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Abstract
This chapter reviews most popular texture analysis approaches under novel comparison axes that
are specific to biomedical imaging. A concise checklist is proposed as a user guide to assess the rel-
evance of each approach for a particular medical or biological task in hand. We revealed that few
approaches are regrouping most of the desirable properties for achieving optimal performance. In
particular, moving frames texture representations based on learned steerable operators showed to en-
able data-specific and rigid-transformation-invariant characterization of local directional patterns, the
latter being a fundamental property of biomedical textures. Potential limitations of having recourse
to data augmentation and transfer learning for deep convolutional neural networks and dictionary
learning approaches to palliate the lack of large annotated training collections in biomedical imaging
are mentioned. We conclude by summarizing the strengths and limitations of current approaches,
providing insights on key aspects required to build the next generation of biomedical texture analysis
approaches.
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3.1 INTRODUCTION

When starting from scratch to enable quantitative image analysis in a biomedical research
project or a clinical setting, the number of available approaches can be disconcert-
ing. Whereas implementing intensity-based features already raises several challenges in
terms of reproducibility and relevance to a particular medical or biological applica-
tive context, finding adequate texture measures requires extensive expertise as well as
time-consuming iterative validation processes. Knowing precisely the type of textural
information sought and further opting for the appropriate analysis technique is as much
challenging as crucial for success. To that end, Section 1.2 of Chapter 1 proposed a
formal definition of Biomedical Texture (BT) from both perceptual and mathematical

Biomedical Texture Analysis
DOI: 10.1016/B978-0-12-812133-7.00003-X

Copyright © 2017 Elsevier Ltd
All rights reserved. 55

http://dx.doi.org/10.1016/B978-0-12-812133-7.00003-X


56 Biomedical Texture Analysis

perspectives. It was suggested that BTs are realizations of intricate and nonstation-
ary spatial stochastic processes, and that spatial scales and directions are fundamental
properties of BTs. The relation between scale and directions was further developed in
Section 2.4.1 of Chapter 2, suggesting that the Local Organization of Image Directions
(LOID) is a fundamental property of BT. The LOIDs relate to the texton theory (see
Section 1.2.4 of Chapter 1), where textons are crucial elements of preattentive vision [1].
Section 1.3.1 of Chapter 1 introduced a general framework of texture analysis methods
where any BTA approach can be decomposed into a succession of local texture oper-
ators and regional aggregation functions. In addition, Section 1.3.3 of Chapter 1 and
Chapter 7 provided evidence that the type of geometric invariances required for BTA
are invariances to nonrigid transformations,1 which considerably differs from general
purpose texture analysis traditionally used in computer vision for photographic im-
age analysis. These aspects were further clarified and exemplified in Chapter 2, where
a set of comparison dimensions between BTA methods was introduced. In particu-
lar, nonexclusive categories of texture operators were presented, including directionally
insensitive/sensitive, aligned, Moving Frames (MF), and learned. The discrimination
abilities of each category was evaluated, where the destructive effects of integrative ag-
gregation were demonstrated. In particular, it was found that some groups of operators
lose their ability to characterize the LOIDs when integrated over a Region Of In-
terest (ROI), the latter being required to obtain scalar-valued texture measurements.
The ultimate challenging requirement of combining the ability to describe the LOIDs
with robustness to rigid transformations was only fulfilled by the groups of MF opera-
tors.

In this work, we compare most popular BTA approaches under the light of the
novel comparison dimensions introduced in Chapter 2. A concise checklist is proposed
to assess the relevance of each BTA approach for a particular medical or biological task in
hand. The main groups of methods considered are (i) convolutional (Section 3.2, further
information on CNNs can be found in Chapters 4 and 9), (ii) Gray-Level Matrices
(GLM, Section 3.3), (iii) Local Binary Patterns (LBP, Section 3.4), and (iv) fractals
(Section 3.5, further information can be found in Chapter 5). The main categories of
BTA methods are summarized in Fig. 3.1. Our choice to review these categories is
based on their popularity and diversity. The strengths and weaknesses of the methods
are summarized and discussed in Section 3.6. The notation used in this chapter are based
on Section 1.2.2 of Chapter 1.

1 Optimal operators should be equivariant to translations and locally equivariant to rotations.
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Figure 3.1 Overview and dependence of the BTA approaches reviewed in this chapter. These cate-
gories were chosen based on their popularity and diversity.

3.2 CONVOLUTIONAL APPROACHES

A large group of approaches called convolutional are based on linear texture operators.
In spatial domain, the application of a linear operator Gn to f (x)2 at the position x0 is
characterized by the operator function gn(x) as

G{f }(x0) = (gn ∗ f )(x) =
∫

x∈RD
f (x)gn(x0 − x)dx. (3.1)

The operation (gn ∗ f )(x0) is called a convolution: we slide the operator function gn(x) to
the input texture function f (x) over all positions x0. When the position x0 is fixed, we
remark that the value of G{f }(x0) is simply the scalar product

Gn{f }(x0) = 〈f (·), gn(x0 − ·)〉. (3.2)

A convolution in the spatial domain corresponds to a multiplication in the Fourier
domain as

(gn ∗ f )(x)
F←→ ĝn(ω) · f̂ (ω).

Convolution operators are the ones for which the response map hn(x) depends lin-
early on the input texture function f (x). The definition of the function gn(x) is a priori

2 In this section, except as otherwise stipulated, we will consider continuous operators and functions in-
dexed by the coordinate vector x. Discretized versions can be obtained following the notions introduced
in Section 1.2.2 of Chapter 1.



58 Biomedical Texture Analysis

free of constraints. For the convolution, the spatial support of the operator is exactly
the domain on which the operator function gn(x) is nonzero. Operators with finite
spatial supports are desirable to study local texture properties of nonstationary processes
(see Section 2.3.1 of Chapter 2), hence we shall consider localized operator functions.
Also, band-pass filters for which ĝn(0) = 0 (i.e., zero gain for the null frequency ω = 0
corresponding to the average) are able to focus on texture alone and do not include
any intensity information. This ensures improved robustness of the texture operator
responses to variations in illumination.

As will be exploited thereafter, it is often interesting to define new texture operators
based on convolution operators, with the goal of locally aligning the orientation (see
Section 2.4.3 of Chapter 2). We develop this framework in the 2D setting. The rotation
matrix with angle θ0 is noted

Rθ0 =
(

cos θ0 − sin θ0

sin θ0 cos θ0

)
.

Consider a convolution operator Gn with operator function gn(x). For each location x0,
we set

θx0 = arg max
θ0∈[0,2π)

〈
f (·), gn(x0 − Rθ0 ·)

〉
(3.3)

Here, θx0 is the angle that maximizes the scalar product between the texture image
f (x) and the rotated version of gn(x) around the location x0. It is therefore the angle
for which the operator function is the most aligned with f (x) at position x0. We then
define

Hn{f }(x0) = 〈f (·), gn(x0 − Rθx0
·)〉 (3.4)

=
∫

x∈RD
f (x)gn(x0 − Rθx0

x)dx.

The response map hn(x) = Hn{f }(x) is no longer linear in f (x), therefore the texture
operator Hn is not a convolution operator in the sense of Eq. (3.1). We include the
angle alignment in this section since it is based on the convolutional framework and
characterized by the operator function gn(x) according to Eq. (3.4). Convolution oper-
ators and local angle alignment together allow to design texture operators equivariant to
local rotations that can be used to study the local orientation in the texture image (see
Section 1.3.3 of Chapter 1).

The most popular convolutional approaches in texture analysis are detailed in the
following subsections while distinguishing three main categories of convolutional op-
erator functions (see Fig. 3.1): circularly/spherically symmetric filters (Section 3.2.1),
directional filters (Section 3.2.2), and learned filters (Section 3.2.3). It is worth noting
that directional and learned filters are nonexclusive categories.
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3.2.1 Circularly/spherically symmetric filters
Circularly/spherically symmetric filters are convolutional texture operators with func-
tions that only depend on the radial polar coordinate r (see Section 2.2 of Chapter 2):
gn(x) = gn(||x||) = gn(r). A direct consequence of this is their complete lack of directional
sensitivity and their invariance to local rotations.

A simple example of such convolutional texture processing is based on Laplacian of
Gaussian (LoG) filters.3 Their handcrafted operator function gσ (x) is a radial second-
order derivative of a D-dimensional Gaussian filter as

gσ (x) = − 1
πσ 2

(
1 − ||x||2

2σ 2

)
e− ||x||2

2σ2 , (3.5)

where the standard deviation of the Gaussian σ controls the scale of the operator. LoGs
are band-pass and circularly/spherically symmetric. It is straightforward to notice in
Eq. (3.5) that gσ (x) only depends on the norm of x and is therefore circularly symmetric:
we have gσ (x) = gσ (r). Their 2D profiles and response maps obtained with synthetic
tumors are depicted in Fig. 1.12 of Chapter 1. LoGs can also be approximated by a
difference of two Gaussians.4 LoGs were mentioned to be important in biological visual
processing by Marr in [2].

