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Abstract

This chapter aims to provide an overview of the foundations of texture processing for biomedical
image analysis. Its purpose is to define precisely what biomedical texture is, how is it different from
general texture information considered in computer vision, and what is the general problem formu-
lation to translate 2D and 3D textured patterns from biomedical images to visually and biologically
relevant measurements. First, a formal definition of biomedical texture information is proposed from
both perceptual and mathematical point of views. Second, a general problem formulation for biomed-
ical texture analysis is introduced, considering that any approach can be characterized as a set of local
texture operators and regional aggregation functions. The operators allow locally isolating desired
texture information in terms of spatial scales and directions of a texture image. The type of desirable
operator invariances are discussed, and are found to be different from photographic image analy-
sis. Scalar-valued texture measurements are obtained by aggregating operator’s response maps over
regions of interest.
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1.1 INTRODUCTION

Everybody agrees that nobody agrees on the definition of texture information. Ac-

I texture is defined as “the feel, appearance, or

cording to the Oxford Dictionaries
consistency of a surface or a substance.” The context in which the word texture is used
is fundamental to attach unambiguous semantics to its meaning. It has been widely
used in extremely diverse domains to qualify the properties of images, food, materials,
and even music. In the context of food and sometimes material sciences, characteriz-
ing texture information often involves measuring the response of the matter subject to

forces such as shearing, cutting, compressing, and chewing [1,2]. Starting from the early

1 https://en.oxforddictionaries.com/definition/texture, as of October 10, 2016.
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developmental months of newborn babies, tactile perception of textured surfaces is an
important stage of the human brain development [3]. It is an essential step to be suc-
cessfully acquainted with the physical properties of the surrounding environment [4].
To some extent, estimating the properties and diversity of the latter without having to
touch every surface can be efficiently carried out through vision. Human vision learns
to recognize texture patterns through extensive experimentation confronting visual and
tactile perception of textured surfaces [5|. This provides hints on why human visual
texture recognition performs much beyond the use of low level descriptive terms such
as coarse, edgy, directional, repetitive, and random.

In the context of biomedical imaging, texture information relates to the micro- and
macro-structural properties of biomedical tissue. Radiologists, pathologists, and biolo-
gists are trained to establish links between visual image patterns and underlying cellular
and molecular content of tissue samples [6]. Unfortunately, very large variations of
this complex mapping occur, resulting in image interpretation errors with potentially
undesirable consequences [7—9]. These variations are partly due to the diversity of hu-
man biology and anatomy as well as image acquisition protocols and reconstruction,
compounded by observer training. Important efforts were initiated by medical imag-
ing associations to construct unified terminologies and grading scores in the context of
radiology and histopathology, aiming to limit variations in image interpretation and re-
porting [10—13]. However, in the particular context of biomedical texture information,
the terms used (e.g., heterogeneous enhancement, hypervascular [12]) are often as inadequate
as low level descriptive terms of general textures (e.g., coarse, edgy) while the perception
of human observers is much richer (see Sections 9.4.1 and 9.4.2 of Chapter 9). When
considering three-dimensional architectures of biomedical tissue, human observers have
limited intuition of these 3D solid textures, because they cannot be fully visualized [14].
Only virtual navigation in Multi-Planar Rendering (MPR) and semitransparent visual-
izations are made available by computer graphics and allow observing 2D projections.

Computer-based quantitative image texture analysis has a tremendous potential to
reduce image interpretation errors and can make better use of the image content by
yielding exhaustive, comprehensive, and reproducible analysis of imaging features in
two and three dimensions [15—17]. Nevertheless, besides the lack of a clear definition
of biomedical texture information, several challenges remain, such as: the lack of an
appropriate framework for multiscale, multispectral analysis in 2D and 3D; validation;
and, translation to routine clinical applications. The goal of this book is to illustrate the
importance of these aspects and to propose concrete solutions for optimal biomedical
texture analysis. This chapter will first propose a definition of texture in the particular
context of biomedical imaging (Section 1.2). Second, a general theoretic framework
for Biomedical Texture Analysis (BTA) will be proposed in Section 1.3. The latter
is designed to best leverage the specific properties of biomedical textures. Differences
with the classical texture analysis paradigm in computer vision will be highlighted.
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Important aspects of texture operator and aggregation function design will be further
discussed and illustrated through several concrete examples in Chapter 2. It will also
recapitulate key aspects of biomedical texture processes and analysis, with an aim of
raising awareness of limitations of popular texture operators used in the biomedical
literature while providing directions to design the next generation of BTA approaches.
Chapter 3 will use the comparison axes established in Chapters 1 and 2 to compare most
popular modern biomedical texture analysis approaches. With the purpose of guiding
neophyte or experienced users, a simple checklist is proposed to assess the relevance of
the BTA approach in a particular medical or biological applicative context.

1.2 BIOMEDICAL TEXTURE PROCESSES

This section proposes an extensive definition of biomedical texture information under
biological, medical, physical, statistical, and mathematical viewpoints.

