t) =

√
1
t
− xctP(t) =

√
t − t2xcP(t),

where P(T) =
∑2N−1

k=0 βkTk ∈ R2N−1[T].

Figure 3.  ηW  for the normalized Laplace model for a varying xc with fixed N  =  2 and 
a fixed xc = 1 with varying N ∈ {2, 4, 6}. (a) N  =  2. (b) xc = 1.
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By lemmas 1 and 2, P is the Taylor expansion of order 2N  −  1 of g : t �→ 1√
t−t2xc

 at 

tc = h−1(xc) =
1

2xc
. Setting t = u + 1

2xc
, we note that:

1√
t − t2xc

=
2
√

xc√
1 − (2uxc)2

and
1√

1 − z2
=

N−1∑
k=0

(2k)!
22k(k!)2 z2k + o(z2N−1).

One deduces that

1√
t − t2xc

= 2
√

xc

N−1∑
k=0

(2k)!
22k(k!)2 [2xc(t − tc)]

2k
+ o((t − tc)

2N−1
).

As a result, P is given by P(t) = 2
√

xc
∑N−1

k=0
(2k)!

22k(k!)2 [2xc(t − tc)]
2k and

ηW ◦ h(t) =
√

t − t2xcP(t)� (26)

= 1 −
∑+∞

k=M
(2k)!

22k(k!)2 [2xc(t − tc)]
2k

∑+∞
k=0

(2k)!
22k(k!)2 [2xc(t − tc)]

2k .� (27)

One sees that |ηW ◦ h(t)| < 1 for all t ∈ (0, 1
xc
) \ { 1

2xc
}, and by lemma 2,

(ηW ◦ h)(2N)(tc) = −g(2N)(tc)/g(tc) = − ((2N)!)2

(N!)2 x2N
c < 0� (28)

so that ηW ◦ h (hence ηW ) is (2N − 1)-nondegenerate. One recovers ηW  by composing with 
h−1, noting that 2xc(t − tc) = xc−x

x+xc
.� □ 

3.4.  Sampled approximations

The previous two cases (normalized and unnormalized versions of the Laplace transform) 
correspond to mathematical idealizations. In practice, one needs to restrict the sampling pat-
terns by limiting their ranges and considering discrete samples. The following two setups are 
involved in the application of section 5.

3.4.1.  Discretized unnormalized Laplace.  We assume that µ =
∑K−1

k=0 δsk  and ξ = 1. Then 
ϕ(x) = (e−skx)K−1

k=0 ∈ RK  and:

cϕ(x, x′) =
K−1∑
k=0

e−sk(x+x′).

3.4.2.  Discretized L2-normalized Laplace.  We let µ =
∑K−1

k=0 δsk  and ξ(x) =
(∑K−1

k=0 e−2skx
)−1/2

.  

Then ϕ(x) = ξ(x)(e−skx)K−1
k=0 ∈ RK , ‖ϕ(x)‖H = 1 and:

cϕ(x, x′) = ξ(x)ξ(x′)
K−1∑
k=0

e−sk(x+x′).
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In contrast to the continuous setups of section 3.3, we do not have closed-form expressions 
for ηW . However, if a sequence of measures, e.g. µn =

∑Kn−1
k=0 µn,kδsn,k converges in a suitable 

sense towards the Lebesgue measure µ = L, the following proposition shows that the corre
sponding ηW  must be nondegenerate for n large enough. We consider both the unnormalized 
and L2-normalized setups, corresponding respectively to

cϕn(x, x′) =
∫

R+

e−(x+x′)sdµn(s), and

cϕn(x, x′) = ξn(x)ξn(x′)
∫

R+

e−(x+x′)sdµn(s) where ξn(x) =
∫

R+

e−2xsdµn(s),

and similarly for cϕ and µ = L.

Proposition 4.  Let (µn)n∈N be a sequence of positive measures which converges towards 
the Lebesgue measure µ in the local weak-* topology, i.e.

∀ψ ∈ Cc(R+), lim
n→+∞

∫

R+

ψ(s)dµn(s) =
∫

R+

ψ(s)ds,

and such that

sup
n∈N

∫

R+

(1 + s4N−1)e−xminsdµn(s) < +∞.� (29)

Then, both in the unnormalized and the L2-normalized case, for n large enough, the 2N  −  1 
vanishing derivatives precertificate ηW,n is (2N − 1)-nondegenerate.

Proof.  Let us denote by Ψ[n]
2N−1 = (ϕ0, . . . ,ϕ2N−1) (resp. Ψ2N−1) the impulse response 

derivatives corresponding to µn (resp. µ = L), and by ηW  the 2N  −  1 vanishing derivatives 
precertificate for µ = L. First, in view of sections 3.3.1 and 3.3.2, we observe that the result 
follows immediately if we prove that

lim
n→+∞

Ψ
[n]∗
2N−1Ψ

[n]
2N−1 = Ψ∗

2N−1Ψ2N−1,� (30)

(as it implies the linear independence of (ϕ0, . . . ,ϕ2N−1) for n large enough), and that

∀i ∈ {0, 1, . . . , 2N}, lim
n→+∞

∥∥∥η(i)
W,n − η

(i)
W

∥∥∥
∞,X

= 0,� (31)

(as it implies |ηW,n(x)| < 1 for x �= xc and η(2N)
W,n (xc) < 0 for n large enough).

We recall from (14) that ηW,n is given by ηW,n(x) =
∑2N−1

i=0 α
[n]
i ∂

(i)
2 cϕn(x, xc) where 

α[n] = (Ψ
[n]∗
2N−1Ψ

[n]
2N−1)

−1δ2N  (provided the matrix is invertible), and the (i, j)-entry of 

(Ψ
[n]∗
2N−1Ψ

[n]
2N−1) is ∂(i)

1 ∂
( j)
2 cϕn(xc, xc). As a consequence, both (30) and (31) are established if 

we can prove that

lim
n→+∞

sup
x,x′∈[xmin,xmax]

∣∣∣∂(i)
1 ∂

( j)
2 cϕn(x, x′)− ∂

(i)
1 ∂

( j)
2 cϕ(x, x′)

∣∣∣ = 0,� (32)

for all i ∈ {0, . . . , 2N}, j ∈ {0, . . . , 2N − 1}.

First, we prove (32) in the unnormalized case, i.e. cϕn(x, x′) =
∫
R+

e−(x+x′)sdµn(s). The 
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dominated convergence theorem ensures that ∂(i)
1 ∂

( j)
2 cϕn(x, x′) =

∫
R+

si+je−(x+x′)sdµn(s) 
(and similarly for cϕ and µ).

Let (x, x′) ∈ [xmin, xmax]
2 and let ψ ∈ Cc(R+) such that ψ(s) = 1 for s ∈ [0, 1], ψ(s) = 0 for 

s � 2, and 0 � ψ � 1 on R+. We denote by C the supremum in (29).
Let ε > 0 and A  >  0. Then,

∣∣∣∣∣
∫

R+

si+je−(x+x′)sdµn(s)−
∫

R+

si+je−(x+x′)sds

∣∣∣∣∣

�

∣∣∣∣∣
∫

R+

si+je−(x+x′)sψ
( s

A

)
dµn(s)−

∫

R+

si+je−(x+x′)sψ
( s

A

)
ds

∣∣∣∣∣
︸ ︷︷ ︸

def.
= a

+

∣∣∣∣∣
∫

R+

si+je−(x+x′)s(1 − ψ
( s

A

)
)dµn(s)

∣∣∣∣∣
︸ ︷︷ ︸

=b

+

∣∣∣∣∣
∫

R+

si+je−(x+x′)s(1 − ψ
( s

A

)
)ds

∣∣∣∣∣
︸ ︷︷ ︸

=c

.

