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Steerable Wavelet Machines (SWM): Learning
Moving Frames for Texture Classification

Adrien Depeursinge, Zsuzsanna Püspöki, John Paul Ward, and Michael Unser, Fellow, IEEE

Abstract— We present texture operators encoding class-specific
local organizations of image directions (LOIDs) in a rotation-
invariant fashion. The LOIDs are key for visual understanding,
and are at the origin of the success of the popular approaches,
such as local binary patterns (LBPs) and the scale-invariant
feature transform (SIFT). Whereas, LBPs and SIFT yield hand-
crafted image representations, we propose to learn data-specific
representations of the LOIDs in a rotation-invariant fashion.
The image operators are based on steerable circular harmonic
wavelets (CHWs), offering a rich and yet compact initial repre-
sentation for characterizing natural textures. The joint loca-
tion and orientation required to encode the LOIDs is pre-
served by using moving frames (MFs) texture representa-
tions built from locally-steered image gradients that are invariant
to rigid motions. In a second step, we use support vector machines
to learn a multi-class shaping matrix for the initial CHW
representation, yielding data-driven MFs called steerable wavelet
machines (SWMs). The SWM forward function is composed of
linear operations (i.e., convolution and weighted combinations)
interleaved with non-linear steermax operations. We experimen-
tally demonstrate the effectiveness of the proposed operators
for classifying natural textures. Our scheme outperforms recent
approaches on several test suites of the Outex and the CUReT
databases.

Index Terms— Texture classification, feature learning, mov-
ing frames, support vector machines, steerability, rotation-
invariance, illumination-invariance, wavelet analysis.
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Fig. 1. Importance of the LOIDs in preattentive texture segregation [3].
a) X-shaped micropatterns (right) are easily separated from L-shaped ones
(center), whereas T -shaped micropatterns (left) are found to be closer to
L-shaped ones. The LOIDs can be distinguished by counting the number
of endpoints of the primitives. b) texture associated with lung fibrosis in a
CT scan. The LOIDs are characterized by junctions of collagen filaments.

I. INTRODUCTION

ONE major difference between texture and object recog-
nition in natural images relates to the ability of vision

systems to characterize local versus global scene layouts. Most
natural textures do not follow global image layouts and can
only be described in terms of arrangements and repetitions
of local pattern ensembles or primitives [1]. These primi-
tives can be characterized in terms of the local organization
of image directions (LOIDs). The latter are key for visual
understanding [2] and texture segregation [3] (see Figure 1).
LOIDs have been leveraged in the literature to define [4] and
discriminate texture classes [5]–[10]. They capture the joint
information between positions and orientations in images. It is
the difference in this coupling that makes images f1 and f2
in Figure 4 visually distinct while both images have the same
global density of small horizontal and vertical bars.

The wealth of local texture patterns (i.e., the LOIDs) is
tightly related to the size of the observation window when the
texture function f (x), x ∈ R

2 is digitized on a discrete lattice
indexed by k ∈ Z

2. In an extreme case, an image region
composed of one pixel cannot form geometrical structures.
Families of local image operators gi(x) can be designed to
characterize the LOID subtypes (e.g., edge or learned filters).
Obtaining scalar texture measures often involves aggregat-
ing (e.g., averaging) the outputs of local image operators
gi( f (x − m)) applied to f (x) at the position m ∈ R

2 over
an observation window M [11]. The latter raises two major
challenges. First, the responses of the integrated operators
becomes diffuse over M, which hinders the spatial precision
of texture segmentation approaches. Second, the effect of
integration becomes even more destructive when unidirectional
operators are jointly used to characterize the local organization
of image directions (LOID) [10], [12] (e.g., curvelets [13],
co-occurrences [14], directional filterbanks [15], [16]). When
separately integrated, the responses of unidirectional individual
operators are not local anymore and their joint responses
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become only sensitive to the global density of image directions
in M. For instance, the joint responses of image gradients

g1,2( f (x)) =
(∣∣∣ ∂ f (x)

∂x1

∣∣∣ , ∣∣∣ ∂ f (x)
∂x2

∣∣∣
)

are not able to discriminate

between the two textures classes f1(x) and f2(x) shown in
Figure 4 when integrated over the full image domain M .

An even bigger challenge is to design texture opera-
tors that can characterize the LOIDs in a rotation-invariant
fashion [5], [7]. The latter is required to recognize image
structures independently from both their local orientations and
the global orientation of the image (see Figure 1). Examples
of such structures are collagen meshes, vascular, bronchial or
dendritic trees in biomedical images, river deltas or urban areas
in satellite images, complex biomedical tissue structures or
crystals in petrographic analysis.

The above-mentioned imaging modalities yield images with
normalized pixel sizes defined in physical units. The set-
ting is therefore fundamentally different from photographic
imagery resulting from scene captures obtained with varying
viewpoints [17]–[19]. Since the spatial units are fixed, it is
not desirable to enforce any form of scale invariance which
truly entails the risk of regrouping patterns of different nature.
More importantly, the scale is itself a powerful discriminative
property. In this context, it is required to design texture oper-
ators that are invariant to the family of Euclidean transforms
(also called rigid motions).