Multiscale texture measurements η can be obtained by averaging the absolute values
or the energies of the response maps (i.e., |hσn(x)| or h2

σn
(x), respectively) of a series of

operators with increasing values of σ1 < σ2 < · · · < σN (see Fig. 1.12 of Chapter 1). The
average is computed over a ROI M. They are implemented in 2D in the TexRAD5

commercial medical research software [4]. The properties of LoG filters are summarized
in Table 3.1.

3.2.2 Directional filters
Several handcrafted approaches were proposed for texture analysis using directional fil-
ters. The latter are sensitive to image directions (see Section 2.4.2 of Chapter 3). The
most important and popular methods are discussed in this section, including Gabor
wavelets (Section 3.2.2.1), Maximum Response 8 (MR8, Section 3.2.2.2), Histogram of
Oriented Gradients (HOG, Section 3.2.2.3), and the Riesz transform (Section 3.2.2.4).

3 They are also called Mexican hat filters due their 2D shape.
4 The Difference of Gaussians (DoG) best approximates LoG when the ratio of the two variances of the

Gaussians are σ1 = σ2√
2

.
5 http://texrad.com, University of Sussex, Brighton, UK, as of November 21, 2016.

http://texrad.com
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Table 3.1 Properties LoG filters
Operator linearity Linear.

Handcrafted Yes.

3D extension Trivial as the second-order derivative of a 3D Gaussian function.
The LoGs are circularly/spherically symmetric functions which
only depend on the radial coordinate r.

Coverage of image
directions

Complete: the angular part is constant for a fixed radius r.

Directionality and local
rotation-invariance

Directionally insensitive and locally rotation-invariant.

Characterization of the
LOIDs

No.

Coverage of image
scales

Incomplete for a single value of σ . However, their wavelet
extension allows a full coverage of the spatial spectrum [3].

Band-pass Yes.

Gray-level reduction Not required.

Illumination-invariance No. However, they are robust to changes in illumination because
LoGs are band-pass filters.

Aggregation function Integrative (typically): computes the average of the absolute
values or the energies of the response maps over M.

3.2.2.1 Gabor wavelets

A popular example of directional texture operators is the family of Gabor wavelets [5–7],
which consists in a systematic parcellation of the Fourier domain with elliptic Gaus-
sian windows (see Fig. 3.2). The D-dimensional filter function of the Gabor operator
gρ,σ ,θ (x) is the most general function that minimizes the uncertainty principle [8] (see
Section 2.3.1 of Chapter 2). Moreover, it was suggested in [9] that 2D Gabor filters
are appropriate models of the transfer function of simple cells in the visual cortex of
mammalian brains and thus mimicking the early layers of human visual perception. In
the spatial domain, they correspond to Gaussian-windowed oscillatory functions as

gρ,σ ,θ (x) = σ1σ2

2π
e−σ 2

1 x̃2
1+σ 2

2 x̃2
2 ej2πρx̃1 , (3.6)

where ρ is the center of the Gaussian window in Fourier, σ = (σ1, σ2) contains
the radial and orthoradial standard deviations of the Gaussian window in Fourier,
x̃ = (x̃1, x̃2) = Rθx, and ω̃ = (ω̃1, ω̃2) = Rθω (see Fig. 3.2).



Biomedical Texture Operators and Aggregation Functions 61

Figure 3.2 One isolated scale ρ of Gabor wavelets with 4 orientations θ and a spectral dispersion of
σ = (σ1,σ2). Note that the spatial angular polar coordinate θ is equivalent to the Fourier angular
coordinate ϑ .

Multiscale and multiorientation texture measurements η are obtained by averaging
the absolute values or the energies of the response maps (i.e., |hρ,σ ,θ (x)| or h2

ρ,σ ,θ (x),
respectively) for various values of ρ, σ , and θ . The properties of Gabor wavelets are
summarized in Table 3.2.

3.2.2.2 Maximum Response 8 (MR8)

Another popular example of handcrafted directional filterbank is the MR8 ap-
proach [11]. The latter includes a filterbank with a collection of 38 operator functions
gn(x) (see Fig. 3.3). Two of them are circularly symmetric (one Gaussian and one LoG).
Eighteen are directional multiscale edge detectors based on oriented first-order Gaus-
sian derivatives. Another 18 are directional multiscale ridge detectors based on oriented
second-order Gaussian derivatives. However, the approach yields a total of eight re-
sponse maps. The first two come from the convolution of the image with the circularly
symmetric Gaussian and LoG filters. The remaining six are computed as follows. For
each directional detector types (i.e., first- and second-order Gaussian derivatives), only
one detector per scale is kept. Among the six different filter orientations per scale, the
detector kept at the position x0 is the one that maximizes the detection in the sense of
Eq. (3.3), where θ0 is coarsely discretized. This results in six non-linear texture operators
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Table 3.2 Properties of Gabor wavelets
Operator linearity Yes.

Handcrafted Yes.

3D extension Requires using 3D elliptic Gaussian windows in the volumetric
Fourier domain and systematically indexing their orientations
with angles θ,φ (corresponding to angles ϑ,ϕ in spherical
Fourier, see Section 2.2 of Chapter 2).

Coverage of image
directions

Complete with appropriate choices of directions θ and
orthoradial standard deviations σ2 respecting Parseval’s identity.

Directionality and local
rotation-invariance

Directional and not locally rotation-invariant. A local rotation of
the input image f (Rθ0,x0 · x) will swap the responses of the
operators with various orientations θ .

Characterization of the
LOIDs

No. Gabor filters/wavelets are unidirectional operators that are
not able to characterize the LOIDs when used with an
integrative aggregation function (e.g., average, see Section 2.4.2
and Fig. 2.13 of Chapter 2). MF representations based on a
consistent alignment criteria (e.g., Hessian-based structure tensor,
see Section 2.4.3 and Fig. 2.14 of Chapter 2) can be used to
locally align Gabor operators (using, e.g., steerability [10]) and
allow characterizations of the LOIDs.

Coverage of image
scales

Complete for filters with appropriate choices of radial
frequencies ρ and standard deviation σ1 respecting Parseval’s
identity. This is the case for Gabor wavelets.

Band-pass Yes.

Gray-level reduction Not required.

Illumination-invariance No. However, they are robust to changes in illumination because
Gabor filters are band-pass.

Aggregation function Integrative (typically): computes the average of the absolute
values or the energies of the response maps over M.

Gn=1,...,6 that are “aligned” at every position and achieve approximated local rotation-
invariance. This process is illustrated in Fig. 3.3.

The aggregation function usually consists in pixel-wise clustering of the maximum
filter responses to create a texton dictionary (see Section 1.2.4 of Chapter 1). Class-wise
models can then be created as texton occurrence histograms, which can be used to
compare texture instances by measuring distances between them (e.g., Euclidean, χ2).
The vector of texture measurements η contains the bin values of the texton occurrences.
The properties of the MR8 approach are summarized in Table 3.3.
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Figure 3.3 Top row: the 38 operators of the MR8 filterbank. At a given position x0, the collection of op-
erators Gn=1,...,8{f }(x0) consists of a subset of the six directional operators with maximum response
over all orientations θ1,...,6 plus the two circularly symmetric operators. This results in eight responses
for each position (hence the name of the approach), which are marked in red in the example above.

3.2.2.3 Histogram of Oriented Gradients (HOG)

An efficient gradient-based MF representation is the local image descriptor used in
the Scale Invariant Feature Transform (SIFT) approach [12] called the Histogram of
Oriented Gradients (HOG). The texture function f (x) is first filtered with circularly
symmetric multiscale DoG filters gσi(x) (see Section 3.2.1) using a dyadic scale progres-
sion (i.e., σi+1 = 2σi), which yields a collection of response maps hσi(x). At a fixed scale
i, corresponding to the standard deviation σi = σ , the gradient orientation map hθ

σ (x) is
computed from the response map hσ (x) as

hθ
σ (x) = arctan

(∇x2{hσ }(x)

∇x1{hσ }(x)

)
, (3.7)

where ∇x1{hσ }(x) and ∇x2{hσ }(x) yield gradients maps. Equation (3.7) provides local
angle values maximizing the gradient magnitude in the spirit of Eq. (3.3). For a fixed
orientation θ , we set u(θ) = Rθ (1,0) = (cos θ, sin θ) and ∇u(θ) = cos θ · ∇x1 + sin θ · ∇x2

the oriented derivative with direction u(θ). We define the oriented response map as
hσ,θ {x0} = ∇u(θ){hσ }(x0). When using discretized image functions, operators and re-
sponse maps hσ (ξ) (see Section 1.2.2 of Chapter 1), the latter can be estimated using
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Table 3.3 MR8 properties
Operator linearity No. The filtering operations are linear, but keeping the

maximum value among the six orientations is a nonlinear
operation.

Handcrafted The operators are handcrafted.a

3D extension Requires extending the filter orientations to 3D with systematic
sampling of angles θ,φ.

Coverage of image
directions

Near to complete, but not strictly respecting Parseval’s identity.

Directionality and local
rotation-invariance

Directional and approximate local rotation-invariance.