We have

c �
∫ +∞

A
(1 + s4N−1)e−2xminsds,

and b � e−xminA
∫

R+

(1 + s4N−1)e−xminsdµn(s) � e−xminAC.

We choose A  >  0 sufficiently large so that 
∫ +∞

A (1 + s4N−1)e−2xminsds � ε and e−xminAC � ε, 
hence max(b, c) � ε.

Now, to prove that a is uniformly small for (x, x′) ∈ [xmin, xmax]
2 as n → +∞, we apply 

lemma 3 to ((x, x′), s) �→ si+je−(x+x′)sψ
( s

A

)
 defined on [xmin, xmax]

2 × [0, 2A]. This yields the 
desired result.

The proof for the normalized case readily follows from the uniform conv
ergence of the unnormalized case and the fact that the normalization factors 

ξn(x) =
(∫

R+
e−2sxdµn(s)

)
−1/2 �

(∫
R+

e−2sxmax dµn(s)
)

−1/2 are upper bounded by some 

positive constant independent of n.� □ 

Lemma 3.  Let X and S be two compact metric spaces, and ψ ∈ C (X × S). If {µn}n∈N and 
µ are Radon measures such that µn

∗
⇀ µ in the weak-* convergence of M(S), then

lim
n→+∞

∫

S
ψ(x, s)dµn(s) =

∫

S
ψ(x, s)dµ(s),

uniformly in x ∈ X .

Proof.  We note that the mapping (η, ν) �→
∫

S ηdν  is continuous on C (S)×M(S). Since 
x �→ ψ(x, ·) is continuous from X to C (S), the mapping

F : (x, ν) �−→
∫

S
ψ(x, s)dν(s)� (33)
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is continuous on X ×M(S).
Now, since S is compact, M(S) is the dual of the Banach space C (S), and the Banach–

Steinhaus theorem implies that there exists R  >  0 such that supn |µn|(S) � R (and |µ|(S) � R).
The subspace BR

def.
= {ν ∈ M(S); |ν|(S) � R} is metrizable for the weak-* topology and 

compact. As a result, the mapping F is uniformly continuous on the compact X × BR. In par
ticular, as µn → µ in BR,

sup
x∈X

∣∣∣∣
∫

S
ψ(x, s)dµn(s)−

∫

S
ψ(x, s)dµ(s)

∣∣∣∣ → 0.
�

□ 

Figure 4 illustrates this convergence between the precertificates in the unnormalized case.

4. The SFW algorithm

In this section, we present the Sliding Frank–Wolfe (see algorithm 2), a new version of the 
modified Frank–Wolfe algorithm introduced in [12]. Moreover, we prove in theorem 3 that 
it converges in a finite number of steps under mild assumptions. The code can be found in 
https://github.com/qdenoyelle.

We suppose in this section that X ⊂ Rd is compact, or X = Td  with d ∈ N∗ and ϕ ∈ KER(2) 
(see definition 4).

4.1. The algorithm

4.1.1.  Frank–Wolfe algorithm.  The Frank–Wolfe (FW) algorithm [44], also called the condi-
tional gradient method (CGM) [63] solves the following optimization problem

min
m∈C

f (m),� (34)

where C is a weakly compact convex set of a Banach space, and f  is a differentiable convex 
function. For instance, in the case of sparse recovery problems, m is a measure and C is a sub-
set of M(X). A chief advantage of FW with respect to most first order optimization scheme 
(such as gradient descent or proximal splitting method) is that it does not rely on any underly-
ing Hilbertian structure and only makes use of directional derivatives. It is thus particularly 
well adapted to optimize over the space of Radon measures. The algorithm is detailed in 
algorithm 1.

Figure 4.  Approximation of ηW  for the unnormalized continuous Laplace operator (see 
proposition 2) by the ηW  obtained for discretized unnormalized Laplace operators. (a) 
K  =  10. (b) K  =  120. (c) K  =  800.
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Algorithm 1.  Frank–Wolfe algorithm.

1: for k = 0, . . . , n do

2:    Minimize: s[k] � argmins∈Cf (m[k]) + df (m[k])[s − m[k]].

3:    if df (m[k])[s[k] − m[k]] = 0 then

4:        m[k] solution of (34). Stop.
5:    else

6:        Step research: γ[k] ← 2
k+2 or γ[k] � argminγ∈[0,1]f (m

[k] + γ(s[k] − m[k])).

7:        Update: m[k+1] ← m[k] + γ[k](s[k] − m[k]).
8:    end if
9: end for

Let us note that the FW algorithm is naturally endowed with a stopping criterion in step 3 
(see for instance [26, chapter 3, section 1.2]) which is equivalent to the standard optimality 
condition for constrained convex problems

∀s ∈ C, df (m[k])[s − m[k]] � 0.� (35)

4.1.2.  Frank–Wolfe for the BLASSO.  The FW algorithm cannot be applied directly to the 
BLASSO because it is an optimization problem over M(X) which is not bounded and the 
objective function

∀m ∈ M(X), Tλ(m)
def.
=

1
2
‖Φm − y‖2

H + λ|m|(X),� (36)

is not differentiable. Instead, we propose to consider an equivalent problem to the BLASSO, 
using an epigraphical lift (following an idea of [46]), which is presented in lemma 4.

Lemma 4.  The BLASSO

min
m∈M(X)

Tλ(m)
def.
=

1
2
‖Φm − y‖2

H + λ|m|(X). (Pλ(y))

is equivalent to

min
(t,m)∈C

T̃λ(m, t) def.
=

1
2
‖Φm − y‖2

H + λt, (P̃λ(y))

where we defined C def.
= {(t, m) ∈ R+ ×M(X); |m|(X) � t � M} and M def.

=
‖y‖2

H
2λ .

The equivalence stated in lemma 4 is to be understood in the following sense: m is a solu-
tion to (Pλ(y)) if and only if (t, m) is a solution to (P̃λ(y)) for some t � 0. Moreover, in that 
case t = |m|(X) and T̃λ(m, t) = Tλ(m). As a result, one can directly translate the FW algo-
rithm (see algorithm 1) to Pλ(y).

Proof.  Let m∗ be a minimizer of Tλ on M(X), then we have

Tλ(m∗) � Tλ(0) = λM.� (37)

Hence, one can restrict the BLASSO to the set of measures m ∈ M(X) such that |m|(X) � M 
and P̃λ(y) is obtained using an epigraphical representation.� □ 
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The next two remarks discuss the applicability of standard results on FW to the BLASSO.