More generally, the rigid-motion invariant characterization
of the joint location and orientation structure of texture
(i.e., the LOIDs) can be efficiently carried out using mov-
ing frames (MF) representations [8]. The key idea of MFs
is to locally adapt a coordinate frame directly to a curve
(e.g., using the tangent as the first unit vector of the frame),
rather than using extrinsic coordinates (see Figure 4). Image
representations obtained from MFs can therefore be designed
to be invariant to Euclidean transformations [20]. Moreover,
deriving the local orientation of the frame tends to preserve
the joint information between positions and orientations even
when the operators are integrated (e.g., averaged) over an
image domain M.

MFs have been used in computer vision to characterize
the differential geometry of curves in Faugeras [20], and
more specifically, to describe the perceptual organization of
texture flows in Ben-Shahar and Zucker [8]. They were
also referred to as “gauge coordinates” in [21]. They have
been implictely used to characterize the LOIDs by popular
approaches such as local binary patterns (LBP), maximum
response of oriented filterbanks, and the scale-invariant feature
transform (SIFT). LBPs [5] and their extensions [22]–[29]
are specifically encoding the LOIDs in a rotation-invariant
fashion with uniform circular pixel sequences. Extensions
were proposed to include richer pixel dependencies based
on local differences [22] and medians [29]. The maximum-
response filterbank 8 (MR8) used the largest response of
filters over various orientation only to locally normalize image
directions [16]. Local discrete histogram of gradients (HOG)
are used to encode the LOIDs in SIFT with approximate
rotation-invariance [9], [17]. More recently, local continuous
rotation-invariant HOGs were proposed by Liu et al. based

on circular harmonic representations [10]. However, all of the
above-mentioned methods are yielding handcrafted image
descriptors that are not tailored to the specific image recogni-
tion task in hand. On the other hand, classical deep learning
and dictionary learning approaches do not enforce the charac-
terization of the LOIDs. They require learning similar kernel
profiles at multiple orientations using data augmentation [30].
The scattering transform (ScatNet [12], [31]) is based on
deep convolutional networks that are specifically designed to
preserve the structure of the roto-translation group, but it does
not yield data driven image representations.

In this work, we propose to bridge the gap between hand-
crafted MF-based features and learned representations with
steerable wavelet machines (SWM). The cornerstone of our
approach is to learn MF representations from locally steered
linear combinations of circular harmonic wavelets (CHW)
using support vector machines (SVM). CHWs are naturally
encoding the LOIDs in terms of circular harmonics [32].
They provide continuous rotation-invariant versions of both
LBPs [33] and HOGs [10]. Moreover, CHWs are encoding
the LOIDs in a multi-resolution hierarchy and stand out as
the canonical basis of steerable wavelet frames [34], provid-
ing ideally-suited initial representations for learning signal-
adapted steerable wavelets. Based on the latter property,
data-driven steerable wavelets are constructed from learned
linear combinations of CHWs. Optimally discriminant features
are constructed from the responses of the set of locally-
oriented learned wavelets, yielding data-driven MF represen-
tations encoding the LOIDs with invariance to rigid motions.

The remainder of the paper is organized as follows. The
SWM architecture is detailed in Section II-B. The mathe-
matical foundations, construction and properties of steerable
CHWs are detailed in Sections II-A, II-C, II-D and II-E. The
construction steps of steerable CHW frames are (i) define
a bandlimited isotropic mother wavelet that forms a frame
on L2

(
R

2
)

and (ii) apply the multi-order complex Riesz
transform on it. Step (i) fixes the spatial supports (frequency
bands) on top of which class-specific steerable wavelets can be
learned from linear combinations of CHWs. The fundamentals
of MFs are recalled in Section II-G. The learning of class-
specifc MFs from shaped original CHW frames using SVMs
is described in Section II-H. The behavior of SWMs and their
ability to classify natural textures is evaluated and discussed
in Sections III and IV, respectively.

II. MATERIAL AND METHODS

A. Notation

A point in the spatial domain R
2 is represented by the

vector variable x, and by ω in the Fourier domain. A 2D
function f is represented by f (x) with x ∈ R

2, and by
fpol(r, θ) with r ∈ R

+, θ ∈ [0, 2π), in the Cartesian and
polar coordinate systems, respectively. In the Fourier domain,
we use the notations f̂ (ω), with ω ∈ R

2 and f̂pol(ρ, ϕ) with
ρ ∈ R

+, ϕ ∈ [0, 2π). The Fourier transform of an L1
(
R

2
)

function f is computed according to

f̂ (ω) =
∫

R2
f (x)e−j〈x,ω〉dx. (1)
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Fig. 2. Global architecture of SWMs. An input image fi is mapped to output
feature maps t i,x with a forward pass through the SWM layers. The forward
function is composed of linear operations (i.e., convolution and weighted
combinations) interleaved by non-linear steermax operations denoted with
circular arrows and angle maps �φ,ψ .

The average of f (x) over the image domain M is noted
f (x) = 1

m(M)

∫
M f (x)dx, where m(M) is the measure of M.

B. Steerable Wavelet Machines

The architecture of SWMs is detailed in Figure 2.
An image fi is mapped to feature maps t i,x with a forward
pass through the SWM layers. fi is first convolved with the
family of CHWs φ(n). The resulting coefficients are mapped
to an initial gradient-based MF representation with a non-
linear steermax operation based on the angle map �φ(1)
(denoted with circular arrows in Figure 2, see Eq. (18)).
Class-wise templates ψ(c) are constructed from learned linear
combinations u(c) of CHWs in the gradient-based MF rep-
resentation. A final steermax operation based on the learned
angle maps �ψ(c) (following Eq. (23)) yields the final feature
representation t i,x . These feature maps can be further used by
either a segmentation model, or aggregated over a region M
and used by a classifier (e.g., SVMs, k-nearest neighbors).

