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Abstract

This chapter clarifies the important aspects of biomedical texture analysis under the general frame-
work introduced in Chapter 1. It was proposed that any approach can be characterized as the combi-
nation of local texture operators and regional aggregation functions. The type of scale and directional
information that can or cannot be modeled by categories of texture processing methods is revealed
through theoretic analyses and experimental validations. Several key aspects are found to be com-
monly overlooked in the literature and are highlighted. First, we demonstrate the risk of using regions
of interest for aggregation that are regrouping tissue types of different natures. Second, a detailed
study of the type of directional information important for biomedical texture characterization sug-
gests that fundamental properties lie in the local organization of image directions. In addition, it was
found that most approaches cannot efficiently characterize the latter, and even fewer can do it with in-
variance to local rotations. We conclude by deriving novel comparison axes to evaluate the relevance
of biomedical texture analysis methods in a specific medical or biological applicative context.
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2.1 INTRODUCTION

The diversity of existing Biomedical Texture Analysis (BTA) approaches illustrates the
various properties required in different applicative contexts [1,2]. Desired BTA proper-
ties are, e.g., ease of use, interpretability, low computational cost, and most importantly
high discriminatory performance and specificity. The latter is strongly dependent on the
nature of the texture information required for a specific task in hand. The purpose of
this work is to dissect the wide range of BTA properties to provide a set of comparison
dimensions between approaches. A formal definition of biomedical texture information
was proposed in Section 1.2 of Chapter 1. The latter was found to be characterized by
the type of spatial transitions and dependencies between pixel values. In particular, it
was demonstrated that the scales (i.e., speed of variation or frequency) and directions
of the spatial transitions are fundamental properties of biomedical texture functions.
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In Section 1.3.1 of Chapter 1 a general problem formulation for biomedical texture
analysis was introduced, considering that any approach can be characterized as a set of
texture operators and aggregation functions. The operators allow locally isolating de-
sired texture information in terms of spatial scales and directions of a texture image. The
application of the operators over all positions of the image yields translation-equivariant
feature maps containing every local response of the latter. Scalar-valued texture mea-
surements are obtained by aggregating feature maps over regions of interest.

In this chapter, clarifications are provided on possible design choices in terms of
spatial scales and directions for operators and aggregation functions. An excellent de-
scription of the problem can be found in [3], which concerns medical image analysis
in general. Our aim is to discuss the particularities of multiscale and multidirectional
analysis for biomedical texture characterization. A focus is made on linear operators.
However, although the theoretic concepts presented are only valid for the latter, they
should also provide intuition for designing nonlinear operators wherever possible. Mul-
tiple examples and toy problems will be provided to illustrate the concepts introduced.
Among these, the uncertainty principle, a theoretic limitation of the trade-oft between
operator scale and locality is first recalled to provide guidelines for optimal design of
operator scales. The influence of the size and shape of the region of interest used for
aggregation on texture classification and segmentation is demonstrated. The latter moti-
vates the creation of digital tissue atlases of organs or tumors, providing powerful models
of digital phenotypes. In Section 1.3.3 of Chapter 1 and in Chapter 7 the importance
of approaches that are robust to rigid transformations (translation and rotation) was em-
phasized. In the second part of this chapter (Section 2.4), clarifications are made on
directional information types that are important for biomedical texture analysis. In par-
ticular, the Local Organization of Image Directions (LOID: how directional structures
intersect) are found to be fundamental. Characterizing the latter with invariance to local
rotations raises several challenges. In this context, operators that are insensitive to image
directions (called circularly /spherically symmetric) are compared to their directional coun-
terparts. The destructive effect of aggregation on the ability of directional operators to
characterize the LOIDs is demonstrated and motivates the use of Moving Frame (MF)
texture representations. The latter consist of locally adapting a coordinate frame (e.g.,
a set of noncollinear operators) based on an alignment criteria that is consistent' for
all positions in the texture image. We provide evidence that MF representations allow
detailed characterizations of the LOIDs with invariance to rigid transformation. A quan-
titative performance comparison of circularly symmetric, directional, and MF texture
representations for 2D texture classification is presented in Section 2.4.4. Finally, most
important aspects of operator and aggregation function design are summarized under
the form of a checklist matrix in Section 2.5.

! A simple and reliable alignment criteria is to orient all operators at each image position with the direction
that maximizes the local image gradient.
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2.2 NOTATION

Additional notation are introduced based on the notations initially defined in Sec-
tion 1.2.2 of Chapter 1. To further analyze the relationship between scales and di-
rections, let us consider the definition of texture functions in 2D polar coordinates as
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and in 3D spherical coordinates as
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Polar and spherical representations allow separating the angular part (i.e., image di-
rections) from the radial part (i.e., spatial frequencies related to image scales) [4]. For
simplifying the notation, all coordinate domains are considered continuous in this chap-
ter. Their discretized versions can be obtained following the notions introduced in
Section 1.2.2 of Chapter 1.