Remark 2 (Well-posedness).  The FW algorithm is well defined for P̃λ(y). Indeed, T̃λ is 
a differentiable functional on the Banach space R×M(X), with differential

dT̃λ(t, m) : (t′, m′) �−→
∫

X
Φ∗(Φm − y)dm′ + λt′.� (38)

Although C is not weakly compact (otherwise, by the Eberlein–Shmulyan theorem, M(X) 
would be reflexive), it is compact for the weak-* topology: as dT̃λ(t, m) is represented by 
(λ,Φ∗(Φm − y)) ∈ R× C0(X), it does reach its minimum on C.

Remark 3 (Rate of convergence).  Let us note that dT̃λ is Lipschitz continuous (because 
ϕ ∈ KER(2)), hence by classical results for the study of the convergence of the FW algorithm, 
one obtains the O(1/k) rate of convergence in the objective function for any minimizing se-
quence for the BLASSO.

Lemma 5 ([26, theorem 3.1.7]).  Let (tk, m[k])k∈N be a sequence generated by algorithm 
1 applied to P̃λ(y). Then, there exists C1  >  0 such that for any m∗ solution of Pλ(y) we have

∀k ∈ N∗, Tλ(m[k])− Tλ(m∗) �
C1

k
.� (39)

Next, we discuss how the minimization step yields a greedy approach and a natural stop-
ping criterion. The following two remarks also crucially relate the algorithm to the dual cer-
tificate of (Pλ(y)).

Remark 4 (Greedy approach).  Obviously, the FW algorithm is only interesting if, in 
step 2 of algorithm 1, one is able to minimize the linear form s �→ dT̃λ(t[k], m[k])[s] on C. That 
linear form reaches its minimum at least at one extreme point of C, i.e. s = (0, 0) or points 
of the form s = (M,±Mδx) for x ∈ X . Finding a minimizer among those points amounts to 
finding a point x in

argminx∈X

(
± 1
λ

(
Φ∗(y − Φm[k])

)
(x) + 1

)
λM,

or equivalently in argmaxx∈X

(∣∣∣η[k](x)
∣∣∣− 1

)
where η[k]

def.
=

1
λ

(
Φ∗(y − Φm[k])

)

(note the similarity of η[k] with the dual certificate defined in (10)).
As a consequence, at each step 7 of algorithm 1, a new spike is created at some point in 

argmaxX

∣∣η[k]∣∣ (unless s = (0, 0) is optimal, which means that 
∥∥η[k]∥∥∞,X � 1). This spike crea-

tion step is at the core of the algorithms in [12] and [10].

Remark 5 (Stopping criterion).  It is interesting to relate the stopping criterion

(t[k], m[k]) ∈ argmins∈CdT̃λ(t[k], m[k])[s],

with the dual certificates for (Pλ(y)). As noted above (see equation (35)), the stopping cri-
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terion is equivalent to (t[k], m[k]) being a solution, hence t[k] = |m[k]|(X). If m[k] �= 0, with-

out loss of generality we write m[k] =
∑N[k]

i=1 a[k]
i δx[k]i

 where the x[k]i ’s are distinct, so that 

t[k] = |m[k]|(X) =
∑

i

∣∣∣a[k]i

∣∣∣. We also set ε[k]i
def.
= sign(a[k]i ) and L def.

= dT̃λ(t[k], m[k]).

Assume first that |m[k]|(X) < M , so that the smallest face of C which contains (t[k], m[k]) is

F def.
= conv

{
(0, 0), (M, Mε

[k]
1 δx[k]1

), . . . , (M, Mε
[k]
N[k]δx[k]

N[k]
)

}
.

Since argmins∈CL  is a face of C containing (t[k], m[k]) (see [72, section 18]), it must contain 
F. Hence

L(0, 0) = L(M, Mε
[k]
1 δx[k]1

) = · · · = L(M, Mε
[k]
N[k]δx[k]

N[k]
) = min

C
L.� (40)

Now, if |m[k]|(X) = M , it means that T̃λ(t[k], m[k]) = T̃λ(0, 0), so that by convexity of T̃λ and 
optimality of (t[k], m[k]) one has L(t[k], m[k]) = dT̃λ(t[k], m[k])[t[k], m[k]] = 0 = L(0, 0). As the 
smallest face which contains (t[k], m[k]) is

F′ def.
= conv

{
(M, Mε

[k]
1 δx[k]1

), . . . , (M, Mε
[k]
N[k]δx[k]

N[k]
)

}
,

we deduce as above that (40) holds.
In particular, L(0, 0) � infx∈X L(M,±Mδx) yields

0 � inf
x∈X

(
−
∣∣∣η[k](x)

∣∣∣+ 1
)

,� (41)

that is 
∥∥η[k]∥∥∞,X � 1. Moreover L(t[k], m[k]) =

∑N[k]

j=1

∣∣∣a[k]j

∣∣∣ L
(

M, Mε
[k]
j δx[k]j

)
�∑N

j=1

∣∣∣a[k]
j

∣∣∣ L(M,±Mδx[k]j
) , yields

−
N[k]∑
j=1

a[k]
j η[k](x[k]j ) � −

N[k]∑
j=1

∣∣∣a[k]j

∣∣∣
∣∣∣η[k](x[k]j )

∣∣∣ ,

from which we deduce η[k](x[k]j ) = sign(a[k]
j ).

As a result, when the FW algorithm stops (if it does), we observe that the quantity η[k] it 
has constructed is the dual certificate for (Pλ(y)). If m[k] = 0, the argument is similar (as (41) 
must hold).

4.1.3. The Sliding Frank–Wolfe algorithm.  Applying directly algorithm 1 yields a sequence 
of measures (m[k])k∈N which weakly-* converges towards some solution m∗ in a greedy way. 
But the generated measures m[k] are not very sparse compared to m∗, each Dirac mass of m∗ 
being approximated by a multitude of Dirac masses of m[k] with inexact positions. It is there-
fore suggested in [12], and strongly advocated in [10], to modify the Frank–Wolfe algorithm 
for the resolution of the BLASSO and to let the Dirac positions move.

One important feature of the FW algorithm (algorithm 1), as noted in [10, 57], is that in 
the update step 7, the point m[k+1] may be replaced with any point m ∈ C  which has lower 
energy, without breaking the convergence property and the convergence rate. The Frank–
Wolfe algorithm with our modified update step is described in algorithm 2, we call it the 
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Sliding Frank–Wolfe (SFW) algorithm. The solvers used for the different steps of this algo-
rithm are detailed in remark 9. Since the t variable is only auxiliary in (P̃λ(y)), we omit it and 
we formulate directly algorithm 2 in terms of m only.

Algorithm 2.  Sliding Frank–Wolfe algorithm.