C. Isotropic Wavelet Frames
The construction of our steerable wavelet frames is initial-

ized with a tight wavelet frame of R
2, described by a mother

wavelet φ whose translations and dilations generate the basis
functions. The collection of isotropic bandpass filters φ con-
trols the spatial support of the texture operators. In particular,
at location (i.e., grid point) xk = 2s k, k ∈ Z

2, and scale s:

φs,k(x) = φs(x − xk) = 1

2s
φ
( x−xk

2s

) = 1

2s
φ
( x

2s − k
)
. (2)

In the Fourier domain, (2) corresponds to

φ̂s,k(ρ, ϕ) = ̂φs(· − xk)(ω) = 2s φ̂(2sω)e−j〈xk,ω〉

= 2s φ̂(2sρ)e−jρkρ cos(ϕ−ϕk). (3)

Proposition 1 determines sufficient conditions for such a
wavelet system.

Proposition 1 (c.f. [34, Proposition 4.1.]): Let ĥ :
[0,∞) → R be a smooth function satisfying:

1) ĥ(ρ) = 0 for ρ > π (bandlimited),

2)
∑
s∈Z

∣∣∣ĥ (
2sρ

)∣∣∣2 = 1,

3)
dnĥ

dρn

∣∣∣∣∣
ρ=0

= 0 for n = 0, . . . , N (vanishing moments).

Using any norm p as 1 ≤ p ≤ ∞, the mother wavelet φ whose
Fourier transform is given by

φ̂ (ω) = ĥ
(
‖ω‖
p

)
(4)

generates a normalized tight wavelet frame of L2(R
2) whose

basis functions

φs,k(x) = φ
(
x − 2s k

)
(5)

have vanishing moments up to order N. In particular, any
f ∈ L2

(
R

2
)

can be represented as

f =
∑
s∈Z

∑
k∈Z2

〈
f, φs,k

〉
φs,k. (6)

As a particular example of such wavelets, in this work,
we use Simoncelli’s isotropic wavelet [35] defined by its radial
frequency profile

ĥ(ρ) =
⎧⎨
⎩

cos

(
π

2
log2

(
2ρ

π

))
,
π

4
< ρ ≤ π

0, otherwise.
(7)

From the primal isotropic wavelet defined in this section
we generate polar separable ones by the application of the
multi-order complex Riesz transform.

D. The Multi-Order Complex Riesz Transform

The multi-order complex Riesz transform is used to obtain
systematic representations of local circular frequencies, which
are required to characterize the LOIDs. The first-order com-
plex Riesz transform corresponds to the multi-dimensional
extension of the Hilbert transform and was introduced in the
literature by Larkin et al. [36], [37]. The latter is defined in
the Fourier domain as

R f (x) ↔ (ωx + jωy)

‖ω‖ f̂ (ω) = ejϕ f̂pol(ρ, ϕ). (8)

Similarly to the Hilbert transform, it corresponds to a
convolution-type operator that acts as an allpass filter. Its phase
response is completely encoded in the orientation.

The Riesz transform is translation- and scale-invariant. More
precisely,

∀y ∈ R
2, R f (· − y)(x) = R f (·)(x − y) (9)

∀a ∈ R
+, R f

( ·
a

)
(x) = R f (·)

( x
a

)
. (10)

The nth-order complex Riesz transform Rn is defined as
the n-fold iterate of the complex Riesz transform R. In the
Fourier domain,

Rn f (x) ↔ ejnϕ f̂pol(ρ, ϕ). (11)

Isolated transform orders are orthogonal to each other. The
higher order Riesz transform inherits the invariance properties
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Fig. 3. Profiles of CHWs φ(n)s,k for n = 0, . . . , 5. Top, middle and bottom

rows correspond the real, imaginary parts and absolute values, respectively.

of the complex Riesz transform, since they are preserved
through iteration. Thus, it is scale- and translation-invariant,
and provides a unitary mapping from an L2

(
R

2
)

tight wavelet
frame to another one.

E. Circular Harmonic Wavelet Frames

We apply the multi-order complex Riesz transform to
a primal isotropic function that satisfies Proposition 1.
The generated wavelet frames are called circular harmonic
wavelets (CHW) and allow systematic characterizations of
image scales and directions. We note that our CHWs are
similar to ones of Jacovitti and Neri [32], with the difference
that the latter ones are non-tight. The new wavelet functions
are defined as φ(n) := Rnφ. More precisely, in Fourier,
we have

F
{
Rn{φs(· − y)}} (ρ, φ) = 2s ĥ(2sρ)ejnφ−jρ0ρ cos(φ−φ0).

(12)

The n-channel tight wavelet frame is generated as

{φ(n)s,k = F−1{φ̂(n)s,k}}n∈S . In this case, the elements of the

distinct set S are called harmonics (corresponding to the expo-
nentials). The nth-order CHW φ

(n)
s,k has a rotational symmetry

of order n around its center that corresponds to the nth-order
rotational symmetry of ejnφ . CHWs are depicted in Figure 3
for n = 0, . . . , 5.

