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a b s t r a c t 

A central challenge in scanning transmission electron microscopy (STEM) is to reduce the electron ra- 

diation dosage required for accurate imaging of 3D biological nano-structures. Methods that permit to- 

mographic reconstruction from a reduced number of STEM acquisitions without introducing significant 

degradation in the final volume are thus of particular importance. In random-beam STEM (RB-STEM), 

the projection measurements are acquired by randomly scanning a subset of pixels at every tilt view. 

In this work, we present a tailored RB-STEM acquisition-reconstruction framework that fully exploits the 

compressed sensing principles. We first demonstrate that RB-STEM acquisition fulfills the “incoherence”

condition when the image is expressed in terms of wavelets. We then propose a regularized tomographic 

reconstruction framework to recover volumes from RB-STEM measurements. We demonstrate through 

simulations on synthetic and real projection measurements that the proposed framework reconstructs 

high-quality volumes from strongly downsampled RB-STEM data and outperforms existing techniques at 

doing so. This application of compressed sensing principles to STEM paves the way for a practical imple- 

mentation of RB-STEM and opens new perspectives for high-quality reconstructions in STEM tomography. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Electron microscopy (EM) is a powerful imaging modality that

as been intensively used over the past decades to study molecu-

ar and cellular biology at the nanometer scale [1] . EM exploits the

ave-like behavior of electrons in a vacuum and their extremely

hort wavelength to produce a visualization of biological nano-

tructures. Several EM variants exist, such as scanning electron mi-

roscopy (SEM) [2] , transmission electron microscopy (TEM) [3] , or

heir combined version, scanning transmission electron microscopy

STEM) [4] . In bright-field STEM, the electron-transparent speci-

en is rastered by a focused electron beam and the transmit-

ed radiation is detected. STEM can offer advantages over conven-

ional TEM tomography for thick samples imaging, including a bet-

er signal-to-noise ratio (SNR) and improved contrast [5–7] . STEM

as recently been applied to the 3D imaging of fully hydrated, vit-
∗ Corresponding author. 
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ified biological specimens (cryo-STEM), yielding improved resolv-

ng power and broadening the scope of acceptable biological spec-

mens [8] . 

Yet, despite its promise, cryo-STEM is subject to the same ex-

erimental limitation as other EM techniques — high-resolution

maging requires dense sampling with large electron radiation

osage, yet biological samples are extremely sensitive to electron-

nduced irradiation damages. This dosage constraint is even more

ritical in electron tomography (ET), which requires a series of pro-

ection images to be taken covering a large range of tilt angles [9] .

oreover, the geometry of conventional tomographic STEM imag-

ng systems constrains the imaging of samples to a limited angular

ange. As a result, artifacts consequent to a missing wedge of infor-

ation in the Fourier space may appear on the reconstructed im-

ge if the angular coverage is insufficient [10] . A trade-off between

he reconstruction quality ( i.e. , wide and numerous high-SNR ac-

uisitions) and the sample integrity ( i.e. , low electron dosage) must

hus be considered when optimizing 3D STEM imaging. 

Several researches have therefore focused on reconstruction

ethods that address the limited-angle problem and permit lower-
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

http://dx.doi.org/10.1016/j.ultramic.2017.04.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ultramic
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultramic.2017.04.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:laurene.donati@epfl.ch
http://dx.doi.org/10.1016/j.ultramic.2017.04.003
http://creativecommons.org/licenses/by-nc-nd/4.0/


48 L. Donati et al. / Ultramicroscopy 179 (2017) 47–56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

u

2

 

f  

m  

t  

c  

i

 

s  

d  

r  

c  

p  

p

2

 

s  

t  

f  

d  

b  

m

 

w  

x  

a  

t  

s  

c  

p  

e  

i  

d

2

 

b  

m  

i  

t  

T  

f  

n  

t  

s  

f

 

t  

b  

[  

s  

o  

i  

F  

m  

t  
dose STEM tomographic acquisitions without introducing signifi-

cant degradation in the final image. These methods can be cate-

gorized according to whether the dosage reduction is achieved by

angular or spatial downsampling [11] . 

Tilt-downsampling (T-DS) techniques rely on algorithms that re-

construct a tomographic image from a reduced number of angular

views. T-DS is generally performed by acquiring fewer tilt images

over the widest possible angular range. To compensate for the in-

duced lack of information, a standard approach is to incorporate

prior knowledge in the reconstruction process. Advanced T-DS re-

construction algorithms primarily include discrete algebraic recon-

struction techniques (DART) [12,13] and compressing sensing (CS)

based approaches [14–17] . 