1: Initialize with m[0] = 0 and n  =  0.
2: for k = 0, . . . , n do

3:    m[k] =
∑N[k]

i=1 a[k]
i δx[k]i

, a[k]
i ∈ R, x[k]i  pairwise distincts, find x[k]∗ ∈ X  s.t.:

             x[k]∗ ∈ arg max
x∈X

|η[k](x)| where η[k]
def
= 1

λΦ
∗(y − Φm[k]),

4:    if |η[k](x[k]∗ )| � 1 then

5:        m[k] is a solution of Pλ(y). Stop.
6:    else

7:        Obtain m[k+1/2] =
∑N[k]

i=1 a[k+1/2]
i δx[k]i

+ a[k+1/2]
N[k]+1 δx[k]∗

, s.t.:

             a[k+1/2] ∈ arg min
a∈RN[k]+1

1
2 ‖Φx[k+1/2]a − y‖2

H + λ ‖a‖1

                         where x[k+1/2] = (x[k]1 , . . . , x[k]N[k] , x[k]∗ )

8:        Find a critical point m[k+1] =
∑N[k]+1

i=1 a[k+1]
i δx[k+1]

i
 by minimizing locally

               (a, x) ∈ RN[k]+1 × XN[k]+1 �→ 1
2 ‖Φxa − y‖2

H + λ ‖a‖1,

using as initial point (a[k+1/2], x[k+1/2]).

9:        Eventually remove zero amplitudes Dirac masses from m[k+1].
10:    end if
11: end for

As we detail below, the algorithm slightly (but crucially) differs from the one in [10]. The 
main ingredient is to replace the final update with the local minimization of a non-convex 
function updating both the positions and the amplitudes of the spikes (whereas [10] update 
successively the amplitudes and the positions). It is crucial to note that it is only required in 
our algorithm that step 8 finds a critical point of the objective function (a, x) �→ Tλ(ma,x).

Remark 6 (Links between FW applied to P̃λ(y) and the SFW).  Algorithm 2 is a 
valid variant of FW, as the update step decreases the energy more than the standard convex 
combination using γ[k]. Indeed,

Tλ(m[k+1]) � Tλ(m[k+1/2]) � Tλ(m[k] + γ[k](sign(η[k](x[k]∗ ))Mδx[k]∗
− m[k])).

It is noteworthy that other forms were previously used in [10, 12], but, to our knowledge, 
the update procedure (steps 7 and 8) described in the present paper is new. As we show in 
theorem 3, optimizing over both the amplitudes and the positions is essential to prove the 
convergence of the algorithm in a finite number of iterations.

Remark 7 (Stopping criterion of the SFW).  One may observe that the condition 
df (m[k])[s[k] − m[k]] = 0 of algorithm 1 (or equivalently m[k] ∈ argmins∈Cdf (m[k])[s]) has been 
replaced with |η[k](x[k]∗ )| � 1. In fact the optimality conditions for the non-convex local de-
scent (step 8) at iteration k  −  1 imply
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∀i ∈ {1, . . . , N[k]}, η[k](x[k]i ) = sign(a[k]
i ),

whereas |η[k](x[k]∗ )| � 1 implies 
∥∥η[k]∥∥∞,X � 1, hence η[k] is a valid dual certificate.

With the words of remark 5, step 8 implies that L
(

M, Mε
[k]
j δx[k]j

)
= 0 for 1 � j � N[k], 

whereas the condition |η[k](x[k]∗ )| � 1 means 0 = L(0, 0) = minC L . As m is a convex com-
bination of those points, we deduce that (|m[k]|(X), m[k]) ∈ argminCL, that is the optimality 
condition (35).

Remark 8 (Adaptation for the positive BLASSO).  In many applications, one is often 
interested in recovering positive spikes (see for example in section 5). As a result, in these 
cases it is better to add a positivity constraint m � 0 to the BLASSO. This leads to several 
changes in algorithm 2

	 •	�the stopping condition |η[k](x[k]∗ )| � 1 becomes η[k](x[k]∗ ) � 1,

	 •	�the LASSO is solved on RN[k]+1
+ ,

	 •	�the optimization problem of step 8 is solved on RN[k]+1
+ × XN[k]+1.

Remark 9 (Implementation details).  The SFW algorithm uses three different solvers 
for respectively steps 3, 7 and 8

	 •	�A Newton method, initialized by a grid search, is used to to find the maximum of |η[k]| 
over the compact domain X  in step 3. The size of the grid depends on the operator Φ. For 
example, when Φ is the convolution by the Dirichlet kernel with cutoff frequency fc, we 
choose a number of points proportional to fc.

	 •	�The LASSO problem at step 7 is solved using the fast iterative shrinkage thresholding 
algorithm (FISTA) [4].

	 •	�To solve the non-convex optimization problem at step 8, we deploy a bounded BFGS. 
It allows to enforce the positions xi to be in the compact domain X  and to preserve the 
sign of the amplitudes ai. These constraints ensure the differentiability of the objective 
function which is required by BFGS.

These are the choices that we made in our own implementation of the SFW algorithm. It 
is possible to use other solvers as long as they provide the same convergence guarantees as 
required in algorithm 2.

4.2.  Study of the convergence of the SFW algorithm

We now study the convergence properties of the Sliding Frank–Wolfe algorithm pre-
sented last section (see algorithm 2). Our main result is theorem 3 where one shows that if 
ma,x =

∑N
i=1 aiδxi is the unique solution of Pλ(y) and if ηλ = 1

λΦ
∗(y − Φma,x) is nondegener-

ate (see equation (42)), then algorithm 2 recovers ma,x in a finite number of iterations. But, 
first, one shows that our algorithm produces a sequence of measures (m[k])k∈N that converges 
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towards m∗ (if m∗ ∈ M(X) is the unique solution of the BLASSO) for the weak-* topology 
on M(X).

Proposition 5.  Let (m[k])k∈N be the sequence obtained from the Sliding Frank–Wolfe al-
gorithm. Then it has an accumulation point for the weak-* topology on M(X), and that point 
is a solution to (Pλ(y)).

Proof.  By remark 6, we know that (m[k])k∈N is a sequence obtained by applying algorithm 
1 to P̃λ(y) where the final update is steps 7 and 8 of the SFW. As a result, using lemma 5, one 
gets that for any m∗ solution of Pλ(y),

∀k ∈ N, Tλ(m[k])− Tλ(m∗) �
C1

k
.

Hence (m[k]) is a bounded minimizing sequence. One can extract from it a subsequence that 
converges towards some m ∈ M(X) (with |m|(X) � M) for the weak-* topology. Since Tλ is 
convex and l.s.c., it is also weak-* l.s.c. so that one obtains:

Tλ(m) = Tλ(m∗).

Hence m is a solution of Pλ(y).� □ 

From this proposition, one easily deduces the following corollary.

Corollary 1.  If m∗ ∈ M(X) is the unique solution of Pλ(y) then (m[k])k∈N weak-*  
converges towards m∗.

In fact, under mild assumptions, our algorithm even converges towards the solution of the 
BLASSO in a finite number of iterations, thanks to the displacement of the spikes over the 
continuous domain X . For the sake of clarity, we state and prove this theorem in the case of 
d  =  1 but the changes for d ∈ N∗ can be easily done.

Theorem 3.  Suppose that ϕ ∈ KER(2), that ma,x =
∑N

i=1 aiδxi is the unique solution of 
Pλ(y), and that ηλ = 1

λΦ
∗(y − Φma,x) is nondegenerate, i.e.

∀x ∈ X \
N⋃

i=1

{xi}, |ηλ(x)| < 1 and ∀i ∈ {1, . . . , N}, η′′λ(xi) �= 0.� (42)

Then algorithm 2 recovers ma,x after a finite number of steps (i.e. there exists k ∈ N such that 
m[k] = ma,x).