The wavelets φ(n)s,k form a tight wavelet frame, thus any
finite-energy function f can be decomposed as

f =
∑
n,s,k

〈
f, φ(n)s,k

〉
φ
(n)
s,k. (13)

A remarkable property of the CHWs is that of being self-
steerable, where any rotation of φ(n)s,k can be expressed as a
linear combination of their own real and imaginary parts. More
precisely,

φ
(n)
s,0,θ0

(x) = φ
(n)
s,0 (R−θ0 x) = e jnθ0φ

(n)
s,0 (x), (14)

where R−θ0 =
[

cos(θ0) − sin(θ0)
sin(θ0) cos(θ0)

]
. Therefore, any rotation

of a multi-order CHW representation can be obtained with the

block-diagonal steering matrix Aθ0 as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re
(〈

f, φ(1)s,0,θ0

〉)
Im

(〈
f, φ(1)s,0,θ0

〉)
...

Re
(〈

f, φ(n)s,0,θ0

〉)
Im

(〈
f, φ(n)s,0,θ0

〉)
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(θ0) − sin(θ0)
sin(θ0) cos(θ0)

. . .

cos(nθ0) − sin(nθ0)
sin(nθ0) cos(nθ0)

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Aθ0

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Re
(〈

f, φ(1)s,0

〉)

Im
(〈

f, φ(1)s,0

〉)
...

Re
(〈

f, φ(n)s,0

〉)

Im
(〈

f, φ(n)s,0

〉)
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It can be noticed that Aθ0 is sparse and the steering of multi-
order representations requires much less computation when
compared to other steerable wavelet representations with full
steering matrices [34] (e.g., real Riesz wavelets, Simoncelli’s
pyramid).

F. Texture Representations from CHWs

The absolute values of the collection of subbands provided
by (13) yields a rich and compact representation for character-
izing natural textures because it allows encoding the LOIDs for
each position x and for a fixed scale s. The use of multi-order
harmonics n = 0, . . . , |S| provides a rich characterization
of the local angular spectrum. The representation based on
the complex modulus

∣∣∣〈 f, φ(n)s,k

〉∣∣∣ is rotation-invariant, but it
discards the phase shifts between the harmonics. This is
undesirable since two texture functions with different inter-
harmonics phase shifts will be mixed. As an alternative, the
representation based on real parts

∣∣∣Re
(〈

f, φ(n)s,k

〉)∣∣∣ preserves
the phases between the harmonics. However, this representa-
tion has two major drawbacks for texture recognition. First it
is not invariant to rotations, i.e.,

∀θ0 �= 0, 2π,

⎡
⎢⎢⎢⎢⎢⎢⎣

∣∣∣Re
(〈

f, φ(0)s,0

〉)∣∣∣∣∣∣Re
(〈

f, φ(1)s,0

〉)∣∣∣
...∣∣∣Re

(〈
f, φ(|S|)

s,0

〉)∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎣

∣∣∣Re
(〈

fθ0 , φ
(0)
s,0

〉)∣∣∣∣∣∣Re
(〈

fθ0 , φ
(1)
s,0

〉)∣∣∣
...∣∣∣Re

(〈
fθ0 , φ

(|S|)
s,0

〉)∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎦

�= 0, (15)
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where fθ0 = f (R−θ0 x). It will therefore not provide the
same representation for two identical textures that are rotated
versions of each other. This issue is addressed in Proposition 2
(see Section II-G). Second, it can hardly distinguish between
texture classes that differ in terms of their LOIDs only when
integrated over an image domain M, since each element∫

M

∣∣∣〈 f, φ(n)s,k

〉∣∣∣ dx is not local anymore. Both issues will be

discussed in the next section, where solutions are proposed
and exemplified for n = 1 (i.e., the gradient).

G. MF Representations From Locally Steered Gradients

In this section, we show how to analytically derive rotation-
and translation-invariant texture representations from locally
steered gradients (the gradient vector is equivalent to CHWs
with n = 1.) using moving frames. We also provide some
evidence that the MFs tend to preserve the joint location and
orientation structure of texture, which enables better charac-
terization of the LOIDs when compared to using unaligned
unidirectional texture operators.

Let {e1, e2} be the canonical basis for R
2, and let x denote

the coordinates with respect to this basis; i.e., x = (x1, x2)
represents the point x1e1 + x2e2. Let P be a rotation (by an
angle θ0) and translation (by a vector y) of the plane R

2.
We consider a gray scale image F : P → R. We suppose that
F can be evaluated as f (x) when θ0 = 0 and y = 0. When P
is rotated and translated, F is evaluated in global coordinates
as f (R−θ (x − y)). Our goal is to define a moving frame
for P in global coordinates using basis vectors

{
e1,x, e2,x

}
,

where

e1,x = cos(θx)e1 + sin(θx)e2, (16)

e2,x = cos(θx + π/2)e1 + sin(θx + π/2)e2. (17)

This frame will be defined by the local geometry of F so
that it will be invariant to translations and rotations of P . For
now, we assume that the wavelet scale s and the harmonic
index n = 1 are fixed; however, the same computation will be
valid for any value.

Definition 1 (Optimal Angle θx and Moving Frames):
We consider a manifold P of the form described above. Any
point on the manifold can be written in global coordinates as
x = (x1, x2). For this point, we compute the optimal angle,
with respect to F, as

θx,F : = arg max
θ∈[0,2π)

(
Re

(〈
F, φ(1)s,0,θ (· − x)

〉))

= arg max
θ∈[0,2π)

(
Re

(〈
F, φ(1)s,0(R−θ (· − x))

〉))
. (18)

We also define the moving frame representation with respect
to F to be the decomposition of an image using the locally
steered multi-order CHWs

φ
(n)
s,x,θx,F

= φ
(n)
s,0 (R−θx,F (· − x)). (19)

Note that inner products are taken with respect to the global
coordinates.