2.3 MULTISCALE IMAGE ANALYSIS

The need for multiscale image analysis is motivated throughout various chapters of this

book (e.g., Section 1.3 of Chapter 1) as well as Chapters 4, 5, and 7. In this section,

we will define more precisely the important aspects of multiscale texture operator and

aggregation function design. In particular the discussion on which scales are optimal for

biomedical texture measurements hinges on two important facets:

*  How to optimally define the spatial support(s) G, = Gy, x --- x Gp,,, and the radial
responses of the operator(s) G,?

e What is the best size and shape of the region of interest M for aggregation?

These two aspects are illustrated in Fig. 2.1 and detailed in the following Subsec-

tions 2.3.1 and 2.3.2.
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Figure 2.1 Aspects of multiscale texture operator and aggregation function design [5]. How to op-
timally define the sizes |G1| > |G;| > --- > |Gy| and the radial responses of a collection of opera-
tors Gn? What is the best position, size, and shape of the region of interest M for aggregation?

2.3.1 Spatial versus spectral coverage of linear operators:
the uncertainty principle

Linear texture operators are expected to be band-pass functions, which means that the
covered spatial frequencies are in a range defined by pmin > 0 and ppa.x < 7 in the
Fourier domain. Band-pass operators are commonly used as operators for texture anal-
ysis because their geometric behavior, isotropy, or directionality can be well controlled.
Since they do not include the zero frequency p = ||w|| = 0, they are only sensitive to
transitions between pixel values (i.e., texture) and not to the average regional inten-
sity. In between 0 and n, the uncertainty principle allows defining rules to design texture
operators with optimal spectrum coverage [Omin, Pmax] (see Eq. (2.1)). Ideal texture op-
erators would be accurately localized both in spatial and Fourier domains. On the one
hand, well-localized operators in the spatial domain allow identifying precise local tex-
ture properties without including surrounding image structures. On the other hand,
optimally localized operators in the Fourier domain can precisely characterize narrow
frequency bands without mixing with other neighboring spectral components. Un-
fortunately, having both properties together is not possible and subject to a theoretic
limitation called the wuncertainty principle [6]. Intuitively, the latter can be understood
as follows: it is impossible to measure rich texture information from gray-level transi-
tions between a few pixels only. Likewise, measuring all transitions from a large number
of pixels yields detailed texture information, but requires large image neighborhoods.
More precisely, the relationship between the spatial support G= G x --- x Gp and the
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Figure 2.2 Uncertainty principle: the function of a linear operator gn (x) (2D circularly symmetric low-
pass Gaussian in this example) cannot be well localized both in spatial and Fourier domains. The

theoretic limit observes 62 F2 G2 F2 > ﬁ

spectral support T =Ty x --- x I'p of a linear texture operator is

b 1
[]Gir > 5 2.1)

d=1

This trade-off is illustrated in Fig. 2.2 for 2D circularly symmetric Gaussian operators
9n(x). Therefore an operator with an accurate spatial localization (i.e., narrow support)
yields poor spectrum estimates. This has a direct implication in practice, and can be
critical when the texture processes are multispectral and highly nonstationary. The spa-
tial support of the operator needs to be large enough to accurately characterize the
frequency components of intricate texture processes, and can potentially be larger than
the studied texture region. This is illustrated in Fig. 2.3 for the characterization of local
ground glass and reticular regions in lung CT. In addition, controlling the profile of the
operators (i.e., the decay slope at their boundaries) is important to avoid extensive ringing
effects in their dual representation resulting in poorly localized analysis (see Fig. 2.4) [7].
Finding the optimal trade-off between the accurate definitions of operator supports in
space and in Fourier requires identifying spatial frequencies that are important for the
texture segregation task in hand. The lowest discriminative frequency will determine
the smallest operator size needed to differentiate between the various texture classes (see
Fig. 2.5). The latter is not straightforward in most cases and machine learning can be
used to determine discriminative scales [8].
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Figure 2.3 Challenges of operator design for complex and nonstationary biomedical texture pro-
cesses. Top row (peripheral ground glass opacities in chest CT): large influence of proximal objects
when the support of operators is larger than the region of interest. The lung boundary has an increas-
ingly important impact in the peripheral region, which can be observed on the response maps hp(x)
of increasingly large LoG linear operators with functions g, (x) [7]. Bottom row (reticular and normal
lung parenchyma in CT): on the left image, a small-sized Gaussian windowed Fourier transform op-
erator g1 (0 = 3.2 mm) is precisely located in the reticular pattern but yields a poor characterization
of the spectral content inside its support. Conversely, the right image shows a large Gaussian win-
dow g; (0 = 38.4 mm) allowing an accurate estimation of spatial frequencies, but its spatial support
encroaches upon normal parenchyma and mixes properties from the two distinct texture classes.
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Figure 2.4 Importance of the decay of linear operators on spatial versus spectral support (1D). Smooth
operators (center) avoid ringing effects in the dual representation.