Characterization of the
LOIDs

No, all MR8 operators are unidirectional. In addition, they are
“aligned” independently at a position x0 and do not yield MF
representations.

Coverage of image
scales

Incomplete.

Band-pass Yes, with the exception of the circularly symmetric Gaussian
filter (low-pass).

Gray-level reduction Not required.

Illumination-invariance No, mostly because of the circularly symmetric Gaussian filter.

Aggregation function Consists of two consecutive aggregation functions: a first
piece-wise integrative functionb is used to construct the texton
dictionary and second integrative function counts the texton
occurrences and organizes them in a histogram.

a The texton dictionary is derived from the data, but the operators are handcrafted.
b Clustering results in averaging within local homogeneous regions in the feature space.

pixel differences as

∇x1{hσ }(ξ) = hσ (ξ1 + �ξ1, ξ2) − hσ (ξ1 − �ξ1, ξ2),

∇x2{hσ }(ξ) = hσ (ξ1, ξ2 + �ξ2) − hσ (ξ1, ξ2 − �ξ2).
(3.8)

For each position x0, the dominant gradient direction θx0 is obtained by maximizing
Eq. (3.7). To define the HOG operators, we align and sample the orientation θ =
θq − θx0 = 2π

q − θx0 with q = 1, . . . ,8. The final collection of HOG operators Gσ,q is
given at location x0 by

Gσ,q{f }(x0) = hσ,q(x0).
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The value of hσ,q(x0) can be efficiently evaluated using the steerability of the gradient
operator [13] as

hσ,q(x0) = cos(θq − θx0) · ∇x1{hσ }(x0) + sin(θq − θx0) · ∇x2{hσ }(x0). (3.9)

The collection of HOG operators Gσ,q provides a MF representation oriented with θx0

and containing eight redundant frame components (see Section 2.4.3 of Chapter 2).
Whereas the response maps hσ (x) depend linearly on the texture image f (x), it is not
anymore the case for the HOG operators due to the local alignment of the angle: the
HOG operators are not convolution operators themselves, but take advantage of the
convolution framework since they are based on the DoG filters.

For obtaining texture measurements η, the responses of HOG operators can be
aggregated over regions M using component-wise averages (see Fig. 2.15 of Chap-
ter 2). This allows building scale-wise histograms of oriented gradients, where each bin
q corresponds to the average response of the response map hσ,q(x) of its corresponding
operator Gσ,q over M. The properties of HOGs are summarized in Table 3.4.

3.2.2.4 Riesz transform

A more elegant approach to compute directional transitions between pixel values is to
compute them in the Fourier domain instead of using pixel differences in Gaussian-
smoothed images as presented in Eq. (3.8). This also provides the opportunity to easily
compute higher-order image derivatives of order l as

∂ l

∂xl
d

f (x)
F←→ ( jωd )l f̂ (ω), (3.10)

where 1 ≤ d ≤ D. It can be noticed that differentiating an image along the direction
xd only requires multiplying its Fourier transform by jωd. Computing lth-order deriva-
tives has an intuitive interpretation (e.g., texture gradient for l = 1, curvature for l = 2),
which makes them attractive for understanding the meaning of the texture measures in
a particular medical or biological applicative context. However, a pure image derivative
filter as computed in Eq. (3.10) is high-pass (because multiplied by ωd) and accentuates
high frequencies along xd. Therefore it is desirable to implement image derivatives as
all-pass filters, which is provided with the real Riesz transform6 R{f }(x) as [15]

R{f }(x) =
⎛⎜⎝ R1{f }(x)

...

RD{f }(x)

⎞⎟⎠ F←→ −j
ω

||ω|| f̂ (ω). (3.11)

6 The Riesz transform is the multidimensional extension of the Hilbert transform.
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Table 3.4 HOG properties
Operator linearity No. The initial filtering operations are linear, but “aligning” the

HOGs with the dominant directions θx0 obtained from Eq. (3.9)
is a nonlinear operation.

Handcrafted Yes.

3D extension Requires extending the gradient orientations to 3D with
systematic sampling of angles θ,φ, which is proposed in [14].

Coverage of image
directions

Complete.

Directionality and local
rotation-invariance

Directional and locally rotation-invariant.

Characterization of the
LOIDs

Yes. The HOGs provide MF representations oriented with θx0

(see Eq. (3.7)).

Coverage of image
scales

Incomplete and depends on the choices of DoG scales σ .

Band-pass Yes.

Gray-level reduction Not required.

Illumination-invariance No. However, they are robust to changes in illumination because
gradient operators computed on top of DoGs coefficients are
band-pass.

Aggregation function The average of the response maps of each HOG operator’s
responses can be used to build the scale-wise histogram of
oriented gradients. This yields gradient-based MF
representations (see Section 2.4.3 of Chapter 2).

It can be noticed by dividing the Fourier representation with the norm of ω transforms
Eq. (3.10) in D all-pass operators Rd. For a fixed order L, the collection of higher-order
all-pass image derivatives are defined in Fourier as

R̂l{f }(ω) = (−j)L

√
L!

l1! · · · lD!
ω

l1
1 · · · ω

lD
D(

ω2
1 + · · · + ω2

D

)L/2 f̂ (ω), (3.12)

which yields a total of
(L+D−1

D−1

) = (L+D−1)!
L!(D−1)! all-pass filters for all combinations of the

elements ld of the vector l as |l| = l1 + · · · + lD = L. The collection of Riesz operators of
order L is denoted by RL. A set of band-pass, multiscale, and multiorientation operator
functions gσ,l(x) can be obtained by simply applying the Riesz transform to circularly



Biomedical Texture Operators and Aggregation Functions 67

Figure 3.4 Two-dimensional Lth-order Riesz texture operators with functions gσ,l(x) providing Lth-
order image derivatives at a fixed scale σ . Applying L = 1 texture operators with functions gσ,1,0
and gσ,0,1 to the input texture f with convolution yields response maps hσ,1,0(x) and hσ,0,1(x) de-
composing f into its vertical and horizontal directions, respectively. Qualitatively, L = 1 corresponds
to gradient estimation whereas L = 2 estimates the Hessian. They both have intuitive interpretations
(e.g., texture slope for L = 1, curvature for L = 2), which makes them attractive for understanding the
meaning of the texture measures in a particular medical or biological applicative context.

symmetric wavelets or multiscale filters, e.g., the LoG filter gσ (see Eq. (3.5)) as

gσ,l(x) = Rl{gσ }(x).

Examples of 2D real Riesz operators and their application to a directional texture are
shown in Fig. 3.4. They are implemented as a plugin for quantitative image analysis
on the ePAD radiology platform (see Chapter 13). 3D real Riesz filters are depicted
in Fig. 2.12 of Chapter 2 and are implemented in the QuantImage radiomics web
platform7 (see Chapter 12).

Riesz operators as defined in Eq. (3.12) are not locally rotation-invariant/equivari-
ant. However, local rotation-invariance/equivariance and rich MF representations can
be achieved in a convenient fashion through the most interesting property of Riesz
texture operators, which is steerability. The Riesz operator functions gσ,l(x) are steer-
able, which will be detailed in 2D in the following text. 2D steerability means that the
responses of gσ,l rotated by an angle θ0 can be very efficiently computed with a linear
combination of a finite number of basis elements, which is parameterized by a steering
matrix AL

θ0
as

RL{gσ }(Rθ0x) = AL
θ0
RL{gσ }(x), (3.13)

7 https://radiomics.hevs.ch, as of March 1, 2017.

https://radiomics.hevs.ch
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Figure 3.5 Top row: example of the steering of the first-order Riesz operator gσ,1,0 at the position
x0 = 0 with an angle θ0 = 5π

6 . Bottom row: rich MF representations of f(x) can be obtained from
locally steered Riesz filterbanks (exemplified for L= 1).

where gσ is the circularly symmetric function used to control the spatial support of the
operators. For order 1 (i.e., L = 1), A1

θ0
is equal to the 2D rotation matrix Rθ0 . For each

scale σ , rich D-dimensional MF texture representations can be obtained by finding
the local angle θx0 maximizing the response of one chosen Riesz operator function
gσ,l1,...,lD for each position x0 using steerability [16–20]. For instance, 2D angle maps
corresponding to a texture function f can be obtained for L = 1 as

θx0 := argmax
θ0∈[0,2π)

(
cos θ0 · (gσ,1,0 ∗ f )(x0) + sin θ0 · (gσ,0,1 ∗ f )(x0)

)
. (3.14)

This is a particular case of the angle alignment framework introduced in Eqs. (3.3)
and (3.4).

A collection of MF texture measurements η can be obtained from component-wise
averages of the absolute values (or energies) of the Riesz wavelet coefficients steered
with angle maps obtained from, e.g., Eq. (3.14). Steerability of the real Riesz transform
and its use for the construction of MF representations is illustrated in Fig. 3.5. The
properties of real Riesz-based texture analysis are summarized in Table 3.5.