Proposition 2: The moving frame is invariant to rotation
and translation. We have

θx, f (R−θ0 ·−y) − θ0 = θR−θ0 x−y, f . (20)

The proof of Proposition 2 is detailed in Appendix.
A discrete moving frame representation

{
e1,k, e2,k

}
is

obtained from the discretization of
{
e1,x, e2,x

}
with k1 =

x1/�x1, k2 = x2/�x2. A remarkable property following
Definition 1 is that the effect of integration on the MF repre-
sentation over an image domain M does not dissociate the joint
responses of directional operators because the orientation θx,F

of all wavelets φ(n=1,...,|S|)
s,0,θx,F

varies for each global coordinate x.

Therefore, the MF representation
∣∣∣∑|S|

n=0 Re
(〈

f, φ(n)s,0,θx
(x)

〉)∣∣∣
tends to preserve the joint location and orientation structure
of texture, yielding a precise characterization of the LOIDs.

H. Learning Moving Frames from Multi-Order CHWs

Equation (18) defines MFs optimal angles θx,F based on
the gradient. However, the latter is handcrafted and does not
allow finding local orientations that are useful to discriminate
the texture classes of a considered set C . Following our
previous work [7], we use linear SVMs in a feature space
spanned by the absolute values of the multi-order subbands∣∣∣Re

(〈
f, φ(n)s,k

〉)∣∣∣ to learn optimal linear combinations (i.e., in

the sense of structural risk minimization [38]) of consecutive
harmonics for a class c in a one-versus-all (OVA) classification
configuration. For a set of classes c = 1, . . . ,C , the latter
will generate a shaping matrix U of the canonical CHW
representation of steerability. This will add directionality to
resulting wavelet profiles, and yield class-specific local orien-
tations θ(c)x,F to construct MFs.

We formulate the transform similarly to Unser and
Chenouard [34], with the difference that U is not necessarily
orthogonal. The transformation is described as⎡

⎢⎢⎣
ψ
(1)
s,k
...

ψ
(C)
s,k

⎤
⎥⎥⎦ = U

⎡
⎢⎢⎣
φ
(0)
s,k
...

φ
(|S|)
s,k

⎤
⎥⎥⎦. (21)

{ψ(c)s,k} are the new wavelet channels at scale s and location k.
The new wavelets are also steerable and span the same space
as the wavelet frame φ

(n)
s,k . L2-SVMs are used to find the

optimal linear combination of harmonic channels u(c) (the
lines of U) for the texture class c. Considering a training set
of I texture instances vi=1,...,I , the SVMs find the separating
hyperplane u(c) with the maximum margin 1‖u(c)‖ between

the instances with positive versus negative labels y+
i and y−

j ,
respectively [38]. More precisely, u(c) is a solution of the
primal formulation

min
uc,ξ,b

{∥∥u(c)
∥∥2

2
+ Q

I∑
i=1

ξ2
i

}

subject to yi

(〈
u(c), vi

〉
− b(c)

)
≥ 1 − ξi , ∀i. (22)

ξi is called a slack variable and loosens the margin constraints
when the classification configuration is not linearly separable
(ξi > 1). b(c) is the offset of u(c). The regularization variable
Q is used to control the cost of errors. The instances vi that are
located within the margin (0 ≤ ξi ≤ 1) are called the support
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vectors. The primal formulation in (22) can be solved with
a dual formulation where a Lagrangian based on the primal
variables is minimized [38].

By creating different training sets for each class where the
labels y+

i are set for all instances vi of the class c and y−
j

are set for the instances v j of all other classes, the shaping
matrix U can be built and a collection of class-specific texture
signatures ψ(c=1,...,C)

s,k are obtained. This allows creating a
new collection of class-specific MFs from the optimal angles

θ
(c=1,...,C)
x,F , defined with respect to F , as

θ
(c)
x,F : = arg max

θ∈[0,2π)

(〈
F, ψ(c)s,0,θ (· − x)

〉)

= arg max
θ∈[0,2π)

(〈
F, ψ(c)s,0(R−θ (· − x))

〉)
. (23)

Since ψ
(c)
s,k inherits the rotation- and translation-invariance

properties of φ(n)s,k (see [34]), the learned MF representation is
also invariant to rotation and translation, which can be demon-
strated following the proof of Propositon 2. Equation (23)
allows defining the basis vectors

{
e(c)1,x, e(c)2,x

}
of the class-

specific MF representation, where

e(c)1,x = cos(θ(c)x )e1 + sin(θ(c)x )e2, (24)

e(c)2,x = cos(θ(c)x + π/2)e1 + sin(θ(c)x + π/2)e2. (25)

The learned MF representation
∣∣∣〈 f, ψ(c)s,0,θx

(x)
〉∣∣∣ encodes the

LOIDs that are now specific to the class c. Intuitively, the
learned MFs can be seen as class-specific detectors that are
applied and rotated at each point of the image to evaluate the
magnitude of their responses, i.e., probing the presence of the
texture class c in a rotation-invariant fashion.

In summary, the SWM forward function maps an input
image fi to feature maps t i,x trough linear operations (i.e.,
convolution and linear combinations) interleaved by non-
linear steermax operations (see Figure 2). The final feature
representation t i,x can be further used by either a segmentation
model, or aggregated over a region M and used by a classifier
(e.g., SVMs, k-nearest neighbors).