Instead of reducing the number of tilt views, image-

downsampling (I-DS) techniques reduce the electron beam cov-

erage of individual tilt images. This can be achieved by decreas-

ing the frame size, the per-pixel dwell time, or the beam current

density [18] . Alternatively, one can scan only a fraction of the im-

age pixels following a certain downsampling pattern. The recovery

of randomly downsampled EM images has notably been the topic

of several recent publications. Anderson et al. [19] reconstructed

randomly undersampled SEM data by compressed sensing inver-

sion using image smoothness as a prior. For STEM imaging, Stevens

et al. [20] applied a Bayesian dictionary-learning technique to re-

store randomly undersampled STEM measurements, while Saghi

et al. [11] used total variation (TV) to inpaint I-DS images, which

were then used as input to compressed sensing tomographic re-

construction. To the best of our knowledge, compressed sensing

tomographic reconstruction directly using random I-DS STEM data

has not yet been demonstrated. As we further explain in this paper,

the main difficulty in doing relies on the fact that it is not obvious

a priori that random undersampling of STEM measurements associ-

ated with the classical representation bases fulfills the incoherence

condition required by the CS theory. 

The recent work by Saghi et al. [11] simulated both T-DS and

random I-DS conditions in STEM to demonstrate the feasibility of

further reducing the electron dosage by combining both downsam-

pling techniques. The reconstruction was performed in two suc-

cessive steps. The I-DS tilt images were first filled in by apply-

ing TV-inpainting. A volume was then reconstructed from the re-

stored projection measurements using an iterative algorithm with

TV-regularization. Again, as far as we know, compressed sensing

has not yet been applied to the global tomographic reconstruction

of combined T-DS and random I-DS STEM measurements. 

In summary, compressed sensing could be a very powerful tool

for minimizing the electron dosage in tomographic STEM imaging;

however, its potential in this regard has not been fully exploited

yet. In this paper, we address the remaining gaps by fully apply-

ing the principles of compressed sensing to tomographic STEM. In

particular, we demonstrate that random-beam scanning for STEM

(RB-STEM) associated with a wavelet representation basis fulfills

the incoherence condition required by the CS theory. We then

present a regularized tomographic reconstruction framework that

reconstructs high-quality volumes from strongly downsampled RB-

STEM data. We demonstrate through simulations on synthetic and

real projection measurements that the proposed framework out-

performs existing techniques at doing so. 

The paper is organized as follows. In Section 2 , we recall the

principles of compressed sensing and three of its key components:

sparsity, incoherence and recovery. The applicability and relevance

of these principles in the context of tomographic STEM imaging are

then demonstrated in the following three sections. Section 3 dis-

cusses the sparsity of biological STEM data, Section 4 demon-

strates the incoherence of the RB-STEM acquisition scheme, and

Section 5 describes the proposed reconstruction framework for in-
n

oherent RB-STEM data-sets. The reconstruction framework is eval-

ated in Section 6 . Our conclusions are presented in Section 7 . 

. Compressed sensing theory 

Compressed sensing (CS) is a powerful mathematical concept

or acquiring sparse signals with a minimum number of measure-

ents provided that proper recovery methods are used [21] . CS

heory is extremely relevant to biomedical imaging and has re-

ently been applied with great success to multiple imaging modal-

ties [22–25] . 

In this work, we aim to show that biological specimens with a

parse representation can also be reconstructed from randomly un-

ersampled STEM measurements through an appropriate nonlinear

ecovery scheme. To set the context, we briefly describe the three

entral components of CS theory: data sparsity, incoherent sam-

ling and signal recovery. The relevance and applicability of each

rinciple to STEM are analyzed in subsequent sections. 

.1. Sparsity 

The theory of compressed sensing relies on the notion of spar-

ity [21] . A signal is said to be sparse if it has a concise represen-

ation in some basis; i.e. , if it can be completely represented by

ew non-zero coefficients when expressed in a proper transform

omain. The mathematical formulation is as follows. Let a signal

e represented by a vector f ∈ R 

N . Its expansion in an orthonor-

al N × N basis � = [ ψ 1 ψ 2 · · ·ψ N ] is given by: 

f = 

N ∑ 

n =1 

x n ψ n (1)

here x = (x 1 , x 2 , . . . , x N ) is the sequence of coefficients of f , with

 n defined as x n = 〈 f , ψ n 〉 . The implication of sparsity is that, in

 sparsifying domain, few of the coefficients x n are non-null and

hus concentrate most of the signal information. The relevance to

ignal compression then becomes obvious: numerous zero coeffi-

ients in a sparse signal can be discarded without introducing any

erceptual loss [26] . In practice, most objects of interest are not

xactly sparse, but rather “approximately sparse” ( i.e. , compress-

ble). For these signals, most of the coefficients in the sparsifying

omain have near-zero values instead of strictly null ones. 