By slightly modifying the definition of the Riesz transform (see Eq. (3.12)) into its
complex form, it is also possible to obtain two-dimensional texture descriptors that can
linearly quantify the amount of local circular frequencies. The latter are implicitly mod-
eled by LBP operators, which unfortunately require a binarization and discretization
of the circular neighborhoods resulting in a potentially large loss of information (see
Section 3.4). This is not the case when using the complex Riesz transform. The 2D lth
order complex Riesz transform Rl

C
is defined in polar coordinates in Fourier as [27]

R̂l
C
{f }(ρ,ϑ) = e jlϑ f̂ (ρ,ϑ). (3.15)
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Table 3.5 Properties of real and complex Riesz texture representations, as well as Steerable Wavelet
Machines (SWM)
Operator linearity No. The filtering operations are linear, but “aligning” the filters

either using operator steering or the complex magnitudes of
CHs are nonlinear operations.

Handcrafted Yes for real and complex Riesz. No for learned SWMs operators
(see Section 3.2.3.1).

3D extension Real Riesz representations are extended to 3D by considering
the subspace of filters spanned by all combinations of partial
derivatives relatively to {x1,x2,x3} [16,17] (see Eq. (3.12)). The
extension of complex Riesz transforms (i.e., CH) to three
dimensions is not straightforward. Spherical harmonics-based
representations can be considered [21,22].

Coverage of image
directions

Complete.

Directionality and local
rotation-invariance

Directional and not locally rotation-invariant in their initial
form. However, rich directional and locally rotation-invariant
representations can be obtained at a low computational cost by
either using the complex magnitudes (complex Riesz) or
steerability (real and complex Riesz as well as SWMs).

Characterization of the
LOIDs

Yes. Moreover, rich and learned MF representations can be
obtained with steerability and SWMs.

Coverage of image
scales

Complete when used with circularly symmetric wavelet
representations [18] (e.g., Simoncelli [23], Meyer [24],
Shannon [25]).

Band-pass Yes.

Gray-level reduction Not required.

Illumination-invariance No. However, they are robust to changes in illumination when
Riesz operators are based on band-pass circularly symmetric
primal functions.

Aggregation function The average or covariances of the absolute values (or energies) of
each Riesz operator response can be used [19,26].

Using a process similar to construct real Riesz filters, applying the complex Riesz trans-
form to circularly symmetric filters or wavelets (e.g., LoG filters, Eq. (3.5), or circularly
symmetric Simoncelli wavelets, Eq. (2.2) of Chapter 2) yields steerable, complex, and
band-pass Circular Harmonic (CH) filters or wavelets gσ,l(x) = Rl

C
{gσ }(x) ∈ C with

l = 0, . . . ,L [28,29]. CHs stand out as the canonical representation of steerability [27],
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Figure 3.6 Impulse responses of Circular Harmonics (CH) of order l = 0, . . . ,5.

which implies that every steerable representation gσ,L,c with c = 1, . . . ,C components
per scale can be obtained with a C × (L + 1) complex shaping matrix U as⎛⎜⎝ gσ,L,1

...

gσ,L,C

⎞⎟⎠ = U

⎛⎜⎝ gσ,0
...

gσ,L

⎞⎟⎠ . (3.16)

As a consequence, any steerable representation can be obtained with a specific shaping
matrix U (e.g., gradient and Hessian real Riesz, Simoncelli’s steerable pyramid). Exam-
ples of CH filters are shown in Fig. 3.6. Rich and locally rotation-invariant descriptions
of the LOIDs can be obtained with a very cheap computational cost by computing
the complex magnitudes of the response maps hσ,l=0,...,L(x). The collection of CH with
various orders l = 0,1, . . . ,L defines an orthonormal system corresponding to a Fourier
basis for circular frequencies up to a maximum order L. The process is similar to LBP
as presented in [30] but with the desirable properties of a fully linear approach (e.g., no
gray-level transformation required) besides the final step computing the complex mag-
nitudes. However, absolute values of CH filters do not define MF representations since
the interharmonic phase is lost by taking the magnitude of the responses of the opera-
tors. Rich MF representations can be obtained by steering all harmonics with a unique
local orientation θx0 , as proposed in [26]. Although more computationally expensive
than using the magnitudes of the operators, steering them is relatively cheap because
CH are self-steerable, resulting in block-diagonal steering matrices AL

θ0
for multiorder

representations.
Texture measures η can be obtained from the averages or covariances of absolute

values (or energies) of steered or nonsteered Riesz response maps over a ROI M [19].
The properties of complex Riesz-based texture analysis are summarized in Table 3.5.
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3.2.3 Learned filters
All texture operators described and discussed in the previous sections are handcrafted.
This means that the type of texture information extracted by theses operators is as-
sumed to be relevant for the texture analysis task in hand. Therefore the design of
these operators in terms of the coverage of image scales and directions was based on
prior assumptions (e.g., ad hoc or based on theoretic guidelines, see Section 1.3.1 of
Chapter 1). Whereas classical approaches use machine learning on top of handcrafted
representations, more recent approaches proposed to derive the design of the operators
from data to identify the combinations of scales and directions that are optimal for the
texture analysis task in hand. When compared to handcrafted operators, learned ones
reduce the risk of unnecessary modeling of texture properties that are not related to the
targeted application (see Fig. 2.5 of Chapter 2). They eliminate human bias to include
or exclude arbitrary operator scales and directions. It is worth noting that learned ap-
proaches still predominantly use handcrafted components of the aggregation function
(e.g., ReLU, sigmoid, pooling, see Section 3.2.3.3). Three important approaches for
learning convolutional texture filters are discussed in this section, including Steerable
Wavelet Machines (SWM, Section 3.2.3.1), Dictionary Learning (DL, Section 3.2.3.2),
and deep Convolutional Neural Networks (CNNs, Section 3.2.3.3).

3.2.3.1 Steerable Wavelet Machines (SWM)

In [31–33] and [26], we proposed to use SVMs to learn optimally discriminant lin-
ear combinations of real or complex Riesz operators. The most interesting property of
this approach called Steerable Wavelet Machines (SWM) is to combine the flexibility
of learned representations with steerability,8 i.e., we learned the lines uc of the shaping
matrix U (see Eq. (3.16)) using one-versus-all classification configurations. This yields
class-specific steerable signatures of the essential stitches of biomedical tissue (allowing
locally rotation-invariant/equivariant descriptions of the LOIDs) that can be used for
building data-specific MF representations. This approach is based on handcrafted rep-
resentations of image scales based on dyadic circularly symmetric wavelet functions and
we are currently extending the learning to image scales as well. The learned operators
are limited to the span of Riesz representations. However, it was observed that a limited
number of circular harmonics (e.g., L = 3, . . . ,10) yields optimal texture representations
for classification. In addition, the span of CH becomes less and less restricted with large
values of L and can represent any function for L → ∞ since it can be interpreted as a
Fourier transform for circular frequencies. The properties of SWMs are summarized in
Table 3.5.

8 Linear combinations of steerable subspaces are themselves steerable.
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3.2.3.2 Dictionary Learning (DL)

Recent popular approaches propose to fully learn operators from data (e.g., a collec-
tion of bounded discretized texture functions I = {f1(ξ), f2(ξ), . . . , fI (ξ)}) with very little
constraints besides their maximal spatial support G1 × · · · × GD. A first notable example
is unsupervised Dictionary Learning (DL). The learned set of operators will depend on
the learning criteria used [34]. Basic dimensionality reduction methods such as Princi-
pal Component Analysis (PCA), Independent Component Analysis (ICA), or K-means
clustering based on the |G| pixel values of G1 × · · · × GD patches γp(ξ) can be used to
derive N essential atoms gn,I(ξ), which can be further used as operator functions [35].
PCA requires that the atoms are orthogonal to each other (i.e., it removes correlation
between them). ICA minimizes the correlation as well as higher-order dependence be-
tween atoms, which are not necessarily orthogonal. K-means finds N prototype atoms
gn,I(ξ) from clustering of the |G|-dimensional space spanned by the pixel values of the
patches γp(ξ). The atoms are also called textons [36,37], which were identified as the
elementary units of preattentive human texture perception [1]. Textons relate to tex-
ture primitives (see Section 1.2.4 of Chapter 1) and to the LOIDs (see Section 2.4.1
of Chapter 2). The process for extracting 3 × 3 textons from a texture function f (ξ) is
illustrated in Fig. 3.7.