Proof.  Since ma,x is the unique solution of Pλ(y), one knows by corollary 1 that the se-
quence (m[k])k∈N produced by algorithm 2 converges for the weak-* topology towards ma,x.

As Φ is weak-* to weak continuous and by defining p[k] def.
= 1

λ (y − Φm[k]), one gets that 
(p[k])k∈N converges towards pλ in the weak topology of H and that η[k]

def.
= Φ∗p[k] converges 

pointwise towards ηλ. Then one can show that Φ∗ is a compact operator. Indeed, for any 
bounded subset A ∈ H, one can check easily that Φ∗A is equicontinuous and pointwise rela-
tively compact so that by Ascoli theorem Φ∗A is relatively compact for the strong topology of 
C0(X,R). As a result one can extract a subsequence of (η[k])k∈N that converges towards ηλ in 
uniform norm. ηλ is then the unique accumulation point in the uniform norm of the bounded 
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sequence (η[k])k∈N hence its convergence towards ηλ in uniform norm. One can repeat this 
argument for (η[k]′)k∈N and (η[k]′′)k∈N (since ϕ ∈ KER(2)), obtaining for all j ∈ {0, 1, 2}

(η[k])( j) ‖·‖∞,X−→
k→+∞

η
( j)
λ .� (43)

Because ηλ is nondegenerate, there exists a small neighborhood around each xi on which 
η′′λ �= 0. Hence, we deduce from equation (43) that there exist ε > 0 and k1 ∈ N such that:

∀k � k1, ∀i ∈ {1, . . . , N}, ∀x ∈]xi − ε, xi + ε[, η[k]′′(x) �= 0.

We denote in the following

Ixi,ε
def.
=]xi − ε, xi + ε[, ∀i ∈ {1, . . . , N}.

Since m[k] converges towards ma,x in the weak-* topology and |ma,x| does not charge the 
boundary of Ixi,ε, we have

∀i ∈ {1, . . . , N}, m[k](Ixi,ε) → ma,x(Ixi,ε) = ai �= 0,

so that there exists k2 ∈ N such that for all k � k2, m[k] has at least one spike in each Ixi,ε. In 
particular m[k] has at least N spikes.

Again, from equation (43), since (η[k])k∈N converges uniformly towards ηλ, one deduces 
that there exists k3 ∈ N such that for all k � k3:

Sat±(η[k]) ⊂
(
Sat±(ηλ)

)
⊕ (]− ε, ε[×{0}) ,

where the set of saturation points of a given η ∈ C0(X,R) is defined as:

Sat±(η) def.
= {(x, v) ∈ X × {−1, 1}; η(x) = v} .

Moreover,

∀x ∈ X \
N⋃

i=1

Ixi,ε, |η[k](x)| < 1.

In particular for k � k3, m[k] has no spikes in X \
⋃N

i=1 Ixi,ε because it would contradict the 

optimality conditions of step 8 of algorithm 2: for all i ∈ {1, . . . , N[k]}, η[k](x[k]i ) = sign(a[k]
i ).

Suppose now that k � max(k1, k2, k3). Then m[k] has at least one spike in each neighbor-
hood of xi and no spikes outside. Moreover |η[k]| < 1 outside the neighborhoods and η[k]′′ �= 0 

inside. Let i ∈ {1, . . . , N} and denote x[k]j ∈ Ixi,ε a position of a spike of m[k]. From the optimal-

ity conditions of step 8, one has also that η[k]′(x[k]j ) = 0. This combined with η[k]′′ �= 0 in Ixi,ε 

implies that |η[k]| < 1, except at x[k]j . Hence, m[k] has exactly one spike in this neighborhood. As 
a consequence, we proved that m[k] has exactly N spikes (one inside each neighborhood) and:

∀x ∈ X \
N⋃

i=1

{x[k]i }, |η[k](x)| < 1.

Q Denoyelle et alInverse Problems 36 (2020) 014001



27

Hence m[k], composed of N spikes, is a solution of Pλ(y). Since ma,x is supposed to be the 
unique solution of Pλ(y), one concludes that:

m[k] = ma,x,

i.e. the algorithm recovers ma,x in a finite number of iterations.� □ 

Note that one proved the convergence in a finite number of iterations but not exactly N 
iterations if ma,x is composed of N spikes. However in practice this is exactly what we observe.

4.3.  Illustration of the N-steps convergence of the SFW

We now illustrate how the algorithm works and we show that it converges in exactly N itera-
tions in practice (when the noise level and the regularization parameter are appropriate, i.e. 
max(λ, ‖w‖H /λ) is low enough).

We consider X = [0, 1] and a convolution operator with a sampled Gaussian kernel for Φ

Φ : m ∈ M(X) �→
∫

[0,1]
ϕdm ∈ RK where ϕ(x) =

(
1√

2πσ2
e−

( i−1
K−1 −x)2

2σ2

)

1�i�K

.

We set σ = 0.05 and K  =  100. The initial measure used is ma0,x0 = 1.3δ0.3 + 0.8δ0.37 + 1.4δ0.7 
and the noise is small (w = 10−4w0 where w0 = randn(K)).

Figure 5 shows ηV  for this configuration. One can see that it is nondegenerate. Hence, in a 
small noise now regime, with the appropriate choice of λ, there is a unique measure solution 
of P+

λ (y) which is composed of the same number of spikes as ma0,x0. Moreover, by theorem 3, 
the SFW algorithm recovers it in a finite number of iterations.

The decrease of the objective function throughout the algorithm iterations (cumulative 
iterations of BFGS) is presented in figure  6. As indicated by the two vertical black lines, 
which show the intermediate iterations, the algorithm converges in exactly 3 iterations. One 
can observe an important decrease of the objective function each time a spike is added. Also, 
it is noteworthy that BFGS converges with very few iterations when k  =  0 and k  =  1 (first two 
spikes added) and that the main computational load for the non-convex step occurs for k  =  2 
(more iterations of BFGS).

Figure 5.  ηV  for ma0,x0 = 1.3δ0.3 + 0.8δ0.37 + 1.4δ0.7.
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Figure 7 shows m[k] and η[k] at different times of the algorithm. More precisely, for 
k ∈ {0, 1, 2}, we display the initial measure ma0,x0, the recovered measure, and the associated 
η. Moreover, we present them after the LASSO step (i.e. m[k+1/2] and η[k+1/2]) as well as after 
the BFGS step (i.e. m[k+1] and η[k+1]) .

One remarks, as expected, that for all i, η[k+1/2](xi) = 1, η[k+1](xi) = 1 and η[k+1]′(xi) = 0. 
In the first two main iterations, the spikes are almost not moved by the BFGS. However, at the 
last iteration, the displacement of the positions and amplitudes of the spikes is crucial to obtain 
η[k+1] ∈ ∂|m[k+1]|(X), and thus recover the solution of P+

λ (y) in three steps.

Figure 6.  Values of the objective function throughout the SFW algorithm (cumulative 
iterations of the BFGS). The vertical black lines separate the main outer iterations of 
the algorithm.