1.2.1 Image intensity versus image texture

Low-level quantitative image analysis (i.e., pixel-level”) can be separated into two main
categories: intensity and texture. Image intensity relates to the statistical distribution of
the pixel values inside a defined Region Of Interest (ROI). The pixel values can be
either normalized across images (e.¢., Hounsfield Units (HU) in X-ray Computed To-
mography (CT), Standardized Uptake Values (SUV) in Positron Emission Tomography
(PET)), or unnormalized (e.¢., Hematoxylin and Eosin (H&E) stains in histopathology,
Magnetic Resonance Imaging (MRI)). Classic quantitative measures of image intensity
are the four statistical moments of the pixel values’ distribution (mean, variance, skew-
ness, and kurtosis). Other measures are specific to the considered imaging modality
(e.g., SUV max or Total Lesion Glycolysis (TLG) in PET) [18]. The latter are extremely
useful to characterize the image content, but cannot measure the spatial relationships
between pixel values (see Fig. 1.1). A qualitative keyword such as tumor heterogeneity is
ambiguous because it is unclear if the heterogeneity concerns pixel values (intensity) or
their spatial organization (texture). It is though commonly used to describe the visual
aspect of tumors in radiological images with ambivalent meaning [19-21].

The spatial relationships (i.e., the transitions) between pixel values are precisely what
texture information is encoding. Haidekker defined texture as “a systematic local vari-
ation of image values” [22]. Petrou stated that “the most important characteristic of
texture is that it is scale dependent” and that “different types of texture are visible at
different scales” [23]. This highlights the importance of the variation speed or slope or
oscillation between pixel values, which will be different in smooth versus rough textures
(see Fig. 1.1 left and right). This first notion of the texture scale relates to the spatial

2 The word pixel is used to design both 2D and 3D (voxels) image samples.
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Figure 1.1 The two simulated tumors have identical distribution of the pixel’s values and cannot be
differentiated using intensity image measures only. They differ in the spatial relationships between the
pixels, which is specifically captured by image texture analysis.

frequencies in the image. The higher the spatial frequency, the finer the scale of the
transition between proximate pixel values. A second important notion is the direction
of the transition. These two notions of spatial scale and direction are fundamental for
visual texture discrimination (see Fig. 1.2) [24].

Blakemore et al. provided initial evidence that the human visual system possesses
neurons that are selectively sensitive to directional spatial frequencies [25], which has
been widely confirmed later on [26]. Most approaches proposed for computerized tex-
ture analysis are leveraging these two properties either explicitly (e.g., Gray-Level Cooc-
currence Matrices (GLCM) [27], Gray-Level Run Length Matrices (GLRLM) [28],
Gray-Level Size Zone Matrices (GLSZM) [29], directional filterbanks and wavelets [30],
Histogram of Oriented Gradients (HOG) [31], Local Binary Patterns (LBP) [32], Scat-
tering Transforms (ST) [33,34]) or implicitly (e.g., Convolutional Neural Networks
(CNN) [35,36], Dictionary Learning (DL) [37-39]).

A natural mathematical tool to study directional spatial frequency components in
D-dimensional signals and images is the Fourier transform and is defined in Eq. (1.1).
It is straightforward to see that the Fourier transform for @ = 0 computes the mean of
the function, which is not considered as texture information since it relates the mean
intensity of the pixels in the image. For ||| > 0 the modulus of the Fourier transform
quantifies the magnitude of the transitions, where ||@|| is inversely proportional to the
scale and the orientation of the vector @ defines the direction of the spatial frequencies.
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Figure 1.2 Importance of image scales and directions to unequivocally describe texture functions
f(x). The latter are efficiently represented by the modulus of their dual Fourier representation f‘(w)
in terms of their directional frequency components. w = 0 corresponds to the centers of the images of
the bottom row. f1 and f, have identical directional information but differ in image scales. fy, f3, and
f4 have identical spatial frequencies along x1, but differ in their frequency components along x;.

The correspondence between texture images f;(x) and their Fourier transforms ﬁv(a)) is
llustrated in Fig. 1.2.

Another important notion of texture information relates to the order of the tran-
sition between the pixel values (i.e., the order of directional image derivatives). For
instance, first-order (gradient) transitions will characterize step-like transitions, whereas
second-order transitions (Hessian) describe local image curvature. For instance, mod-
eling these two types can identify various types of transitions either at the margin or
inside a tumor region [12,40].

1.2.2 Notation and sampling

Throughout this section, images are defined on an unbounded continuum. This is mo-
tivated by the fact that many physical phenomena are intrinsically continuous and results
in analog signals. Also, important mathematical operations arising in texture analysis, in-
cluding geometric transformations (e.g., shifts, rotations, scalings) and random processes,
are better defined in the continuous domain without boundaries. For instance, a dis-
crete rotation is defined as the approximation of its continuous domain counterpart.
Moreover, stationary random processes (see Section 1.2.3.1) are implicitly defined over
an unbounded domain, since any shifted process should be well-defined. The design
of algorithms then calls for the discretization of continuous images, together with their
restrictions on bounded domains.

An image is modeled as a D-dimensional function of the variable x = (x1,...,xp) €
RP, taking values f(x) € R. The Fourier transform of an integrable function f(x) is

5
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Figure 1.3 Image sampling of 3D texture functions (left: continuous f(x), right: discretized f(&)). Most
3D bioimaging protocols have equal axial sampling steps, which differ from the depth sampling step
(A& = A&y # AE&3). This results in rectangular voxels.

notedf(a)) € C and 1s defined as

Fx) <5 fw) = / F(x) e 3@ dy, (1.1)
RD

where (-, -) denotes the scalar product.