Another successful unsupervised approach was based on creating a collection of
atoms from which we can reconstruct the patches γp(ξ) with a vector of coefficients

Figure 3.7 Dictionary learning (DL) process from one single image fi(ξ). A collection of 3 × 3 patches
γp(ξ) are extracted from fi . The patch matrices are vectorized to create vectors γ p . K-means clustering
is used in the space spanned by instance vectors γ p to find N atoms gn,fi(ξ) that are representative
of fi . These atoms are called textons and can be further used as texture operator functions.
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αp containing a minimum number of nonzero elements [38,39]. Every atoms gn,I,λ are
vectorized, transposed and piled up to create the |G| × N dictionary matrix D with N
atoms. Solving the following optimization problem for a collection of P patches can be
used to compute both D and α as

D := argmin
D,α

P∑
p=1

||γ p − Dαp||22 + λ||αp||1, (3.17)

where || · ||1 is the �1-norm9 and λ is controlling the sparsity of the atom coefficients α.
Additional topological constraints were added in Topographic Independant Component
Analysis (TICA) to take into account the important knowledge that patches that are
spatially close to each other have similar statistical properties [40]. All texture operators
dictionaries D learned with unsupervised approaches (e.g., K-means, PCA, ICA, TICA,
reconstruction, see Eq. (3.17)) are not directly optimizing a discriminative criteria,
which means that they are not necessarily optimal for biomedical texture classification
of a set of considered tissue types. To tackle this issue, supervised dictionary learning
was proposed [38], where D is obtained as

D := argmin
D,b,α

P∑
p=1

C
(
yp, γ T

p Dαp + b
)

+ λ||D||2F, (3.18)

where γ p are the vectorized training patches and their labels
(
yp ∈ {−1,+1})p=1,...,P ,

C(yp, y̆p) is the cost function,10 b the bias, and || · ||F the Frobenius matrix norm.11

An inherent challenge of DL methods is the large number of free parameters (i.e.,
features or variables) to learn which is equal the size (i.g., measure) of the dictionary
|G| × N , resulting in a very high-dimensional feature space. This typically requires a
very large collection of training patches to respect the recommended ratio between
feature dimensionality and number of training instances equal to ten [41]. As an order
of magnitude, 1,210,000 training patches are required to learn 1000 11 × 11 atoms
while respecting this ratio. A collection of N texture measurements η can be obtained
by computing the averages of the absolute values or energies of the response maps
hn(ξ) = (gn ∗ f )(ξ ) within a ROI M. The properties of DL-based texture analysis are
summarized in Table 3.6.

9 The �1-norm of a vector x is ||x||1 = ∑D
d=1 |xd|, whereas the �2-norm is ||x||2 =

√∑D
d=1 x2

d .
10 The cost function defines how label prediction errors of the estimations y̆p are penalized. The logistic

loss function is used in [38] and is defined as C(yp, y̆p) = log(1 + e−ypy̆p ).

11 The Frobenius matrix norm is defined as ||A||F =
√∑I

i=1
∑J

j=1 a2
i,j , where ai,j are the elements of A.
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Table 3.6 Properties DL texture operators
Operator linearity Yes.

Handcrafted No. The texture operators functions gn(ξ) (i.e., the dictionary
atoms) are fully derived from a collection of training texture
functions I.

3D extension Straightforward. It requires vectorizing 3D image patches γp(ξ).
However, the number of free parameters will grow cubically.

Coverage of image
directions

Complete, but only over the restricted spatial support G of the
atoms.

Directionality and local
rotation-invariance

Directional and not locally rotation-invariant. Data
augmentation can be used to improve robustness to input
rotation, but it has undesirable effects (see Section 3.2.3.4).

Characterization of the
LOIDs

Yes, but not with local rotation-invariance.

Coverage of image
scales

Incomplete. Typical spatial supports G of the atoms are 3 × 3,
5 × 5, 11 × 11, which is much smaller than the spatial supports F
of biomedical texture functions.

Band-pass No.

Gray-level reduction Not required.

Illumination-invariance No. The texture operators functions are not band-pass filters.

Aggregation function The average of the absolute values (or energies) of each atom
response can be used.

3.2.3.3 Deep Convolutional Neural Networks (CNN)

One major and very successful work on filter learning are CNNs and their deep ar-
chitectures12 [43–47]. Review and applications of deep learning in texture analysis for
tissue image classification are further detailed in Chapters 4, 9, and 10. In a nutshell,
deep CNNs consist of a cascade of Q convolutional layers, where each of the latter
typically contains:
(i) a multichannel convolution of the input fn′,q(ξ)13 with a set of N G1 × · · · × GD

multichannel operator functions gn,n′,q(ξ), called receptive fields,
(ii) a simple pointwise nonlinear gating V(x) of the response map hn,q(ξ),
(iii) an optional cross-channel normalization [45] and,

12 A notable exception is the Scattering Transform (ST) [42], which is a handcrafted deep CNN.
13 The first layer q = 1 will use the original image fn′,1(ξ) as input, whereas the next layers q = 2, . . . ,Q will

use the n′ = 0, . . . ,N ′ outputs (i.e., channels) fn′,q−1(ξ) of the previous layer as input for the convolution.
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(iv) a pooling operation resulting in a down- or up-sampling of hn,q(ξ).
In 2D, the multichannel convolution in a layer q between the input fn′,q−1(ξ) and the set
of N multichannel filters gn,n′,q(ξ) is

hn,q(ξ) =
N ′∑

n′=1

(gn,n′,q ∗ fn′,q−1)(ξ ). (3.19)

(3.19) yields a multichannel response map hn,q(ξ) with a dimensionality of F1 × F2 × N ′

for a 2D input function of domain F. The convolution is two-dimensional, where no
cross-channel convolution is carried out. Popular examples of nonlinear gating functions
V(x) are the Rectified Linear Unit (ReLU)

VReLU(x) = max(0,x),

the sigmoid function

Vsig(x) = 1
1 + e−x ,

the absolute value and the energy. The aim of the pooling operation is to down- or
up-sample feature maps to achieve a multiscale analysis throughout the cascade of con-
volutional layers. Whereas the upsampling operation is often straightforward (no specific
superresolution approach [46]), the downsampling requires using a criteria on which
value to keep over local patches (e.g., maximum, minimum, median, sum, average). The
structure of one convolutional layer is depicted in Fig. 3.8.

Deep CNN architectures consist of a cascade of convolutional layers containing
a large collection of operator functions gn,n′,q(ξ) learned to minimize a cost function
C(yp, y̆p). The total number of free parameters is equal to the product of the number of
channels per operator N ′, the number of operator per layer N , the size of the spatial
support |G| of the operators, and the number of layers Q, if we assume that N , N ′,
and |G| are identical for all layers. It is very common for CNN architectures designed
for classification to have a final Fully Connected (FC) layer that computes the decision
value based on a linear combination of all elements of the final feature maps hn,Q(ξ).
As an example, the complete forward function uforward(f (ξ)) of a classification CNN
transforms the input texture fp(ξ) into an estimated class label y̆p

14 is a composition of
all functions uq from all layers as

uforward(f (ξ);g) : F →R, (3.20)

y̆p = uforward(fp(ξ);g) = uFC(· · ·u2(u1(fp(ξ);g1);g2) · · · );gFC), (3.21)

14 y̆p can be binary (e.g., y̆p ∈ {−1,+1}) or continuous (e.g., probability y̆p ∈ [0,1], or y̆p ∈ R). We will
assume that y̆p ∈R in our example.
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Figure 3.8 Structure of one typical convolutional layer of CNNs. The multichannel output of the pre-
vious layer q− 1 constitutes the input fn′,q−1(ξ) of the layer q. A multichannel convolution is carried
out between the channels of fn′,q−1 and the collection of n = 1, . . . ,N operator functions gn,n′,q and
yields a collection of response maps hn,q(ξ) as detailed in Eq. (3.19). The latter undergo a simple point-
wise nonlinear gating V(x), followed by a pooling operation to output the final feature maps fn,q(ξ).
In the example above the 5 × 5 operator functions gn,n′,q are initialized with random values follow-
ing a normal distribution with zero mean. The nonlinear gating function V is a ReLU, and the pooling
operation is a 4× downsampling process (noted as ↓ 4) where the maximum value is kept over 4 × 4
patches and a distance (or stride) of 4 between their centers.

where gq is the collection of free parameters of the operator functions gn,n′,q(ξ) in the
layer q, and g is the total collection of free parameters of the model. When CNN
architectures are designed for segmentation (e.g., U-Net [46]), the output of the forward
function is an estimated segmentation map y̆p(ξ). Based on a set of training textures
from which the true labels yp are known, it is possible to compute the prediction errors
between y̆p and yp. The cost of this error is determined by the cost function C(yp, y̆p).
Typical C(yp, y̆p) (also called loss function) are the logistic loss function for classification,
or Euclidean loss for regression. The total cost function Ctot over the entire training set
(called epoch) is accumulating errors over instances p as

Ctot(g) = 1
P

P∑
p=1

C
(
yp,uforward(fp(ξ);g)

)
.
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Figure 3.9 CNN architecture with a cascade of Q = 5 convolutional and one fully connected layer.
The forward function uforward(f(ξ);g) is a composition of layer-wise functions ug and transforms an
input image fp(ξ) into a predicted label y̆p . The cost function Ctot of accumulated errors over the
entire training set is minimized through several epochs using backpropagation to update the free
parameters g. The latter allows learning the optimal profile of the convolutional operator functions
gn,n′,q .