.2. Incoherent sampling 

It is well known in signal processing that sampling a signal

elow the Nyqvist frequency introduces aliasing artifacts that are

anifested by periodizations in the Fourier domain [27] . The key

n CS is to use some form of nonuniform sampling scheme to in-

roduce incoherent artifacts in the sparsifying transform domain.

hese artifacts are said to be incoherent because they spread uni-

ormly throughout the representation domain in a noise-like man-

er. Hence, they can be distinguished from the signal of interest

hrough sparsity-promoting reconstruction, as the few significant

ignal coefficients stand out from the introduced incoherent inter-

erence [21] . 

The smallest sampling frequency that can accurately capture

he signal information is directly determined by the incoherence

etween the sensing basis and the (sparse) representation basis

28] . Simply said, the less coherence, the fewer the number of

amples needed for proper signal reconstruction. Typical examples

f low coherence sensing/representation basis pairs in CS notably

nclude the spike/Fourier basis or the wavelets/noiselets basis [29] .

inally, it is important to note that the row vectors of random

atrices are largely incoherent with any fixed basis and therefore

hey can very efficiently capture signal information with minimal

umber of measurements 
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.3. Signal recovery 

The performance of the CS approach relies on appropriate non-

inear recovery schemes that efficiently reconstruct the signal of

nterest from the collected data. The transform coefficients ˜ x are

econstructed after sampling by solving the following optimization

roblem: 

˜ 
 = min 

x ∈ R 

N 

{‖ y − Ax ‖ 

2 
l 2 
+ ‖ x ‖ l 1 

}
. (2) 

ere y ∈ R 

M refers to the measured data, while A is a M × N ma-

rix incorporating the model of the imaging process and the spar-

ifying transform. The first term in Eq. (2) enforces data consis-

ency through l 2 -norm minimization, while the second term pro-

otes sparsity through l 1 -norm minimization. In other words, the

inimization of the objective function yields the sparsest solution

mong all solutions compatible with the measured data [21,31] . Al-

orithms for solving Eq. (2) notably include projection onto con-

ex sets, iterative fast thresholding, or iterative reweighted least

quares [32] . The final image f is reconstructed by computing f =
 N 
n =1 ̃  x n ψ n . 

. Sparsity of STEM data 

It is well established that natural images are compressible in

ppropriate domains such as the discrete cosine transform (DCT)

nd discrete wavelet transform (DWT) [26] . Similarly, the com-

ressibility of various signals relevant to biomedical imaging has

een demonstrated by multiple researches [22,23,33,34] . In elec-

ron microscopy, Anderson et al. [19] assessed the sparsity of

ypical electron microscopy images (SEM, TEM and E-SEM) in

he block-DCT domain. For electron tomography (ET), Song et al.

35] showed that cryo-ET projections exhibit sparsity in the DCT

omain. Finally, the suitability of the DWT for sparsely represent-

ng ET data has also been demonstrated in a number of empiri-

al studies [36–38] . For the sake of completeness, we illustrate the

ompressibility of STEM data in the DWT in Fig. 1 . 

. Random-beam scanning in STEM 

We shall now demonstrate that random-beam scanning in

TEM (RB-STEM) associated with the wavelet domain fulfills the

ncoherence condition required by compressed sensing. As previ-

usly explained, this amounts to showing that the artifacts intro-

uced by the measurement process behave in a “noise-like” man-

er in the representation domain. 

In RB-STEM, the measurement process consists of the random

canning of a subset of pixels for every tilt view ( i.e. , random I-DS).

he considered randomized subsampling regime follows a uniform

istribution. The scanning corresponds to the straight-line trans-

ission of an electron beam through the sample, as in a conven-

ional STEM set-up (see Fig. 2 ). As we describe in the Appendix A ,

his transmission process can be mathematically modeled by the

-ray transform. 

.1. Incoherence analysis 

To measure the incoherence between the two aforementioned

ases, we use the transform point spread function (TPSF) analy-

is proposed by Lustig et al. [22] . The TPSF generalizes the notion

f point spread function (PSF), as it assesses “how a single trans-

orm coefficient of the underlying object ends up influencing other

ransformed coefficients of the measured undersampled object”. 

The results of the incoherence analysis are displayed in Fig. 3 .

he evaluation is performed on 64 × 64 synthetic data represent-

ng a single square surrounded by zero values ( Fig. 3 b). A filtered
ack-projection (FBP) of 1800 angular views (equally-spaced in [0;

 π ]) is used to reconstruct the image ( Fig. 3 c). FBP has indeed

een shown to provide a good approximation of the inverse X-

ay transform operator for the reconstruction of N × N images if

t least π × N angles are imaged [39] . A uniform I-DS scheme

 Fig. 3 d–f) is considered to allow comparison with the random I-DS

egime ( Fig. 3 g–i). 