2.3.2 Region of interest and response map aggregation

Another critical aspect of scale definition in biomedical texture analysis concerns the
design of the ROI for aggregating the operators’ response maps (see Fig. 2.1). The
fundamental underlying question is: how large must be the ROI M? Addressing this
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Figure 2.5 A texture operator characterizing spatial frequencies along x1 in [w1,min, 77) is enough to
discriminate f; from f>. Finding this lower bound in the Fourier domain allow defining texture opera-
tors with narrow spatial supports that are optimally localized.

issue requires considering once more the spectral complexity and spatial stationarity
of the considered texture processes. On the one hand, M should be large enough to
capture the discriminative statistics of the operators’ responses. On the other hand,
using large M covering several contiguous interleaving nonstationary processes will mix
the statistics of the latter and result in meaningless texture measures, even when using
appropriate texture operators.

Two examples are developed to illustrate the impact of the size of M on texture
classification and segmentation (see Figs. 2.6 and 2.7). For both examples, simple cir-
cularly symmetric band-pass and multiscale operators are used. They are based on two
consecutive dyadic iterations of Simoncelli wavelet frames [11] g,(x). The 2D version is
defined in Fourier in polar coordinates (p, @) as
cos (% log, (%{—”)) for T <p=<m,

21(p) = 0 otherwise.

(2.2)
52(0) = cos (% log, (%)) for Z <p<Z,
£W=1 0 otherwise.
Because it is circularly symmetric, this operator depends on the radial coordinate

p only and is qualitatively similar to 2D LoGs. It is applied to a texture function
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Figure 2.6 Influence of the size and localization of the region of interest M for aggregating the feature
maps using the average. Bottom center: each region M; is represented by a point (e.g., “+") in a feature
space spanned by feature averages (m’;, le,i)- Whereas red and green regions are well separated
and regrouped in the feature space, averaging the feature maps over the entire image (blue region)
yield texture features that do not correspond to anything visually (see the blue diamond in the feature
space). Likewise, averaging texture properties over entire tumor regions including distinct habitats
will provide quantitative texture measures that do not correspond to anything biologically [9,10]. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version
of this chapter.)

S with convolution (i.e., equivalent to a multiplication in the Fourier domain) as
hu(p, 9) = gu(p) - f(p. D).

A first example is detailed in Fig. 2.6 and demonstrates the negative impact of av-
eraging feature maps over large ROIs including texture functions from distinct spatial
processes. This is a critical issue when texture analysis is used to characterize the struc-
tural properties of tumors because it requires defining smaller ROIs based on distinct
tumor habitats [9] (e.g., ground glass versus solid tumor components in lung adenocar-
cinoma [12]). When the component textures are too expensive to delineate (e.g., tumor
habitats in 3D imaging) or when they are not known in advance, unsupervised texture
segmentation approaches can be used to reveal the diversity of patterns contained in
a given ROI. Examples of such methods are superpixels [13], graph cuts [14], or the
Pott’s model [15]. An advantage of the Pott’s model is its ability to handle multiple fea-
ture maps for segmenting the subregions and, therefore, can easily run on the registered
outputs of several operators. The aggregation function has itself a strong influence on
the specificity of the texture measures. In [10], Cirujeda et al. showed that measurements
based on the covariances of the operator’s responses provided a better characterization
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Figure 2.7 Influence of the size of circular patch ROIs on supervised texture segmentation.
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of texture properties in multicomponent tumors when compared to the average, thanks
to their ability to quantify the pointwise coactivation of the operators.