After computing the total cost for one epoch t, the parameters of the model gt are
modified to minimize the total loss as

gt+1 = gt − βt
∂Ctot

∂g
(gt), (3.22)

where βt is the learning rate at the epoch t. Solving Eq. (3.22) learns the opera-
tor functions gn,n′,q(ξ) and is called backpropagation. ∂Ctot

∂g is computed using the chain
rule, which allows combining the derivatives of the loss with respect to the param-
eters gq of each consecutive layer [43]. Solving Eq. (3.22) through a total number
T of epoch can be efficiently carried out with gradient descent optimization tech-
niques. An example of a CNN architecture, its forward function and backpropagation
is illustrated in Fig. 3.9. CNN-based texture analysis do not yield texture measure-
ments per se as it directly outputs a tissue class probability or segmentation map. The
aggregation function results from a cascade of pooling operations and, if applicable,
the FC layer. The number of free parameters can be extremely large. For instance,
a network with ten layers, ten 11 × 11 operators per layer with ten channels and
with a 50 × 50 FC layer leads to more than 108 free parameters. It therefore requires
very large training sets to correctly learn the model, which is most often difficult to
get in biomedical imaging. Approaches called transfer learning or fine tuning are often
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Table 3.7 Properties of deep CNNs for biomedical texture analysis
Operator linearity Yes. The operators Gn,n′,q are linear, but the full forward function

is not.

Handcrafted No.

3D extension Requires using 3D operators, which was recently proposed
in [51–53]. Training 3D CNNs is challenging because the
number of parameters grows cubically.

Coverage of image
directions

Complete, but only over the discrete spatial support G of the
operators.

Directionality and local
rotation-invariance

Directional and not locally rotation-invariant. Data
augmentation can be used to improve robustness to input
rotation, but it has undesired effects (see Section 3.2.3.4).

Characterization of the
LOIDs

Yes, but not in a locally rotation-invariant fashion.

Coverage of image
scales

Near-to-complete with the spatial support of the operators and
the cascade of down- or up-sampling pooling operations. The
coverage is not systematic though and do not respect Parseval’s
identity. A truly multiscale CNNs was proposed in [54].

Band-pass No.

Gray-level reduction Not required.

Illumination-invariance No. The texture operator functions are not band-pass filters.

Aggregation function The aggregation function results from a cascade of pooling
operations and, if applicable, the FC layer.

used is to tackle this problem [48,49] (see Section 4.4.3.3 of Chapter 4). It consists
of reusing and slightly adapting models trained with millions of images from other
domains (e.g., photographs in ImageNet [50]). In the particular case of biomedical tex-
ture analysis, reusing these models is risky because the types of invariances learned
by networks based on photographic imagery resulting from scene captures obtained
with varying viewpoints is very different from the ones desirable in BTA (see Sec-
tion 1.3.3 of Chapter 1). An interesting observation is that when large datasets are
available, the type of operators learned in the first layers of deep CNNs share very
similar properties with handcrafted convolutional filters such as LoG, Gabor, MR8,
and Riesz. The properties of CNNs for biomedical texture analysis are summarized in
Table 3.7.
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3.2.3.4 Data augmentation
Data augmentation aims to tackle two important limitations of filter learning approaches
relying on a large number of free parameters: DL and CNNs [45,48,49,46]. First, both
approaches require very large training sets to respect an acceptable ratio between the
number of free parameters and training instances and allow suitable generalization per-
formance (i.e., limiting the risk of overfitting the training data). Second, neither of the
methods are invariant to local scalings or local rotations. Whereas invariance to im-
age scale is most often not desirable for biomedical texture analysis, invariance to local
rotations is fundamental (see Section 1.3.3 of Chapter 1). Data augmentation consists
of generating additional training instances from geometric transformations (including
nonrigid) of the available ones, and to further train the models with these new in-
stances. It provided very important performance gain in various applications [45,48],
including biomedical [46]. However, it is obvious that forcing convolutional operators
to recognize sheared, scaled, and rotated versions of the texture classes without aug-
menting the degrees of freedom will result in a strong decrease of the specificity of the
model. In particular, forcing invariance to local rotations will make operators insen-
sitive to directions, which was illustrated in [55]. A quantitative comparison between
circularly symmetric and locally aligned operators (e.g., MF representations) is detailed
in Section 2.4.4 of Chapter 2. In this context, learning steerable filters allows adapting
the texture representation while keeping local rotation-invariance and high specificity
of the operators [31,26].

3.3 GRAY-LEVEL MATRICES

Gray-Level Matrices (GLM) constitute a large and popular group of non-linear texture
operators. There are mainly three approaches based on GLMs: Gray-Level Cooccur-
rence Matrices (GLCM), Gray-Level Run-Length Matrices (GLRLM), and Gray-Level
Size Zone Matrices (GLSZM). Their simplicity is at the origin of their popularity and
many implementations can be found (e.g., MaZda,15 see Chapter 11, LIFEx,16 Matlab,17

Scikit-image,18 the QuantImage web platform,19 see Chapter 12, ePAD’s Quantitative
Feature Explore (QFExplore) texture plugins,20 see Chapter 13). They are often used
together. They are based on discrete texture functions f (ξ ) and non-linear operators Gn.
Their extensions to 3D are straightforward. However, they suffer from several imperfec-
tions. A major one is the nonsystematic coverage and poor preservation of image scales

15 http://www.eletel.p.lodz.pl/programy/mazda/, as of March 4, 2017.
16 http://www.lifexsoft.org, as of November 20, 2016.
17 http://www.mathworks.com/help/images/ref/graycomatrix.html, as of November 20, 2016.
18 http://scikit-image.org/docs/stable/api/skimage.feature.html, as of February 26, 2017.
19 https://radiomics.hevs.ch, as of March 4, 2017.
20 https://epad.stanford.edu/plugins, as of June 20, 2017.

http://www.eletel.p.lodz.pl/programy/mazda/
http://www.lifexsoft.org
http://www.mathworks.com/help/images/ref/graycomatrix.html
http://scikit-image.org/docs/stable/api/skimage.feature.html
https://radiomics.hevs.ch
https://epad.stanford.edu/plugins
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and directions, especially when the spatial supports G1,n × · · · × GD,n of their operators
are large. Therefore, they are best suited for applications where the size of the ROIs
are small (e.g., small lesions in low-resolution medical images). They also require drastic
reductions of gray levels, where the values of f (ξ) ∈ R are quantized with � values as
f�(ξ) ∈ {1, . . . ,�}. The quantization is typically based on � = 8,16,32, which results in
an important potential loss of information when analyzing rich image contents coded
with 12 to 16 bits.21 Their properties are reviewed and detailed in the three following
Subsections 3.3.1, 3.3.2, and 3.3.3.

3.3.1 Gray-Level Cooccurrence Matrices (GLCM)
GLCMs [56] can be seen as a collection of operators mapping the discretized and quan-
tized image function f�(ξ) to binary output values at a position ξ0 as

Gλi,λj
�k {f�}(ξ0) =

{
1 if f�(ξ 0) = λi and f�(ξ 0 + �k ◦ �ξ) = λj,

0 otherwise,
(3.23)

where λi and λj are the pixel values at positions ξ0 and (ξ 0 + �k ◦ �ξ), respectively.
�k and �ξ contains the dimension-wise shifts and sampling steps, respectively (see
Section 1.2.2 of Chapter 1). �k ◦ �ξ denotes the element-wise product22 between the
two vectors as

�k ◦ �ξ =
⎛⎜⎝ �k1 · �ξ1

...

�kD · �ξD

⎞⎟⎠ .

The aggregation function is integrative. It counts the responses of the operators and
organizes them in square cooccurrence matrices of dimensions �2 indexed by (λi, λj),
where � is the number of gray-levels. A series of scalar texture measurements23 η

is obtained by computing statistics (e.g., contrast, correlation, entropy) from the co-
occurrence matrices. Their properties are summarized in Table 3.8. GLCMs are not
invariant to local rotations, but the later is often approximated by either regrouping the
counts of operators over all directions in a shared matrix, or by averaging scalar tex-
ture measurements from cooccurrences matrices obtained with different directions (see
Fig. 3.10).

21 Image pixels encoded with 16 bits can take more than 65,000 possible values.
22 It is also called the Hadamard product.
23 They are often called Haralick features [56].
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Table 3.8 GLCM properties
Operator linearity Nonlinear.

Handcrafted Yes.

3D extension Straightforward: displacements �k ◦ �ξ between pixels can live
in subsets of either R2 or R3.

Coverage of image
directions

Incomplete: typical directions used are θ1,...,4 = 0, π
4 , π

2 , 3π
4 in

2D.

Directionality and local
rotation-invariance

Unidirectional and not rotation-invariant. However, local
rotation-invariance is often approximated by either regrouping
the counts of operators over all directions in a shared matrix, or
by averaging scalar texture measurements from cooccurrences
matrices obtained with different directions (see Fig. 3.10).

Characterization of the
LOIDs

No.

Coverage of image
scales

Incomplete: typical displacements values are ||�k|| ≈ 1,2,3.
Moreover, displacements along image diagonals (e.g., θ2 = π

4 and
θ4 = 3π

4 ) are often considered to have integer norms (e.g., 1,2,3)
instead of their actual values (e.g.,

√
2,2

√
2,3

√
2), resulting in

anisotropic descriptions of image scales.