The results demonstrate that the incoherence between the RB-

TEM measurement domain and the wavelet domain is more than

atisfactory, as the introduced artifacts have a strongly incoherent

ehaviour in the transform domain ( Fig. 3 i). In contrast, a struc-

ured I-DS scheme leads to a much less suitable outcome ( Fig. 3 f).

verall, these results validate the application of compressed sens-

ng to RB-STEM and guarantee that the signal of interest may be

ecovered, assuming that a proper non-linear recovery scheme is

sed. 

. Reconstruction of incoherent RB-STEM data 

The recovery of high-quality images from a limited number of

ncoherent RB-STEM projection measurements relies strongly on

 high-performance reconstruction framework. In this section, we

escribe the discretization scheme used to formulate the recon-

truction problem and the algorithm we developed to solve it. 

.1. Discretization scheme 

Tomographic STEM aims at reconstructing a three-dimensional

ignal f using a given set of STEM measurements g ( y i , θ i ). Here ( y i ,

i ) ∈ Y × � with i ∈ {1, 2, ���, M } where M corresponds to the

umber of measurements. The set Y contains the different posi-

ions of the STEM gun scans on the projection plane, and the set

f all tilt angles is collected in �. 

In order to formulate the reconstruction as an inverse problem,

t is necessary to discretize both the signal and the imaging op-

rator. The standard approach is to fix the reconstruction space to

unctions of the form [27,40] : 

f (x ) = 

∑ 

k∈ �
c k ϕ(x − k) , (3)

here ϕ(· − k ) ∈ L 2 (R 

3 ) with k = (k 1 , k 2 , k 3 ) ∈ Z 

3 are appropri-

te functions, while � = {−N 1 · · · N 1 } × {−N 2 · · · N 2 } × {−N 3 · · · N 3 }
pecifies the support of the object ( N 1 , N 2 , N 3 ∈ N ) . The function

 ( x ) is described by its coefficients c k . Using the linearity and

seudo-shift-invariance of the X-ray transform [41] , we model the

ffect of the projection operator P by: 

f (y; θ ) = g(y; θ ) 

= 

∑ 

k∈ �
c k Pϕ(y 1 − k 1 cos θ − k 2 sin θ, y 2 − k 3 ; θ ) . (4) 

his, in turn, translates into the matrix formulation of the STEM

maging model as 

 = H c , (5) 

ith g ∈ R 

M whose i th entry is [ g ] i = g(y i , θi ) , and c ∈ R 

N a vec-

or representation of the coefficients (3) indexed by k with

 = (2 N 1 + 1)(2 N 2 + 1)(2 N 3 + 1) . The entries of the system ma-

rix H ∈ R 

M×N are [ H ] i, k = Pϕ(y i, 1 − k 1 cos θ − k 2 sin θ, y i, 2 − k 3 ; θi ) ,

here [ y] i = (y i, 1 , y i, 2 ) . In standard STEM, for every tilt angle θ ,

he whole projection plane is scanned uniformly with y i = i �y

here i ∈ {−M, · · · , M} . The detector resolution is specified by

y = (�y 1 , �y 2 ) . 

In contrast, the acquired measurements positions ( y i , θ i ) in

B-STEM are determined by a random scanning pattern S . The

et of positions are denoted by ( y i , θ i ) ∈ Y S × �S where the ele-

ents in the set Y × � are specified by the sampling pattern S .
S S 
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Fig. 1. Illustration of the compressibility of biological STEM samples in the Haar wavelet transform domain. We consider typical STEM samples and compute their Haar 

wavelet coefficients using the ImageJ software [30] . We then discard most of these coefficients (90%–95%) and compute the inverse transform to get the K-sparse approxi- 

mation of the original images. In the image domain, a large range of non-zero coefficients is observed for all samples (left histograms). In contrast, most coefficients in the 

sparsifying domain have near-zero values (right histograms). As a result, discarding of 90%–95% of the transform coefficients does not lead to significant perceptual losses in 

the inverse-transformed images (far right). This confirms the approximate sparsity of STEM data in the wavelet domain. 

Fig. 2. Illustration of the conventional cryo-STEM acquisition process. Lenses are 

used to concentrate/focus all the electron flow in a single beam, and the image is 

then rastered. Different beam scanning patterns may be used to downsample the 

individual tilt images (I-DS). Downsampling of the number of tilt views (T-DS) is 

also feasible. 