As we said, in practice, images and their Fourier transforms have to be sampled
and restricted to bounded domains. We introduce now the notation that goes together
with these operations. In what follows, however, we rely mostly on the continu-
ous domain formulation. A D-dimensional discretized image function f of restricted

domains is noted as f(€) € R. Pixel positions & = (&1, ..., &p) are indexed by the vec-
tor k= (ky, ..., kp), the sampling steps A&, ..., Aép, and the dimension-wise offsets
(ly...,Cp aSs
& A& -k a
=l s |- (12)
& A&p - kp D
with k; € {1,...,K;}. The domain F C RP of f is F; x --- x Fp with F, = Ag; -
{1,..., Ki} — ¢. Image sampling of 3D texture functions is illustrated in Fig. 1.3. The

sampling steps are most often varying between patients and dimensions. This needs
to be taken into account when designing texture operators and is further discussed in
Section 1.3.2.

The discrete Fourier transform of f(§) is notedf(v) € C and is defined as

N ity
& <= foy =) f& 8, (1.3)
EcF
with v = (v1,...,vp) € R in the discrete Fourier domain. In the context of discrete

texture functions, the realization of the texture process is defined on the sampling grid
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Figure 1.4 Sampled texture function f(&¢), & € F, and its corresponding Fourier plane f(v), v € Q.
The number of elements in 2 is the same as in F: || = |F|. The sampling steps {A&7, A&} of the
spatial domain are inversely proportional to the sampling steps {Avq, Av,} of the Fourier domain:
Avj=1/A&;. Note that 0 need not lie on the grid for the spatial image domain F.

determined by the sampling step Ax;. Therefore the sharpest possible transition can only
be measured on a minimal physical distance corresponding to Ax;. As a consequence
the maximum spatial frequency measurable along the image axes is Av; = 1/Ax;. The
domain € c RP off is Qp x --- x Qp with @;={1,..., K}/Ax; (see Fig. 1.4). The
number of elements in R is the same as in F: || = |F|.

The discretization implies that sampled images are approximations of continuous
images. Moreover, for the sake of simplicity, although the domains F of image functions
are defined as bounded, the potential issues raising at the frontiers are not discussed
here. The hypothesis that all processing operations are happening far away from the
domain boundaries will be made. This will be particularly important when discussing
the stationarity of texture processes in Section 1.2.3.1, as well as texture operators and
their application to image functions in Section 1.3.1.

1.2.3 Texture functions as realizations of texture processes

Biomedical texture patterns are produced by stochastic biological processes, where ran-
domness results from the diversity of human biology and tissue development. Therefore,
it is important to clarify that observed texture functions f(x) are realizations of spatial
stochastic texture processes of various kind [41]. We define stochastic texture processes
of RP as

{X(x),x e RP},
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moving average Gaussian pointwise Poisson biomedical: lung fibrosis in CT
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Figure 1.5 Discretized texture processes X(£) of F C R2 (see Section 1.2.2 for a definition of F). PDFs
of moving average Gaussian and pointwise Poisson are known, which is never the case for biomedical
texture processes (e.g., lung fibrosis in CT).

where X(x) is the value at the position indexed by x € RP. The values of X(x) follow
a Probability Density Function (PDF) px)(¢q), where g is the value of the pixel at the
position x. Classic examples of such processes are moving average Gaussian or pointwise
Poisson (see Fig. 1.5), for which the probability laws are well controlled. However,
biomedical texture processes (e.¢., lung fibrosis in CT, see Fig. 1.5 right) are much less
studied and described in the literature, because we can only fit a PDF from sets of
observations containing large variations caused by difterences in anatomy of individuals
and imaging protocols.

1.2.3.1 Texture stationarity

A spatial stochastic process X(x) is stationary in the strict sense if it has the same proba-
bility law than all its shifted versions X(x — x¢) for any shift xy € RP. As a consequence,
the PDF px()(¢9) = px(¢q) does not depend on the position x anymore.

A discretized stochastic process inherits the stationary property by restricting to dis-
cretized shifts. The stationarity is not well-defined at the boundary of the finite domain
F of discrete bounded image, but is still meaningful when we are far from the bound-
aries. For instance, let us consider a patch of dimension 3 x 3 sliding over the domain F
while being fully included in F (no boundary conditions required). For any position of
the patch and for each of its nine elements, the statistics of its pixels values will follow
the same probability law. In images, texture processes may be piecewise-stationary in a
well-defined ROI. Realizations of homo and heteroscedastic (therefore nonstationary)
moving average Gaussian processes are shown in Fig. 1.6.

Since the PDFs are not known in the context of biomedical texture processes, strict
stationarity must be relaxed to rather assess the similarity between local PDFs. Even
more generally, the notion of spatial stationarity of natural texture processes must be
redefined in terms of visual perception and/or tissue biology. It is important to note that
the notions of spatial stationarity and texture classes are not tightly bound, since natural
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Figure 1.6 Texture stationarity illustrated with homo (left) and heteroscedastic (center) moving aver-
age Gaussian processes. The central image contains the realizations of two texture processes that are
piecewise-stationary over the blue or the red region. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this chapter.)

Figure 1.7 Relaxed spatial stationarity of natural texture processes defined in terms of visual percep-
tion and/or tissue biology. Left: the Outex texture class “canvas039” [42] consists of two distinct visual
patterns. Right: brain glioblastoma multiforme in an axial slice of gadolinium-injected T1-MRl includes
both an enhancing region and a necrotic core defining distinct subregions. In these two examples the
textures are containing two clear distinct patterns that can be considered homogeneous although not
stationary in the strict sense.

texture classes can be constituted by distinct texture processes (see Fig. 1.7). Likewise,
biomedical texture classes may be defined based on anatomical or disease levels and can
include several cell and tissue types. The image analysis task when the textures processes
of interest are stationary relate to texture classification. Texture segmentation of ROIs is
considered when the processes are piecewise-stationary.