III. EXPERIMENTAL RESULTS

The behavior and performance of the proposed texture
operators are evaluated in this section. The ability of MFs to
characterize the LOIDs is first demonstrated in Section III-A.
A toy problem is presented in Section III-B to illustrate
the moving frame learning process. A full evaluation of the
classification performance of MFs with three test suites of
the Outex database and the CUReT database is described in
Section III-C.

A. Gradient-Based MF Representations of the LOIDs

The ability of gradient-based MFs (see Section II-G)
to discriminate textures that differ in terms of the LOIDs
only is illustrated in Figure 4. The gradient vector(∣∣∣Re

(
〈 f, φ(1)s=1〉

)∣∣∣ , ∣∣∣Im (
〈 f, φ(1)s=1〉

)∣∣∣
)

expressed in terms of

global coordinates {e1, e2} cannot accurately discriminate

Fig. 4. f1(x) and f2(x) only differs in terms of the LOIDs. The joint
responses of image gradients expressed in terms of global coordinates {e1, e2}
can hardly discriminate between f1 and f2 when averaged over the full
image (top right). However, the gradient vector expressed in terms of the
MFs

{
e1,x , e2,x

}
perfectly separates between the two textures (bottom right).

The imaginary part of the MF gradient gets higher responses on crosses in
f1 than on bars in f2. One circle in the gradient representation corresponds
to one realization (i.e., full image) of f1,2.

between the textures f1 and f2 when averaged over the image
domain M (see Figure 4 top right). However, the gradient

vector

(∣∣∣Re
(
〈 f, φ(1)s=1,θx

〉
)∣∣∣ , ∣∣∣Im (

〈 f, φ(1)s=1,θx
〉
)∣∣∣
)

expressed

in the MFs
{
e1,x, e2,x

}
perfectly separates between f1 and f2

(see Figure 4 bottom right). The optimal angle MF angle θx,F
was defined based on s = 2 (i.e., the second wavelet scale),
which is why the imaginary part of the gradient of scale 1 is
not null.

B. Moving Frame Learning With Synthetic Textures
The moving frame learning process is illustrated in Figure 5

for two synthetic textures f1 (sum of vertical and horizontal
sines) versus f2 (vertical sine only), and |S| = 5. The
SVMs assigned non-null weights un,c to even harmonics only
(i.e., n = 0, 2, 4) since Re

(
φ(n=1,3,5)

)
are not sensitive to

horizontal directions. The corresponding profile ψ(c) corre-
sponds qualitatively to a detector of horizontal sines, the latter
being required to discriminate f1 and f2.

C. Texture Classification With SWMs

We evaluated the performance of SWMs for texture clas-
sification using the Outex [39], CUReT [40] and UIUC [17]
databases. Both require using texture operators that are invari-
ant to Euclidean transforms and illumination changes. Test
suites designed for extensively testing the rotation-invariant
properties of the algorithms exist and come with pre-defined
training and testing sets, which allows for direct performance
comparisons between approaches (i.e., identical validation
methods). The cardinalities of the classes are balanced both
in the training and test sets for all problems. The test
suites are Outex_TC_10, Outex_TC_12, CUReT and UIUC,
which were widely used to compare texture classification
approaches [5], [7], [15], [16], [18], [22]–[29], [41]–[45].

Outex is a set of real textures photographed with controlled
illumination conditions and consists of 24 texture classes with
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Fig. 5. Illustration of the template learning process for |S| = 5. An optimally
discriminant template ψ(c) for textures f1 (top left) versus f2 (middle left)
was learned with linear SVMs (bottom left). f1 and f2 have identical average
responses

∣∣Re
(〈

fc, φ(n)
〉)∣∣ for the odd harmonics n = 1, 3, 5 (see top and

middle right). Therefore, the SVMs assigned non-null weights u(c)n to even
harmonics n = 0, 2, 4 only (see bottom right). The new representation〈

fi , ψ
(c)
s,0,θ0

〉
can be further used to derive learned MFs representations based

on local optimal angles θ(c)x, fi
with Eq. (23).

pronounced directional structures. Three different color spectra
were used for image capture to evaluate illumination invari-
ance of approaches: 2300 Kelvin (K) horizon sunlight denoted
as “horizon”, 2856 K incandescent denoted as “inca”, and
4000 K fluorescent tl84 denoted as “tl84”. Each texture sample
was captured using nine rotation angles (0◦, 5◦, 10◦, 15◦,
30◦, 45◦, 60◦, 75◦, and 90◦) to focus on the rotation-invariant
properties of the approaches. There are 20 128 × 128 texture
instances per class (see Figure 6). The Outex_TC_10 test suite
has a total of 4320 (24×20×9) image instances of illuminant
“inca”. The training set consists of the 480 (24 × 20) non-
rotated images and the remaining 3840 (24 × 20 × 8) images
from 8 orientations are constituting the test set. Outex_TC_12
includes two subproblems: P0 and P1. Both problems use
the same training set as in Outex_TC_10 (i.e., 24 × 20 non-
rotated images of illuminant “inca”). The test sets consist of all
samples captured using illuminant “tl84” for P0 and “horizon”
for P1 and contain 4320 images each.

The CUReT [40] database contains 61 texture classes with
92 200×200 images each under varying illumination direction
but at a constant scale. For each class, training and test
sets are obtained from even random splits of the 92 images.
The reported accuracies were obtained after averaging over
10 Monte-Carlo (MC) repetitions.