In a second example, the influence of the size of circular patch-based ROIs on
supervised texture segmentation is investigated (see Fig. 2.7). Linear Support Vector
Machines (SVM) are trained from overlapping ROIs extracted from two unrotated in-
stances of classes fi(x): “canvas002” and f>(x): “canvas003” of the Outex database [16].
The responses of circularly symmetric Simoncelli wavelet frames (see Eq. (2.2)) are av-
eraged over the circular ROIs to provide texture measures § = (11, 12). Every block
is represented in the two-dimensional feature space yielded by span(y). In the latter,
SVMs learn a separating hyperplane wsynm + b that is further used to classify overlapping
patches from a test image composed of rotated instances of f; and f,. The corresponding
decision values of the test patches (i.e., (5, wsym) + b) as well as the predicted local labels
(i.e., sgn ((17, wsym) + b)) are shown for three different patch radii. The evolution of the
segmentation error with radii varying in [0, 128] is shown in Fig. 2.7 top right, high-
lighting the importance of the size of the aggregation region M. When M is too small
(radius = 8), the local average of the feature maps is poorly estimated, which yields noisy
feature estimates 5 (error = 0.24). At the other extreme, very large regions M (radius =
128) yield accurate estimates of the features, but are not well localized spatially. This re-
sults in important errors at the boundaries between f; and f, (error = 0.23). In between
these two extremes, finding adequate sizes seems not critical and allows satisfactory seg-
mentation results with a minimum error of 0.045 for a radius of 90. However, a radius
of 30 allows obtaining an excellent trade-oft between locality and average estimation
(error = 0.051). To summarize, a simple rule of thumb to observe is to use ROIs that
are no larger than enough to accurately estimate discriminative statistics of the operators’
responses over stationary areas defined in terms of human perception or tissue biology.

In most cases, it is not realistic to assume that the texture properties are homogeneous
(i.e., stationary) over entire organs or tumors, which was mostly overlooked in the
literature. An interesting approach is to divide organs into subregions for which it is
reasonable to consider that the responses of texture operators are stationary in the relaxed
sense. This provides the exciting opportunity to construct tissue atlases from texture
information in biomedical images. They can be used to create disease-specific digital
phenotypes, which already showed to constitute powerful models for predicting disease
diagnosis, treatment response, and/or patient prognosis in the context of interstitial lung
diseases [17,18] (see Fig. 2.8) and cancer [12,19].

2.4 MULTIDIRECTIONAL IMAGE ANALYSIS

As already introduced in Section 1.2.1 of Chapter 1, the notion of direction in texture is
fundamental and complementary to the notion of scale (see Fig. 1.2 of Chapter 1). An
important question is then: which image directions are important for deriving texture
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Figure 2.8 Digital phenotypes for interstitial lung diseases. Left: due to the presence of thicker bron-
chovascular structures in the region Mg that is close to the mediastinium, the texture properties of
normal and altered parenchymal tissue cannot be considered similar as the ones in the peripheral
region M. Right: therefore it is relevant to divide lungs into regions for which it is reasonable to con-
sider that texture properties are homogeneous and create tissue atlases to derive digital phenotypes
for interstitial lung diseases [17,18].
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Figure 2.9 Examples of texture functions with weak (i.e., f; (x)) versus strong (i.e., f> (x)) directionality.
The modulus of the Fourier representation of f>(x) shows that there are clear directional spatial fre-
quencies, standing out as bright spots in |?2 (@)]. This also demonstrates that image directionality is
defined for a particular scale (i.e., spatial frequency).

measurements and allowing adequate texture segregation? Fig. 2.9 shows textures and
their Fourier modulus. For one of them, f; (x), directionality seems not obvious because
the texture contains little structure and is highly stochastic. For the other, f>(x), dom-
inant directions are clearly visible, creating oriented grid patterns and corresponding
peaks in the Fourier domain. Moreover, it appears that texture directionality is defined
for a particular position and scale (i.e., spatial frequency). These aspects of texture di-
rectionality are developed in the next Subsections 2.4.1, 2.4.2, and 2.4.3.
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2.4.1 The Local Organization of Image Directions (LOID)