1.2.4 Primitives and textons

As opposed to stochastic approaches, more deterministic methods for texture recogni-
tion consider that homogeneous classes are constituted by sets of fundamental elemen-
tary units (i.e., building blocks) called texture primitives [43]. Examples of such texture
classes are shown in Fig. 1.8. The bottom row of Fig. 1.8 highlights the importance of
the geometric relationships between primitives, where f; and f, differ only in terms of
the density and geometric transformations (e.g., local rotations) of the same primitive.
Occlusions are observed in the upper left texture of Fig. 1.8.

9
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Figure 1.8 Top: various textures and their corresponding primitives or textons. Bottom: importance of
the spatial organization (e.g., density, local geometric transformations, occlusions) of the primitives.

Most biomedical texture patterns are of stochastic nature and are constituted by
primitives that are neither well-defined, nor known in advance (see Fig. 1.10). A more
general definition of fundamental texture microstructures was proposed by Julesz in
1981, who coined the word fexton [44]. This was one of the earliest texture perception
studies of human vision, which laid down the fundamentals of preattentive vision [45,
44,46—48]. The concept of texture being “effortlessly or preattentively discriminable,”
i.e., the spontaneous perception of texture variations without focused attention, is illus-
trated in Fig. 1.9A, where the left side area is considered preattentively discriminable
while the right side is not and can only be distinguished after careful visual analysis.
Similarly, for Fig. 1.9B, the inner square is easily discerned from the outer square. Julesz
attributed this to the order of image statistics of texture patterns. Textures having equal
second-order statistics in the form of identical joint distribution of gray level pairs,
tend to not be preattentively discriminable. An example of this focused attention is the
case between the L-shaped background and the T-shaped right region of Fig. 1.9A.
This is known as Julesz conjecture, which he and his colleagues refuted afterward using
carefully constructed textures having equal second order and different third and higher
order statistics [47]. Nevertheless, this conjecture gave a better understanding of tex-
ture perception which led to the proposal of the texton theory. The theory states that
texture discrimination is achieved by its primitive or fundamental elements, named tex-
tons [44,46], or sometimes called texels (i.e., texture elements) [27]. Several approaches
were proposed to derive collections of textons from texture images using texture oper-
ators [49,50] (e.g., Gabor, Laplacians of Gaussians, see Section 3.2.2 of Chapter 3), or
directly from pixel values spatial organization in local neighborhoods [37,51,38] (e.g.,
dictionary learning, see Section 3.2.3 of Chapter 3).

Understanding the types of primitives and textons, as well as their (local) spatial
organization in biomedical texture classes is of primary importance to efficiently de-
sign BTA approaches and in particular texture operators. This is further discussed in
Section 1.3 as well as in Chapters 2 and 3.
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Figure 1.9 An example of preattentive discrimination [52]. (A) texture composed of two regions: left
+-shaped textons are preattentively (i.e., effortlessly) distinguishable against L-shaped textons, while
in the right the T-shaped textons needs focused attention (i.e., using long-term memory). (B) texture
composed of line segments where the difference in orientations segregates preattentively the middle
region from the outer region.

healthy emphysema ground glass honeycombing micronodules

Isodensity visualization of 3D trabeculae bone microarchitecture.

Figure 1.10 2D and 3D biomedical textures are mainly stochastic and do neither have known nor well-
defined primitives. Top: normal and altered 2D lung parenchyma from interstitial lung diseases in axial
high-resolution CT [54]. Bottom: 3D bone microarchitecture of normal and osteoporotic trabeculae
(blue) in micro CT [55]. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this chapter.)
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1.2.5 Biomedical image modalities

When compared to the broad research field of computer vision, analyzing texture in
biomedical images can rely on the highly specific properties of the latter. In particular,
most biomedical imaging modalities rely on controlled acquisition protocols allowing
the standardization of fundamental image properties such as pixel/voxel size and in-
tensity, as well as image orientation and sample/patient position [56]. The setting is
therefore fundamentally different from general computer vision based on photographic
imagery resulting from scene captures obtained with varying viewpoints. The properties
of most common biomedical imaging protocols are listed in Table 1.1. Imaging proto-
cols with unknown or inaccurate physical size of pixels are rare but exist. Examples of
the latter are scanned film-based X-ray radiographs (obsolete), digital photography for
dermatology and ophthalmology, and endoscopic videos (see Section 11.3 of Chap-
ter 11).

1.3 BIOMEDICAL TEXTURE ANALYSIS (BTA)

In this section a general theoretic framework for D-dimensional texture analysis is in-
troduced. The latter leverages the specific properties of biomedical texture processes and
functions defined in Section 1.2. A general formulation of texture operators and aggre-
gation functions is introduced in Section 1.3.1. Popular texture analysis approaches are
exemplified as particular cases of operators and aggregation functions. The importance
of intersubject and interdimension scale normalization, as well as operator robustness
to rigid transformations is highlighted in Sections 1.3.2 and 1.3.3. Fundamental limita-
tions, current approaches, and future directions of multiscale and multidirectional image
analysis are further discussed in Sections 2.3 and 2.4 of Chapter 2, respectively. The
operators and aggregation functions of most popular BTA approaches are described and
qualitatively compared in Chapter 3.