The UIUC [17] dataset contains 25 classes with 40 640 ×
480 images each, captured under varying viewpoints. It there-
fore includes strong intra-class variations in texture scale

Fig. 6. 128 × 128 unrotated blocks from the 24 texture classes of the Outex
database.

in addition to image orientation. For each class, training
and test sets are obtained from even random splits of the
40 images. The reported accuracies were obtained after aver-
aging over 10 MC repetitions.

6 dyadic CHW scales were used to cover the spatial spec-
trum of the images with an undecimated wavelet transform.
The templates ψ

(c)
s were learned using images from the

training set. Each of them was learned and steered for each
scale separately. The cost of errors Q of the internal SVM in
Eq. (22) was set to 102 for all experiments. The absolute values
of the feature maps t i,x in Figure 2 were averaged over the
128 × 128 images and used for classification. The latter were
concatenated from each scale. From this final feature space,
L2-SVMs with Gaussian kernels (hereinafter referred to as
K-SVMs) were constructed using the training set. The cost of
errors Q in (22) and σK of the Gaussian kernel were optimized
in the intervals [100, 108] and [10−9, 102], respectively.

The classification performance is shown in Figure 7 for
the three classification subproblems of Outex and for different
numbers of combined harmonics |S|. The performance for the
CUReT database is shown in Figure 8. Two representations
are compared:

• CHW, i.e., the complex modulus of the collections of
CHW subbands provided by (13):

∣∣∣〈 fi , φ
(n)
s,x

〉∣∣∣. The feature

dimensionality is 6 · (n + 1), i.e., from 6 to 66.
• SWMs, i.e., the final feature representation t i,x based

on moving frames provided by (23) with learned U:∣∣∣∣
〈

fi , ψ
(c)

s,x,θ(c)x, fi

〉∣∣∣∣ (see Figure 2). The feature dimensional-

ity is 6 · C , i.e., 144 for Outex, 366 for CUReT and 150
for UIUC.

The influence of the final classifier is studied for
Outex_TC_10, where linear SVMs (L-SVMs) and k-nearest
neighbors (kNN) are compared to K-SVMs (see Figure 7). The
cost of errors Q was optimized in [100, 108] for L-SVMs. The
number of neighbors k was optimized in [0, 10] for kNNs.

The performance of nineteen other approaches for rotation-
invariant texture classification based on Outex TC_10,
TC_12 P0, TC_12 P1, CUReT and UIUC are reported in
Table I and compared to the proposed approach.

IV. DISCUSSIONS AND CONCLUSIONS

We developed novel texture operators that can encode the
multi-scale class-specific LOIDs in a translation- and rotation-
invariant fashion. Whereas current approaches encoding the
LOIDs (e.g., LBPs, MR8, SIFT, ScatNet) yield handcrafted
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Fig. 7. Texture classification accuracies for Outex_TC_10 (left), Outex_TC_12 P0 (middle) and Outex_TC_12 P1 (right) and for different number of combined
harmonics |S| = 0, . . . , 10. Various classifiers are compared for Outex_TC_10 (i.e., K-SVMs, L-SVMs, kNNs).

TABLE I

PERFORMANCE COMPARISON WITH OTHER APPROACHES FOR ROTATION-INVARIANT TEXTURE CLASSIFICATION BASED FOR OUTEX,
CUReT AND UIUC. THE STUDIES ARE ORDERED BY DECREASING CLASSIFICATION ACCURACY FOR OUTEX TC_10

image features, the proposed approach learns class-specific
encoding of the LOIDs that is relevant to the specific image
recognition task in hand. The cornerstone of the proposed
method is to generate MFs from locally steered linear combi-
nations of CHWs. Class-specific MFs were obtained by using
SVMs to learn optimal transformations (i.e., in the sense of
structural risk minimization [38]) of the initial CHW represen-
tation, the latter corresponding to the canonical representation
of wavelet steerability [34]. The full SWM forward function is
composed of linear operations (i.e., convolution and weighted
combinations) interleaved by non-linear steermax operations

(see Figure 2). The application scope of SWMs is restricted
to image modalities with pixel sizes defined in physical units
(e.g., medical and satellite imaging, material analysis), where
the image scale is an important discriminative property.

The discriminatory power of gradient-based MFs was first
qualitatively demonstrated in Figure 4, which yielded feature
representations that were linearly separable between texture
classes that only differed in terms of their LOIDs. This verified
that the joint location and orientation structure of textures are
preserved when the proposed texture operators are integrated
(i.e., averaged) over an image domain M. The invariance
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Fig. 8. Texture classification accuracies for CUReT for a varying number
of combined harmonics |S| = 0, . . . , 10.

of MFs to Euclidean transformations was demonstrated in
Appendix.

A proof of concept of the MF learning process was illus-
trated in Figure 5 with the construction of a discriminant
template ψ(c) between a texture f1 (sum of vertical and
horizontal sines) versus f2 (vertical sine only). Discriminating
between f1 and f2 only requires detecting the presence of
horizontal image directions: the SVMs transformed the initial
CHW representation of texture

〈
f, φ(n)

〉
into the angular-

selective representation
〈
f, ψ(c)

〉
, where only channels that are

sensitive to horizontal directions received non-null weights.
The local orientation maximization of this particular angular-
selective representation yielded MFs that are optimally dis-
criminant between f1 and f2.