Thinking even further, it appears that most biomedical and natural textures have clear
directional structures or primitives, but the latter are not necessarily consistent over large
regions M. Most often the opposite happens where directional structures are defined
locally (see Fig. 2.10). More precisely, an important aspect of directionality in natural
and biomedical textures is the Local Organization of Image Directions (LOID), i.e.,
how directional structures intersect (see Fig. 2.11). The LOIDs were already mentioned
in the literature as being central in preattentive texture segregation [23] as well as com-
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Figure 2.10 Importance of the Local Organization of Image Directions (LOID) in natural and biomedical
textures (i.e., how directional structures intersect). (A) Photograph of creased paper. (B) Photomicro-
graph of hypertrophic cardiomyopathy [20]. (C) Chest CT angiography. (D) Photograph of meandroid
coral. (E) Fluorescence microscopy cross-sectional photograph of the tibialis anterior muscle of a
mouse [21]. (F) Honeycombing fibrosis in lung CT [22].
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Figure 2.11 Importance of the LOIDs in preattentive texture segregation [23] (see Section 1.2.4 of
Chapter 1). The LOIDs can be distinguished by counting the number of endpoints of the primitives
(top row).
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puterized texture analysis [24,25] (see Section 1.2.4 of Chapter 1). They relate to the
primitives or textons of biomedical texture (i.e., the essential “stitches” of the tissue),
which often have random local orientations. The various forms of these tissue stitches
are even richer in 3D, where the potential complexity of the primitives follows a cubic
growth. The number of possible discrete image directions grows as (2r+ 1)° — 1 in 3D
versus (2r + 1)> — 1 in 2D [1]. Therefore, defining texture operators that are able to
characterize the LOIDs in a locally rotation-invariant fashion are required to accurately
analyze biomedical texture. Advanced methods to meet these challenging requirements
are further developed in Section 2.4.3.

2.4.2 Directional sensitivity of texture operators

It is convenient to consider two distinct categories of operators in terms of directional
characterization: directionally sensitive versus insensitive. In the particular case of lin-
ear operators, directionally insensitive operators are called circularly /spherically symmetric
operators and their functions do not depend on the angular coordinate(s):

@) <5 3u(p). (2.3)

Examples of such operators in 2D and 3D are Gaussian filters, LoGs, and circularly
symmetric wavelets [11,26] (see Fig. 2.12). Examples of nonlinear directionally in-
sensitive operators are max or median filters. Directional operators constitute a vast
category where operator functions depend on all polar/spherical coordinates. They
include Fourier basis functions, circular and spherical harmonics [27,28], directional
filters and wavelets (e.g., Gabor [29], Riesz [30], Simoncelli’s steerable pyramid [31],
curvelets [32]), Histogram of Oriented Gradients (HOG) [33-35], GLCMs [36],
LBPs [37], GLRLMs [38,39], CNNs [40], DL [41,42], and others.

By construction, directionally insensitive operators are locally rotation-invariant, but
insensitive to image directions. Texture measures obtained from this category of oper-
ators are therefore invariant to local rotations. However, they can hardly differentiate
between +-shaped, L-shaped or blob-shaped texture primitives (see Fig. 2.13 bottom
left). Therefore they cannot characterize the LOIDs and can only be used to distinguish
between biomedical tissue types with manifest differences in image scales. Directional
counterparts are sensitive to image directions, but may not be locally rotation-invariant
even in an approximate sense. They are able to identify the LOIDs only when they have
all the same orientation, which is very unlikely in biomedical textures (see Fig. 2.10).
Moreover, the characterization of the LOIDs can be challenging even when the latter
are all aligned to each other. In fact, the aggregation function plays itself an important
role when unidirectional operators” are jointly used to characterize the LOIDs [25].

2 Unidirectional operators are “seeing” only one direction.
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2D and 3D Gaussian derivative filters (e.g., real Riesz wavelets [52])

[
2D GLCMs 3D GLRLMs [13, 57] 2D LBPs [38] 3D LBPs [13]
IAK|I=2 (Ak, =2, Ak, =0) Gs.1{f}(x0) = 10101010 = 170

Figure 2.12 Directionally sensitive versus insensitive texture operators. Top row: linear circularly sym-
metric operators that are not sensitive to image directions and, therefore, locally rotation-invariant.
Middle rows: linear directionally sensitive operators. Bottom row: nonlinear directionally sensitive op-
erators. Directional operators are sensitive to image directions but not locally rotation-invariant by
construction.

When separately integrated, the responses of unidirectional individual operators are not
local anymore and their joint responses become only sensitive to the global amount
of image directions in the region M. For instance, the joint responses of image gradi-
ents

0
Galf) (v0) = a—j;<xo>, i=12, 2.4

are not able to discriminate between the two textures classes fi(x) and f,(x) shown in
Fig. 2.13 when integrated over the full image domain M. This loss of information is
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Figure 2.13 f1(x) and f>(x) only differ in terms of the LOIDs (i.e., +-shaped versus L-shaped). Bot-
tom row: one circle in each feature representation corresponds to one realization (i.e., full image) of f;,
where feature maps are averaged over the entire image. Bottom left: feature vectors 5; obtained from
the responses of circularly symmetric operators (two consecutive dyadic scales of Simoncelli wavelets,
see Eq. (2.2)) provide poor distinction between the two classes. Bottom center and right: even when
the LOIDs are all aligned to each other, the joint responses of directional operators (e.g., image gra-
dients along x4, cooccurrences along x4) can hardly discriminate between f; and f, when integrated
over the full image domain M.

detailed by Sifre et al. in terms of separable group invariants [43]. When integrated
separately, the responses of unidirectional operators become invariant to a larger family
of roto-translations where different orientations are translated by difterent values. For
instance, it can be observed in Fig. 2.13 that f, can be obtained from f; by vertically
translating horizontal bars only and horizontally translating vertical bars only.