1.3.1 Texture operators and aggregation functions

Without any loss of generality, we propose to consider that every D-dimensional texture
analysis approach can be characterized by a set of N local operators G, and their cor-
responding spatial supports G, C RP, assumed to be bounded. The value G,{f}(x¢) € R
corresponds to the application of the operator G, to the image f at location xy. G, is
local in the sense that G,{f}(x¢) only depends on the values of f on the shifted spatial
support G, + x¢ (see Fig. 1.11 for an illustration in 2D).

The operator G, is typically applied to the input texture function f(x) by sliding the
spatial support of its function over all positions xg in RP. This yields response maps’

3 They are commonly called feature maps in CNNG.



Table 1.1 Typical specifications of common biomedical imaging modalities

Modality Signal measured Dimensionality = Image dimensions  Physical dimensions of Image type
pixels/voxels
40x digital light absorption 2D color ~50,000% Ax1, Axo: ~0.275 pm. structural
histopathology
Digital X-ray absorption 2D grayscale ~20482 Axq, Axa: ~0.1 mm. structural
radiography
MRI nuclear magnetic 3D grayscale ~5123 Ax1, Axo: 0.5-1 mm, structural
resonance Ax3: 0.5-5 mm.
CT X-ray absorption 3D grayscale ~5123 Axt, Axp: 0.5-1 mm, structural
Ax3: 0.5-5 mm.
3-D US acoustic reflection 3D grayscale ~ 2567 Ax1, Axp,Ax3z:  0.5-1 mm. structural
pCT X-ray absorption 3D grayscale ~ 5123 Axy, Ax2,Axz: ~1 pm. structural
PET y-rays emitted 3D grayscale ~ 2562 Ax1, Axp,Ax3:  2-5 mm. functional
indirectly by a
radiotracer
OCT optical scattering 3D grayscale ~ 10242 x 256 Ax1, Axp,Ax3: <10 pm. structural
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Figure 1.11 At a fixed position xg, texture functions f(x) are analyzed by local texture operators Gp,
with spatial supports Gn = Gy y x --- x Gp p, where G C RP. When applied to all positions, xg € RD,
Gn yields response maps hp(xq) = Gn{f}(xg), which can be aggregated over a ROl M C RP to obtain
a scalar-valued texture feature np.

hu(x0) as

hn(x()) = gn{f}(x())- (14)

The structure of the output space of the operator will depend on the desired properties
and invariances of operators [57]. The operator G, can be linear (e.g., linear filter) or
nonlinear (e.g., max, linear filter combined with a rectifier in CNNs, GLCMs, LBPs).
Accordingly, the response maps h, can highlight desired properties of the input texture
function (e.g., spatial scales corresponding to a well-defined frequency band, image gra-
dients along x1, cooccurrences, local binary patterns, or circular frequencies). Examples
of response maps are shown in Figs. 1.12 and 1.13. The properties of popular texture
operators are discussed and compared in Chapter 3. In the particular case of linear op-
erators, the application of the operator G, to the image function f(x) at a given position
X0 1s a scalar product between f(x) and a function g,(xy — x), where g,(x) has support
G, (see Eq. (3.2) of Chapter 3). Applying a linear operator G, to the input texture
function f(x) by sliding the spatial support of its function over all positions x, is called
convolution (see Eq. (3.1) of Chapter 3). Convolutional texture operators are discussed in
Section 3.2 of Chapter 3.

In order to extract collections of scalar measurements § = (11, ..., ny) from N re-
sponse maps h,(x) an aggregation function is required to gather and summarize the
operators’ responses over a defined ROI domain M C RP (see Fig. 1.11). The values of
the vector 5 define coordinates of a texture instance in the feature space RY. Integrative
aggregation functions are commonly used to extract estimations of features statistics (e.g.,

counts, means, covariances). For instance, the mean can estimate the average responses
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Figure 1.12 2D texture functions f; and f, (synthetic tumors) are analyzed with a collection of convo-
lutional circularly symmetric texture operators {G1, G», G3} with functions {g1, g2, g3}. The latter are
2D Laplacians of Gaussians (LoG, see Section 3.2.1 of Chapter 3) at different scales and have different

spatial supports G1 p x Gy, . The resulting response maps hﬁ are revealing distinct properties of both
the core and the margin of the tumors. In particular, h? (x) highlights the core texture of f,. This is ver-
ified when averaging the response maps”r over the core region More to obtain scalar measurements
Nn, Where 17';‘ < 17?. Likewise, h? (x) highlights the margin of the tumor in f,, where n? < n?. The
texture scales captured by g, and g3 are too large and do not discriminate well between f; and f;,
neither for the core nor for the margin of the tumors.

of a given operator over M as

m
1
=1 _/M(h”(x)>n=1,...,1\1dx’ (1.5)

NN

4 The average of the absolute values of h,/;(x) is computed since LoGs are band-pass functions in the Fourier
domain and have zero mean.
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Figure 1.13 Directional response maps of scaled gradient operators along horizontal and vertical axes.

where [M| = [,,dx is the area® covered by M. Aggregation functions are not limited to
integral operations. For example, max(hn(x)) is an aggregation function used in deep
xeM

CNNs for the max-pooling of feature maps (see Section 4.2.4.1 of Chapter 4). It is
worth noting that the aggregation operation can itself be seen as an operator applied to
the feature maps h,(x). However, it differs from the definition introduced in Eq. (1.4)
as it relies on irregular spatial supports defined by M, which are not slid over the entire
image domain.