T  

g

5

 

p  

s  

i  

s  

e  

n  

o  

d

m  

 

g  

w  

b  

w  

t

6

6

 

d  
a  
his is equivalent to formulating the RB-STEM imaging process as

 = S H c . 

.2. Reconstruction algorithm 

We have argued that biological samples in electron tomogra-

hy are sparse in the wavelet domain. It has been recently demon-

trated that sparsity in the Haar wavelet domain ensures sparsity

n the gradient domain [42,43] . Consequently, the RB-STEM mea-

urement domain H is also incoherent with respect to the gradi-

nt domain associated to the transform L . Thus, assuming that the

umber of measurements fulfills the CS requirements, the theory

f compressed sensing ensures that we can reconstruct the three-

imensional volume using � 1 -minimization [44] : 

in 

c ∈ R n 
‖ L c ‖ 1 subject to ‖ H c − g ‖ 

2 ≤ ε . (6)

We developed a fast and highly-efficient regularized iterative al-

orithm to solve this optimization problem. In our implementation

e used total-variation (TV) regularization rather than wavelet-

ased one, as TV has been shown to act in a similar qualitative

ay while yielding slightly better results [45–47] . The design of

he proposed algorithm is further detailed in the Appendix A . 

. Reconstruction results 

.1. Synthetic projection measurements 

We shall first demonstrate through simulations on synthetic

ata the superiority of random I-DS methods over uniform T-DS

pproaches at various downsampling levels. We then analyse the
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Fig. 3. Comparison of the reconstruction of a sparse signal (top row) from two different downsampling approaches: uniform sinogram sampling (middle row) and ran- 

dom sinogram sampling (bottom row). Projection measurements ( c ) of the spatial signal ( b ) harbor an “impulse-like” sparse expansion ( a ) in the wavelet domain. Uniform 

undersampling of measurements ( d ) is associated with a transformed point-spread function (TPSF) with coherent aliasing ( f ). In contrast, random undersampling of measure- 

ments ( g ) results in incoherently aliased TPSF ( i ). As a corollary, filtered-back projection reconstruction of the randomly sampled measurements ( h ) shows more similarity 

to the original signal ( b ) than the signal reconstructed from uniform sampling ( e ). The upper-right boxes in ( a ), ( f ), and ( i ) display profile views of the respective sparse 

representations. 
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Fig. 4. Orthoslices of the ground truth image depicting the flagellar pocket of a 

trypanosome. The XY slice shows a typical representation of a flagellar pocket, with 

the flagella separating the pocket into two sides of different sizes. The YZ orienta- 

tion shows an orthogonal section of the flagella. In this context, the XZ slice dis- 

plays microtubule tracks. The scale bar indicates 250 nm. 
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f

erformance of our algorithm at reconstructing 3D volume from

D synthetic random I-DS projection measurements by comparing

t to the existing algorithm. 

.1.1. Simulation conditions 

The synthetic volume used as the ground truth in the simula-

ions is a 512 × 512 × 256 visualization of the flagellar pocket of a

rypanosome ( Fig. 4 ), acquired as presented in [48] . All simulations

ere implemented in Matlab (MathWorks, Natick, MA, USA). To

imulate the acquisition processes, two variants of the projection

perator were coded: one using Kaiser-Bessel window functions

KBWF) as discretizing functions and one using B-splines [49] . To

educe the risk of committing an “inverse crime”, the projection

perator producing the synthetic measurements always differed

rom the one used for reconstruction. The tilt-downsampling con-

ition was achieved by uniformly increasing the angular increment

etween two simulated tilt-series ( i.e. , uniform T-DS). To mimic the

missing wedge of information” effect, we considered an angular

overage of (−70 ◦; +70 ◦) , with a 1 ° increment ( i.e. , 140 tilt views).

patial downsampling in the image domain was achieved by ap-

lying a uniformly randomized subsampled binary mask over the

imulated projection measurements ( i.e. , random I-DS). 
Our 3D reconstruction task was performed through an in-house

ode implementing the framework presented in Section 5 . Isotropic

otal-variation (TV) regularization was used to promote sparsity.

he optimization of the hyper-parameters ( c.f. Eq. (8) ) was per-

ormed by visual assessment. 
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Fig. 5. (Top) Cross-sectional slices through the reconstructed flagellar pocket from uniform T-DS synthetic projection measurements and random I-DS synthetic projection 

measurements at various downsampling ratios (50%, 10%, 3%). The same reconstruction framework is used to recover all datasets. (Bottom) Profile lines taken on the XY- 

orthoslices of the reconstructed volumes. The position of the profile line is indicated in yellow on the orthoslices. The scale bar indicates 250 nm. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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6.1.2. Comparison with T-DS approach 

We first compared the performance of random I-DS approaches

over classic T-DS techniques at various electron radiation doses. To

do so, we simulated both downsampling conditions on synthetic

data and reconstructed the obtained measurements with our algo-

rithm. 