Figure 7.  Main steps of the SFW algorithm.
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5.  Single molecule localization microscopy

The field of fluorescent microscopy has experienced an important revolution during the past 
two decades with the emergence of super-resolution techniques. These modalities, such as 
structured illumination microscopy (SIM) [45], stimulated emission depletion (STED) [47], or 
single molecule localization microscopy (SMLM)—which includes photoactivated localiza-
tion microscopy (PALM) [5, 50] and stochastic optical reconstruction microscopy (STORM) 
[74]—bypass the diffraction limit so as to reach unprecedented nanoscale resolution. The 
main principle behind these methods relies on a combined use of optics and numerical pro-
cessing, which is commonly called computational imaging. The resolution improvement is 
thus directly related to the performance of the reconstruction algorithms employed to process 
the acquired data.

SMLM techniques use photoactivables fluorescent probes to sequentially image a subset of 
activated molecules. Then, dedicated algorithms are deployed to precisely extract the position 
of these molecules. While the difficulty of the localization problem increases with the density 
of activated molecules per acquisitions, low density activations drastically reduce the tempo-
ral resolution of the system which makes the method limited for live imaging. Hence, current 
trends in SMLM concern the development of efficient algorithms dealing with high density 
data for which classical point-spread function (PSF) fitting or centroid localization methods 
[48] fail. In particular, off-the-grid sparse regularized methods have shown their efficiency for 
high density settings [10, 55]. For a complete review and comparisons of existing methods, we 
refer the reader to the two recent SMLM challenges [75, 76].

Initially introduced for two-dimensional imaging, SMLM has been extended to 3D thanks 
to PSF engineering. The principle relies on the design of PSFs which vary in the axial direc-
tion (i.e. z) in order to encode an information about the depth of molecules. Conventional PSF 
models include astigmatism [52] and double-helix [70]. An alternative to PSF engineering is 
to record simultaneously multiple focal planes, as in the biplane modality [58]. It is notewor-
thy that these two approaches can also be combined as in [54] where the authors use both an 
astigmatism PSF and multi-focal acquisitions.

In this section, we study the performance of the SFW algorithm on both astigmatism 
and double-helix modalities with various number of focal planes (typically from 1 to 4). We 
emphasize that conventional astigmatism and double-helix SMLM devices—in particular 
commercial ones—use a single focal plane. As opposed to single-focal acquisitions, multi-
focal acquisitions require to mount and synchronize several cameras in parallel. To the best of 
our knowledge, such a setting has only been reported by Huang et al [54] for the astigmatism 
SMLM. Moreover, we propose to compare these two modalities to an alternative approach 
where depth information is extracted from multi-angle total internal reflection fluorescence 
(MA-TIRF) microscopy acquisitions. Such an approach has never been reported yet and we 
expect our numerical simulations to serve as a proof of concept for further developments. One 
of the main interest in combining SMLM with MA-TIRF is that classical PSFs, which are 
better localized laterally than astigmatism or double-helix, can be used. This would reduce the 
difficulty of lateral molecule localization for high density settings while recovering the depth 
through the MA-TIRF acquisitions.

5.1.  Forward operators

In this section, we define the forward operator Φ for the three modalities considered in this 
paper. The first two correspond to conventional three-dimensional SMLM with astigmatism 
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or double-helix PSFs. The third one, on the contrary, uses a MA-TIRF excitation in order to 
get an information about the depth of molecules. The operator Φ : M(X) → RN1N2K maps the 
Radon measures m ∈ M(X) to the discrete noiseless measurements Φm ∈ RN1N2K ,

Φm =

∫

X
ϕ(x)dm(x).� (44)

It is fully characterized by the function ϕ : X → RN1N2K . Hence, for each modality, we only 

have to define ϕ. In the following, X def.
=[0, b1]× [0, b2]× [0, b3] is a subset of R3, and we write 

x = (x1, x2, x3) ∈ X. Then, we consider a camera containing N1 × N2 pixels and we denote 
the center of the ith pixel by (ci,1, ci,2). Finally, we provide expressions of ϕ which enclose the 
integration over camera pixels

Ωi
def.
=(ci,1, ci,2) +

[
− b1

2N1
,

b1

2N1

]
×
[
− b2

2N2
,

b2

2N2

]
⊂ Ω

def.
=[0, b1]× [0, b2].

5.1.1.  Astigmatism model.  This modality provides depth information using an astigmatism 
deformation of the PSF with respect to the axial direction z. It is customary to model the latter 
with a Gaussian function whose variances σ1 and σ2  vary with z according to [55, 60]

σ1(z)
def.
= σ0

√
1 +

(
αz − β

d

)2

and σ2(z)
def.
= σ1(−z).� (45)

The constants involved in (45) can be calibrated from real data [52, 60]. Then, integrating this 
Gaussian model over camera pixels, we have for all i ∈ {1, . . . , N1N2} and k ∈ {1, . . . , K}

[ϕ(x)]i,k
def.
=

1
2πσ1(x3 − zk)σ2(x3 − zk)

∫

Ωi

e
−
(

(x1−s1)
2

2σ2
1(x3−zk)

+
(x2−s2)

2

2σ2
2(x3−zk)

)

ds1ds2,

where (zk)
K
k=1 are the positions of the considered focal planes.

5.1.2.  Double-helix model.  Here, depth information is obtained by using a PSF formed out of 
two lobes which coil around each other along z to form a double-helix shape. In this paper, we 
model these lobes by two Gaussian functions with fixed variances σ1 = σ2, and with a center 
whose lateral position (r1, r2) (respectively, (−r1,−r2)) varies with z according to

r1(z)
def.
=

ω

2
cos(θ(z)) and r2(z)

def.
= −ω

2
sin(θ(z)) where θ(z) = θspeedz.� (46)

Parameters ω > 0 and θspeed > 0 correspond to the distance between the two Gaussian and 
the rotation speed of the double-helix (rad/nm), respectively. Then, integrating this model over 
camera pixels, we have for all i ∈ {1, . . . , N1N2} and k ∈ {1, . . . , K}

[ϕ(x)]i,k
def.
=

1
2πσ1σ2

∑
u∈{−1,1}

∫

Ωi

e
−
(

(x1+ur1(x3−zk)−s1)
2

2σ2
1

+
(x2+ur2(x3−zk)−s2)

2

2σ2
2

)

ds1ds2,

where (zk)
K
k=1 are the positions of the considered focal planes.

5.1.3.  MA-TIRF model.  With this modality, each activated set of molecules is imaged using 
K ∈ N TIRF illuminations with incident angles (αk)

K
k=1. Let ni > 0 and nt  >  0 be the refractive 
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indices of the incident (i.e. glass coverslip) and the transmitted (i.e. sample) medium, respec-
tively. A TIRF excitation is obtained when the incident angle α is greater than the critical 
angle αc = arcsin(nt/ni) for which we have total internal reflection of the light within the 
incident medium. This phenomenon produces an evanescent wave which decays in the trans-

mitted medium as exp(−sx3), where s = (4πni)/λ�

(
sin2(α)− sin2(αc)

)
 is the penetration 

depth and λ� is the wavelength of the incident laser beam [1, 2]. Because the decay of this eva-
nescent excitation vary with the incident angle, the depth of biological structures can be recov-
ered with a nanometric precision from multi-angle acquisitions [9, 31, 89]. Combining this 
principle with SMLM techniques lead to a forward model Φ defined, for all i ∈ {1, . . . , N1N2} 
and k ∈ {1, . . . , K}, by

[ϕ(x)]i,k
def.
=

ξ(x3)e−skx3

2πσ1σ2

∫

Ωi

e
−
(

(x1−s1)
2

2σ2
1

+
(x2−s2)

2

2σ2
2

)

ds1ds2,� (47)

where ξ(z) =
(∑K

k=1 e−2skz
)−1/2

. This model comes from the combination of a lateral 

convolution with the axial TIRF excitation. Here the PSF of the system is assumed to be a 
Gaussian with variances σ1 = σ2, and to be constant along x3 (because only a thin layer of few 
hundred nanometers is excited by the evanescent wave). The values (sk)

K
k=1 correspond to the 

penetration depths associated to the incident angles (αk)
K
k=1.