Examples of simple convolutional texture operators, response maps, and aggrega-
tion functions are shown in Fig. 1.12 (multiscale circularly symmetric operators) and
Fig. 1.13 (directional operators). Both figures show that specific operator design allow
highlighting desirable or discriminatory texture properties (e.g., scale, directionality).
However, it appears clearly in Fig. 1.10 that the properties of biomedical textures are
very subtle and have big intraclass variations. To some extent, the latter type of variation
is due to local rigid transformations of the structures (e.g., a local rotation of a vessel or
bronchus following the anatomy of lung lobes). In order to limit the impact of these
variations on the performance of BTA algorithms, we will define more precisely the
kind of texture transformations that can be expected, as well as strategies to make BTA
approaches more robust to them. In particular, the characteristics of texture normaliza-
tion and operator invariances are introduced in Sections 1.3.2 and 1.3.3, respectively.

5 Or volume, hypervolume when D > 2.
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Operator invariances are further discussed in Chapter 7. The management of intra and
interclass complexity observed in the hyperspaces spanned by aggregated responses of
the operators (texture features 3) is developed in Chapter 6.

Designing sets of texture operators that are able to accurately identify tissue type,
function, genomics, or response to treatment while accounting for intraclass variation
is a very challenging task. How to design such operators? In the rare case where class-
specific texture primitives are known the ideal set of operators would be detectors
of those primitives (e.g., detectors of crosses, coins, or collagen junctions for the tex-
tures shown in Fig. 1.8), where aggregation functions would count the occurrences
of the primitives to quantify their density. Knowing texture primitives is rare in prac-
tice and more general approaches for operator design are required. The most general
strategy for operator design relies on understanding and/or characterizing the whole
span of possible texture functions and, within this span, identifying the most impor-
tant combinations of image scales and directions with discriminative capabilities for
each considered tissue class in the specific BTA task in hand. This can be done by
exhaustively parceling the Fourier domain by groups of spatial frequencies and their
directions (see Section 1.2.1 and Section 3.2.2 of Chapter 3). However, the exhaus-
tive analysis of spatial scales and directions is computationally expensive for discrete
texture functions f(&) with densely sampled domains F; x --- x Fp and choices are
required (see Chapter 2). Making such choices has been studied in the literature by
following essentially two opposing strategies: feature handcrafting versus feature learning.
Feature handcrafting requires defining strong assumptions on expected discriminative
types of image scales, directions, and transitions. Classic examples of handcrafted tex-
ture operators are circularly/spherically symmetric or directional Gabor wavelets [58],
GLCMs [27], HOG [31], LBPs [32], and the ST [33]. Examples of such choices are
depicted in Fig. 1.14. Making these choices (i.e., feature handcrafting) raise two issues:
How much information is missed or mixed in between two sampled directions or fre-
quency bands? And, among the chosen image scales and directions, which ones are
useful for texture discrimination? To address both issues, feature learning approaches
relying on either supervised or unsupervised machine learning have recently been pro-
posed to identify context-specific intended texture properties from data. Unsupervised
approaches do not require labeled data to design image features and characterize image
textons. Notable examples are Principal Component Analysis (PCA) [59], Bags of Visual
Words (BoVW) [51], and unsupervised DL [37]|. However, although the learned texture
operators are data-driven, nothing guarantees that the latter are useful for discriminating
a desired texture class from the background or from other types. To overcome this limi-
tation, supervised feature learning approaches can design image features based on a set of’
labeled data and learning rules. Noteworthy examples are supervised DL [38], learned
wavelets [54,53,60], and deep CNNs [61,35]. They are presented in Section 3.2.3 of
Chapter 3. Deep CNNGs for texture analysis are thoroughly discussed in Chapters 4, 9,
and 10.
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Figure 1.14 Popular choices of image scales and directions for handcrafted texture operator design.
Top: popular 2D and 3D regular sampling of image directions along image axes and diagonals used
in GLCMs, RLE, and HOG [14]. Bottom left: 2D sampling of image scales and directions for comput-
ing GLCMs. Bottom right: systematic sampling of the Fourier domain € into dyadic bands i with 2D
Shannon circularly symmetric wavelets gsna j (11v1]) [62,63].

The importance of image normalization and operator invariances has already been
mentioned in the previous sections and warrants further clarification. They are discussed
in Sections 1.3.2 and 1.3.3.

1.3.2 Normalization

Image normalization ensures optimal comparisons across data acquisition methods and
texture instances. The normalization of pixel values (intensity) is recommended for
imaging modalities that do not correspond to absolute physical quantities. Various ad-
vanced strategies have been proposed to normalize values and are often modality-specific
(e.g., MRI [64], histopathology [65]). Examples of pixel value normalization can be
found in Section 10.2.1 of Chapter 10, and Section 11.2.4 of Chapter 11. The nor-
malization of image sampling steps A&; (d=1, ..., D) across subjects and dimensions is
crucial to ensure accurate comparisons between scales and directions, which is illustrated
in Fig. 1.15. Image resampling® with identical sampling steps both across image series
and image dimensions can be used to normalize image scales and directions. Resam-
pling can be carried out either on the image itself, or on the texture operator. In both
cases, care must be taken on the transfer function of the resampling strategy, which can