Fig. 5 shows orthoslices of the reconstructed volumes when

only 50%, 10%, and 3% of the pixels are scanned. High-quality

reconstructions are obtained for both frameworks when half of

the pixels are scanned. This is confirmed by the clear overlap-

ping of their corresponding profile lines. However, when the ra-

tio of scanned pixels falls below 10%, the reconstructions from

the uniform T-DS measurements are strongly degraded whereas

those originating from random I-DS acquisitions remain of satis-

factory quality. The profile lines on the 3% reconstructions are es-

pecially informative on this robustness of the RB-STEM framework.

Whereas the T-DS approach fails to retrieve the important changes

in intensity, the random I-DS approach still permits to delimit the

borders of the main trypanosome structures. 

Overall, those results confirm that reconstructing sparse ob-

jects from incoherent acquisitions outperforms uniform (tilt)-

downsampling approaches, as predicted by the theory of CS and

by our TPSF analysis results (see Section 4 ). To further emphasize

the relevance of the proposed RB-STEM acquisition-reconstruction

framework, hereafter we refer to random I-DS data as random-

beam STEM (RB-STEM) measurements. 

6.1.3. Comparison with existing algorithm 

We then compared our integrated framework for the recon-

struction of RB-STEM measurements to the pioneering approach

proposed by Saghi et al. [11] . To the best of our knowledge, there is

no other prior work developed in this area. In their paper, the au-
hors propose to perform this tomographic reconstruction task in

wo steps. First, they fill in the missing data through TV inpaint-

ng in order to produce conventional projections. Second, they use

n iterative algorithm with TV-regularization for the tomographic

econstruction of the projection views. We have reimplemented

heir algorithm as described in [11] in order to compare our com-

ressed sensing framework to their approach. The optimization of

he hyper-parameters is performed by visual assessment. 

Fig. 6 presents orthoslices views of the reconstructions of RB-

TEM data achieved by both frameworks at 50% and 20% down-

ampling ratios (top). The corresponding Fourier shell correlation

FSC) are also displayed (middle), as well as profile lines taken

n the XY-orthoslices of the reconstructed volumes (bottom). Vi-

ual and quantitative analysis of these results indicate that, at

quivalent dose reduction, the proposed RB-STEM reconstruction

lgorithm outperforms the existing algorithm. Finer details ( e.g. ,

lament-like structures) can be visually retrieved from the recon-

tructions achieved by our framework, at both 50% and 20% down-

ampling. In addition, both the FSC curves and the profile lines in-

icate that the proposed framework achieves higher resolution at

oth sampling levels. Several reasons might be put forward to ex-

lain those improvements. 

First, the proposed RB-STEM algorithm performs the tomo-

raphic reconstruction in a single global fashion, as prescribed by

he theory of compressed sensing. Significant advantages follow,

uch as the fact that combining more data gives more information

bout the object of interest. Moreover, the influence of sparsity in-

reases with the dimensionality of the reconstruction procedure. 

Second, as explained by the authors themselves in their dis-

ussion [11] , their reliance on an intermediate TV-inpainting step

imits their capacity to reconstruct fines structures when only few
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Fig. 6. Comparison of the proposed algorithm with the existing algorithm for the reconstruction of synthetic random I-DS projection measurements of T. brucei . (Top) 

Cross-sectional slices through the reconstructed flagellar pocket for both algorithms at 50% and 20% downsampling. (Middle) FSC curves of the reconstructed volumes for 

both algorithms at 50% and 20% downsampling. The FSC curve provides a measure of resolution by comparing the Fourier transforms of the ground truth volume and of 

the reconstructed volume at different frequencies. The spatial frequency at which the FSC curve falls below a certain FSC criterion (commonly fixed at FSC = 0.5 in the 

community) indicates the achieved resolution. (Bottom) Profile lines taken on the XY-orthoslices of the reconstructed volumes. The position of the profile line is indicated 

in yellow on the orthoslices. The scale bars indicate 250 nm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. 7. Cross-sectional slices through the reconstructed flagellar pocket of T. brucei 

from real STEM projection measurements with no simulated random I-DS (top) or 

with 30% random I-DS (bottom). The indicated biological structures are the basal 

body (BB), the collarette (C), the central pair (CP), the flagellar membrane (FM) and 

the microtubules doublets (MD). The scale bar indicates 250 nm. 
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pixels are scanned. The primary limitation is that performing TV-

inpainting on heavily downsampled measurements tends to in-

troduce strong staircase artifacts in the restored images. By con-

trast, our framework performs the reconstruction directly from the

downsampled measurements. Thus, it is not limited by the mor-

phology nor by the fineness of the structures to be imaged. This

translates into reconstructions of highly-detailed specimens that

are globally more robust to the electron dosage reduction. 