Remark 10.  One particularity of the MA-TIRF modality is that the kernel ϕ in (47) is sepa-
rable. This can be exploited numerically to reduce the overall algorithm complexity.

Figure 8.  Noiseless acquisitions y0 for the measure ma0,x0 given in (48) and K  =  4. The 
parameters used for these simulations are given in table 1. The color of the molecules 
represent their depths: 0 (red)—0.8 µm (blue).
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5.1.4.  Illustrations and numerical computation of ηV .  Examples of noiseless measurements 
y0 = Φma0,x0 with

ma0,x0 = δ(1.5,2.5,0.1) + δ(1.5,3,0.5) + δ(2,5,0.7) + δ(4.5,3.5,0.4) + δ(5,1,0.2)� (48)

are presented in figure 8 for the three modalities. The parameters used for these simulations 
are provided in table 1. One can observe the effect of the three modalities on molecules at dif-
ferent depths. For the astigmatism modality, the orientation along which the PSF is defocuced 
indicates the position of the molecule with respect to the focal plane (above/below). Moreover, 
the larger is this defocucing, the deeper is the molecule. In the case of the double-helix modal-
ity, we can clearly see the rotation of the PSF with depth. Finally, for the MA-TIRF modality, 
we can observe that the recorded intensities for deep molecules decrease, with the incident 
angle, faster than the intensity for molecules which are close to the glass coverslip (i.e. x3  =  0).

Although, for these three-dimensional models, an explicit expression of ηV  seems challeng-
ing to come by, the latter can be computed numerically for specific points x ∈ X . A represen-
tation of ηV  for the measure given in (48) at x3  =  0.1 and x3  =  0.5 is depicted in figure 9. For 
the three modalities, we have that ηV(1.5, 2.5, 0.1) = ηV(1.5, 3, 0.5) = 1 and otherwise ηV  is 
smaller than 1. Hence, ηV  seems nondegenerate and a measure composed of the same number 
of Dirac masses as ma0,x0 can be recovered by the SFW algorithm.

Table 1.  Parameters used for data simulation.

Parameter Value Description

All modalities b1 = b2 6.4 µm Region of interest
b3 0.8 µm Maximal depth of molecules
N1 = N2 64 Detector grid size
NA 1.49 Objective numerical aperture
ni 1.515 Refractive index incident 

medium
nt 1.333 Refractive index transmitted 

medium
λ� 0.66 µm Excitation wavelength
nphoton 1000 Photon budget
σ 10−4 Variance of Gaussian noise

Astigmatism σ0 0.42λ�/NA PSF variance at focus

β 0.2 µm Depth for which the variance 
is minimal

d λ�ni/(2NA2) Parameter related to the 
depth-of-field

α −0.79 Scaling constant

(zk)
K
k=1 kb3/(K  +  1) Focal planes

Double-helix σ1 = σ2 0.42λ�/NA PSF variance
ω 1 µm Distance between the two 

PSF lobes
θspeed 0.3846π  rad µm−1 Rotation speed of the PSF

(zk)
K
k=1 kb3/(K  +  1) Focal planes

MA-TIRF σ1 = σ2 0.42λ�/NA PSF variance

(αk)
K
k=1 αc +

αmax−αc
K−1 (k − 1)Incident angles

αmax sin−1(NA/ni) Maximal incident angle
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5.2.  Simulation setting

5.2.1.  Imaged structure.  Simulations were performed using the microtubules-like structure 
depicted in figure 10. It has been generated within the volume

X = [0, b1]× [0, b2]× [0, b3] ⊂ R3 where b1 = b2 = 6.4 µm and b3 = 0.8 µm.� (49)

The filaments were obtained by randomly sampling many points along four curves defined by 
polynomial equations. To ensure a uniform distribution of the points along the curves, we first 
parametrized each curve by a piecewise linear function (with very small steps). Then, in order 
to give a width to the filaments, each point x ∈ X  randomly chosen on one of the curves is 
replaced by a point randomly chosen in a ball centered at x with radius 10 nm. Thus, simulated 
filaments have a diameter of 20 nm.

5.2.2.  Simulation of noiseless acquisitions.  The Ntot ∈ N∗ molecules of the simulated struc-
ture are divided into n ∈ N∗ sparse set of N ∈ N∗ molecules using a random permutation 
(i.e. Ntot = n × N ). This models the sequential stochastic activation of fluorophores used in 
SMLM. For each of the n subsets of molecules, we define a Radon measure composed of a 
sum of Dirac masses—located at the position of the molecules—with positive amplitudes

ma0,x0 =

N∑
i=1

a0,iδx0,i where a0,i > 0 and x0,i ∈ X.

The amplitudes are randomly generated within [1, 1.5]. An example of a set of activated mol-
ecules is shown in figure 10 (black crosses). Now let (N1 × N2) be the size of the grid of pixels 

Figure 9.  Numerical computation of ηV  at x3  =  0.1 (top) and x3  =  0.5 (bottom) for the 
three models and the measure ma0,x0 given in (48). The colormap ranges from 0 (blue) 
to 1 (red).
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on the detector plane, and K be the number of focal planes (or the number of TIRF ‘angles’, 
see section 5.1) which are recorded. Then, the noiseless measurements y0 for an activated 
measure ma0,x0 follow the model

y0 = Φma0,x0 ,� (50)

where Φ is defined in (44).
Finally, it is noteworthy that in practice the number of activated molecules varies from one 

activation to another around an average value (which depends on the power of the excitation 
laser beam). However, fixing this number to N  for each activated set of molecules allows us 
to better control the density of spikes in order to study the behaviour of the algorithm when 
the latter increases.

5.2.3.  Noise model.  There are two predominant sources of noise in microscopy data.

	 •	�The shot noise which is inherent to the quantum nature of light (random emissions of 
photons). It is well modeled by a Poisson distribution whose intensity is the number of 
photon collected at each pixel. Given the noiseless acquisition y0, we normalize it such 
that

max
i∈{1,...,N1N2}

(
K∑

k=1

[y0]i,k

)
= nphoton,� (51)

		 where nphoton > 0 denotes the maximal photon budget per pixel and controls the noise 
level. Then, each entry of y0 is replaced by a realization of a Poisson distribution P  with 

Figure 10.  Microtubules structure used for the simulations. The diameter of the 
filaments is 20 nm. The color encodes the depth of molecules within the range 0–0.8 µm.  
Black crosses represent a subset of activated molecules (i.e. a measure ma0,x0).
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parameter [y0]i,k. It is noteworthy from (51) that the level of noise not only increases as 
nphoton decreases, but it also increases with K.