6 Classic resampling strategies can be used (e.¢., nearest neighbor, multilinear, multicubic).
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Figure 1.15 Importance of image sampling normalization across image series and image dimensions.
Top row: sampling steps {A&;, A&} are four times smaller in the left image than in the center one.
This results in a dilated distribution of spatial frequencies in [—m, 7] in the Fourier domain (the mod-
uli of ?/(v) are displayed), because the normalized Nyquist frequencies 7 are not obtained with the
same normalization. It is worth noting that |F| = 42 - |F;|. Likewise, a GLCM operator parameter-
ized by a horizontal displacement of one pixel (|| Ak||=1) corresponds to a physical displacement of
either 0.4 mm or 1.6 mm. Image resampling with a fixed step defined in physical dimensions (e.g.,
A&1=A&»=0.4 mm) is required to normalize scales across image series. Bottom row: image resam-

pling across dimensions {A&1, A&, A3} = {A&], AE;, AL} to obtain cubic voxels and to ensure
an isotropic description of image directions.

have an important influence on texture properties [66]. Examples of image resampling
for spatial normalization can be found in Section 12.2.4.1 of Chapter 12, as well as in
Sections 4.4.2.2 and 4.5.2 of Chapter 4.

1.3.3 Invariances

An operator or a measurement is invariant if its response is insensitive to the trans-
formation of the input image. When the output of the operator is affected by the
transformation in the same way the input is, we say that it is equivariant.

Invariances of the final texture measures 5 are required to provide robust recogni-
tion of all intraclass variants, while preserving interclass variations (see also Chapter 6
for a machine learning perspective of the problem). Whereas the sources of intraclass
variations can be extremely diverse in the context of biomedical tissue (e.g., imaging pro-
tocol, subject age, genetics, history) an important subcategory is related to geometric
transformations of the tissue architecture. Examples of the effect of such transforma-
tions on texture functions are depicted in Fig. 1.16. Assumptions on types of geometric
transformations expected in biomedical images are different from those expected in
photographic images, because the well-controlled acquisition protocols have little view-
point variations and allow to control the physical size of pixels (see Section 1.2.5). As
a consequence, while robustness of the texture measures to affine transformations (e.g.,
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e B

Figure 1.16 Typical geometric transformations of textures encountered in photographic imagery [67]
(left) versus biomedical images [68] (right). In most cases, biomedical textures are observed in images
with known pixel sizes. As a consequence, texture measures that are robust to translations and rota-
tions (rigid transformations) but sensitive to changes in image scale will yield optimal descriptors. As
opposed to photographic image analysis, it is not desirable to enforce any form of scale invariance
which truly entails the risk of regrouping patterns of different nature.

translation, rotation, scaling) are desired for analyzing photographic images, measures
that are robust to a smaller group called Euclidean or rigid transformations (combinations
of translations and rotations) are recommended for biomedical image analysis (see Chap-
ter 7). Scale, itself, is a powerful discriminative property in biomedical image analysis.

To better understand the types of geometric invariance that are desirable in the
context of a particular image analysis task at hand, we must disentangle invariances of
the operator’s output (i.e., at the level of the response maps h,(x) = G,{f}(x)) and the
ones of the final texture measures 7.

1.3.3.1 Invariance and equivariance of operators

We will first discuss the desired invariances of texture operators to design BTA ap-
proaches that are robust to rigid transformations. Let us consider a general group of
geometric transformations A which can be used, e.g., translation, rotation, scaling, rigid,
or affine. In a strict sense, a texture operator G, that is invariant to the group A observes

A1) =G A} () Vf, VAeA, (1.6)

where A is a geometric transformation operator implementing a concrete transforma-
tion of the group A (e.g, a 2D translation by the vector (1,1)). Eq. (1.6) imposes
an extremely strong requirement that would severely limit the ability of operators to
extract any useful texture information. For instance it A is a translation operator as
T{}(-) =f(- — x0), enforcing G, to be invariant to 7 means that the response map
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h,(x) (see Eq. (1.4)) will not change under the eftect of 7. Therefore the spatial po-
sitions of the texture “events” will be lost when such a translation-invariant operator
is used. This operator will be useless for texture segmentation and difficult to use for
texture classification. To preserve the ability of operators to characterize local texture
properties, the operators must be equivariant to rigid transformations [69], which implies
that if the input image f(x) is translated and rotated, and the response map h,(x) must
undergo the same rigid transformation. This means that G, must commute with A as

AGAA () =G A} () Vf, VA€ A. (1.7)

For some geometric transformations, the origin plays a crucial role. This is the case
for rotations and scalings, for which the origin is a fixed point (A{f}(0) = f(0) for
any function f). On images the position of the origin is arbitrary. For instance, we
are not only interested to know the effect of rotations around the origin, but also
on rotations centered around any location x. For an operator A, we denote by A,
its shifted version that is centered around x( instead of 0. Mathematically, we have
Ao = Teg AT x,, where T, is the translation operator with shift xo. We therefore refine
the notion of equivariance as follows. We say that a texture operator is locally equivariant
to the group of transformation A if it commutes with any transformation Ay, for any
A€ A and any xo € RP; i.e.,

A Gl () =G{ AL} ()  Yf, YA€ A, Vxy eRP. (1.8)

We remark that the texture operators introduced in Section 1.3.1 are precisely
the ones that are equivariant to translations, due to the sliding property. This has an
important consequence: if the texture operator is equivariant to another group of trans-
formations for which the origin plays a central role (such as scalings or rotation), then
it is also locally equivariant in the sense of Eq. (1.8).