Further refinements are required to allow for a true locally rotation-invariant char-
acterization of the LOIDs. Several approaches were proposed to increase the local
rotation-invariance of directional operators. GLCMs and GLRLMs are made approx-
imately insensitive to directions either by averaging feature measures or by summing
the counts over all directions of the operators [44] (e.g., cooccurrences along x1 or x»
are mixed). Likewise, rotation-based data augmentation in CNNs and DL improves
invariance to local rotations [45]. Unfortunately, these processes reduce the ability of
operators to characterize the LOIDs by making them insensitive to image directions.
More advanced approaches were developed to allow enhanced locally rotation-invariant
characterization of the LOIDs and are described in Section 2.4.3.
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2.4.3 Locally rotation-invariant operators and moving frames
representations

It was observed in Section 2.4.2 that simple texture operators are either locally rotation-
invariant and directionally insensitive or able to characterize the LOIDs (directionally
sensitive), but regrouping both properties is not straightforward. A variety of texture
analysis approaches have been proposed to tackle this challenge. Those include the
Maximum Response 8 (MRS) filterbank [46], rotation-invariant LBPs [47,37| and
extensions [48,49], discrete and continuous HOGs (e.g., used in the Scale-Invariant Fea-
ture Transform (SIFT) and in the Rotation-Invariant Feature Transform (RIFT)) [34,
35,50], as well as oriented [51] and steerable [52,25,53] filters and wavelets that were
also included in recent CNNs [45,43]. All the aforementioned approaches rely on the
same strategy: using directionally-sensitive operators G, that are (approximately) lo-
cally rotation-equivariant over their own support G, and then to align the operators
to achieve local rotation-invariance.

Locally rotation-invariant characterization of the LOIDs can be efficiently carried
out using Moving Frames (MF) representations [24,25]. The key idea of MFs is to locally
adapt a coordinate frame directly to image contours instead of using fixed extrinsic
coordinates for all image locations (see Fig. 2.14). The two necessary and sufficient
requirements to define MFs are (1) using a set of N > D noncollinear texture operators
and (ii) having a consistent criteria to define the local orientation of the frame bundle
(e.g., using the tangent as the first unit vector of the frame). In 2D, orthonormal MFs
are defined as

€1 x, = COsby, - e + sinfy, - ey, (2.5)

€2, =C0s(Ox, +7/2) - e +sin(Oy, +7/2) - €2,

where {e1, e,} is the canonical basis for R?, {ej x,, €2.x,} is a local moving frame bundle
for the position xy, and 0y, its orientation relatively to {eq, e2}. Image representations
obtained from MFs are robust to rigid transformations [54] (proof in [25]). They are

field of domant diretions (gradient) moving frames (tangent bundles)

Figure 2.14 Construction of MFs in a histopathological image of dense connective tissue (left). Right:
MFs are based on local directions 6x, maximizing the gradient magnitude (center).
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Figure 2.15 Using gradient-based MF representations to discriminate texture classes that only differ
in terms of their LOIDs. Because the MF bundle {e x,, @ x,} is locally aligned with the direction 0y,
maximizing the gradient at each position xp, the energies of gradients along e; , are null except at
the center of +-shaped primitives. The MF representation yields a linearly separable feature representa-
tion of f1 and f,, while the same unidirectional texture operator pair (i.e., orthogonal image gradients)
used in global coordinates could not distinguish between the two (see Fig. 2.13). Bottom row: the flip
side of the coin is that MF representation cannot differentiate textures that only differ in terms of the
orientations of their primitives (e.g., f; versus ?1 ).

invariant to local rotations and equivariant to translations. Moreover, deriving the lo-
cal orientation of the frame tends to preserve the joint information between positions
and orientations even when the operators are integrated (e.g., averaged) over an image
domain M. Suitable local orientation measures for defining a consistent MF alignment
criterion 6y, are, e.g., simple pixel differences of a Gaussian-smoothed response map [34|
(see Eq. (3.7) of Chapter 3), or the Gaussian-smoothed structure tensor, which can be
interpreted as a localized covariance matrix of the gradient [55] (2D [56], 3D [57]).
The construction of 2D MFs based on directions maximizing the gradient is illus-
trated in Fig. 2.14. It can be observed in Fig. 2.15 that when compared to using global
coordinates (see Fig. 2.13), texture measures obtained from identical operators (e.g., im-
age gradients) but expressed in MFs can provide very detailed characterizations of the
LOID:s.