Band-pass Qualitatively similar in the sense that the mean value of the
image is not influencing the output value of the operator. It is
worth noting that the transfer function is not defined in the
Fourier domain because the operator is nonlinear.

Gray-level reduction A reduction is required to avoid obtaining very large and sparse
cooccurrence matrices. Typical gray-level reductions are
� = 8,16,32.

Illumination-invariance No, although it is approximated by reducing the number of
gray-levels �.

Aggregation function Integrative: counts the binary responses of each GLCM operator
Gλi,λj

�k over M and organizes them in a corresponding
cooccurrence matrix indexed by λi and λj. Scalar texture
measurements η called Haralick features are obtained from
statistics of the cooccurrence matrices.

3.3.2 Gray-Level Run-Length Matrices (GLRLM)
GLRLMs [57] count the number of aligned pixels (called stride) with equal gray-level
value λ, length γ ∈ N∗ and direction θ . Their operators Gλ,γ,θ {f�}(ξ0) yield a value of 1
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Figure 3.10 Approximate local rotation-invariance with GLCMs: the responses of GLCM operators

Gλi,λj
�k1,�k2

are combined over four directions θ1,...,4 to reduce the directional sensitivity of the opera-
tors and approximate locally rotation-invariant texture analysis. In 2D, the angle between the vectors
�k and e1 = (1,0) is noted θ (see Section 2.2 of Chapter 2).

Figure 3.11 Application of a GLRLM operator Gλ=7,γ =4,θ=0 to an input image f� . Its response map
hλ=7,γ =4,θ=0(ξ) highlights the presence of the sought stride with gray-level 7, length 4 and orienta-
tion 0 at the position ξ0.

if a stride starting at ξ0, of length γ , and direction θ is detected, and 0 otherwise. An
example of a GLRLM operator and its response map is depicted in Fig. 3.11.

The aggregation function counts the number of strides detected with the corre-
sponding operator and organizes them in a run-length matrix indexed by λ and γ . The
size of this matrix is the number � of gray-levels considered, times the number of stride
lengths tested. The texture measures η are obtained from statistics of the run-length
matrices (e.g., short run emphasis, run-length nonuniformity, see [58]). Their properties
are summarized in Table 3.9.

3.3.3 Gray-Level Size Zone Matrices (GLSZM)
GLSZMs [59] are extending the concept of GLRLM to zone areas or volumes. Their
operators Gλ,ζ {f�}(ξ0) yield a binary value of 1 if ξ0 belongs to a uniform zone with
gray-level λ, i.e., any zone with area equal to ζ containing ξ0, and area ζ ∈ N

∗, and ξ 0

does not belong to a uniform zone with larger area.
The aggregation function counts the number of zones detected with the correspond-

ing operator and organizes them in a size-zone matrix indexed by λ and ζ . The size of
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Table 3.9 GLRLM properties
Operator linearity Nonlinear.

Handcrafted Yes.

3D extension Straightforward: run directions can be extended to 3D and
indexed with angles θ,φ.

Coverage of image
directions

Incomplete: typical directions used are θ1,...,4 = 0, π
4 , π

2 , 3π
4 in

2D.

Directionality and local
rotation-invariance

Unidirectional and not rotation-invariant. However, local
rotation-invariance is often approximated by either regrouping
the counts of operators over all directions, or by averaging scalar
texture measurements from run-length matrices obtained with
different directions.

Characterization of the
LOIDs

No.

Coverage of image
scales

Complete if the maximum run-length γ is equal to the size of
the image. However, run length along image diagonals (e.g.,
θ2 = π

4 and θ4 = 3π
4 ) are often considered to have integer γ

values (e.g., 1,2,3) instead of their actual values (e.g.,√
2,2

√
2,3

√
2), resulting in anisotropic descriptions of image

scales.

Band-pass Qualitatively similar in the sense that the mean value of the
image is not influencing the output value of the operator. It is
worth noting that the transfer function is not defined in the
Fourier domain because the operator is nonlinear.

Gray-level reduction A reduction is required to avoid obtaining very large and sparse
run-length matrices. Typical gray-level reductions are
� = 8,16,32.

Illumination-invariance No, although it is approximated by reducing the number of
gray-levels �.

Aggregation function Integrative: counts the binary responses of each GLRLM
operator Gλ,γ,θ over M and organizes them in a corresponding
run-length matrix indexed by integer values of λ and γ . Scalar
texture measurements η are obtained from statistics of the
run-length matrices.

this matrix is the number � of gray-levels considered, times the number of zone areas
tested. The texture measures η are obtained from statistics of the matrices, which are
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the same as for the GLRLM (see [58]) plus two additional measures introduced in [59].
Their properties are summarized in Table 3.10.

Table 3.10 GLSZM properties
Operator linearity Nonlinear.

Handcrafted Yes.

3D extension Straightforward: the search for contiguous pixels with identical
gray-level values can be extended from 8-connected 2D
neighborhoods to their 26-connected 3D counterparts.

Coverage of image
directions

Complete.

Directionality and local
rotation-invariance

Insensitive to image directions. Elongated and circular zones are
mixed.

Characterization of the
LOIDs

No.

Coverage of image
scales

Complete if the maximum zone surface ζ is equal to the area of
the image. However, the notion of scale is ill-defined because a
fixed zone area ζ can correspond to both elongated or circular
regions.

Band-pass Qualitatively equivalent in the sense that the mean value of the
image is not influencing the output value of the operator. It is
worth noting that the transfer function is not defined in the
Fourier domain because the operator is nonlinear.

Gray-level reduction A reduction is required to avoid obtaining very large and sparse
size-zone matrices. Typical gray-level reductions are
� = 8,16,32.

Illumination-invariance No, although it is approximated by reducing the number of
gray-levels �.

Aggregation function Integrative: counts the binary responses of each GLSZM
operator Gλ,ζ over M and organizes them in a corresponding
size-zone matrix indexed by integer values of λ and ζ . Scalar
texture measurements η are obtained from statistics of the
size-zone matrices.

3.4 LOCAL BINARY PATTERNS (LBP)

Rotation-invariant Local Binary Patterns (LBP) were first introduced by Ojala et al.
in 2002 [60] and many extensions were proposed later on (e.g., [30,61,62]). At a po-
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sition ξ0 of the image f , the LBP operator Gγ,r{f }(ξ0) describes the organization of
binarized pixels over circular neighborhoods ϒ

(
γ, r, ξ0

)
of radius r containing γ equally

spaced points. The gray value of points that do not fall exactly in the center of pixels
are estimated by interpolation (see Fig. 3.12, top). The decimal value of the operator
is given by the binary sequence of the circular neighborhood (e.g., 10101010 = 170,
see Fig. 3.12, middle). The binary value of a point p ∈ ϒ

(
γ, r, ξ0

)
is 1 if f (ξ 1) > f (ξ 0),

and 0 otherwise, with ξ1 the pixel location where p is located. An example of approx-
imately locally rotation-invariant LBP texture analysis is depicted in Fig. 3.12 middle
and bottom.

Figure 3.12 Extraction of LBP texture measures on f1(ξ). Top row: example of two different circular
neighborhoods ϒ

(
γ, r, ξ0

)
. Middle row: a LBP operator G8,1{f1}(ξ0) encodes the LOIDs at the posi-

tion ξ0 over a circular neighborhood ϒ
(

8,1, ξ0
)

with γ = 8 equally-spaced points and a radius r = 1
pixel. Its binary response for a +-shaped primitive is 10101010, which correspond to a decimal value
of 170. The response maps of the operators are aggregated over the region M by counting the binary
codes and organizing them into a histogram of texture measurements ηM . Bottom row: local rotation-
invariance with LBPs. Local image rotations Rθ0,ξ0

·ξ correspond to bit-wise circular shifts of the binary
codes. Local rotation-invariance can be achieved by minimizing the decimal values of the binary codes
over all possible discrete circular shifts θ0 = qπ

4 , ∀q ∈ {0,1, . . . ,7}.

The responses of the operators are aggregated over a ROI M by counting the binary
sequences (or decimal values) and organizing them in a histogram. The latter can be used
for extracting texture measures η. The properties of LBPs are summarized in Table 3.11.
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Table 3.11 LBP properties
Operator linearity Nonlinear.

Handcrafted Yes.

3D extension Not trivial: The ordering of points is straightforward in 2D on
circular neighborhoods, but is undefined in 3D for spherical
neighborhoods [63]. Approaches were proposed to either define
an arbitrary ordering for each (γ, r) over (θ,φ) and to use it for
all positions [64], or to use cylindrical neighborhoods by
concatenating the responses of 2D LBP operators along a given
axis ξd [65].

Coverage of image
directions

Complete if γ considers all pixels/voxels touching the 2D/3D
perimeter of ϒ for a fixed radius r.

Directionality and local
rotation-invariance

Directional and locally rotation-equivariant. Local
rotation-invariance can be obtained either by performing
circular bit-wise right shifts of the binary codes and keeping the
minimum value [60] (see Fig. 3.12), or by computing the
modulus of the discrete 1D Fourier transforms of the binary
code [30]. In the former case, local rotation-invariance is
achieved by locally aligning the operators (see Section 2.4.3 of
Chapter 2).