Strict equivariance is a difficult requirement to achieve in the practical design of op-
erators. Therefore the equivariance constraint can be approximated to allow robustness
of texture measurements to (local) rigid transformations. The desirable approximated
operator invariances/equivariances to global/local geometric transformations are also
depending on the image analysis task at hand. This is illustrated in Fig. 1.17 where the
requirements substantially differ for detecting cars in photographic imagery and for de-
tecting collagen junctions in lung CT. The former requires operator local equivariance
to scaling transformations (all cars must be detected regardless of their distance to the
viewpoint) and equivariance to translations (important for localizing the positions of
the cars), while no equivariance to rotations (important to rule out objects that look
like cars but are, e.g., upside down). Detecting collagen junctions in lung CT requires
operator local equivariance to rotations (all junctions must be detected in spite of their
local orientation), equivariance to translations (important for localizing the junctions)
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Figure 1.17 The requirements in terms of geometric invariance/equivariance of image analysis meth-
ods substantially differ depending on the image analysis task at hand. Left: detecting cars in photo-
graphic imagery’ versus right: detecting collagen junctions in lung CT [70].

but no equivariance to scaling (important to rule out objects that look like junctions but
are physically too big or small to be a junction). Since the texture primitives (or textons,
see Section 1.2.4) can have arbitrary local orientations in most biomedical images (see
Figs. 1.8 and 1.9), it is mostly interesting to design operators that are equivariant to local
rotations [57] (see Section 2.4.1 of Chapter 2).

1.3.3.2 Invariances of texture measurements

Invariance of texture measurements to geometric transformations are further obtained
through the aggregation function. Most of aggregation functions (e.g., integral/summa-
tion, max) are adding invariance of the texture measurements over the ROI M in the
sense of Eq. (1.6). This is reasonable under the condition that the texture processes are
considered stationary (in the relaxed sense, see Section 1.2.3.1) over M. For instance,
however, special care must be taken when choosing M to avoid undesirable and destruc-
tive side effects of aggregation. This is discussed in Sections 2.3.2 and 2.4 of Chapter 2.

1.3.3.3 Nongeometric invariances

Similar to the general categories of feature design mentioned in Section 1.3.1, designing
texture operators that are invariant or equivariant to certain geometric transformations
can be considered as handcraffed because it involves prior knowledge of biomedical tex-
ture variants. However, more subtle intraclass variations are caused by the diversity of,
e.g., biology, anatomy, subject age [71]. In this context, texture operators can be trained
using machine learning to respond invariantly to subtle intraclass variation of the data.
Deep CNNs have recently shown to perform very well on learning cascades of nonlinear

8

operators and aggregation functions® minimizing intraclass variations and maximizing

7 https://www.youtube.com/watch?v=xVwsrOp3irA, as of March 7 2017.
8 The forward function of image operators results from the composition of linear and slightly nonlinear
operations (e.g., rectified linear unit, ReLU).
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interclass separability [33,61]. However, they solely rely on class representations avail-
able in the training set, i.e., the collection of texture instances (realizations) with ground
truth (labels) available. The latter are difficult to acquire in practice for biomedical im-
ages, and data augmentation has been used to include geometric handcrafted invariances
to deep CNNs [36] (see Section 3.2.3.4 of Chapter 3). Transfer learning has also been
proposed to reuse deep networks trained on very large and publicly available databases
(e.g., ImageNet |72]) for other image recognition tasks [73,74| (see Section 4.4.3.3 of
Chapter 4). In this particular context, using networks that were trained with images
acquired with digital cameras (ImageNet) on biomedical images carries the risk of in-
troducing undesired operator robustness to image scale for instance, discarding a strong
discriminative property.

1.4 CONCLUSIONS

In this chapter, we present the foundations of texture processing for biomedical image
analysis. We begin with a generic definition for the type of textures encompassing those
observed in biomedical imaging (Section 1.2). We clarify the difference between inten-
sity and texture in ROIs, where the former relies on the statistical distribution of pixel
values, and the latter is characterized by the spatial transitions between the pixel values
(see Fig. 1.1). The direction, scale, and order of these spatial transitions were found to be
fundamental properties of biomedical texture and are naturally described in the Fourier
domain. From a mathematical point of view, we defined biomedical texture functions
as realizations of intricate and nonstationary stochastic processes. When compared to
general photographic image analysis, the acquisition devices and protocols in biomed-
ical imaging yield data with well controlled and standardized fundamental properties
such as pixel size and intensity, as well as image orientation and sample/patient position.
Texture analysis challenges are therefore specific to the domain of biomedical imaging
and require adequate methods for obtaining optimal results.

Second, we introduced a general problem formulation for BTA in Section 1.3. It
essentially consisted of considering that any biomedical texture analysis approach can
be characterized by a series of local texture operators and regional aggregation func-
tions. Operators can be handcrafted to highlight desired properties of the input texture
function such as spatial scales in a well-defined frequency band, image gradients along
horizontal directions, cooccurrences, local binary patterns, or circular frequencies. They
can also be learned from data to yield optimal texture representation for reconstruc-
tion or discrimination. Image normalization and operator invariance/equivariance to
rigid transformations were found to be fundamental for BTA. Aggregation functions
are required to summarize the responses of operators over ROIs. It allows obtaining
collections of scalar-valued texture measurements that can be used as quantitative imag-
ing biomarkers. The latter can be further combined with other -omics and patient
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data to allow precision and personalized medicine by predicting diagnosis, treatment
response, as well as to enable biomedical discovery (see Chapter 8).

The challenges of multiscale and multidirectional biomedical texture analysis are fur-
ther developed in Chapter 2. A qualitative comparison of popular approaches in terms
of the proposed general problem formulation introduced in this chapter is discussed in
Chapter 3.
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