Our approach also simplifies the optimization procedure, as it

only requires the optimization of a single hyper-parameter. In ad-

dition, this parameter has demonstrated good stability in regard to

the downsampling ratios. This stability is a significant advantage,

as it promotes consistency in the reconstructions while greatly

shortening the optimization procedure. 

6.2. Real projection measurements 

To get insight on the robustness of the RB-STEM reconstruc-

tion framework in real conditions, we created RB-STEM datasets

by simulating random I-DS on real STEM projection measurements.

The difference with the previous experiment is important, as the

use of real STEM projection measurements and the presence of

noise increases the ill-posedness of the reconstruction problem. 

6.2.1. Sample preparation 

T. brucei cells were cultured in SDM79 medium supplemented

with haemin and 10% foetal calf serum, as described in [50] . T.

brucei cells were fixed directly in the culture flask with 2.5% glu-

taraldehyde and 4% PFA for 30 min at room temperature. Cells

were rinsed three times in PBS and subsequently post-fixed in 1%

OsO 4 for 30 min at room temperature. Cells were dehydrated in

baths of increasing ethanol concentrations at 4 °C and included in

Epon resin. Sections of 500 nm were prepared using an ultrami-

crotome and were mounted on electron microscopy copper grids

for observation. 

6.2.2. Data acquisition 

Tomographic tilt-series were acquired using the bright-field

STEM detector (camera length: 60 cm; magnification: 150,0 0 0;

probe size: 1.5 nm; convergence semi-angle of the beam: 25 mrad;

collection semi-angle of the detector: 6.667 mrad) on a JEOL

2200FS field emission gun 200 kV electron microscope (JEOL ©

Ltd.). A total of 100 tilt views were acquired following a Saxton

scheme [51] from −70 ◦ up to +70 ◦ with tilt increments varying

between 1 ° (at the highest tilt angles) and 2 ° (at the lowest tilt an-

gles around 0 °). Images were recorded using the Recorder software

(JEOL © Ltd.). A total of five images with different foci were col-

lected for each tilt angle and merged as described in [48] , enabling

the recovery of information at focus through the whole sample

depth. 

6.2.3. Simulations and reconstructions 

To mimic the RB-STEM process, we randomly downsampled the

real projection measurements by applying a uniformly randomized

subsampled binary mask. The reconstruction is performed as de-

scribed in Section 6.1.1 . 

Fig. 7 compares the 512 × 512 × 256 reconstruction from a

complete STEM dataset ( i.e. , no I-DS) with the same-sized recon-

struction obtained when only 30% of the projection measurements

are scanned following a random I-DS scheme. 

The results show that even when only a third of the real pro-

jection measurements is retained, the reconstruction still achieves

to preserve key information about the main structures of the im-

aged biological sample. In particular, all the annotated structures

in Fig. 7 can still be located and distinguished from one another
n the RB-STEM reconstruction ( Fig. 7 -bottom). Moreover, the con-

ours of the collarette and the flagellar membrane are correctly

ecovered. The analysis of the central structures of the flagellar

ocket ( i.e. , the basal body, the microtubules doublets and the

entral pair) underlines the difficulty of recovering the higher-

requency details. Nevertheless, visual information on the shapes

nd textures of those structures can be retrieved from the recon-

tructed RB-STEM volume. 

Along with the aforementioned experiments, those results tend

o confirm the robustness of the RB-STEM reconstruction frame-

ork in presence of noise and with reduced information. 

. Conclusion 

We developed a regularized tomographic reconstruction frame-

ork to recover high-quality volumes from randomly downsam-

led STEM projection measurements ( i.e. , RB-STEM data). This

cquisition-reconstruction framework was built upon the demon-

tration that, in contrast to uniform downsampling methods, RB-

TEM fulfills the “incoherence” condition required by the com-

ressed sensing theory. Its superiority over tilt-downsampling ap-

roaches was then demonstrated through simulations on synthetic

B-STEM data. We also showed that the proposed algorithm out-

erforms the existing approach for the reconstruction of randomly

ownsampled STEM measurements. 