Characterization of the
LOIDs

Yes, with invariance/equivariance to local rotations. However,
they do not define MF representations since each operator Gγ,r is
aligned independently at the position ξ0.

Coverage of image
scales

Incomplete: typical radius values are r = 1,2,3. Multiscale LBPs
were proposed in [66] when extracted on top of wavelet
coefficients.

Band-pass Qualitatively similar in the sense that the mean value of the
image is not influencing the output value of the operator. It is
worth noting that the transfer function is not defined in the
Fourier domain because the operator is nonlinear.

Gray-level reduction Not required. However, the local binarization operation results
in an important reduction of the values analyzed.

Illumination-invariance Yes.

Aggregation function Integrative: counts the responses of each LBP operator Gγ,r over
M and organizes them in a histogram. The collection of scalar
texture measures η contains the bins of the histogram.
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3.5 FRACTALS

Another popular method in BTA is to estimate the fractal properties of biomedical
tissue, e.g., how structures are similar across a series of monotonously increasing scales
[67,68]. The latter is measured with the Fractal Dimension (FD) ηFD. The larger the FD,
the most regular structures are through multiple scales, which corresponds closely to our
intuitive notion of roughness [69]. The maximum FD is equal to the dimensionality D
of the texture function. For 2D texture functions indexed by the spatial coordinates
(x1,x2) ∈ R

2, we typically consider the set S = {(x1,x2) ∈ R
2 : f (x1,x2) = y} ⊂ R

2 for a
fixed value y ∈ R. Note that S is a level set of f . Then the fractal dimension can take
values 0 ≤ ηFD ≤ 2. A comprehensive description and review of fractal analysis for BTA
is presented in Chapter 5.

Figure 3.13 2D box-counting method used to estimate the fractal dimension ηFD of a texture. Al-
though not recommended in general, a binarization of the texture images is used in this example. The
latter is carried out with a thresholding operation, where the threshold τ was chosen to highlight cell
nucleus in f1 and the vascular structure in f2. The visualization of the profiles p(sn) reveals the fractal
nature of the vascular structure with a FD of 1.8. The maximum FD bound of 2 corresponding to a fully
white image corresponds to the dashed red line in the profiles p(sn).
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Table 3.12 Properties of fractal-based texture analysis using the box-counting method
Operator linearity In principle yes, but it depends on the type of transformation of

pixel values. In the example, the binarization of f is a nonlinear
operation.

Handcrafted Yes.

3D extension Straightforward by using multiscale 3D boxes as operators’
supports.

Coverage of image
directions

Complete.

Directionality and local
rotation-invariance

Insensitive to image directions.

Characterization of the
LOIDs

No.

Coverage of image
scales

Complete. However, the FD is invariant to image scale, which
entails the risk of regrouping tissue structures of different natures.

Band-pass Not qualitatively equivalent in the sense that the mean value of
the image has an influence on the output value of the operator.
It is worth noting that the transfer function is not defined in the
Fourier domain because the operator is nonlinear.

Gray-level reduction No. A binarization step or gray-level reduction is usually not
recommended as this would both arbitrarily discard important
texture information and degrade the stability of the calculation
of ηFD (see [68,70]).

Illumination-invariance No.

Aggregation function Constructs the log-log profile of the averages of operator
response maps hn obtained with operators of spatial supports
with varying sizes sn (see Fig. 3.13).

A popular method for computing the FD is the box-counting approach, while several

other methods exist (e.g., box counting and probabilities [71], based on Fourier analy-

sis [69] or wavelets [72], see Chapter 5 for detailed descriptions and more approaches).

Box-counting relies on a collection of multiscale operators Gn. For simplification, let us

assume that the latter have square or cubic spatial support G1,n = G2,n = · · · = GD,n = sn.
The collection of operators have monotonously increasing spatial supports Gn ⊂ Gn+1.

In order to simply exemplify the box-counting algorithm, let us consider binary images

fτ (ξ) ∈ {0,1} obtained from the binarization of an input image f (ξ) with a thresh-
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old τ 24. At a position ξ0, each fractal operator Gn counts the number p of pixels with
value equals to 1 (e.g., fτ (ξ 0) = 1) over its support Gn. This yields N response maps
hn(ξ 0) = Gn{fτ }(ξ0).

The aggregation function consists of fitting a log-log profile of the averages of hn

through the responses of the collection of operators with spatial supports of varying
sizes sn, where |Gn| = snD. The average number p of pixels with value equals to 1 over a
ROI M is computed as

p(sn) = 1
|M|

∑
ξ∈M

hn(ξ).

The FD is obtained with the value of ηFD that best fits the following relation:

log
(
p(sn)

) � ηFD log (sn) . (3.24)

In this particular case, ηFD = 2 corresponds to a perfectly regular image filled with ones.
The box counting method is illustrated in Fig. 3.13, where two biomedical textures
with different FD are compared. The properties of fractal-based texture analysis are
summarized in Table 3.12 and are further developed in Chapter 5. The FD is invariant
to image scale, which entails the risk of regrouping tissue structures of different natures
(see Section 1.3.3 of Chapter 1).

3.6 DISCUSSIONS AND CONCLUSIONS

A qualitative comparison of most popular BTA approaches was proposed under the light
of the general framework introduced in Section 1.3.1 of Chapter 1, and based on the
comparison dimensions presented in Chapter 2. Our aim is to both provide a user guide
for choosing a BTA method that is relevant to the problem in hand, as well as to pro-
vide insights on key aspects required to build the next generation of BTA approaches.
The review focused on most popular group of methods and was not exhaustive. It
included (i) convolutional methods and their operator subtypes: circularly/spherically
symmetric, directional and learned, (ii) gray-level matrices and their subtypes: GLCMs,
GLRLMs, GLSZMs, (iii) LBPs, and (iv) fractals based on the box-counting method.
All approaches’ operators were found to be equivariant to translations, which is an in-
herited property from the general framework introduced in Section 1.3.1 of Chapter 1.
However, very few methods were combining both the ability to characterize the LOIDs
and with invariance to local rotations. In particular, most approaches are either invariant
to local rotations because they are insensitive to directions (e.g., combined GLCM or

24 The binarization step or gray-level reduction is usually not recommended for box-counting as this would
both arbitrarily discard important texture information and degrade the stability of the calculation of ηFD
(see [68,70] and Chapter 5).
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GLRLM operators, LoGs, fractals) and they cannot characterize the LOIDs, or they are
directional but not locally rotation-invariant (e.g., unidirectional GLCM or GLRLM
operators, Gabor wavelets, unaligned real Riesz, DL, CNNs). Within this dilemma,
one may favor directional versus directionally insensitive approaches depending on the
expected importance of the LOIDs versus invariance to local rotations, respectively. The
only approaches that are able to characterize the LOIDs with invariance to (local) rigid
transformations are LBPs as well as CH, steered real Riesz wavelets and SWMs. Other
factors must be taken into account to evaluate the relevance of the method. An impor-
tant property that is responsible for the success of approaches such as DL and CNNs
is the ability to derive the texture operators25 from the data in a supervised or unsu-
pervised fashion. A challenge for the success of the learning-based methods is to have
sufficient representation of each intra-class variants, which are most often not available in
focused and innovative biomedical applications (see Chapter 6). Quick fixes have been
extensively used to tackle this challenge. A first one is to introduce implicit handcrafted
invariances with data augmentation, which has the undesirable effects of both increas-
ing the training computational load (minor issue), and more importantly to decrease the
specificity of the model [55] (see Section 3.2.3.4). A second quick fix is to use transfer
learning and fine tuning in order to recycle models trained on other image types. This
is not exempt of risks as borrowing models from general computer vision with strong
invariance to scale (e.g., models trained on ImageNet) are not fulfilling the requirement
of BTA (see Section 3.2.3). An inherent risk of methods requiring important gray-level
reductions or binarization (e.g., GLM, LBP, fractals based on box-counting) is to miss
or mix important texture properties. It was found that methods based on learned steer-
able wavelets (i.e., SWMs [26,31]) were regrouping several desirable properties such as
the ability to learn optimally discriminant sets of LOIDs with invariance to rigid trans-
formation, with a small amount of training data, and without requiring neither data
augmentation nor gray-level reductions. Few methods were found to provide easily in-
terpretable texture measurements. Notable examples among them are the contrast and
energy measures of GLCMs, the fractal dimension and roughness [69] (see Chapter 5),
as well as 2D and 3D steered real Riesz wavelets that are measuring image derivatives of
various orders in a locally rotation-invariant fashion [18,20,17,16] (see Section 12.2.4.4
of Chapter 12).

We recognize several limitations of the current review, including the absence of
quantitative comparison of performance, computational complexity and time of the
approaches. Detailed reviews of specific BTA properties, approaches or applications are
presented in Chapter 7 (invariance to rigid transformations), Chapters 4 and 9 (deep
learning), Chapter 6 (machine learning), and Chapter 10 (digital histopathology).

25 CNNs with FC layers are also learning the aggregation function.
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