The classification performance of the proposed operators
was evaluated in Section III-C (see Figures 7, 8 and Table I).
It can be observed that |S| = 1 provided poor accuracies,
which can be explained by the fact the templates were learned
on top of the gradient-based MF representations. Starting
from orders as low as |S| = 2, SWMs provided equal or
superior performance when compared to CHW, highlighting
the superiority of learned representations when compared to
handcrafted ones. It also underlines the importance of the inter-
harmonic phase information, which is discarded by CHW. The
performance gain observed between |S| = 2 and |S| = 4
suggests that the number of harmonics of the initial CHW
representation needs to be rich enough to learn relevant
operators and shape significant directional wavelet profiles.
Tuning the number of harmonics |S| acted as regularization
optimization of the wealth of the operators. This is particularly
symptomatic when analyzing the performance drop in Figure 8
for |S| > 6, where high-order SWMs are not generalizing
well. The influence of the final classifier was studied for
Outex_TC_10 in Figure 7 (left). L-SVMs, K-SVMs and kNNs
showed all a large classification improvement when using
SWMs. The top accuracies were obtained by SVMs, where
L-SVMs and K-SVMs yielded very close performance for
|S| > 3. The computing time for the SWM forward function
of a 128×128 image of the Outex dataset was of 0.83 second
for |S| = 5 with MATLAB R2015b, The MathWorks Inc.,
Natick, Massachusetts, USA on a 2.5 GHz Intel Core i7 CPU.

Overall, the performance obtained with SWMs were very
competitive when compared to the state-of-the-art (see Table I)
on Outex and CUReT. The top performances on the Outex
test suites were very close to the LBP-based methods of

Liu et al. [22], [29]. When compared to the latter, SWMs have
the advantage of a small number of free-parameters
(essentially |S|), as well as compact feature dimensions.
Feature dimensionality as large as 800 are reported in [29].
Such a large number of dimensions should be avoided to limit
the risk of overfitting when the number of training instances
are as low as 480 in the Outex database. For all subsets,
a number of harmonics |S| ∈ [2, 8] was found to provide stable
performances, which suggests that this free-parameter is not
difficult to optimize for a new application. The multi-order
CHWs yielded an excellent initial representation for building
and learning MFs. The combinations of harmonics allowed
encoding both symmetric and anti-symmetric profiles, provid-
ing an excellent characterization of the local circular phase
and frequencies. CHW relate to rotation-invariant LBP [33]
by modeling local circular harmonics and come with a more
complete theoretical framework for encoding the LOIDs at
multiple scales. Moreover, CHWs are linear operators and do
not require the binarization step carried out with LBPs, the
latter entailing the risk of discarding important information
concerning the dynamic and differential range of local pixel
values. The top performance was already obtained with a
relatively small number of harmonics |S| of two to six. When
circular harmonics are coupled with isotropic wavelet frames,
the coverage of the spatial spectrum can be fully controlled,
which is not the case for the family of classical LBP operators.
The proposed approach also achieved top performance with
the two Outex_TC_12 subproblems and the CUReT. This
highlighted the robustness of the operators to changes in
illumination. The latter is naturally achieved by using zero-
mean (i.e., bandpass) operators. The performance obtained on
the UIUC dataset is relatively low because our method is not
regrouping patterns that are similar at different scales (the
steerable wavelets are learned for each scale independently).
As expected, the methods achieving high performance on
UIUC are invariant to image scale (e.g., [17]–[19]). However,
the latter (e.g., [17], [18]) are providing lower performance
on the Outex and CUReT because they discard scale as a
discriminative property (see Table I).

We are currently extending the framework to 3D based
on [47], [48]. Future work will also include revealing and
exploiting the visual diversity of texture patterns in order
to account for texture classes composed of multiple distinct
visual events (e.g., see Figure 6) [49]. We are also working on
the learning of the radial profile. The authors will make the
implementation available to the community.

APPENDIX

PROOF OF PROPOSITION 2
Proof: Suppose there is an image F on the manifold P ,

and F is given by g = f (· − y). We then have θx, f =
θx+y, f (·−y) = θx+y,g , i.e., shifting the manifold does not
change the computed angle. Hence the frame remains the same
at each point of P .

Now suppose the manifold P is oriented so that
F is computed as g = f (R−θ0 ·). We then have
θ0,g − θ0 = θ0, f (R−θ0 ·) − θ0 = θ0, f . We interpret this to mean

that the frame of the rotated manifold is equivalent to the
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Fig. 9. Illustrating the proof of Proposition 2. The moving frame is invariant
to any rotation parameterized by θ0 and to any translation parameterized by y.
Note that neither R−θ0 x nor R−θ0 x − y need lie on the x1-axis.

rotation of the frame of the original manifold, which is the
invariance that we sought to show. In general, we will have

θx, f (R−θ0 ·) − θ0 = θR−θ0 x, f . (26)

We can combine these two invariance properties to see that
a similar result holds when the manifold is both translated and
rotated. �

The proof of Proposition 2 is illustrated in Figure 9.
Consider a point x in the plane, an angle θ0 and a shift y.
Suppose that the optimal angle at the point R−θ0 x − y for the
unrotated and unshifted function f is ν, i.e., ν = θR−θ0 x−y, f .
Then the optimal angle for the rotated and shifted function
f (R−θ0 ·− y) at the point x is θ0+ν, i.e., θ0+ν = θx, f (R−θ0 ·−y).
Combining these equations, we have

θx, f (R−θ0 ·−y) − θ0 = θR−θ0 x−y, f . (27)
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