Overall, this work establishes the potential of RB-STEM to pro-

uce quality reconstructions of highly detailed objects imaged at

 low electron dose. The development of RB-STEM could thus en-

ble the study of electron-sensitive samples such as cryo-fixed bi-

logical samples through less electron-intensive methods. By oc-

urring at a timepoint where cryo-STEM studies are emerging [8] ,
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Fig. 8. 3D geometry of the X-ray transform model. 
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his work could contribute to the feasibility and popularisation of

B-STEM in biological sciences. 

cknowledgments 

The authors acknowledge the PICT-IBiSA for providing access

o their chemical imaging equipment. The work of L. Donati

nd M. Nilchian was supported by an ERC grant ( ERC-692726-

lobalBioIm ). The work of S. Trépout was funded by an ANR grant

 ANR-11-BSV8-016 ). 

ppendix A 

1. Image formation model in ET 

Due to their extremely short wavelength, electrons approxi-

ately travel in straight lines through a sample. Hence, the imag-

ng operator of STEM can be mathematically described through the

-ray transform [41] . The X-ray transform P : L 2 
(
R 

3 
)

→ L 2 (R 

2 ×
0 , π)) maps a 3D function f ( x ) into its 2D line-integral images

long different tilt angles: 

{ f (x ) } (y; θ ) 

= 

∫ 
R 3 

f (x ) δ(y 1 − x 1 cos θ − x 2 sin θ, y 2 − x 3 ) d x , (7) 

ith θ ∈ [0, π ) and where x = (x 1 , x 2 , x 3 ) and y = (y 1 , y 2 ) spec-

fy the object and projection coordinates, respectively. Here δ( x )

enotes the two-dimensional delta function. The geometry of the

roblem is illustrated in Fig. 8 . 

According to Beer’s law and using the X-ray transform, the

athematical model of STEM is defined as 

(y, θ ) = log 

(
I(y, θ ) 

I 0 (y, θ ) 

)
= P f (y, θ ) , 

here I ( y , θ ) is the intensity acquired by the detector, I 0 ( y , θ ) is

he intensity of the transmitted beam, and θ the tilt angle mea-

ured with respect to axis x 1 on the x 1 x 2 plane. 

2. Reconstruction algorithm 

The reconstruction of a three-dimensional volume from RB-

TEM data is a strongly ill-posed problem. CS theory asserts that

ne can solve this problem through � 1 -minimization. The matrix

ormulation is given in Eq. (6) . 

The equivalent Lagrange formulation of the optimization is 

 (c ) = min 

c ∈ R n 

{ 

1 

2 

‖ H c − g ‖ 

2 + λ‖ L c ‖ 1 

} 

, (8)

here λ is an hyper-parameter of the optimization problem. To

olve Eq. (8) , one can define an auxiliary variable u = L c , and
ewrite the optimization problem as a constrained optimization

roblem [52,53] , 

 (c ) = min 

c ∈ R n , u = L c 

{ 

1 

2 

‖ H c − g ‖ 

2 + λ‖ u ‖ 1 

} 

. (9) 

ts scaled augmented Lagrangian functional can be written in the

orm of 

 μ(c , u , d ) = 

1 

2 

‖ H c − g ‖ 

2 + λ‖ u ‖ 1 + 

μ

2 

‖ u − L c + d ‖ 

2 . (10)

here d is the Lagrange variable. We use the alternating direc-

ion method of multipliers (ADMM) to decompose the optimization

roblem into a set of simpler ones [52,53] , 
 

 

 

 

 

c k +1 ← argmin 

c 
L μ(c , u 

k , d 

k ) (a ) 

u 

k +1 ← argmin 

u 
L μ(c k +1 , u , d 

k ) (b) 

d 

k +1 ← d 

k + μ(Lc k +1 − u 

k +1 ) (c) . 

(11) 

q. (11) (a) is a quadratic minimization with respect to c , 

 1 (c ) = 

1 

2 

‖ H c − g ‖ 

2 + 

μ

2 

‖ u − L c + d ‖ 

2 (12)

hose gradient is 

J 1 (c ) = 

(
H 

� H + μL � L 
)
c −

(
H 

� g + μL � (u + d ) 
)
. (13)

he critical point of the cost functional is the root of the gradient

unction, 

 = 

(
H 

� H + μL � L 
)−1 (

H 

� g + μL � (u + d ) 
)
. (14) 

nfortunately, the matrix 
(
H 

� H + μL � L 
)

is not invertible in the

ase of RB-STEM. We therefore use conjugate gradient to minimize

t. 

The solution of Eq. (11) (b) is a simple point-wise soft-

hresholding operator, 

 

k +1 = prox λ
μ
(Lc k +1 − d 

k ) . (15)

inally, the last step, Eq. (11) (c) corresponds, to an update of the

agrange parameter. 
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