It is important to note that image representations based on locally rotation-invariant
operators G, are not preserving image layouts (i.e., large-scale organization of image
structure) larger than their spatial supports Gy, X - - x Gp_,. They cannot be used alone
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to characterize natural images with well-defined global layouts such as in ImageNet [58].
They are best suited for discriminating textured patterns with well-pronounced local
directional structures, which is the case for most biomedical tissue architectures. Tuning
the support of the operators and/or using hybrid approaches based on both local and
global image transforms can be required to achieve optimal texture discrimination.

2.4.4 Directionally insensitive, sensitive, and moving frames
representations for texture classification: a quantitative
performance comparison

In order to reveal the differences in terms of texture discrimination performance be-
tween directionally insensitive, sensitive, and MF representations, a quantitative com-
parison is proposed in this section.

The Outex database of 2D natural textures with highly controlled imaging con-
ditions [16] is chosen to compare between the various representations. The Ou-
tex_TC_10 test suite is used, because it has similar properties to biomedical images:
it contains no significant changes in terms of image scale and illumination. The texture
classes contain strongly directional patterns. Moreover, the validation scheme allows
training on unrotated images only, but the testing set contains rotated instances only.
This allows evaluating two important properties of the texture representations: rotation-
invariance and their ability to characterize directional patterns. The classes are very pure
though, where little intraclass variations are present, which differs from most biomedi-
cal texture analysis problems. Outex_TC_10 contains 24 classes, which are depicted in
Fig. 2.16. It has a total of 4320 (24 - 20 - 9) nonoverlapping 128 x 128 image instances.
The training set consists of the 480 (24 - 20) unrotated images and the remaining 3840
(24 - 20 - 8) images from 8 different orientations are constituting the test set.

Riesz wavelet frames are used as texture operators, because variations in their design
allow implementing all three representation types that we want to compare [52]. The
latter are detailed in Section 3.2.2 of Chapter 3. Qualitatively, Riesz wavelet frames
correspond to multiscale directional image derivatives and evaluate not only the mag-
nitude, but also the type of transitions between image pixels (i.e., derivative order such
as the gradient, Hessian). Moreover, Riesz wavelets are steerable, which means that it
is relatively inexpensive to locally align every texture operator in order to obtain rich
MEF representations. Four iterations of Simoncelli’s circularly symmetric wavelets (see
Eq. (2.2)) are used to define the spatial supports of Riesz-based image derivatives. In
order to obtain MF representations, the angle 6, maximizing the response of the first
element of the filterbank G, 1 o{f}(x0) is used to define the MF alignment criteria at
each position xy (see, e.g., Eq. (3.14) of Chapter 3). A collection of texture measure-
ments 7 is obtained by averaging the energies of the responses of each operator over the
full 128 x 128 support M of the texture instances. Simple one-versus-all SVM models
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Figure 2.16 Quantitative comparison of directionally insensitive, sensitive, and MF representations for
texture classification. Whereas MF representations achieve best performance, directionally insensitive
texture operators allow close classification accuracies with a much lower computational complex-
ity. Finally, unaligned directionally sensitive Riesz filters perform poorly because they lack rotation-
invariance.

using Gaussian kernels are used to learn decision boundaries in the space spanned by 7
for texture classification.

The performance comparison for various orders L of the Riesz transform is shown
in Fig. 2.16. The performance of directionally sensitive unaligned Riesz wavelets appears
to be clearly inferior to both directionally insensitive and MF representations. This can
be explained by their lack of rotation invariance, where rotations of the texture instances
swaps the responses between filters and results in noisy and diffuse class representations
in the feature space. Directionally insensitive representations (i.e., using circularly sym-
metric Simoncelli wavelets only with Riesz order L = 0) benefit from their invariance
to local rotations and achieve an honorable classification accuracy of 87.5% with a very
simple approach and low computational complexity. Best results are obtained by MF
representations with an accuracy of 97.42% for L =4, which highlights the importance
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of the LOIDs in texture analysis. However, when compared to directionally insensi-
tive operators, MFs involve a much higher computational cost to locally estimate 6y,
and align the Riesz frame accordingly. Therefore the success of MF representations will
depend on how important the LOIDs are to characterize the considered biomedical
texture classes, which will set the threshold to invest the extra computational cost re-
quired. Other techniques allowing the characterization of the LOIDs with invariance
to local rotations are discussed in Chapters 3, 5, and 7.