	 •	�The readout noise wG of the camera. It is usually modeled by a Gaussian distribution with 
variance σ2.

Finally the noisy data are given by

y = P(y0) + wG.� (52)

5.3.  Results

For each of the three modalities presented in section  5.1 (double-helix, astigmatism, 
MA-TIRF), acquisitions where simulated using the optical parameters gathered in table 1. 
These parameters have been tuned according to the experimental PSF used in the SMLM 
challenge [76]. Finally, we generated different experiments by varying the density of mol-
ecules N ∈ {5, 10, 15} as well as the number of focal planes (or angles for the TIRF model) 
K ∈ {1, 2, 3, 4}.

5.3.1.  Metrics for evaluation.  In order to assess the quality of the reconstructed volumes, we 
consider standard metrics which reflect both the detection rate and the localization error [75, 
76]. Given a recovered frame and a tolerance radius r  >  0, we pair estimated molecules and 
ground truth (GT) molecules when the distance between them is lower than r. Paired esti-
mated molecules are then referred as true positive (TP) while unpaired ones as false positive 
(FP). Finally, the unpaired GT molecules are identified as false negative (FN). These quanti-
ties being determined for each frame, we can compute the Jaccard index (Jac), the Recall 
(Rec) and the Precision (Pre) metrics,

Jac =
#TP

#TP +#FP +#FN
Rec =

#TP
#TP +#FN

Pre =
#TP

#TP +#FP
.

� (53)

Figure 11.  Evolution of Jaccard, Recall and Precision metrics with respect to K, for a 
radius of detection r  =  0.02 (20 nm).
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The Jaccard index measures the overall performance of detection by giving a measure of 
similarity between the two sets of points. The Recall and Precision metrics can then be used to 
measure the ability of an algorithm to minimize FN and FP detection, respectively. Finally, the 
TP molecules are used to compute the root mean squared error (RMSE) along each dimension

RMSEx1 =

√
1

#TP

∑
i∈TP

([xi]1 − [x0,i]1)2,� (54)

and similarly for RMSEx2 and RMSEx3. Note that, by construction, the RMSE is bounded by 
the radius r. Hence, in the following, we use different values for r depending on the metric of 
interest.

5.3.2.  Choice of the regularization parameter λ.  For each experiment (i.e. N ∈ {5, 10, 15} 
and K ∈ {1, 2, 3, 4}), we choose the value of the regularization parameter λ which maximizes 
the Jaccard index for a radius of r  =  0.02 (i.e. 20 nm). This training step was performed over 
a small subset of initial measures ma0,x0 (i.e. frames). Then the recovery was done on the com-
plete dataset using the optimal λ found.

5.3.3.  Discussion.  The evolution of Jaccard, Recall, and Precision metrics with respect to K 
are depicted in figure 11. As expected, they all increase with K. However, although the improve-
ment is significant from K  =  1 to K  =  2, higher values only provide marginal gains. This can be 
explained by the fact that the photon budget nphoton is distributed over the K acquisitions (see 
equation (51)). Hence, the additional axial information brought by increasing the number of 
acquisitions per activation should be balanced by the higher noise corrupting the data. Another 
observation from these plots concerns the degradation of the performance as the density (i.e. 
the number of molecules N ) increases.

These results also bring useful information in order to improve existing systems. Let us 
recall that current commercial systems includes Astigmatism and double-helix modalities 
with one focal plane (i.e. K  =  1). Hence, it can be inferred from our simulations that recording 

Figure 12.  Evolution of the RMSE (nm) with respect to K, for a radius of detection 
r  =  0.1 (100 nm).
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an image at two focal planes for each activation of molecules would not only improve signifi-
cantly the reconstruction quality but make the reconstructions more robust when the density 
of molecules increases. These observations corroborate the study in [54] where the authors 
use a multi-focus astigmatism system. However, to preserve a reasonable temporal resolution, 
multi-focal acquisitions require to synchronize several cameras [54] which can be expensive 
and lead to delicate calibration procedures (e.g. alignment and PSF aberrations for each cam-
era). In that respect, the proposed combination of SMLM with MA-TIRF offers an interesting 
alternative to improve existing systems. First, it has the potential to provide reconstructions 
whose quality compares favorably with the double-helix model while improving over the 
Astigmatism modality. Second, it only requires the use of galvanometric mirrors to control 
the incident angle [9]. It is noteworthy that commercial SMLM systems generally use a sin-
gle TIRF illumination to limit the illumination depth. Finally, as for the multi-focus strategy, 
MA-TIRF requires some calibrations (e.g. incident angles) for which there exist dedicated 
procedures [9, 78].

Figure 13.  Recovered structures for K = 4.

Q Denoyelle et alInverse Problems 36 (2020) 014001



38

Remark 11.  Although the PSFs used for these simulations have been adjusted using exper
imental PSFs, they remain idealistic. This is particularly the case for the double-helix which in 
practice deviates from two Gaussian lobes that coil around each other along z [76]. In contrast, 
the Gaussian model yields a precise approximation of the MA-TIRF (i.e. widefield) PSF [88]. 
The main simplification for the latter lies in the fact that each molecule is activated only during 
one set of multi-angle acquisitions. This would not be the case with a real implementation of 
the system and the model should be improved by considering the temporal aspect of the acqui-
sition. However, the present study constitutes a first proof-of-concept and future developments 
will consider a more sophisticated model.

The results in terms of RMSE presented in figure 12 lead to similar interpretations. First, 
the detection accuracy is increasing with K while decreasing with N . Second, we can observe 
that the differences between the double-helix and the MA-TIRF models mainly come from the 

Figure 14.  Recovered structures for N = 10.
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precision in x3. Indeed, they both lead to the same lateral RMSE (around 5 nm when N = 5 
and 12 nm at the highest density N = 15), but the double-helix enjoys a better axial RMSE. 
This reflects the challenging problem that constitues the inversion of the Laplace transform, 
which is related to the MA-TIRF model. Nevertheless, the SWF algorithm performs quite well 
at this task (see also figures 13 and 14). Another observation concerns the fact that the double-
helix can reach a better axial than lateral RMSE. This fact, which was also observed in the 
recent SMLM challenge [76], can be explained by the large lateral support of the double-helix 
PSF as well as its good axial discrimination.

Finally, three-dimensional representations of the recovered structures are presented in  
figures 13 and 14 for a fixed K  =  4 and N = 10, respectively. These figures complete and 
illustrate the observations made with the computed metrics.

6.  Conclusion

This paper demonstrated from both theoretical and practical perspectives the Sliding Frank–
Wolfe algorithm, in particular when facing a challenging non-translation invariant operator 
such as the Laplace kernels. Such operators lead to difficulties in estimating the spikes positions 
which is efficiently addressed by non-convex update step of the grid location. The BLASSO 
method, coupled with this Sliding Frank–Wolfe solver, is well adapted to these non-convolutive 
operators because it does not rely on spectral (Fourier) methods and can be analyzed theor
etically through the prism of convex duality and vanishing certificates.
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