2.5 DISCUSSIONS AND CONCLUSIONS

This chapter explained the essential theoretic foundations and practical consequences of
texture operator and aggregation function design in terms of image scales and directions.
A set of comparison dimensions was introduced, which can be used to evaluate the
relevance of a particular BTA approach or design for a given biomedical application. The
most important aspects are recalled in a checklist matrix (see Fig. 2.17). The expression
of operators and texture functions in polar and spherical coordinates allowed to clearly
separate scale from directional considerations.

Section 2.3 detailed the importance and consequences of appropriate choices of scale
for operators and region of interest (see Sections 2.3.1 and 2.3.2, respectively). The un-
certainty principle, a fundamental theoretic limitation was recalled to make the relation
between operator locality in space and frequency explicit (see Eq. (2.1) and Fig. 2.2).
As a rule of thumb, the operators should be kept as small as possible in the spatial do-

texture operators region of interest M
GulF)xo) and aggregation
uncertainty principle averaging operators’ responses
gn(x) gn(w) E ng
scales - o =
s 10

i = fy fy, I @ldx

directional sensitivity importance of the LOIDs
! and MF representations

directions £ o K .
o

1

i cets (L = 1
5 §‘r &
01 | == Riesz-based MFs osu o 0 <
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Figure 2.17 Checklist matrix of essential theoretic foundations and practical consequences in terms
of choices of scales and directions for texture operator and aggregation function design.
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main to allow local texture analysis. However, they should be sufficiently large to allow
for an adequate and accurate characterization of texture frequency components (see
Figs. 2.3 bottom row and 2.5). The importance of using operators with smooth profiles
was highlighted to obtain an optimal trade-off between localization in the spatial and
Fourier domains [3] (see Fig. 2.4). In addition, operator smoothness allows limiting the
effect of proximal objects surrounding the region of interest for texture analysis, which
was illustrated in Fig. 2.3 (top row). The influence of the design and shape of the aggre-
gation region was detailed in Section 2.3.2. In particular, the hazard of using large ROIs
encompassing multiple nonstationary texture processes for aggregation with integrative
aggregation functions was highlighted. The latter will mix texture properties of distinct
tissues, yielding texture measurement that are not corresponding to anything visually
or biologically (see Fig. 2.6). This was found to be widely overlooked in the literature
and motivated the use of alternate aggregation functions (e.g., covariances [10]) as well
as defining digital tissue atlases of tumors or organs containing collections of regions
for which it is reasonable to consider that texture properties are homogeneous. The
latter provides the exciting opportunity to construct disease-specific digital phenotypes,
which already showed to constitute powerful models for predicting disease diagnosis,
treatment response and/or patient prognosis [17,18,12,19] (see Fig. 2.8).

The second part of the chapter, Section 2.4, studied the type of directional informa-
tion that is relevant for BTA. It was found that directional structures are defined locally
but are not necessarily consistent over large regions. More precisely, a fundamental as-
pect of texture directionality is how directional structure intersect, which we called the
Local Organization of Image Directions (LOID, see Section 2.4.1). The latter relate to
the essential stitches of biomedical tissue, as well as to the texture primitives and texton
theory discussed in Sections 1.2.4 of Chapter 1 and 3.2.3 of Chapter 3. Two adversarial
categories of operators were analyzed in Section 2.4.2: directionally insensitive versus
sensitive (see Fig. 2.12). Designing texture operators that are able to accurately charac-
terize the LOIDs with robustness to rigid transformation was found to be challenging.
One the one hand, directionally insensitive operators are invariant to local rotations
but are insensitive to image directions. On the other hand, directionally sensitive op-
erators can sense directions but are not invariant to local rotations. In addition, the
effect of aggregation using integrative functions kills the ability of unidirectional op-
erators to characterize the LOIDs even when the latter are all aligned to each other.
In Section 2.4.3, we provided evidence that using Moving Frame (MF) texture rep-
resentations consisting of locally aligning sets of noncollinear operators (see Eq. (2.5)
and Fig. 2.14) allowed robust recognition of the LOIDs with invariance to local rigid
transformations. A quantitative comparison of the classification performance of texture
classes with pronounced directional patterns and nonrigid transformations confirmed
the superiority of MF representations, but at the expense of a high computational com-
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plexity when compared to much simpler directionally insensitive representations (see
Section 2.4.4).

Overall, this chapter introduced a new set of comparison dimensions between BTA
methods that is specific to biomedical imaging. The latter is further used in Chapter 3
to perform a systematic qualitative comparison of most popular BTA methods, which
constitutes a user guide to assess the relevance of each approach for a particular medical
or biological task in hand.
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